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ABSTRACT

An Iteration on the Horizon Simulation Framework to include .NET and Python

Scripting

Morgan Yost

Modeling and Simulation is a crucial element of the aerospace engineering design pro-

cess because it allows designers to thoroughly test their solution before investing in the

resources to create it. The Horizon Simulation Framework (HSF) v3.0 is an aerospace

modeling and simulation tool that allows the user to verify system level requirements

in the early phases of the design process. A low fidelity model of the system that is

created by the user is exhaustively tested within the built-in Day-in-the-Life simulator

to provide useful information in the form of failed requirements, system bottle necks

and leverage points, and potential schedules of operations. The model can be stood up

quickly with Extended Markup Language (XML) input files or can be customly created

with Python Scripts that interact with the framework at runtime. The goal of the work

presented in this thesis is to progress HSF from v2.3 to v3.0 in order to take advantage

of current software development technologies. This includes converting the codebase

from C++ and Lua scripting to C] and Python Scripting. The particulars of the consid-

erations, benefits, and implementation of the new framework are discussed in detail.

The simulation data and performance run time of the new framework were compared

to that of the old framework. The new framework was found to produce similar data

outputs with a faster run time.
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Chapter 1

HORIZON SIMULATION FRAMEWORK BACKGROUND

1.1 The System Engineering Design Process

The high level systems engineering design process is defined by the IEEE International

Standard for Systems and Software Engineering System Life Cycle Processes (15288-2008,

2008). The technical process is composed 11 sub-processes. These processes are named

in the list below.

1. Stakeholder Requirements Definition

2. Requirements Analysis

3. Architectural Design

4. Implementation

5. Integration

6. Verification

7. Transition

8. Validation

9. Operation

10. Maintenance

11. Disposal

In an ideal engineering process, these 11 steps would be performed in an iterative

cycle that improves upon the previous version. The first 2 processes align with the

preliminary design phase of the overall system development process. This phase is re-

ferred to as Phase A in the classical aerospace design textbook, Space Mission Analysis

and Design. Phase A is when a concept of operations (CONOPS) that satisfies mis-

sion requirements is developed. Validating that mission requirements are met with the

CONOPS is an important step before the rest of the aerospace design phases, B-E, can

be completed. As a result, this verification process is a crucial step in the aerospace

design process, and an error in the CONOPS may result in wasted project budgets,

slipping schedules, or worse, mission failure.
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Modeling and Simulation In some engineering disciplines, verifying a design can be

done by simply implementing and testing the solution. In the aerospace industry

where systems can cost millions of dollars and mission can cost billions, building and

testing an entire mission design would be impractical. As a result of a need for a cost ef-

fective method to implement and verify a system, system models and a simulations are

traditionally utilized. Verifying a model of the CONOPS in a simulation cements the

CONOPS as a high level solution to the mission requirements, and allows the project

to progress to the next phase where the technical solution is baselined.

Modeling and simulation takes on many forms such as scaled prototypes, math-

ematical equations and Computer Aided Drafting (CAD). What all of these methods

have in common is that they allow the user to create a custom model of their design

to be tested to some extent. According to Loper, a "model is a physical, mathemati-

cal, or otherwise logical representation of a system" and a "simulation is a method for

implementing a model over time" (Loper, 2015) By creating smaller scale or computer

based models of a potentially costly system, the technical life cycle can be executed for

a representative system at reduced overall cost. In the specific case of space mission

design, modeling and simulation is especially important because of the high cost of

space missions, the relatively long timeline of the project and the inaccessibility of the

operational environment.

1.1.1 Model Based Systems Engineering

The process of defining CONOPS is typically executed by creating documentation. If

the CONOPS are drawn up in a report, then for the requirements to be analyzed and

the architecture designed, the report must be interpreted by the stakeholders and en-

gineers (Micouin, 2014). In her book, Model Based Systems Engineering: Fundamentals

and Methods, Micouin elaborates on how this interpretation of the documentation is not

objective, and therefore error prone. Instead, she advocates for the use of models to

define these requirements because when the requirements are "objectified, the specifi-

cations then become exactifiable; in other words, the stakeholders are put into a situ-

ation where they are able to decide on the validity of behaviors observed, just as they

could do on a test bench" (Micouin, 2014). The use of models to define requirements is

known as Model Based Systems Engineering (MBSE).
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1.1.2 Model Driven Development

While MBSE helps mitigate the misinterpretation of the CONOPS as they are transi-

tioned into the baseline technical specification of Phase B, the efficiency of this transi-

tion can be further improved by Model Driven Development (MDD). The concept of

MDD states that, since the model is already made for the purpose of requirements anal-

ysis, it should be reused in subsequent phases to eliminate repetitive work. As applied

to the phases of aerospace design, the model, or CONOPS, that is created in Phase A

could be automatically translated to the technical baseline, in Phase B. The automatic

generation of the technical baseline from models has many benefits for the develop-

ment process and the quality of the product. If the specification is created automatically

from the model, the development time can be shortened because time is spent develop-

ing only the model rather than creating a model then a specification. Also, changes and

improvements that are made to the model during the iterative engineering process are

automatically reflected in the specification and don’t need to be manually added. Since

the model is also used in the simulation that verifies its functionality, and the speci-

fication is made directly from the model, verification only needs to occur once rather

than twice. The consistency of the automatic technical baseline generation may also

mitigate human error in conversion from a model to the specification, thus improving

the quality of the end product.

Flight software is a good example of an element of the aerospace system that can

truly follow MDD by utilizing the model from inception to fabrication. "A key premise

behind MDD is that [software] programs are automatically generated from their corre-

sponding models" (Selic, 2003). MATLAB’s Simulink™ is one of many programs that

provides this MDD service. With Simulink, a designer can create a model and run it

through simulations to verify its functionality. Once the designer is satisfied with the

system’s performance, he can have the model autocoded into software written in the C

programming language to run on the actual physical system. In this way, modeling and

simulation can be pervasive throughout the phases of the aerospace design process.
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1.2 Relevant Software Engineering Topics

For the unfamiliar reader, the glossary provides definitions of terms used in this doc-

ument specific to software engineering and may be helpful as a quick reference while

reading this section. It is assumed that basic programming concepts and terminology

including object oriented programming are familiar to the reader.

1.2.1 The Reusable Flight Software Model

The fundamental ideas of reusable flight software are especially applicable to the con-

cepts that helped develop the architecture of the Horizon Simulation Framework. Hawthorn,

Weber, and Scholten identify ways to create reusable, modular and scalable flight soft-

ware for aerospace applications. The author argues that all flight software systems

can be created modularly if the system is decomposed into a semantics catalog– "a hi-

erarchical classification of related concepts that present a logical view of the problem

space" (Hawthorn, Weber, and Scholten, 2014). By discerning subsystems for their re-

lated concepts, a designer can achieve plug and play functionality for their systems

with the ability to exchange subsystems as requirements change between missions.

The ability to swap out subsystems, of course, is made much more possible by the im-

plementation of standard interfaces and a standard method to communicate data, or

"ontology" (Hawthorn, Weber, and Scholten, 2014). The authors also advise that rather

than have mission specific parameters hard-coded within the software files, create a

database of mission specific variables that can be queried for use in general equations.

A good example of this is the gains for a proportional derivative (PD) control law, or

the transformation matrix for the mounting location of a star tracker.

1.2.2 Searching the Solution Space

The classical textbook on artificial intelligence, Artificial Intelligence: A Modern Approach

(Russell and Norvig, 2010), defines a problem in general as being comprised of 5 ele-

ments. The initial state, actions that can be performed, the transition model, the goal

test and the path cost. If a problem is posed to a problem solving algorithm, a solution,

or sequence of actions to arrive at a goal, can be found if it exists. Typically, the problem

solving algorithm is simply a search algorithm that searches the solution space for the

desired goal. In cases when all possible solutions wish to be known, an uninformed
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search strategy can be used. One of the many potential uniformed search strategies is

breadth-first search (BFS). In breadth-first search, the shallowest unexpanded node is

chosen for expansion– or to be explored– first (Russell and Norvig, 2010). Figure 1.1

illustrates the process of breadth first search.

FIGURE 1.1: Illustration of Breadth-first Search from Artificial Intelli-
gence: A Modern Approach (Russell and Norvig, 2010)

Once all the nodes have been expanded, the entire solution space has been explored

and all possible solutions that exist have been found. One requirement of BFS, however,

is that the solution space is discrete, as continuous spaces result in an infinite branching

factor (Russell and Norvig, 2010). Another consideration when using BFS is that it

requires bd+1 amount of memory where b is the branching factor and d is the depth of

the tree (Russell and Norvig, 2010). As a point of comparison, depth-first search (DFS)

expands the deepest node first to follow a path all the way to its end before restarting

at the first node to follow a new path. DFS only needs to store the current path being

expanded and all previous successful paths, whereas BFS must store all nodes because

the solutions are not apparent until all nodes have been evaluated. However, as an

application in Dynamic Programming (1.2.3), breadth-first search proves to be a good

choice for the Horizon Simulation Framework as discussed in 2.1.4.

1.2.3 Dynamic Programming

Dynamic Programming (DP) was coined by the applied mathematician, Richard Bell-

man. Lew and Holger elegantly phrases its definition as: "Dynamic programming is a

method that in general solves optimization problems that involve making a sequence

of decisions by determining, for each decision, subproblems that can be solved in like

fashion, such that an optimal solution of the original problem can be found from opti-

mal solutions of subproblems." So while both DP and BFS explore the entire solution

space, DP searches for the optimal solution by assigning a value to the solution found
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by each subproblem. Bellman’s principle of optimality further elaborates on the ability

to find an optimal policy, also known as path or schedule.

Principle of Optimality: An optimal policy has the property that what-

ever the initial state and initial conditions are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first

decisions. (Bellman, 1954)

Moghaddam and Usher discuss an application of dynamic programming in “Pre-

ventive maintenance and replacement scheduling for repairable and maintainable sys-

tems using dynamic programming” (Moghaddam and Usher, 2011). Similar to the

issue of memory consumption with BFS, the authors note that "one of the well-known

difficulties associated with applying dynamic programming to real world problems is

the so-called ’curse of dimensionality’ due to increasing number of state variables in

each stage of recursion." In order to mitigate for this problem, the authors find suc-

cess in using a method introduced in “Branch-And-Bound Strategies for Dynamic Pro-

gramming”. The branch-and-bound strategy incorporates trimming the graph before

every new node is explored. This helps prevent unnecessary computation in exploring

paths that already show less promise than others as well as prevents expending valu-

able memory resources. When combining the concepts of dynamic programming and

branch-and-bound in layman’s terms, it can be said that as each subproblem is solved,

the non-optimal solutions can be eliminated in favor of the optimal. While this method

obviously does not find all possible solutions because some paths are discarded along

the way, it finds as many solutions that are within the "bound", which can be sufficient

for the developer that has a general idea of what he is looking for.

1.2.4 Software Architecture

One major decision when designing a software product is the architecture of the code-

base. Decomposing the functionality of the code into modules is essential for teams to

be able to all work on the same code base and for the maintainability of the code. Soft-

ware Architecture in Practice (Bass, Clements, and Kazman, 2003) discusses some guide-

lines to follow when architecting the structure of a software project. These guidelines

are considered to be good architecture practices by the authors and are paraphrased

below.
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1. The architecture should feature well-defined modules that are responsible for in-
formation hiding and separation of concerns.

2. Each module should have a well-defined interface that encapsulates or "hides"
changeable aspects (such as implementation strategies and data structure choices)
to allow their respective development teams to work largely independently of
each other.

3. The architecture should only depend on a commercial product if structured such
that changing to a different product is straightforward and inexpensive.

4. Modules that produce data should be separate from modules that consume data
so that if new data is added, the separation of control allows for a staged (incre-
mental) upgrade.

5. The architecture should feature a small number of simple interaction patterns–
the system should do the same things in the same way throughout. This will aid
in understandability, reduce development time, increase reliability, and enhance
modifiability.

A key takeaway from these guidelines is that responsibility should be dispersed

throughout multiple modules with well defined interfaces so that over time, portions

of the software can be replaced or upgraded and developers can even be changed.

1.2.5 C] as a First Programming Language

Another important decision in software design is choosing a language to write the

software in. In many cases, this decision is based on the software requirements and a

language is selected that will satisfy these requirements most efficiently. However, this

thesis utilizes a different criteria that aligns with its objectives that will be discussed in

greater detail in Chapter 3. The ability to learn the programming language, especially

as a first programming language is of special interest. Characterizing the learnability of

a programming language is not easy to do as much of the applicable metrics are subjec-

tive and according to preference. Shoaib et al. uses a weighted combination of technical

and environmental features to determine a suitable language for a first programming

language (FPL). Figure 1.2.5 shows the scores calculated by the authors, where a higher

score indicates better suitability as a first programming language. It should be noted

that Java, Python and C] rank the highest in this study’s objective analysis.
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FIGURE 1.2: Table from Shoaib et al., 2014 displaying the scores of some
commonly used programming languages for their suitability as a first

programming language

1.3 Related Products

As previously mentioned, MATLAB Simulink™ provides an environment to model

and simulate space missions, but this is only one of a myriad of products that seek to

provide this functionality to the user. The advantages and shortcomings of a few of

these products are described below.

MATLAB Simulink™ The modeling features and libraries of MATLAB and Simulink

are well respected in the aerospace community as exceptional tools to verify subsystem

performance and functionality. The large selection of pre-made modeling components

makes creating a model fast and easy. Simulations can be run by feeding data into the

system and analyzing the system’s response. In order to create schedules, the user can

purchase an add on product called SimEvent. "SimEvents® provides a discrete-event

simulation engine and component library for analyzing event-driven system models

and optimizing performance characteristics such as latency, throughput, and packet

loss" (MathWorks, 2016). The MATLAB with Simulink and SimEvents license costs

almost $200 for students and $8,000 for the standard license. While SimEvents allows

the user to create schedules for the model to run through, the creation of exhaustive

schedules would be tedious, and thus the user is missing out on the opportunity to

learn from an extensive set of failed and successful scenarios. Other software programs
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that have comparable capabilities to Simulink are MapleSim, Wolfram System Modeler

and SimulationX.

Questa® Formal Verification Mentor Graphics has developed a tool that tests models

for correctness. "Questa Formal Verification analyzes the behavior of the design to

identify all design states that are reachable from the initial state. This analysis allows

Questa Formal Verification to explore the whole state space in a breadth-first manner,

in contrast to the depth-first approach used in simulation" (Questa Formal Verification).

Questa’s wide range of verification applications make it a viable option for analyz-

ing the simulation solution space, however, it does not support the modeling segment

to the extent that Simulink does, and it is unclear how much support it provides for

aerospace subsystems. The Questa Formal Verification platform seems more targeted

for low-level requirements analysis where a detailed model is provided to the system.

Mentor graphics provides Questa Formal Verification as well as supporting applica-

tions for a price.

European Space Agency Virtual Spacecraft Design The European Space Agency (ESA)

has dedicated efforts to creating a Virtual Spacecraft Design (VSD) software program

that allows users to drag and drop actual subsystem models into a graphical user in-

terface. By connecting existing models of subsystems, a model of the a unique system

can be synthesized. The Virtual Spacecraft Design software focuses on the modeling

element of modeling and simulation by providing extensive functionality to create the

model for the purpose of defining the system. Specifications that can be defined in the

model include "requirements, functional architecture, physical architecture, Spacecraft

operation" (ESA, 2016) and verification and fabrication plans. VSD provides impres-

sive modeling capabilities that support the use of MBSE, but it is more focused on the

technical baseline phase of the spacecraft design process than the initial proof of con-

cept phase. For that reason, it requires the designer to have a precise idea of the design

and does not support exhaustive scenario simulations.
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1.4 Thesis Statement

The Horizon Simulation Framework seeks to combine the topics discussed in this chap-

ter to solve the design verification problem. The framework is in an iterative cycle of

improvement to continue to make it a useful and contemporary modeling and sim-

ulation tool. The purpose of this thesis is to present the newest iteration of Horizon

Simulation Framework, v3.0. The updated framework takes advantage of current soft-

ware development technologies such as C] and Python.

The following chapters of this thesis will go on to explain the goals for the next

iteration of the framework and how these goals were achieved. Chapter 2 defines the

Horizon Simulation Framework (HSF) and elaborates on the shortcomings of the pre-

vious version, v2.3. Chapter 3 addresses solutions to these shortcomings and offers

insight on how to improve the framework in the newest version, v3.0. Chapter 4 pro-

vides the simulation results that verify that the new framework is operational as well

as the performance results of simulation run time. Chapter 5 discusses opportunity for

future work and concludes the thesis.
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Chapter 2

WHAT IS THE HORIZON SIMULATION FRAMEWORK?

2.1 Overview

The Horizon Simulation Framework (HSF) is a modeling and simulation framework

for verification of system level requirements. HSF allows users to create a low fidelity

model of their system by providing the framework with rough specifications of subsys-

tems and their interactions or dependencies with one another. The user also specifies

the parameters of the simulation such as initial conditions, time step size and duration

that is then used to create a Day-in-the-Life (DITL) like scenario to test the model. As

the DITL simulation is run, the user learns about successful system use cases as well

as system failure points. While the success of the system is important, information

learned from bottlenecks and missed requirements is potentially more valuable to the

iterative engineering design process. The DITL simulation seeks to be exhaustive so

that all possible scenarios that can be executed by the system are tested in order to

accumulate a large amount of data for post processing and analysis.

2.1.1 Explanation By Example– The Test Case Aeolus

For validation purposes, an imagined mission named Aeolus is used to test the frame-

work. Aeolus is a two satellite constellation whose mission is to image as many ground

targets as possible. Each satellite is composed of the subsystems described in Table 2.1,

and their dependencies are shown in Figure 2.1. Aeolus can be used to expand on the

purpose of HSF and as a demonstration of the framework’s capabilities. Previous ver-

sions of the framework created and utilized the Aeolus test case, which, for consistency

sake, will also be used in this thesis.
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TABLE 2.1: The Subsystems of the Aeolus Test Case

ADCS The Attitude, Determination and Control Subsystem is responsible for
ensuring that the satellite is pointed to the target while the satellite has
line of sight to the target and an imaging task is scheduled. The default
ADCS specifications require that the system have 10 seconds to slew
before the system can capture an image with the EO Sensor.

EO Sensor The Earth Observing Sensor takes images of a target when an imaging
task is scheduled. The EO sensor can take images with high, medium
or low resolution. The default values are 15000, 10000, 5000 pixels re-
spectively.

SSDR The Solid State Data Recorder saves data from the EO sensor until a
downlink task is scheduled. The SSDR has a default storage capacity
of 5KB.

COMM The Communications subsystem relays data to the ground station
when a ground station has line of site and a downlink task is added.

Power The power subsystem maintains the depth of discharge (DOD) of the
system’s battery by taking into consideration the power consumed by
the other subsystems and power generated by the solar panels. The
battery had a default capacity of 1000 kW-hr.

FIGURE 2.1: The Subsystems of the Horizon Simulation Framework

The Aeolus mission requires the constellation to image the 296 ground targets shown

on the map in Figure 2.2. It is the task of the user to specify how many times each target
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may be imaged, which are the most important and how long the system has to com-

plete its mission. These values are used to create the heuristic that is used to assign

values to schedules in the schedule evaluator.

FIGURE 2.2: Aelous Ground Targets (O’Connor, Mehiel, and Butler,
2008)

A major goal of HSF is to provide plug-and-play functionality by designing the

framework with modularity and flexibility in mind. In order to provide this modu-

larity without exposing the source code to the user and forcing them to recompile the

program every time a modification is made, the HSF executable program has the abil-

ity to interface with externally developed files and scripts. These external files have the

ability to modify the system model structure and functionality without modifying the

framework itself.

To enable quick set up, basic subsystems are all built into the framework. How-

ever, Extended Markup Language (XML) input files provide the user with the ability

to modify exposed attributes of the subsystems, dependencies, constraints, ground tar-

get locations, simulation parameters, equations of motion and the way schedules are

valued. For instance, if a spacecraft developer had the Interface Control Document

(ICD) for the Solid State Data Recorder (SSDR) subsystem that he had in mind for the

mission, he would be able to specify the memory capacity of the HSF model to more

accurately model the data flow within his system. The user can also overwrite func-

tionality included in HSF and provide a subsystem not included in the executable with

the framework’s feature to allow scripted classes to interact with the executable. This
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provides the user with the ability to define a model from scratch by simply redefining

attributes and functions.

In order to have a simulation environment to test the model in, HSF creates all pos-

sible scenarios, or combinations of events, to image the ground targets in all possible

orders. With each DITL scenarios, the model is advanced through the scenario to see if

its state can progress from one time step to the next without violating constraints or the

system’s capabilities. After all the scenarios are executed, the optimal schedule as well

as diagnostic information for the failed schedules is returned to the user for analysis.

A sample of the schedule output was found by O’Connor, Mehiel, and Butler and is

pictured in Figure 2.3.

FIGURE 2.3: The Aeolus Test Case: Ground Target Captures (O’Connor,
Mehiel, and Butler, 2008)

O’Connor, Mehiel, and Butler elegantly explain the importance of diagnostic infor-

mation and how it can be used to improve a system via the identification of bottlenecks

and leverage points. "Here, a bottleneck within the system is any system design feature

or parameter that is a hindrance to the overall utility of the system" (O’Connor, Mehiel,

and Butler, 2008). An example of this in the Aeolus test case could be imagined in the

scenario when power subsystem battery level is too low, or the ADC subsystem doesn’t

have enough time to slew to a target. "Leverage Points within the system are system

design elements or parameters that if changed only slightly result in a proportionally

large benefit to the system utility" (O’Connor, Mehiel, and Butler, 2008). When this
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state data is reported to the designer, the designer has the ability to make an informed

decision to perhaps switch to a larger battery or higher torque wheels in order to im-

prove the capabilities of his system to satisfy design requirements. The designer also

now has a better idea of the performance to expect from his system in the operational

phase of the program as well as a estimate for an optimized schedule of operation.

2.1.2 Modeling and Scheduling

The original HSF framework was designed to provide the user with an adequate amount

of customization capabilities while also keeping in mind that the framework should

perform as much work for the user as possible. As stated by O’Connor, Mehiel, and

Butler, "the design of the framework is based on the application of modularity of sys-

tem modeling and scheduling, flexibility with respect to the fidelity of the simulated

system, and utility of the supporting libraries in the framework." As such, the software

was divided into a modeling segment and a scheduling segment with the idea that the

user would have the freedom to customize the model in the modeling segment and

the framework would know how to ingest this information and execute the schedul-

ing and evaluation of the system. Figure 2.4 presents the interactions between the two

segments with the modeling segment, or system, in the yellow box and the scheduler,

or simulation, in the blue square.

FIGURE 2.4: Horizon Simulation Framework Components (O’Connor,
Mehiel, and Butler, 2008)
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2.1.3 Modeling

The modeling aspect of HSF defines how the system consumes the schedule. The user

must specify the subsystems, dependencies and constraints that make up the system.

These terms, as well as other terms relevant to the modeling elements within HSF are

defined in Table 2.2.

TABLE 2.2: Modeling Elements

Dependency A dependency defines a relationship between two subsys-
tems. The purpose of the dependency is to allow sub-
systems to relay necessary information without requiring
them to know the inner workings of each other. This allows
the subsystems to be truly modular be limiting commu-
nication through a pre-specified interface. A dependency
function is the relay of information from one subsystem to
another. A dependency collector is a function that calls all
dependency functions for specific subsystem and combines
the data in a customizable way. It should be noted that
there can be no circular dependencies in the model.

Constraint A constraint can be applied to a particular state of a sub-
system to indicate that a value is constrained to a specific
range of values or options. This allows the user to require
a subsystem to operate within the capability of the system.
In order to ensure the system fails fast, the subsystems with
the constraints are evaluated first.

Subsystem The subsystem is the fundamental modeling element of
HSF. By specifying a subsystem, the user specifies the ca-
pabilities of the system and how the system’s state variable
changes over time. The subsystems are passed tasks and
must determine if they can perform them as well as update
their state to indicate the task being performed.

Asset An asset is a simple container that unites subsystems that
share the same dynamic state such as position and velocity.
The asset is also used to maintain the state of the subsys-
tems grouped in the same asset as well as task them to-
gether so that each asset could be performing a different
task.

System The culminating element of the modeling components is
the system. The system is a combination of subsystems that
are related through dependencies and verified by their con-
straints.The system also relays the state, position and envi-
ronment information to the subsystems.

2.1.4 Scheduling

Scheduling in HSF is the operation that creates DITL scenarios for the modeled sys-

tem to execute. Scheduling entails combining events to create a chronological list of
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events that the system then performs. In order to discuss how the Horizon Simula-

tion Framework develops schedules, it is important to first define the ontology use

for scheduling in HSF. Table 2.3 outlines the key scheduling elements of the Horizon

Simulation Framework.

TABLE 2.3: Scheduling Elements

Dynamic State The dynamic state is an element specialized for maintain-
ing information about the dynamics, such as position and
velocity, of the system.

Task A task is the goal of an asset at each simulation time step. It
consists of a target and the type of action to be performed
at the target.

State The state is a system level catalog of the current state of
the subsystems (i.e. battery depth of discharge or memory
usage). Each subsystem has a key that allows them to ac-
cess their state information from the high level catalog. The
time history of the state throughout the simulation time is
maintained in a chronological collection of states.

Event An event is the combination of a task and state. For every
simulation time step there is one event and a task may be
scheduled at any point within an event.

Schedule A schedule is simply a chronological collection of events.
The tasks within every event are proposed to the system
and only the schedules that can be performed are output
by the simulation.

The Algorithm The HSF scheduling algorithm is the backbone to the framework. In

order to ensure completeness, a breadth-first search of the solution space is used. This

recursive algorithm generates all possible combinations of events so that the system

can be thoroughly tested for all possible schedules. The event combinations are made

keeping in mind that "no action" is also a possible event. This is accomplished by

tacking on new events one at a time, and preserving old schedules without the new

event to simulate the "no action" event. This algorithm is illustrated through example

in Figure 2.5. The time increments used by the scheduler are provided by the user as

the simulation time step, thus discretizing the simulation.
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FIGURE 2.5: Building Schedules by Adding New Events and Preserving
Old Schedules

Due to the high space complexity of breadth-first search, dynamic programming

concepts introduced in Section 1.2.3 are applied. As a result, Algorithm 1 is developed

with the use of heuristics and branch-and-bound dynamic programming to be memory

efficient.
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For each timestep, k
input : All possible schedules from t0 to tk
output: All possible schedules from t0 to tk+1

Generate list of all possible tasks that can be performed at tk+1

foreach schedule s of all possible schedules do
foreach task t of all possible tasks do

r ←− SafeCopy(s);
r ←− AddNewTask(t);
Add r to the list of all possible schedules

end
end
foreach schedule s of all possible schedules do

if CanPerformNewTask(s) == FALSE then
Eliminate(s)

end
end
foreach schedule s of all possible schedules do

score = EvaluateWithHeuristic(s);
if score < threshold then

Eliminate(s)
end

end
Result: Only the best possible schedules remain

Algorithm 1: Horizon Simulation Framework Scheduling Algorithm

Safe Copy One very important element of the scheduler is how the schedules are built

up using the safe copy. Drawing from the concept of dynamic programming, once one

subproblem has been solved, it can be used within larger subproblems. Lew and Hol-

ger explain that "for DP to be computationally efficient (especially relative to evaluating

all possible sequences of decisions), there should be common subproblems such that

subproblems of one are subproblems of another." For this reason, the old schedule is

used directly within the new schedule by simply creating a safe copy of the old sched-

ule before the new task is added onto it. The safe copy accomplishes the following

three things things:

• Since the events in the previous schedule have already been evaluated, they won’t
need to be evaluated again.

• Since the events in the previous schedule are already in memory, they won’t need
to be stored again.

• Since the schedule with the new task may be manipulated or destroyed, it won’t
affect the schedules it is copied from.
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Figure 2.6 graphically illustrates how new schedules are safely created from old

ones. It can be seen that memory is saved by creating three new schedules by safely

referencing the previously evaluated one.

FIGURE 2.6: Building Schedules with a Safe Copy

Schedule Elimination Another way to mitigate the fast growth of memory consump-

tion is by limiting the number of schedules to keep in memory. This is derived from the

branch-and-bound concept detailed by Morin and Marsten, 1975. In HSF, the bound

is simply a maximum number of schedules– specified by the user– that HSF seeks to

maintain by removing schedules as the maximum number is breached. The last loop in

Algorithm 1 shows the use of heuristics to eliminate schedules that don’t rank highly.

This cost function, or "policy function" in Bellman’s words, is created by the user and

informs the framework what the user values most in the system. As discussed in Sec-

tion 1.2.3, elimination of the schedules before they are completely evaluated will still

allow for the best ranking schedules to be found in accordance with Bellman’s Princi-

ple of Optimality and proved in Morin and Marsten, 1975. However, just as schedules

must be safely copied from old ones, they must be destroyed safely as eliminating a

schedule that is being referenced from a future schedule will result in a null pointer.
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2.1.5 Detailed Class Descriptions

The elements described in Tables 2.2 and 2.3 provide a good understanding of the basic

components within HSF. However, to gain a deeper understanding of the code base

for the purpose of analysis, the software implementation of these members and the

fundamental classes that support them must be discussed.

SystemState The system state is a container for all the types of data that can be held

by the system. As such, it has a dictionary collection of integer, double, boolean and

Matrix data that each subsystem can write to using their StateVarKey. The SystemState

is in the schedule rather than the subsystem in order to allow multiple schedules to

run simultaneously while only instantiating one instance of the system. In this way,

the SystemState performs the duty of maintaining information while system is used

solely to process tasks.

StateVarKey The dictionaries within the system state correlate state data to a subsys-

tem through the StateVarKey. This means a subsystem knows how to find its own state

data because it knows its own StateVarKey. Because the SystemState is like a bulletin

board that is visible to anyone with access to the state, it is important to restrict the way

the state can be modified and accessed. HSF follows the guideline that subsystems are

only allowed to modify their own state and state data can only be retrieved from the

state by the subsystem that the state data belongs to. The StateVarKey is a templated

class so that the type of the StateVarKey is an indication to the SystemState of which

dictionary (integer, boolean, etc) to look up the data in. This use of a templated class al-

lows for a single function to be overloaded by parameter type rather than one function

per dictionary access.

Task The Task class is responsible for correlating a Target to an action, or TaskType. A

Target is a general class to hold information about anything the system may be target-

ing. In the case of Aeolus, the Target holds ground target information for imaging or

relaying data. A Target could be anything the system has a goal to achieve. The Task-

Type simply instructs the system what to do at the Target such as image or downlink.
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Event The Event is the fundamental scheduling element. The simulation progresses

Event by Event, as a result, the length of the Event is the same as the simulation time

step. Each asset can be tasked once per Event.

Subsystem The Subsystem class is an abstract class that is the fundamental modeling

element of the framework. A Subsystem is required to hold its StateVarKeys, a list of

its dependent subsystems, a local dictionary of its dependent subsystems’ dependency

functions, a name, the Asset that is belongs to and an IsEvaluated flag. The Subsystem

also has private fields to hold the parameters from the current event that might be

needed such as the previous and current state and the current Task. The abstract class

provides basic implementations of the 3 methods described in Table 2.4 and can be

overridden by the deriving subsystem.

TABLE 2.4: Subsystem Methods

CanPerform Input: Event, Universe. Output: Bool. The Can-
Perform method is how the state of the system pro-
gresses from one time step to the next. With each
proposed Event, if the Subsystem can perform the re-
quested Task given the current SystemState, then it
updates the SystemState to reflect the Task being per-
formed and returns true. If something restricts it from
performing a Task, it simply returns false without up-
dating the SystemState.

CanExtend Input: Event, Universe, double. Output: Bool. The
CanExtend method is very similar to the CanPerform
method except the Subsystem is not being requested
to perform a Task, but rather simply extend its state to
a time input as a parameter. The abstract subsystem
CanExtend will simply return true if the time input
as a parameter is still within the same Event.

DependencyCollector Input: Event. Output: HSFProfile. The Dependen-
cyCollector method of the abstract Subsystem sim-
ply calls all the dependency functions within the local
dictionary of dependency functions and adds all their
results.

Asset An Asset is an encapsulation of the Subsystems in order to group them by Dy-

namicState. Since each Asset may be performing a different Task during each Event,

the Asset is also the driving element for tasking the Subsystems.
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System The System brings together all the information within the Assets, Subystems,

Constraints and Universe to create a complete picture of the system model.

Access Not all Tasks can be scheduled at any moment in time. Some Tasks are depen-

dent on the availability of a state or opportunity. The Access maintains the availability

of a Task for an Asset.

SystemSchedule The SystemSchedule is the ultimate element of the scheduling aspect

of the framework. The system schedule holds a chronological list of Events– the build-

ing blocks of the schedule.Because a schedule can also be evaluated based on its state

and the tasks it contains, the schedule contains a field for the value of the schedule for

comparison purposes.

2.2 Capabilities of HSF v2.3

Beyond the basic capabilities of the scheduler and built in models of HSF, v2.3 also

contains extra features to allow the user to further customize their simulation without

directly editing the source code. These features are listed below in order to provide

context on the state of the framework before discussing areas of improvement.

GUI Prototype There is a vision for the Horizon Simulation Framework to one day

be completely GUI based so that the user need not generate the XML files or scripts

required to model his system. This vision has been implemented in a prototype that

allows users to drag and drop customizable subsystems then connect them to show de-

pendencies. Figure 2.7 shows a sample of the GUI and helps elaborate on the ultimate

goal of HSF.
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FIGURE 2.7: HSF GUI

XML Specification The simulation parameters, scenario specification and subsystem

specification (including dependencies and constraints) can all be input to the frame-

work through XML configuration files. These files define properties of the simulation

such as time step, environments, parameters of the subsystems and initial conditions.

The use of the XML standard for input files allows for easy to modify template files as

well as the eventual auto generation of inputs created by the GUI.

Scripting The modeling of subsystems through scripting was previously supported

by the LUA language. The user was given the ability to define specific functions in

LUA and HSF managed binding the LUA function to a C++ function call. The user had

access to script certain functions of the subsystem, dependencies and constraints. The

reference to these scripted functions would be relayed through the Model XML file so

that the framework could bind it appropriately.

Multi-Threading HSF v2.3 supports multi-threading via the multi-threaded scheduler.

This scheduler can process multiple different schedules simultaneously on separate

threads in order to accelerate the schedule validation process. This feature must be kept

in mind in all future iterations of HSF as the architecture, design and implementation

must be thread safe.
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Genetic Scheduling Algorithm As a substitute to the BFS scheduling algorithm, a ge-

netic algorithm scheduler was developed as an option for users. This algorithm will

not be included in HSF v3.0 because it is not part of the baseline Aeolus test case, but

should be included in future iterations of the framework.

2.3 V2.3 Shortcomings

While the 2.3 iteration of HSF is functional and useful, there are improvements that

can be made in order to create a more productive work environment for developers,

as well as an easy to use software product for users. The following sections highlight

issues that were uncovered during the reverse engineering process from C++, as well

as improvements that weren’t possible in C++, but are in C].

2.3.1 Coding Style Standard

With multiple contributors throughout the iterations on the framework, there is no

consistent coding style to the code base. While this may seem like a matter of pref-

erence, consistent coding standards make it easier for other developers to understand

code they didn’t write. "Coding standards provide a common base for exchanging

and understanding work outputs of individual developers" (Maruping, Zhang, and

Venkatesh, 2009). Section 1.2.4 discusses guidelines for good software architecture,

and not surprisingly, coding style is an important element. Bass, Clements, and Kaz-

man advise that "the system should do the same things in the same way throughout.

This will aid in understandability [and] reduce development time."

2.3.2 Uniform Software Architecture

After the original conception of HSF, the focus of the more recent iterations has been

on adding features and improving functionality. With each progression, the frame-

work has become more capable, but the architecture was overlooked and did not iter-

ate along with the code. As a result, the new modules were tacked on to the existing

code base without much consideration for the guidelines outlined by Bass, Clements,

and Kazman. This resulted in confusing file trees as seen in 2.8, and the dependencies

between these files were even more complex. While the many different namespaces in

the C++ code base resulted in a confusing structure to navigate through and adhere to,
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the benefit of the dispersion was that it allowed for few circular dependencies during

compilation and linking. This issue of avoiding circular dependencies within fewer

namespaces would have to be kept in mind when designing the new architecture. The

code within the files also has an inconsistent organization, style and naming structure.

For instance, some modules of code have all the definition for the functionality in the

header file and none in the C++ file. This makes searching for function definitions

tedious as it is never clear whether the function will be defined in the header file or

C++ file. Efficiency in development can be increased with clear naming conventions,

module organization and easy to follow dependencies.

FIGURE 2.8: HSF v2.3 File Tree (Class Dependencies not Included)

2.3.3 Subsystem and Dependencies

Background In the HSF design philosophy, a subsystem is a unique element of the sys-

tem that can be discerned to perform a specific function. As in most system engineering

practices, it is important to define the subsystems by function, and keep them separate

so that there is a clear distinction between the elements that make up the larger system.

In the world of modeling and simulation, each subsystem should be responsible for

propagating its own state in terminology or units native to that subsystem subsystem.

For example, a power subsystem might calculate its state in depth of discharge, while
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attitude, determination and control (ADC) subsystem might perform calculations in

revolutions per minute. This allows all subsystems to operate in accordance with the

specification document they may be derived from. However, in a typical spacecraft

there are dependencies between subsystems. For instance, the power subsystem would

be affected by the ADC subsystem commanding its actuators and consuming power.

In modeling and simulation, this consumption of power does not simply happen, but

rather, information needs to be relayed between subsystems to simulate the exchange

of power for wheel speed. In order to maintain a separation between the two subsys-

tems so that the system can remain truly modular, an ontology must be developed for

communication between the subsystems as mentioned in section 1.2.1. This is accom-

plished in the Horizon Simulation Framework through "dependencies" which allow

data to flow between subsystems. In HSF, a dependent subsystem is a subsystem that

must provide information to the subsystem that has a dependency on it. In the current

working example, the ADC subsystem is a dependent subsystem of the power subsys-

tem. By contracting the dependencies in this way, the omniscient user can provide de-

pendency functions that allow subsystems to relay information that is understandable

to the requesting subsystem. In HSF, this omniscience is carried out by maintaining the

dependency functions in a globally accessible list and informing the subsystem which

functions to call in their dependency collector.

Subsystem Node In HSF v2.3, in order to incorporate the subsystems with the depen-

dencies in a multi-asset use case, a wrapper class was made to encapsulate the sub-

system. The justification behind this wrapper class, according to O’Connor, Mehiel,

and Butler, is that it was modeled after an adjacency graph in which the nodes are

containers for the functional elements inside them in order to provide "plug and play"

capabilities. This wrapper class is called a "subsystem node" and it holds a subsystem

as well as the "node dependencies" which is a collection of dependency functions that

the subsystem needs to execute its CanPerform function to update its state. This extra

level of abstraction requires that the software has the functionality to correlate the sub-

system to its subsystem node and dependency functions. Another important feature

of using the subsystem node within the adjacency graph is that it can allow for recur-

sion in evaluating subsystems. "Using this network structure and recursion in calling
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subsystems to perform, subsystems automatically confirm that their predecessors had

previously executed, and that any data that they might need had already been set to

the [current] state" (O’Connor, Mehiel, and Butler, 2008). However, after an audit of

the C++ code, it was discovered that recursion was being used in a loose definition of

the term.

Node Dependencies Because a dependency function can return any type of profile (in-

teger, bool etc.), there needed to be a way to store a reference to all different types of

functions by return type for both hard coded and scripted dependency functions. The

node dependencies class does this by maintaining a map of function call keys (strings)

to function pointers, one map per return type. However, this use of multiple maps is

wasteful as quite often there will be nothing stored in most maps (such as the bool or

integer return type maps) and many things in one (like the double return type map).

With the node dependencies tracking this information, a subsystem node need only

to know what call key to use in order to get the correct dependency function, and

the node dependencies class would do all the work to search through all the maps to

find the function with the correct call key. While this solution was elegant from the

perspective of the subsystem node, the implementation within the node dependencies

class was bulky and repetitive. For instance, in order to call each different type of de-

pendency, there was a 60 line function copied and pasted for each return type with the

types simply changed.

Dependencies In keeping with the idea that dependency functions are an interface

between subsystems, HSF v2.3 has a class specifically for maintaining all the depen-

dency functions and dependency collectors. A pointer to these functions is what is

maintained in the node dependencies class. The dependency functions require state

information. From the state, the dependent subsystem extracts its own state informa-

tion and transforms it before relaying it to the requesting subsystem. The dependency

collectors call all the dependency functions for a specific subsystem and combines the

returned information as appropriate. As a concrete example, the power subsystem

might have a dependency on the EO sensor and COMM subsystem. The dependency

collector would call the dependency functions for each of the dependent subsystems
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then combine the information by adding the radio’s and EO sensor’s return value be-

fore returning it to the CanPerform method to be subtracted from the state. Since the

dependency functions in HSF v2.3 accept a state, the dependency collector is also re-

sponsible for passing in the correct state. And since states are stored by asset, the

dependency collector must also know which asset to get the state from. This is prob-

lematic when remembering that the CanPerform method is only passed the state for

the asset which the subsystem belongs to. This means that the state for the depen-

dency functions that are cross-asset are not reachable from the parameter and must

come from someplace else. In order to ensure the dependency has access to the states

from all the assets and not just the one being passed in through the CanPerform, the

dependency class has a field called endStates, which is a list of the most recent states

by asset (where the zeroth element of the list correspond to the first asset, etc.). The

endStates field is updated once per simulation time step (or event) in a method called

updateStates.

Update States After all subsystems have updated their state via their CanPerform and

the simulation time step has completed, the updateStates method is invoked on the

dependency class in order to pull in the most up to date states for the dependency

collector. However, because this function is only called once per simulation time step,

as the subsystems are updating their states within the event, the endStates field will

still hold the old information from the end of the previous time step. Returning to the

previous dependency example, the power subsystem must know how much power

the EO sensor and COMM subsystems consumed in order to update its own state.

However, the dependency function will be referencing the endStates field from the

dependency class so if the EO Sensor has updated its state since the event started,

then the power subsystem will be referencing old data from the last time step. This is

considered an error and will be updated in v3.0.

2.3.4 Asset Schedule

In HSF v2.3, the schedules were generated on a per-asset basis. Figure 2.9 illustrates

how asset schedules were constructed within the system schedule in v2.3. The events

and states of all the subsystems in the asset were held at an asset level rather than a
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system level. While this was an easy and obvious step from the previously single asset

version of the framework, it didn’t allow for state information to be relayed between as-

sets at the instance that the state was updated by the subsystems’ CanPerform methods

because the assets all report to a separate state. The previously discussed updateStates

method was created to allow subsystems to have dependencies to assets external to

their own. The downside of posting state information to a system level only once per

iteration is that subsystems will always be referencing data from the old event, even

though their dependent subsystems may have updated their states within the current

event. The fundamental problem was determined to be derived from the fact that the

state is stored on an asset level, and could be solved by holding the state at the sys-

tem level and having all subsystems report to the same state, regardless of what asset

they’re in. The implementation of this solution is discussed in section 3.4.

FIGURE 2.9: Asset Schedule in HSF v2.3 (O’Connor, Mehiel, and Butler,
2008)

2.3.5 Scripting

Language Popularity v2.3 used the Lua scripting language to incorportate customiz-

able features into the functions of the modeling segment. While the Lua language is

fast and lightweight (Ierusalimschy, Figueiredo, and Celes, 2016), it is not as common

as Python, the most common scripting language according to Cass. In the IEEE arti-

cle, Cass explains how Nick Diakopoulos "weighted and combined 12 metrics from 10

sources (including IEEE Xplore, Google, and GitHub) to rank the most popular pro-

gramming languages" (Cass, 2014) and produce the infographic in Figure 2.10. It can
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be seen that Lua ranks far below Python, the most popular scripting language.

FIGURE 2.10: Most Common Programming Languages Cass, 2014

While language popularity may not seem important from a programming perspec-

tive, it is important from a learning perspective. In the coming years it is anticipated

that the people who will be working on HSF will be primarily aerospace engineer-

ing students with little to no programming experience. It is not untenable to argue

that these students will be self-taught, and that more resources will be available in the

form of documentation, examples and forums for a more common language than a less

common one. In fact, this point is reiterated by Perkel. In his article, Perkel analyzes

how Python is used in scientific computing by students and professors who are not

inherently programmers by discipline. Titus Brown, a professor in Bioinformatics at

Michigan State University, and Aerospace Engineering students with limited program-

ming exposure are examples of the population Perkel speaks to. "The difficult part

of learning to program lies with the fundamentals, says Brown–once a researcher has

those nailed down, adapting to a new language is just a matter of syntax. What mat-

ters most in the early stages is having a good support network. ’Pick the programming
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language based on what people around you are using,’ Brown advises. Increasingly,

that language is Python" (Perkel, 2015).

Incorporation into HSF In the C++/Lua version of the program, the Lua scripts are

bound to C++ functions on a function by function basis. This method of incorporating

scripting is limiting to the customization of the model as only certain exposed functions

and features can be scripted. The user must also provide a reference to each scripted

function in the XML file that initializes the model, making the process tedious and time

consuming. A new, simpler approach will be taken towards scripting in HSF v3.0 that

allows the user to inherit a subsystem and modify the object as needed.
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Chapter 3

IMPROVING THE HORIZON SIMULATION FRAMEWORK

3.1 Motivation

The choice of a programming language for a project is typically dependent on the ob-

jectives of the software. However, in the case of Horizon, the ability of the developer

was considered with more weight than the software goals. Because Horizon is a frame-

work for improving the aerospace design process, it seems fitting that aerospace stu-

dents should work on the code base in order to not only gain a better understanding of

systems engineering design, but to also learn how to program in an object oriented lan-

guage. While section 1.2.5 discusses results from one study that quantitatively found

that C] is better as a first programming language than C++, even most versed program-

mers would agree that C++ is one of the more complicated programming languages to

learn, more so than C] . As a push to take advantage of new software development

technologies and to make the framework more accessible to aerospace students, the

Horizon Simulation Framework will make a shift to C] from C++, and the more com-

mon scripting language of Python will be favored over Lua.

As a result of changing languages and a thorough comb-through of the code, im-

provements were made to HSF v2.3 in order to adapt to and take advantage of C] , the

.NET framework, and the incorporation of Python. The sections that follow detail the

perceived benefits as a result of this switch, and the modification and improvements

that were made to the existing framework.

3.1.1 Integrated Development Environment

As mentioned in preceding chapters, one of the main goals of converting the frame-

work to C] is to allow students without a major programming background to work on

the project. C] is very tightly bound to its Integrated Development Environemtn (IDE),

Visual Studio, which is a Microsoft product for developing software. Visual Studio is

a key component in helping to accomplish the mission of creating a code base that is

easy to adapt to.
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IntelliSense Visual Studio provides the developer with helpful hints as far as why

some code might be wrong and also helps prevent the developer from making errors

via IntelliSense, its auto completion feature. IntelliSense allows the developer to have a

rough idea of what he wants to do, then displays all possible continuations of the com-

mand. Figure 3.1 shows what is displayed when the developer is trying to instantiate

the "SubsystemDependencyFunctions" dictionary within the ADCS subsystem. Intel-

lisense exposes the type of the property to the developer, as well as how to instantiate

it with the tab auto-complete, and even that there is an error on the next line because

the previous line is incomplete.

FIGURE 3.1: Microsoft Visual Studio IntelliSense

This is especially useful when the developer is adding additional functionality to

the framework using existing functionality. The developer need only know what project

to work in and where to find additional classes he may need, then he has access to all

the documentation, methods and properties simply as he starts typing. However, much

of the elegance and ease of programming in C] is lost when not utilizing Visual Stu-

dio as the development environment, and thus, C] is typically not used in scenarios

where Visual Studio is not being utilized. This is not necessarily the case with other

programming languages such as C++ that can be maintained, compiled and run with a

few command line tools. At the time that HSF v2.3 was being developed, Visual Studio

was not a free product, but that has now changed. With the release of Visual Studio
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2015 Community Edition, C] became more accessible to many programmers because

the new IDE is free to all. Not requiring students to buy software is very helpful for

increasing involvement and accessibility to the software. It should be noted that Vi-

sual Studio is currently a Windows only application, so only Windows users can take

advantage of it. While an operating system specific application may decrease involve-

ment among non-Windows users, the release of the cross-platform text editor, Visual

Code, may mitigate for this. Overall, the advantages that the Visual Studio IDE pro-

vides to developers were considered more profound than the disadvantages of being a

Windows only project.

Integration with GitHub In order to facilitate contributions from a group of develop-

ers, the Horizon code base is hosted on GitHub.com, a source control service provider.

Because the Visual Studio IDE seamlessly supports integration with GitHub, develop-

ers need not even learn git powershell commands, but can simply use the source con-

trol panel provided in the IDE. Within an hour long meeting, a group of 10 aerospace

engineering students who had, for the most part, not seen object oriented programming

before were able to install Visual Studio, download the environment from github, and

start writing code. Keeping in mind that most new developers will not write perfect

code the first time, each developer creates their own branch of the project that they can

then merge back into the master branch once the code is proved to be working. Later

sections will discuss how unit testing and GitHub integrated quality control services

will be used to ensure checked in code complies with an agreed upon standard.

Building the Solution Among many other qualities of Visual Studio that make it easy

to use, one especially important feature is the automatic maintenance of the .csproj file

and the simplicity of building the program. The .csproj file is automatically generated

by Visual Studio to maintain the reference paths for the project dependencies as well

as other important build information. Rather than compiling and linking source files

with a custom made makefile, Visual Studio allows the user to simply click the start

button because it automatically maintains information that would normally be stored

in a makefile. This seemingly trivial convenience is important to HSF because it em-

ulates the environment most aerospace students are accustomed to programming in,

MATLAB™.
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3.2 Reverse Engineering from C++

Previous versions of HSF lacked an essential element of software design– the speci-

fications document. Because of this, the new HSF v3.0 was created by reverse engi-

neering functionality requirements from the C++ codebase. The requirements for HSF

v3.0 were created by combining the functional requirements from C++ as well as the

changes outlined in the remainder of this section.

3.3 Utilizing C] and .NET

Another advantage of C] is the ease of access to the .NET framework. For aerospace

engineering students who are accustomed to the built-in functionality of MATLAB™,

the libraries of the .NET framework are similar in that the Microsoft Development Net-

work (MSDN) documentation is consistent, contains many examples and is centrally

located on the MSDN website. As previously mentioned, the .NET framework pro-

vides functionality that the previous version of HSF had to either customly create or

rely on the C++ standard template library for. The replacing of the old libraries with

existing objects and methods from the .NET framework is outlined by this section. In

almost all cases, the amount of user lines of code was significantly reduced by using

the .NET framework, and many previously handwritten classes could be left out com-

pletely.

3.3.1 Iterators versus IEnumerables

The C++ implementation of the framework utilized the Standard Template Library

(STL) for generic classes, such as the vector, and iterators. The vector class combines

the functionality of a random access array as well as a last in first out (LIFO) queue.

The vector also has an iterator in order to make iteration simpler. In C] , the vector is

replaced by a specific type of Collection depending on the desired access capabilities.

A Collection that implements the IEnumerable interface in C] makes iterating even

easier with the use of the foreach statement. Classes that implement the IEnumerable

interface include the list, stack, queue and even dictionary. Rather than constructing

an iterator before every for loop then incrementing an iterator pointer, the developer

simply has to use foreach which is available with every IEnumerable class. Because
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the STL vector class encompasses functionality that is dispersed among the C] list and

stack, a dichotomy was developed to determine when to convert a vector to a list and

when to convert to a stack. Essential, is a vector utilized the push or pop methods

anywhere throughout the C++ code, it was converted to a stack. Otherwise, it was

converted to a list.

3.3.2 Pass By Reference

A major difference between C++ and C] is in the way that values are stored and passed

between objects and methods. While C++ has the ability to obtain the reference to

any variable via the pointer, C] has two types, value types and reference types. Value

types are similar to what would be primitives in C++ and all other objects are reference

types. This means that all methods in the new code base that used custom objects

would be passed by reference. Luckily v2.3 predominately utilized pass by reference

rather than pass by value so the conversion was, for the most part, simple. However,

at one point within the scheduling algorithm it is required to make a safe copy of the

schedule so that the new schedule can reference the old schedule. In C++ this could

be easily accomplished by simply giving all the new schedules that required the old

schedule a copy of the same pointer. In C] , however, manipulating raw pointers is

not common practice as pointers are not directly exposed to the developer. Because a

schedule is a stack of events and both stacks and events are reference types, if an event

was added to one schedule, it would be added to all other schedules that were created

from the same schedule because they all are made from a shallow copy. This obviously

is problematic as it is not what the scheduling algorithm says to do. The scheduling

algorithm (Algorithm 1) requires that a subset of events, or subproblem, is only stored

in memory once, and that all extensions to that schedule reference the same previous

events. After reading the MSDN documentation on stack constructors, a solution is

found to this problem. The copy constructor for the stack takes in a stack and creates

a new stack that has a unique reference, but maintains a reference to all the objects in

the original stack. This allows for the copied stack to be manipulated (i.e. Push and

Pop) while not modifying the original stack. However, because the elements with the

stack are all still shallow copies to the original events, if an event is modified within

one stack, it will be modified in all the stacks that copied it. (Recall that an event that
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has already been added to a schedule will never be modified because it has already

been evaluated to its final state.)

3.3.3 Object

All C] objects inherit from the Object base class. As a result, anything can be stored as

an Object. This is especially advantageous when abstraction is necessary or a function’s

return type is not known at compile time. C++ does not utilize a common base class

so abstraction is not possible unless the user explicitly implements it. Dependency

functions are a specific example of when the object class would have been useful in HSF

v2.3. Because the return type of the dependency function can be any type of HSFProfile,

the SubsystemNode class had a map for all types of dependency functions based on

their return type, as elaborated in Section 2.3.3. However, with the use of the object as

a return type and the implicit cast, the entire class was able to be eliminated with the

caveat that the omniscient user casts the return value of a dependency function to its

proper type.

3.3.4 Searching with LINQ

Microsoft provides and extension to the capabilities of the C] language with Language-

Integrated Query (LINQ) (MSDN). LINQ allows SQL like queries on IEnumerable ob-

jects that reduces the need for searching with iteration. The code can be made shorter

and more readable by replacing for loops that are searching through a collection with

a single SQL like command.

3.3.5 Nuget Packages

For functionality that is not built into the .NET framework, Visual Studio provides an

easy way to manage Nuget Packages to extend capability. Nuget Packages are user-

managed libraries that Microsoft hosts but often does not maintain. One example of a

Nuget package that is widely accepted, but not managed by Microsoft, is the Newton-

soft Json package which provides functionality for Json operations. A Nuget package

utilized by HSF is the IronPython package which is managed by Microsoft and the

IronPython Community.
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3.3.6 Built-in XML

The parsing of the XML input files was made drastically simpler with .NET XML li-

brary. Rather than creating a custom class to store and manipulate XML data objects,

the .NET library for XML simply had to be imported and all the functionality was

available to parse the files.

3.4 Architecture Changes

Keeping in mind that part of the reason for switching to C] is to make it easier for future

developers to learn and improve the code base, it logically follows that the architecture

should also be easy to understand. With the code base already being transformed into

a new language, it is a good time to restructure the architecture to reflect the evolution

of the framework as well as to create a baseline architecture that would encourage

future evolution without a major restructuring. One of the major issues with the v2.3

architecture is that the code was highly dispersed and not necessarily organized due

to the previously mentioned issue of simply tacking on new code. The new module

decomposition and dependency structure of HSF is pictured in Figure 3.2.

FIGURE 3.2: The New HSF Architecture

Some of the modules were fundamentally changed in order to improve the func-

tionality and learnability of the codebase. The following sections discuss these changes

in detail.
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3.4.1 Subsystem, Dependency, Subsystem Node, Node Dependencies

One of the most significant modifications to the previous implementation of HSF was

in the way that subsystems were defined and interacted with each other. Key features

of the .NET framework allowed for an architectural change that removed unneces-

sary abstractions within the code base. The subsystem node, whose only function was

to communicate node dependencies to the subsystem was eliminated by moving the

functionality to the subsystem itself. The node dependency was also eliminated as a

result. This was all made possible with a major change to the dependency class. Pre-

viously, the dependencies were all stored in a C++ container called a map. A map is

essentially an array of key value pairs that permits access to element within the array

via a unique key. In Horizon, the map correlated function call keys (strings) to a func-

tion pointer. In order to accommodate for the variability of return types of dependency

functions, there was one map of call keys for each return type as shown in Figure 3.3.

FIGURE 3.3: HSF v2.3 Dependency Maps

The issue of the variable dependency function return types is solved in C] with the

object type as seen in Figure 3.4.

FIGURE 3.4: HSF v3.0 Dependency Dictionary
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The documentation for the C] object explains that the object is "the unified type sys-

tem of C] , all types, predefined and user-defined, reference types and value types, in-

herit directly or indirectly from Object"(MSDN, 2016). This means that variable return

types of the dependency function is no longer a limiting factor because all dependency

function returns can simply be cast to their correct type after the function is called. The

result of this is a single dictionary of call keys to delegate functions– C] ’s function

pointer– in the dependency class. Requiring that all dependency functions be defined

in the dependency class limits the developer from defining dependency functions else

where, like in a Python script. For this reason, the global omniscience of the dependen-

cies is achieved by having a singleton instance of the dependency class at the program

level. This one instance will hold the dictionary of all the dependency functions and

their call keys and a dependency function can be defined anywhere so long as it is

added to the dependency class.

The old dependency class also held the function definitions for all the dependency

functions and collectors. While having all the dependency functions separate from the

subsystem definition is consistent with the idea of the omniscient designer, it is un-

necessary in the C] version of the program and with the new architecture. In HSF

v3.0, the dependency functions are defined in the subsystem class and each subsys-

tem constructor takes in the dependency instance and adds the dependency functions

that it has to it. This allows dependency functions to be overwritten or newly defined

in scripted subsystems. The standard followed by HSF v3.0 is to have the dependent

subsystem provide the dependency function to the subsystem with a dependency on

it. This approach was chosen because subsystems can only access their own state data

with their StateVarKeys. By requiring subsystems to post their dependency functions

to the global dependency dictionary, the dependency class is populated as each sub-

system is instantiated. Then, the subsystems can find the dependency functions they

require because the XML model input file informs the subsystems of the call keys that

belong to them in the dependency class. So rather than have a subsystem node and

node dependency class, the subsystem now just has a list on dependent subsystems

and dependency functions in the form of delegate functions. This new method is so

robust that it is also now used to communicate state data to things other than a subsys-

tem such as a schedule evaluator or constraint evaluator. This maintains the standard
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throughout the entire framework that only subsystems are allowed to access their own

state data and the data can only be exposed via a call to a dependency function which

acts as a contract between two entities.

The New Abstract Subsystem Class Because many of the subsystems require much of

the same functionality, an abstract subsystem class was determined to be more useful

than a subsystem interface. The abstract class provided two desirable traits: the sub-

system class cannot be instantiated and generic functionality can be defined and then

used or overwritten by the inheriting class. Table 3.1 provides a detailed description of

the functionality that is built into the subsystem class.



43

TABLE 3.1: Subsystem Default Functionality

CanPerform The default CanPerform method simply loops
through all the subsystems in the dependent
subsystems list and calls their CanPerform
method. This ensures that all subsystems are
evaluated in the order specified by the XML
input file. It also guarantees that when the
dependency functions are called, the depen-
dent subsystems have all updated their states
to be current with the new timestep. Every de-
rived subsystem must call the base CanPerform
method before continuing with its own CanPer-
form functionality. The abstract CanPerform
then also sets the private state and task fields
of the Subsystem so the deriving Subsystem
doesn’t need to search through the dictionaries
of the Event.

CanExtend The default CanExtend method simply checks
the time to which the state needs to be extended
to, and if the time is beyond the current event,
the new event end is set to the extended time.

CollectDependencyFuncs CollectDependencyFuncs is called in the main
program after the dependencies have all been
parsed from the XML document. The depen-
dency collector takes in a list of call keys and
uses each call key to index into the dependency
class and copy all the dependency functions
to a local list of dependency functions. With
the dependency functions stored locally in the
class, the dependency class need not be passed
around throughout the entire program.

DependencyCollector The dependency collector invokes and sums up
the results of all the dependency functions that
are stored within the subsystem.

GetSubStateAtTime Because subsystems can only access their own
state, the GetSubStateAtTime method returns
the subsystem’s state at a given time. This is
primarily used when writing the schedule out
to a file because state information should al-
ways be relayed from subsystem to subsystem
via a dependency function.

3.4.2 State History, System State and Event

The Asset Schedule was replaced by the State History in the new version of HSF be-

cause it was unfavorable to have each asset have its own schedule as this meant they

couldn’t easily share state information. However, the asset schedule maintained im-

portant information about the time history of events. The State History is identical to
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the asset schedule in that it also stores this information, however, it is not correlated

to a specific asset, but rather the entire system. Similarly, rather than maintaining one

System State per asset, the System State was held at a system level so that the subsys-

tems could access any other subsystem, regardless of the asset it is associated with. An

illustration of the State History class is provided in Figure 3.5.

FIGURE 3.5: State History Class that Replaces the Asset Schedule

This change was necessary in order to allow cross-asset dependencies without hav-

ing a delayed updating of the states as mentioned in Chapter 2. However, switching

the System State to be at a system level posed a problem for scheduling. Besides from

the state of the subsystems, the System State also holds the start and end times for the

task and event that System State is associated with. But if there is only one System

State, then all assets must be on the same event and task schedule. This discourages

multitasking within the system and does not accomplish the goal that HSF seeks to

achieve. In order to allow each asset to be on its own event and task, the event and task

start and end times were moved from the System State to the event class. The Event

now contains the dictionary that correlates the asset to its respective task as well as

additional dictionaries to maintain task and event start and end times.

3.5 Class Factories

The subsystem class that has many, more specific, classes that derive from it is and

instantiating all the specific classes becomes tedious as their specific constructors must

be called even though they are all of the same base type. In the 2.3 framework this

was dealt with in the main method with clunky, hard coded conditionals, and an even

less robust adapter class for managing more complex derived classes. Due to the high
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variability in different types of subsystems, constraints and schedule evaluators that

can be either scripted or created from the classes included in HSF, a class factory design

pattern was utilized to instantiate these classes at runtime. According to MSDN, a

class factory is simply a class that statically interprets an input and returns a specific

instance that is of a derived type of the base class. By utilizing class factories, the

XML interpreter only needs logic to interpret the XML, then the burden of actually

instantiating the class is placed on the class factory which understands how and when

to communicate with each of the derived classes’ constructors. Figure 3.6 shows how

a class factory can be used to consume a resource that is not useful to the system, such

as an XML node, and create something that the system has an understanding of.

FIGURE 3.6: Class Factory Function MSDN, 2016

3.6 Incorporating Python

3.6.1 Choosing IronPython

Section 2.3.5 explains the motivation for switching to a more commonly used script-

ing language, namely, Python. However, there are many different "flavors" of Python.

IronPython is a flavor of Python that runs on the .NET framework. While it lacks some

of the classic libraries of the more common version of Python (Python that runs on C

and is compiled to binaries), the ability to draw on the .NET framework provides all

the same functionality and more (Wucher, 2010). IronPython is tightly bound to C]

and provides the customize-ability that the user needs to specify his system. Wucher

of MIT advises that use of IronPython with C] is best suited in cases when "delivering

a business application to your end users... [and] they each have a custom processing

need (e.g. business logic). Your application is the engine that contains and performs

the main operations on the data." The goal of Horizon to provide customizable, ro-

bust, functionality to the user aligns very closely to this description. The remainder

of this section will discuss the significant considerations for incorporating Python into

C] . Python and IronPython will be used interchangeably as IronPython is a subset of

Python.
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3.6.2 Communication Between C] and IronPython

Because IronPython is dynamically typed, it needs a dynamic environment to attach

to. The Common Language Runtime (CLR) is a dynamic runtime environment pro-

vided by the .NET framework that allows for many features including cross language

integration and exception handling (MSDN, 2016). Through the CLR, the Python code

can modify C] objects. Just as C] classes need references to classes that are not in their

own namespace, the Python classes also need to know about classes that may be used

in the Python code. This is preformed by adding a CLR reference to the Dynamic-Link

Library (DLL) that contains the class specification. Figure 3.7 shows how the references

to .NET and Horizon frame work are added.

FIGURE 3.7: IronPython Code to Add References to .NET and HSF li-
braries

3.6.3 Inheriting a C] Object

In the previous version of HSF, the scripting aspect was performed on a function by

function basis as mentioned in 2.3.5. This method of incorporating scripting results in

increased overhead of binding scripted methods to function calls within the framework

and limits the user to only customizing exposed functions. IronPython and C] provide

an alternative to this that is not possible in Lua. In Lua, there is no concept of classes

like there is in Python. Because both IronPython and C] are built on .NET, it is not

difficult for a IronPython object to inherit from a C] class that is exposed in a DLL.

This has many benefits for the HSF user. If the user likes the default implementation

of some of the methods of an already implemented subsystem, but wishes to change
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other methods, the Python class simply needs to inherit from the built-in subsystem

and override the implementation of the methods. Similarly, if the user wants to create

a brand new subsystem that is not currently in the framework, he can inherit from the

abstract subsystem class and define the new functionality from the ground up. Details

about how to create custom Python scripts are included in the user manual found on

the GitHub repository.

3.6.4 Strongly Typed versus Loosely Typed

One of the biggest differences between C] and Python is that Python is a loosely typed

language while C] is a strongly typed language. This is primarily an issue when pass-

ing arguments to a Python method from C] . However, because the Python class has

access to the C] DLLs, it can implicitly convert the arguments to their appropriate type

at runtime. Unfortunately, if this conversion fails, a runtime error will occur.

3.6.5 Pass By Reference versus Pass By Value

Another big difference between Python and C] is that Python is pass by value while

C] is pass by reference. This would seemingly have a large impact on being able to

use Python as most C] methods rely on pass by reference to update an object because

C] only allows one return value. However, the IronPython Documentation explains that

IronPython implicitly converts to a reference type when necessary to allow for the mod-

ification of object parameters.

3.6.6 Runtime Errors

As mentioned in the previous sections, the use of Python can cause runtime errors.

Runtime errors are especially hard for the user to debug because the information pro-

vided typically isn’t relevant to a user that is unfamiliar with what is happening behind

the scenes in the C] codebase. In order to limit the occurrence of runtime errors, the

Python class is encased in the scripted subsystem class. This C] class performs pre-

processing of the data before it is passed to the Python class in order help mitigate

runtime errors, and throw more useful exceptions to the user.
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3.7 Uniform Coding Style

As the code has been rewritten, an adherence to a uniform coding style was relatively

easy to maintain as there were only two developers who both had an understanding

of style rules. The uniformity that currently exists will be beneficial to maintaining the

codebase as it creates easier to read code that can be adapted to quickly as discussed in

section 2.3.1. In order to maintain this standard of quality, the new developers will be

provided with style guidelines that can also be found on the GitHub repository.

3.8 Unit Testing

The utilization of testing was not apparent in the codebase of HSF v2.3. If unit testing

occured, it was perhaps eliminated for the purpose of releasing the code. In order to

stay true to the guidelines of test driven software development, unit testing, or some

version of incremental testing, should be employed throughout the development pro-

cess. Visual Studio provides a simple way to add unit test projects to a solution. These

test projects persist in the software but are automatically not compiled into the release

configuration of the solution. The unit tests automatically populate the test explorer

(Fig. 3.8) and can be run individually or all at once for a comprehensive check of the

software. Every project within HSF has it own unit testing project.
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FIGURE 3.8: Visual Studio Test Explorer
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Chapter 4

SIMULATION RESULTS

4.1 The Test Cases

There are 4 test cases for HSF, two of which are used to test throughout the develop-

ment phase and two of which are used to validate the final product once the develop-

ment phase is considered to be done. The results from the final development test case

will be discussed in the remaining sections of this chapter. The double asset model

is known as the Aeolus subsystem that is discussed in 2.3 and the dependency tree is

found in 2.1. The subsystems that makeup the Aeolus test case can be found in 2.1

The simulation can be tested as a static system or a scripted one. The static test case

runs completely on the built in HSF model and the scripted one relies on the developer

to provide Python scripts to simulate the scripted behavior for subsystems, dependen-

cies, equations of motion and schedule evaluators. These test cases are the same as

the test cases used in HSF v2.3 in order to validate that both versions produce similar

results as v2.3 is the guidance of correctness for v3.0.

4.2 C++ Baseline Results

The C++ framework found a schedule that captured 271 targets total, with a dispersion

showed in Figure 4.1. State data simulation results from HSF v2.3 are documented by

O’Connor, Mehiel, and Butler. Figures 4.2 and 4.3 show the state data found for data

collection and power functions of the system. This data was achieved by running HSF

FIGURE 4.1: HSF v2.3 Targets Hit
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with the Aeolus model and and no scripting, keeping 2 schedules at every time step

and outputting the best schedule at the end.

FIGURE 4.2: HSF v2.3 Payload Data Subsystem State Data

FIGURE 4.3: HSF v2.3 Power Subsystem State Data



52

4.3 C] Results

The C] program also found a successful schedule for both the assets to image their

ground targets within the constraints and specifications of the system. HSF v3.0 found

a schedule that captured 307 images and is pictured in Figure 4.4

FIGURE 4.4: Targets Hit in HSF v3.0 Optimal Schedule

Figures 4.5 and 4.6 show the relevant data that comes into the system via the pixels

recorded by the EO sensor, the data held by the system in the SSDR, and the data

downlinked by the system via the radio. Figures 4.7 and 4.8 illustrate the details of

the system power. The power state of the EO sensor, battery depth of discharge and

solar panel power in and all shown in a side by side comparison. In both assets, it

can be seen that when the spacecraft is in sunlight, the solar panels offset the power

consumption by the EO sensor and radio.
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FIGURE 4.5: Data Buffer Fill Ratio Considering Number of Pixels in and
Data Rate Out for Asset 1
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FIGURE 4.6: Data Buffer Fill Ratio Considering Number of Pixels in and
Data Rate Out for Asset 2
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FIGURE 4.7: Battery Depth Of Discharge Considering Solar Power In
and EO Sensor Power State for Asset 1
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FIGURE 4.8: Battery Depth Of Discharge Considering Solar Power In
and EO Sensor Power State for Asset 2

Section 4.1 discusses the various test cases used to validate the results of the new

HSF implementation. These same test cases were used to profile the performance of

the C] framework. The static test case in the C++ simulation was found to take about

5 hours by O’Connor, Mehiel, and Butler. Visual Studio Community 2015 provides

a useful tool for profiling program performance called the Performance Wizard. The

Performance Wizard is capable of exposing the most used and most time consuming

methods as well as overall runtime and CPU usage. Figure 4.9 was generated from

data provided by this tool within Visual Studio. The profiling was run on a a Intel®

Pentium® 2.10 GHz processor with 3.71 GB usable RAM.
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FIGURE 4.9: HSF v3.0 Run Times by Test Case

Not surprisingly, the static test case is the fastest, but by only about 30 seconds over

the scripted EOMs version and 2 minutes over the scripted evaluator.
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Chapter 5

FUTURE WORK AND CONCLUSION

5.1 Expanded Schedule Diagnostic Capabilities

While the HSF framework accomplishes the goal of providing the user with informa-

tion about their system, the framework itself does little with this information. Using

methods of statistical processing, the framework could use state data to modify the or-

der in which subsystems and constraints are evaluated in order ensure the system fails

fast to improve runtime.

With state information of the failed subsystem at hand, the user might try to mod-

ify the subsystem to see how sensitive the entire system is to the failing subsystem.

An automated sensitivity analysis could be incorporated into HSF such that when the

failed schedules are analyzed and a subsystem is seen to be the most commonly failing

subsystem, the framework interacts with the model to randomly cycle its parameters

and measure the effect on the entire system.

5.2 Expanded Universe and Subsytem Models

Now that the baseline framework is established, more built-in functionality can be

added in the form of more complex universe models and a wider range of subsystem

models. Currently, the framework has a sun model that is used by the power subsystem

and nothing else. Density, cloud cover, and even interplanetary models would allow

the user more simulation capabilities. While this should be accomplished with built in

models, adding the ability to script a universe model similar to how subsystems, equa-

tions of motion and schedule evaluators can be scripted would also be beneficial to

the user. The subsystem models that HSF includes are minimal and lacking in variety.

Currently there are rudimentary models for ADCS, Communication, Earth Observing

Sensor, Power and the Solid State Data Recorder. While the subsystems can all be over-

written with Python, the more useful built in functionality provided by the framework,

the easier it is to use for the user.
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5.3 Multi-Threading

A brief attempt was made at creating a multi-threaded scheduler but time did not per-

mit to accomplish this task. Future work could be done to add multi-threading to the

scheduler and compare the performance results.

5.4 Graphical User Interface

HSF v2.3 had a prototype graphical user interface that is now obsolete because it is

no longer interfacing with C++ and the XML formatting specification has changed.

The prototype, however, is an elegant example of the vision of the Horizon Simula-

tion Framework to be completely GUI based. Within Visual Studio, future work could

be done to create a GUI that interfaces with the C] codebase, automatically generates

well-formatted XML files and Python scripts from the user’s design in the GUI and in-

vokes the framework. When GUI development begins, an emphasis should be placed

on carefully designing the interface between the GUI and the codebase. The interface

will allow the two components to be managed as distinct entities that can change inde-

pendently of one another. Once the interface is defined, however, changing it will be

an extensive task.

5.5 Agile Development

As the team and codebase grow, it is the advice of the author to adopt agile software

development. Such development allows for smaller chunks of the larger problem to

be tackled in two week sprints with the result of every sprint an improved and work-

ing code base. The division of work into small chunks allows for the product man-

ager to allocate work on a schedule that aligns well with the normal turn around

time for academic assignments. The agile development paradigm can be researched

at http://agilemethodology.org (Agile Methodology).

5.6 GitHub Quality Control

One feature of Github that has not yet been set up is the ability to interface with quality

control services. These services provide a heads up display integrated into the Github

repository that supply metrics like code complexity, documentation, build passing, test
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case passing and more. Having these metrics automatically updated with every check-

in gives the team immediate feedback of when something needs to be fixed and con-

forms to the continuous integration concepts addressed in agile software development.

5.7 Model Driven Development

The long term goal of the Horizon Simulation Framework should be to provide MDD

functionality defined in Section 1.1.2. Once the HSF GUI is created, the user should

be able to graphically define the model, run simulation and perform analysis, then au-

tomatically generate technical specification for the system elements and the interfaces

they will interact on. The incorporation of MDD into HSF would make it a compre-

hensive tool that could be utilized through the Critical Design Review of an aerospace

project.

5.8 Conclusion

At the time of the Horizon Simulation Framework’s conception, Visual Studio and the

.NET framework were novel utilities with far less capabilities than they have now.

About 8 years ago, the Horizon Simulation Framework reached its most capable form,

and around the same time, C] started to emerge as a viable method to implement object

oriented programming. Unfortunately, around the same time, development on HSF

came to a halt and the framework remained in the v2.3 iteration until Spring of 2016.

By the time the program was revived, Python had emerged as a front runner to the

choices of scripting languages and entire companies had been built on the .NET frame-

work. In order to keep the Horizon Simulation Framework current with new software

development technologies, an elegant solution was found that provided seamless in-

tegration of a C] backbone with Python scripting. The switch to C] also allowed for

architectural changes to be made to the framework in order to create an easy to learn

and maintainable codebase. The promising results presented by this thesis suggest a

bright future for the progress of the framework. The baseline that has been created can

be expanded in almost every aspect to continue to grow the framework’s capabilities.

Although the focus of this thesis has been on the aerospace design process, and

more specifically, the Aeolus mission, the Horizon Simulation Framework has the po-

tential to be applied to every discipline of engineering that follows the fundamental



61

process of systems engineering. The prospect of the new models that can be imagined

by the creative engineer and then simulated in HSF are exciting to the future of en-

gineering design. Rough, unprecedented ideas can be quickly realized in the form of

modeling and simulation to test the bound of what we previously thought was possi-

ble.
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APPENDIX: GLOSSARY

class The class is an object oriented construct for defining the properties and methods

of an object to be used as a template. 21

dependency functions A functional interface between two subsystems. In HSF, the

dependency function is provided by the dependent subsystem and performs unit

conversion, if necessary, for the subsystem with the dependency on it. 27

dependent subsystem A dependent subsystem is a subsystem that must provide in-

formation to the subsystem that has a dependency on it. i.e. The solar panels

are the dependent subsystem to the Power subsystem because the power subsys-

tem has a dependency on the solar panels to provide information about incoming

power. 27

developers A person who writes C] code for HSF. Typically a Cal Poly Student.. 25

HSFProfile The HSFProfile is a sorted key value pair storage system that hold state

data based on a time based key. The HSFProfile is used within the SystemState to

hold state data. 38

inherit (inheritance) In object oriented programming, inheritance is when one object

is derived from a base, or parent, object. To inherit from a class means to adapt

its implementation in order to extend it. 38

loosely typed The type of variables, parameter or return value are determined at run

time. Loosely typed languages include Python and MATLAB™. 47

object oriented A modular programming methodology that allows objects to be made

that contain both information about the object and methods to be used on the

object. 4

singleton A design pattern for creating a class that only allows for a single instance of

the class to be made in the program. 41

strongly typed The type of variables, parameter or return value must be defined at

compile time. Languages that are strongly typed include C] , C and C++. 47
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users A person who uses the HSF software product to create models and run simula-

tions on their system. 11
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