
	
   	
  

GENES ENCODING FLOWER- AND ROOT-SPECIFIC FUNCTIONS ARE MORE 

RESISTANT TO FRACTIONATION THAN GLOBALLY  

EXPRESSED GENES IN BRASSICA RAPA 

 

 

 

 

A Thesis  

presented to  

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

 

In Partial Fulfillment  

of the Requirements for the Degree  

Master of Science in Biology 

 

by 

 Naiyerah Kolkailah 

June 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/77511253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


	
   	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016 

Naiyerah Kolkailah 

 ALL RIGHTS RESERVED  

 

ii



	
   	
  

COMMITTEE MEMBERSHIP 

 

    TITLE:   Genes Encoding Flower- and Root-Specific  
Functions are More Resistant to Fractionation than  
Globally Expressed Genes in Brassica rapa 

 

AUTHOR:    Naiyerah Kolkailah 

 

     DATE SUBMITTED:     June 2016 

 

 

   COMMITTEE CHAIR:    Ed Himelblau, Ph.D.  

   Associate Professor of Biology 

 

 

COMMITTEE MEMBER:   Jenn Yost, Ph.D. 

  Assistant Professor of Biology 

 

COMMITTEE MEMBER:   Sandra Clement, Ph.D. 

  Assistant Professor of Biology 

 

 

 

 

 

iii



	
   	
  

ABSTRACT 

Genes Encoding Flower- and Root-Specific Functions are More Resistant to 
Fractionation than Globally Expressed Genes in Brassica rapa 

 

Naiyerah Kolkailah 

 

Like many angiosperms, Brassica rapa underwent several rounds of whole genome 
duplication during its evolutionary history. Brassica rapa is particularly valuable for 
studying genome evolution because it also experienced whole genome triplication shortly 
after it diverged from the common ancestor it shares with Arabidopsis thaliana about 17-
20 million years ago. While many B. rapa genes appear resistant to paralog retention, 
close to 50% of B. rapa genes have retained multiple, paralogous loci for millions of 
years and appear to be multi-copy tolerant. Based on previous studies, gene function may 
contribute to the selective pressure driving certain genes back to singleton status. It is 
suspected that other factors, such as gene expression patterns, also play a role in 
determining the fate of genes following whole genome triplication. Published RNA-seq 
data was used to determine if gene expression patterns influence the retention of extra 
gene copies. It is hypothesized that retention of genes in duplicate and triplicate is more 
likely if those genes are expressed in a tissue-specific manner, as opposed to being 
expressed globally across all tissues. This study shows that genes expressed specifically 
in flowers and roots in B. rapa are more resistant to fractionation than globally expressed 
genes following whole genome triplication. In particular, there appears to have been 
selection on genes expressed specifically in flower tissues to retain higher copy numbers 
and for all three copies to exhibit the same flower-specific expression pattern. Future 
research to determine if these observations in Brassica rapa are consistent with other 
angiosperms that have undergone recent whole genome duplication would confirm that 
retention of flower-specific-expressed genes is a general feature in plant genome 
evolution and not specific to B. rapa.  
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1. INTRODUCTION 

An autopolyploid is an organism with more than two sets of chromosomes 

resulting from genome duplication within the same species (Wolfe, 2001; Ha et al., 

2009). Autopolyploidy is a common occurrence in the evolutionary history of many plant 

species (Cui et al., 2006; Havananda et al., 2011; Parisod et al., 2016). Like many 

angiosperms, Brassica rapa underwent several rounds of whole genome duplication 

during its evolutionary history (Tang & Lyons, 2012). Brassica rapa is particularly 

valuable for studying genome evolution because it also experienced a hexaploidy event 

shortly after it diverged from the common ancestor it shares with Arabidopsis thaliana 

roughly 17-20 million years ago (Mun et al., 2009; Lin et al., 2014). This round of 

triplication is the most recent hexaploidy event known to have occurred in the 

angiosperm clade (Wang et al., 2011). Genome duplication in eukaryotes produces 

extensive genetic redundancy, which gives rise to novel gene functions over time (Ohno, 

1970; Conant & Wolfe, 2008; Flagel & Wendel, 2009). This functional diversification 

may have contributed to the great morphological diversity observed in B. rapa today 

(Tang & Lyons, 2012). 

Following its recent whole genome triplication, the three sub-genomes of B. rapa 

underwent differential gene loss, or biased fractionation, due to varying rates of mutation 

(mostly short deletions) occurring between the three sub-genomes (Cheng et al., 2012; 

Tang et al., 2012). The result of fractionation is that many genes present in three copies, 

or paralogs, immediately after triplication are today found in one or two copies. Many B. 

rapa genes appear resistant to paralog retention and rapidly return to single copy 

following duplication or triplication. Functional enrichment analysis was conducted in a 
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previous study to identify such multi-copy-resistant genes (i.e. genes found mostly in 

single copy status) across 20 different angiosperms, including B. rapa (De Smet et al., 

2013). Genes involved in conserved cellular functions (i.e. DNA damage repair and 

replication) were found overrepresented among the orthologous groups (OGs) reverting 

back to single copy. Gene evolution simulation ruled out the possibility of random chance 

causing the observed number of single copy OGs, supporting the conclusion that 

selective pressure restores a set of common genes involved in core cellular processes 

back to single copy (De Smet et al., 2013).  

Several hypotheses have been proposed to explain why some genes are under 

selective pressure to revert back to single copy. One hypothesis is that these particular 

genes are dosage sensitive; they may encode subunits of multi-protein complexes that 

require stoichiometric balance between the products (Birchler & Veitia, 2007; Veitia et 

al., 2008; Edger & Pires, 2009). For example, photosynthesis-related complexes require a 

balanced interaction between proteins produced from nuclear genes and chloroplast genes 

(Leister, 2003; De Smet et al., 2013). Since whole genome duplication affects the nuclear 

genome but not the chloroplast genome, extra nuclear protein production relative to 

chloroplast production can potentially disrupt the protein ratio required for normal 

photosynthetic activity. A second hypothesis is that the chance of developing dominant-

negative alleles is reduced when genes revert back to single copy (De Smet et al., 2013). 

Dominant-negative alleles encode proteins that disrupt the function of the wild-type 

protein complexes (Herskowitz, 1987; Veitia, 2007). Restoring genes back to single-copy 

eliminates extra copies, which could potentially develop mutations and cause dominant-

negative phenotypes. 
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Not all B. rapa genes are under such selective pressure to revert back to singleton 

status. While the B. rapa genome contains many multi-copy-resistant genes, other B. 

rapa genes are multi-copy tolerant. About 50% of B. rapa genes are thought to persist in 

multiple copies (Wang et al., 2011). These genes may be under reduced pressure to revert 

back to singleton status, or not enough time has lapsed before fractionation could take 

place. Some of these genes may play a role in environmental adaptation, in which case 

additive effects and finely regulated gene dosage may provide some selective advantage 

(Tang et al., 2012). Alternatively, functional divergence of duplicated genes 

(neofunctionalization) or divergence in expression patterns (subfunctionalization) may be 

mechanisms by which duplicated gene copies are retained in the genome (Lynch & 

Conery, 2000; Lynch & Force, 2000; Wolfe, 2001).  

Investigating the expression pattern of multi-copy tolerant genes may help explain 

why some genes persist as duplicates and triplicates. If housekeeping genes perform 

conserved cellular functions in plant tissues, and most have reverted back to single-copy 

status, it may be that genes encoding highly tissue-specific functions are more tolerant to 

higher copy number and are therefore retained in two or three copies. The main goal of 

this study is to determine if there is a correlation between expression patterns of B. rapa 

genes and retention of these genes in duplicate or triplicate. Using the transcriptome of 

the B. rapa subspecies pekinesis (or Chiifu—a Chinese cabbage), this study aims to 

establish first if copy number distribution is the same for globally expressed genes (i.e. 

genes expressed in all tissues) and genes expressed in some or only one tissue. This study 

also aims to identify which tissue-specific-expressed genes show the same expression 

pattern across all paralogs. It is hypothesized that retention of genes in duplicate and 
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triplicate is more likely if those genes are expressed in a tissue-specific manner, as 

opposed to being expressed globally across all tissues.  
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2. METHODS 

2.1 Existing B. rapa Genome and Transcriptome Data 

In a previous study, RNA-seq data was generated from multiple tissues of the B. 

rapa accession Chiifu-401-42, the same Chinese cabbage variety used for whole genome 

sequencing (Tong et al., 2013). The raw RNA-seq data from this study was obtained from 

the NCBI Gene Expression Omnibus (accession number GSE43245). The retrieved file 

contains RNA expression data (in Fragments Per Kilobase of Transcript Per Million 

Fragments Mapped [FPKM]) for 41,020 B. rapa genes across six different plant tissues: 

root, stem, leaf, flower, silique and callus. Expression data is available for one sample 

each of stem, flower, silique and callus tissue, and for two root and two leaf samples. 

Three additional files were obtained from another study, containing B. rapa singleton, 

duplicate, and triplicate gene IDs, along with their corresponding A. thaliana orthologs 

(Wang et al., 2011).  

 

2.2 Pseudogene Identification 

R Studio software was used to subset the RNA expression data file by gene copy 

number, then by expression pattern (Fig. 1). First, three separate files were created with 

expression data for singleton, duplicate, and triplicate genes (average FPKM values for 

the two root and two leaf samples were calculated for each file and used in lieu of the two 

individual root and leaf tissue expression values for all subsequent data analyses). Once 

expression data was separated according to gene copy number (Fig. 1A), potential 

pseudogenes were removed from all three data files (Fig. 1B). Potential pseudogenes 

were defined as having zero FPKM values across all tissues. Genes showing zero 
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expression for all tissues were removed—along with any paralogs—before conducting 

any further analysis.   

 

 

A  
 
 
B 

 
 
C 
 
 
D 
 

Figure 1. Flowchart for Subsetting RNA-seq Data. (A) Expression data was divided by 

copy number, (B) potential pseudogenes were removed, (C) globally expressed genes 

were isolated, and (D) non-globally expressed genes were divided into multiple sets of 

tissue-specific-expressed genes. 

 

2.3 Subsetting Genes by Expression Pattern 

2.3.1 Globally Expressed Genes 

The remaining genes in all three files fall under one of three expression pattern 

categories: globally expressed genes (genes showing non-zero expression across all 

tissues), non-globally expressed genes (genes showing non-zero expression in one or 

more, but not all, tissues), or tissue-specific-expressed genes (genes showing >0.1 FPKM 

values in only one tissue and <0.1 FPKM values in all other tissues). The first category of 

genes to be removed and grouped separately from each of the three larger data sets was 
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globally expressed genes (Fig. 1C). Three additional gene sets were created for all the 

globally expressed singletons, and all duplicates and triplicate sets for which at least one 

of the paralogs exhibited global expression.  

 

2.3.2 Tissue-Specific-Expressed Genes 

From the non-globally expressed genes, genes with tissue-specific expression 

were grouped into separate files (Fig. 1D), but not removed from the original file with 

non-globally expressed genes. Since genes with multiple copies may exhibit overlap in 

gene expression categories (e.g. one paralog may show leaf-specific expression while 

another may show stem-specific expression), all tissue-specific-expressed genes 

remained in the file so they could be counted accurately. Flower-specific-expressed genes 

(and their paralogs) were grouped first, followed by leaf-specific, stem-specific and root-

specific-expressed genes. Callus-specific and silique-specific-expressed genes were not 

considered in this study due to the minimal number of genes showing expression patterns 

specific to those tissues. 

 

2.4 Chi-Square Analyses 

To compare copy number distribution between globally expressed genes and non-

globally expressed genes, as well as globally expressed genes and each group of tissue-

specific expressed genes, total gene sets showing each expression pattern were first 

counted among singleton, duplicate, and triplicate genes. Then, five independent Chi-

square analyses were conducted in JMP® Pro 11.2.0 to determine whether or not there 

was a significant difference in copy number distribution between 1) globally expressed 
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genes and non-globally expressed genes, 2) globally expressed genes and flower-specific-

expressed genes, 3) globally expressed genes and leaf-specific-expressed genes, 4) 

globally expressed and stem-specific-expressed genes, and 5) globally expressed and 

root-specific-expressed genes. For all statistical analyses, expression pattern (global or 

non-global/tissue-specific) was the explanatory variable (X), copy number (singleton, 

duplicate, or triplicate) was the response variable (Y), and the observed count of 

singleton, duplicate, or triplicate sets exhibiting each expression pattern was inputted as 

the frequency. Each individual test was conducted at a 1% significance level. 

 

2.5 Gene Expression Patterns Across Paralogs 

In our scheme for identifying tissue-specific expression, it is possible that not all 

paralogs have the same pattern of expression. To identify which tissue-specific-expressed 

genes show the same expression pattern for all paralogs, expression data for each set of 

duplicate and triplicate genes with tissue-specific expression was observed. For duplicate 

genes, a count was made of all gene sets with only one of the two paralogs showing the 

same expression pattern. Another count was made of all sets in which both copies 

showed the same expression pattern. Percentages were generated using the total number 

of gene sets exhibiting that form of tissue-specific expression. The same calculations 

were conducted for triplicate genes, with an additional count for gene sets in which two 

of the three paralogs showed the same expression pattern.  
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2.6 Single-Copy Genes & Globally Expressed Genes 

 The list of single-copy genes identified in a previous study (De Smet et al., 2013) 

was compared to the globally expressed genes identified in this study. R Studio software 

was used to identify A. thaliana gene IDs that are common to both gene lists. The percent 

of single-copy A. thaliana orthologs found as globally expressed genes in B. rapa was 

calculated for singletons, duplicates, and triplicates. 
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3. RESULTS 

3.1 Potential Pseudogenes 

 Out of 7,812 singleton B. rapa genes with corresponding A. thaliana orthologs, 

260 genes (3.33%) were identified as potential pseudogenes. These genes showed no 

expression (i.e. FPKM is 0.00) across all six tissues. Out of 5,438 duplicate gene sets 

with A. thaliana orthologs, 502 duplicate sets (9.23%) had at least one potential 

pseudogene. Out of 1,674 triplicate gene sets with A. thaliana orthologs, 208 triplicate 

sets (12.43%) had at least one potential pseudogene (Figure 2).  
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Figure 2. Pseudogenes and Non-Pseudogenes Among Singletons, Duplicates, and 

Triplicates. (A) Proportion (red) of total singleton, duplicate, and triplicate gene sets 

with at least one potential pseudogene. The majority of gene (sets), shown in blue, had 

non-zero expression for at least one of the tissues. (B) Percentage of total singleton, 
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duplicate, and triplicate gene sets with at least one potential pseudogene. Triplicates show 

the highest percentage of potential pseudogenes.  

 

3.2 Comparing Globally Expressed and Non-Globally Expressed Genes 

 Genes were considered globally expressed if they had non-zero expression across 

all six tissues. Globally expressed genes were isolated from the singleton, duplicate and 

triplicate expression files, grouped with their paralogs and then counted. A total of 11,614 

genes or gene sets included at least one globally expressed gene. Of this total, 6,053 

(52.1%) were globally expressed singletons, and 4,261 duplicate sets (36.7%) and 1,300 

triplicate sets (11.2%) had at least one globally expressed gene (Figure 2).  

Non-globally expressed genes were genes showing non-zero expression in one or 

more, but not all, tissues. This set of genes includes all tissue-specific-expressed genes. A 

total of 1,462 genes or gene sets included at least one non-globally expressed gene. Of 

this total, 790 (54.0%) were non-globally expressed singletons; 506 duplicate sets 

(34.6%) and 166 triplicate sets (11.4%) had at least one non-globally expressed gene 

(Figure 3). There was no significant difference in copy number distribution between 

globally expressed and non-globally expressed genes (Chi-square=2.481, P>.2893). 
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Figure 3. Global and Non-Global Expression Among Singletons, Duplicates, and 

Triplicates. Percentage of genes showing global expression (blue) and non-global 

expression (red).  

 

3.3 Comparing Globally Expressed and Tissue-Specific-Expressed Genes 

3.3.1 Flower-Specific-Expressed Genes 

From the expression data containing non-globally-expressed genes, flower-
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FPKM values in all other tissues. In total, there were 201 genes or gene sets that included 

at least one flower-specific-expressed gene.  Out of the 201 genes, 66 (32.8%) were 

singletons. There were 91 duplicate sets (45.3%) that had at least one flower-specific-
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gene (Figure 4). There was a significant difference in copy number distribution between 

globally expressed and flower-specific-expressed genes (Chi-square=38.013, P<.0001). 

  

Figure 4. Global and Flower-Specific Expression Among Singletons, Duplicates, and 

Triplicates. Percentage of genes showing global expression (blue) and flower-specific 

expression (red).  

 

3.3.2 Leaf-Specific-Expressed Genes 

Leaf-specific-expressed genes were grouped with their paralogs and counted. 
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between globally expressed and leaf-specific-expressed genes (Chi-square=4.028, 

P>.1334). 

 

3.3.3 Stem-Specific-Expressed Genes 

As with the last two sets of tissue-specific-expressed genes, genes showing stem-

specific expression were grouped with their paralogs and counted without being removed 

from the expression data file containing non-globally expressed genes. A total of 20 

genes or gene sets included at least one stem-specific-expressed gene; 9 (45%) were 

singletons, 6 duplicate sets (30%) had at least one leaf-specific-expressed gene, and 5 

triplicate sets (25%) had at least one stem-specific-expressed gene. There was no 

significant difference in copy number distribution between globally expressed and stem-

specific-expressed genes (Chi-square=3.831, P>.2265). 

 

3.3.4 Root-Specific-Expressed Genes 

Genes showing root-specific expression were the last of the tissue-specific-

expressed genes to be grouped with their paralogs and counted. A total of 190 genes or 

gene sets included at least one root-specific-expressed gene; 63 (33.2%) were singletons, 

89 duplicate sets (46.8%) had at least one root-specific-expressed gene, and 38 triplicate 

sets (20%) had at least one root-specific expressed gene. There was a significant 

difference in copy number distribution between globally expressed and root-specific-

expressed genes (Chi-square=30.991, P<.0001).  

 

 



16 

3.4 Gene Expression Patterns Across Paralogs 

In this analysis, duplicates and triplicates were designated as tissue-specific if at 

least one paralog showed tissue-specific expression. In these cases, it is possible that the 

other paralog(s) show the same expression pattern or a distinct pattern. The expression 

data for gene sets with at least one tissue-specific-expressed gene was examined to 

identify how many of the paralogs exhibited the same expression pattern.  

 

3.4.1 Flower-Specific-Expressed Paralogs 

A total of 201 genes and gene sets had at least one flower-specific-expressed 

gene. There were 66 singletons, 91 duplicates, and 44 triplicates that showed this 

expression pattern. For duplicate genes with at least one flower-specific-expressed gene, 

38 sets (42%) showed flower-specific expression in only one of the two paralogs; 53 sets 

(58%) showed this same expression pattern in both copies (Figure 5). For triplicate sets, 8 

sets (18%) showed flower-specific expression in one of the three paralogs; 7 (16%) 

showed it in two of the three paralogs; and 29 sets (22%) showed this expression pattern 

in all three paralogs (Figure 5). 
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Figure 5. Flower-Specific Expression Among Duplicate and Triplicate Gene Sets. 

Bars are color-coded to show the proportion of sets with one copy (blue), two copies 

(red), or three copies (green) showing flower-specific expression. The majority of 

duplicate and triplicate sets showed flower-specific expression in all their respective gene 

copies.  

 

3.4.2 Leaf-Specific-Expressed Paralogs 

A total of 32 genes or gene sets had at least one leaf-specific-expressed gene; 11 

singletons showed this expression pattern, and most duplicates and triplicate sets only 

showed leaf-specific expression in one of the paralogs. There were 15, out of 16 duplicate 

sets total, showing leaf-specific expression in only one of the two paralogs. For triplicate 

sets, 4 out of the 5 sets showed this same expression pattern in only one copy, and no sets 

showed leaf-specific expression in all three copies (Figure 6). 
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Figure 6. Leaf-Specific Expression Among Duplicate and Triplicate Gene Sets. Bars 

are color-coded to show the proportion of sets with one copy (blue), two copies (red), or 

three copies (green) showing leaf-specific expression. The majority of duplicate and 

triplicate sets showed leaf-specific expression in only one gene copy.  

 

3.4.3 Stem-Specific-Expressed Paralogs 

A total of 20 genes and gene sets had at least one stem-specific-expressed gene. 

There were 9 singletons showing this type of expression. All duplicates (6/6) showed 

leaf-specific expression in only one of the two paralogs. All triplicates (5/5) showed this 

same expression pattern in only one of the three paralogs (Figure 7). 
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Figure 7. Stem-Specific Expression Among Duplicate and Triplicate Gene Sets. Bars 

are color-coded to show the proportion of sets with one copy (blue), two copies (red), or 

three copies (green) showing stem-specific expression. All duplicate and triplicate sets 

showed stem-specific expression in only one paralog; no gene sets showed stem-specific 

expression in multiple gene copies.   

 

3.4.4 Root-Specific Expressed Paralogs 

A total of 62 singleton genes showed root-specific expression. For duplicate genes 

with at least one root-specific-expressed gene, 58 sets (65.2%) showed root-specific 

expression in only one of the two paralogs; 31 sets (34.8%) showed this same expression 

pattern in both copies (Figure 6). For triplicate sets, 15 sets (39.5%) showed root-specific 

expression in one of the three paralogs; 16 (42.1%) showed it in two of the three 

paralogs; and 7 sets (18.4%) showed this expression pattern in all three copies (Figure 8). 
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Figure 8. Root-Specific Expression Among Duplicate and Triplicate Gene Sets. Bars 

are color-coded to show the proportion of sets with one copy (blue), two copies (red), or 

three copies (green) showing root-specific expression. The majority of duplicates show 

root-specific expression in one paralog. Roughly the same number of triplicate sets 

showed root-specific expression in 1/3 and 2/3 copies.  
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about 2.5% of single copy genes were non-globally expressed singletons, duplicates or 

triplicates.  
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4. DISCUSSION 

Following whole genome triplication, the three sub-genomes of B. rapa 

underwent differential gene loss, which restored many triplicated genes back to singleton 

or duplicate status. This study utilized the transcriptome of B. rapa (subspecies pekinesis) 

to investigate the relationship between gene expression patterns and the retention of extra 

gene copies after whole genome triplication. Functional analysis in a previous study 

revealed that single copy genes in many angiosperm genomes tend to encode 

housekeeping functions (De Smet et al., 2013). While gene function may explain why 

some genes revert back to single copy, the present study examined if gene expression 

patterns across multiple B. rapa tissues influence the retention of genes in duplicate or 

triplicate—as opposed to the reduction to single copy status, which is the most common 

state in B. rapa (Cheng et al., 2012).  

To compare expression patterns (i.e. globally expressed to non-globally expressed 

and tissue-specific-expressed), potential pseudogenes were first identified and removed—

along with their paralogs—from the original gene expression file. One hallmark of 

pseudogenes is that they tend to have low or no expression and could, therefore, be 

miscounted in this analysis. Out of all B. rapa gene sets with corresponding A. thaliana 

orthologs, the greatest proportion of potential pseudogenes were found in triplicate gene 

sets, followed by those in duplicate gene sets and then singletons. This finding suggests 

that triplicate and duplicate genes may be undergoing pseudogenization to restore their 

status back to single copy. This also suggests that the published number of duplicates and 

triplicates is an overestimate and that diploidization is more advanced in B. rapa than 

previous studies have indicated (Cheng et al., 2012). Even in this study, the number of 
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duplicates and triplicates may be overestimated since genes with non-zero FPKM are 

considered viable when generally 0.1>FPKM represents no expression (Pat Edgar, 

personal communication).  

To confirm pseudogene status, a small-scale study of 70 B. rapa triplicate genes 

revealed that paralogs with low sequence alignment scores had at least one gene copy 

with a large terminal deletion. That gene copy was also often missing exons relative to 

the paralogous loci (data not shown). Such deletions are strong indicators of gene 

inactivation and pseudogenization (Woodhouse et al., 2010; Tang et al., 2012). Applying 

a similar analysis to the 260 potential pseudogenes in this study can improve the 

annotation of the B. rapa genome and confirm the process of pseudogenization through 

DNA sequence examination. 

Analysis of the remaining genes expressed in B. rapa revealed that retention of 

extra gene copies can be explained, in part, by gene expression patterns. The majority 

(52.1%) of globally expressed genes were singletons, 36.7% were a part of duplicate sets, 

and only 11.2% were part of triplicate sets. There was no significant difference in copy 

number distribution between globally expressed and non-globally expressed genes, 

showing that most genes expressed in all tissues or multiple tissues tend to revert back to 

singleton status. Only a small proportion of B. rapa genes performing functions across all 

or multiple tissues remain in triplicate.  

A different result was observed for genes showing flower-specific expression. 

Copy number distribution for genes showing flower-specific expression differed 

significantly from the pattern observed for globally expressed genes. Singletons were 

more than 33%, duplicates were roughly 45% and triplicates were about 22%. Flower-



24 

specific-expressed genes appear to be retained in duplicate and triplicate copies in 

significantly higher proportions than are globally expressed genes.  

It is noteworthy that flowers express unique developmental pathways and 

reproductive processes (i.e. fertilization, meiosis and gamete development), which may 

be controlled by large regulatory networks (Franks, 2015) and multi-protein complexes 

that require stoichiometric balance between subunits to be maintained. Unlike small-scale 

duplications, whole genome duplication and triplication maintains the relative ratios 

between gene products and retains the stoichiometric balance between the different 

subunits of multi-protein complexes (Birchler & Veitia, 2010). Functional analysis of 

triplicate genes showing flower-specific expression could be conducted to identify the 

role these genes play in developmental pathways and regulatory networks unique to 

flowers, as well as the degree of networking between their gene products. Since this study 

showed that flower-specific-expressed genes were the most likely of all tissue-specific-

expressed genes to show the same expression pattern across all three paralogs, there is an 

even greater possibility of paralogs contributing additively to the same conserved 

functions in flowers (Tang et al., 2012). 

Although flower-specific-expressed genes showed the greatest difference in copy 

number distribution when compared to globally expressed genes, root-specific-expressed 

genes also exhibited a similar pattern to that of flower-specific-expressed genes (i.e. 

lower singleton count, and higher duplicate and triplicate counts than was observed for 

globally expressed genes). Roots express genes involved in environmental stress 

responses such as drought and salt stress (Tao et al., 2014), which are likely controlled by 

complex regulatory networks and would therefore be under pressure to retain copy 
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numbers similar to other root-specific, environmental response genes. A study of multi-

copy genes involved in trace metal element responsive processes revealed that these 

genes are over-retained in the B. rapa genome, indicating a possible functional advantage 

for maintaining these genes in duplicate or triplicate (Li et al., 2014). Although this 

previous study analyzed differential gene expression in B. rapa leaves, similar processes 

may be at work in other plant tissues.  

A relatively small number of genes showed stem-specific- and leaf-specific 

expression. The copy number distribution of both stem-specific and leaf-specific-

expressed genes did not differ significantly from the distribution of globally expressed 

genes. Stems and leaves are both photosynthetic tissues, especially leaves. Functional 

enrichment analyses have revealed a class of single copy genes involved in organelle-

related functions and photosynthetic processes (De Smet et al., 2013; Li et al., 2016). 

Since whole genome duplication only duplicates the nuclear genome and not the 

chloroplast genome, the stoichiometric balance between the nuclear and chloroplast-

encoded subunits of photosynthetic complexes may be disrupted if more gene copies in 

the nuclear genome are expressed relative to chloroplast genes (De Smet et al., 2013). If 

genes encoding photosynthetic proteins are affected deleteriously by dosage imbalance, it 

is expected that genes expressed only in leaves and stems may be more resistant to 

retaining extra gene copies.  

Based on the global and tissue-specific expression patterns observed in this study, 

it can be concluded that genes encoding flower- and root-specific functions are more 

resistant to fractionation than globally expressed genes in B. rapa. It is important to 

consider, however, that this study used RNA-seq data generated from B. rapa plants 
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grown only in greenhouse conditions, and tissue samples were from particular ages and 

developmental stages (Tong et al., 2013). Gene expression patterns may need to be re-

examined under different growth conditions and at multiple developmental stages to 

determine if the observed expression patterns in this study are consistent throughout all 

plant stages of development, and whether or not they vary under different growth 

conditions.  

The final analysis in this study showed overlap between globally expressed genes 

identified here and a previously published list of genes shown to rapidly return to single-

copy status following whole genome duplication and whole genome triplication. The 

latter are considered multi-copy resistant genes. Approximately 50% of multi-copy 

resistant genes were present as single copy, globally expressed genes. However, multi-

copy resistant genes were also found as two- and three-copy, globally expressed genes—

but in lower abundance. Since the greatest overlap was found between multi-copy 

resistant genes involved mainly in core cellular processes and globally expressed 

singletons, it appears that many genes encoding housekeeping functions are expressed 

globally across all plant tissues. These results suggest that, along with function, gene 

expression pattern may also contribute to the selective pressure driving certain genes 

back to singleton status.  

Future studies can further investigate the relationship between gene function and 

gene expression pattern as they relate to retention or loss of extra gene copies. These 

studies can employ functional analyses, gene knockout techniques and proteomics to 

investigate why globally expressed genes involved in housekeeping functions resist 

duplicate status. Retaining extra copies of globally expressed genes may have deleterious 
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effects, but these effects have yet to be examined in the light of both gene function and 

gene expression patterns. Studies can also aim to explain why certain tissue-specific-

expressed genes retain their extra gene copies more readily than their globally expressed 

counterparts. Retaining extra copies of tissue-specific-expressed genes may enhance 

fitness or provide adaptive benefits—particularly flower- or root-specific-expressed 

genes showing the same expression pattern across all paralogs. These benefits have not 

been investigated sufficiently or considered in relation to both gene function and gene 

expression pattern.  

This study revealed that in B. rapa, there appears to have been selection on flower 

genes to remain in three copies and for all three copies to be expressed in a narrow range 

of tissues. Future research to determine if these observations in B. rapa are consistent 

with other angiosperms that have undergone recent whole genome duplication would 

confirm that retention of flower-specific-expressed is a general feature in plant genome 

evolution, and not specific to B. rapa. 
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