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ABSTRACT

MimicA: A General Framework for Self-Learning Companion AI Behavior

Travis Angevine

Companion or support characters controlled by Artificial Intelligence (AI) have been

a feature of video games for decades. Many Role Playing Games (RPGs) offer a

cast of support characters in the player’s party that are AI-controlled to various de-

grees. Many First Person Shooter (FPS) games include semi-autonomous or fully

autonomous AI-controlled companions. Real Time Strategy (RTS) games have tradi-

tionally featured large numbers of semi-autonomous characters that collectively help

accomplish various tasks (build, attack, etc.) for the player. While RPGs tend to

focus on a single or a small number of well-developed character companions to ac-

company a player controlled main character, the RTS games tend to have anonymous

and replaceable workers and soldiers to be micromanaged by the player.

In this paper we present the MimicA framework, designed to govern AI companion

behavior based on mimicking that of the player. Several features set this system

apart from existing practices in AI-managed companions in contemporary RPG or

RTS games. First, the behavior generated is designed to be fully autonomous, not

partially autonomous as in most RTS games. Second, the solution is general. No

specific prior behavior specifications are modeled. As a result, little to no genre, story

or technical assumptions are necessary to implement this solution. Even the list of

possible actions required is generalized. The system is designed to work independently

of game representation. We further demonstrate, analyze and discuss MimicA by

using it in Lord of Towers, a novel tower defense game featuring a player avatar.

Through our user study we show that a majority of participants found the companions

useful to them and liked the idea of this type of framework.
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Chapter 1

INTRODUCTION

As video games have developed from the early days of Pong [2] and Tetris [31] to

21st century hits like World of Warcraft [9] and Call of Duty: Modern Warfare [17],

they have evolved in their style, depth, and difficulty. As different types of games

have developed, so has the range of artificial intelligence (AI) used by the non-player

characters (NPCs) in the games. This includes enemy characters that oppose the

player, neutral characters that may support the player in their interactions with

shops or quests, and companion characters that work alongside the character.

1.1 Description of the Problem

In most games support characters don’t require any advanced, player-like AI because

they have fixed behavior. They are there to sell the player items, provide quests, or

other similar actions. These actions can be easily scripted in order to provide the

level of interaction needed for these types of NPCs. So while research has been done

to make sure these types of characters are believable [21], not as much effort needs to

be made to make them player-like.

Aside from support NPCs, while much work has gone into developing highly so-

phisticated AI for enemy characters, less has been done for companion characters

[3][23]. This lack of sophistication when it comes to companion characters can lead

to frustration on the part of the player, especially if the companion is a required part

of the game, because the player now has to attempt to work with this character that

has strange, unintuitive behaviors. Companions are intended to be present in a game

to aid the player in various ways. However, if the companions do not do what the
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player expects, or even inhibits the player from accomplishing goals in a desired way,

the companion can quickly become an annoyance rather than a boon [33].

An example of this is seen in critiques of the companions in Skyrim [4], where

the behavior of the player companions have led to reviews saying “... all they (the

companions) really do is serve as a beast of burden for carrying your spare loot, ruining

your stealth, activating every trap in a given area, or getting themselves killed” [10]

and “Companion AI ... frequently steps in front of you to take friendly fire and just

die” [25]. While some have tried to remedy this problem with player made mods [26],

these issues present room for improvement in this area.

1.2 Overview of the Solution

Major contemporary trends in companion AI development are towards either creating

fully autonomous companions, or creating companions still controlled by the player

to some degree [33]. This work falls into the first category by focusing on developing

a character that will behave completely autonomously from the player.

Good AI companions will aid in increasing the fun and immersion of a game [33],

as well as allowing games to feel more life-like by providing more realistic player-

NPC interactions. Additionally, they will allow for more complex strategies to be

used both by game developers and the players because the NPCs working with the

players will be closer in level of competence to the current state of enemy NPCs, as

well minimizing the gap between player skill level and companion skill level. Finally,

constructing good AI companions will improve the game experience for players by

causing fewer situations similar to the problems mentioned previously in the reviews

of Skyrim companions. MimicA aims to provide this through the creation of a fully

autonomous companion.
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1.3 Outline of the Thesis

Chapters 2 and 3 of this thesis discuss some of the background and related works of

this project. Chapter 4 presents the design of the MimicA framework, while chapter

5 discusses the use of the framework in a game developed for this project, Lord of

Towers. Chapter 6 outlines the user study performed in order to validate the MimicA

framework, as well as the results of the study. Lastly, chapter 7 concludes with a

summary of the contribution of this work, as well as some of the challenges faced

during its development, and chapter 8 presents possible future work to this project.
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Chapter 2

BACKGROUND

This chapter presents background research performed in areas involved in games and

game AI. It provides a brief discussion of different types of agents, planning and

learning techniques, and introduces three classifiers which the MimicA system uses.

It also provides a discussion of adaptive gameplay and teammate AI.

2.1 Agent and Multi-Agent Environments

The companion developed in this thesis is a form of an automated agent designed to

assist the player in progressing through the game. As described by Panait and Luke,

“An agent is a computational mechanism that exhibits a high degree of autonomy,

performing actions in its environment based on information (sensors, feedback) re-

ceived from the environment. [28]” In a video game, NPCs are all agents inside the

environment of the game. These NPCs are automated to perform some behavior,

whether that is to attack the player’s base in the case of the enemy characters, or to

build walls and towers in the case of the player companions. Additionally, while a

human player is not necessarily a “computational mechanism” they do still fit into

the previous definition and can be considered an agent as well, just not an automated

one. As such, we will differentiate between human agents and automated or AI agents

if a distinction is needed.

Additionally, Panait and Luke define a multi-agent environment as one, “in which

there is more than one agent, where they interact with each other. [28]” This is

important to consider, as many video games are examples of multi-agent environ-

ments. Specifically, since MimicA aims to develop a companion AI that would work
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alongside the player, all games that MimicA could be used in would be multi-agent

environments. Panait and Luke additionally discuss such an environment where one

agent may not have the same knowledge about the environment that another agent

does. This is important to consider as we determine how companions using MimicA

gain knowledge about the environment they are present in. Ultimately, it is left to

the game developer to decide how much information should be passed to MimicA,

the details of which are discussed later in the paper. The game we have developed

for the sake of testing MimicA opts to provide all agents present in the game with

the same amount of information about the current state of the game.

2.2 Goal Based Agents and Planning

A video game contains, at its core, a series of goals for the player. Many games have

a set of conditions that must be met for the player to win. These conditions provide

a set of goals for the player to accomplish in order to win the game. Similarly, AI

agents can operate based on a set of goals instead of just a predefined set of actions.

These goal based AI agents can effectively consider both the consequences of their

actions, as well as how much those actions and consequences align with their goals

[36].

Goal based agents and goal oriented planning is discussed by Yue and de Byl

[37]. They discuss goal oriented action planning, a “decision-making architecture

that defines the conditions necessary to satisfy a goal, as well as steps to satisfy this

goal in real time.” This can provide direction for automated agents in how they go

about satisfying the goals that they have. The automated agents can be programmed

such that, for a given goal, the automated agent would know the steps it takes to

complete that goal, as well as any preconditions necessary to complete those steps.

As such, the agent is able to come up with a sequence of actions that will lead to the
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desired goal.

Once the automated agent has a plan, it will then follow the plan until it is

completed, or until it no longer needs to be completed. However, the agent can also

be designed to continuously assess the current game state and interrupt a current

plan if a more relevant or necessary goal is recognized. According to Yue and de

Byl, goal oriented action planning provides an advantage, in that every goal that is

created does not have a hard coded plan [37]. Instead, the plan to achieve the goal is

created dynamically based on changes in the current environment. This dynamic plan

creation also provides the advantage that agent behaviors can be formed through the

creation of actions and preconditions for those actions, instead of having to program

a separate behavior for every agent.

2.3 Learning

Learning is a key part of an advanced artificial intelligence. It is a part of what allows

the AI to change and react to the environment. In a game, having an agent capable of

learning would allow for more advanced behaviors and possible interactions. Several

characteristics of agent learning are discussed by Yildirim and Stene [36]. These

include learning that something exists or can be done, learning how much something

should be done, learning how to do something, and learning what should be done in

a specific situation.

The characteristics of agent learning each have varying degrees of complexity

[36]. Learning that something exists can be easy, as all that is needed is for the

agent to become aware of it, either by experiencing it or by being told that it exists.

Learning how to do something can also be easy, as it can also be accomplished through

observation or direct order. Learning how much something should be done can be

a more difficult problem, as the same action might need to be done more or less
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depending on what the action is accomplishing and what the state of the rest of

the environment is. Lastly, learning what should be done in a specific situation is

similarly difficult for much the same reason. Situational dependency is the key, and

accomplishing that can be more difficult, as is discussed in more detail in section

2.3.1.

In addition to these characteristics, Yildirim and Stene discuss four ways learning

can be initiated [36]. Learning can occur from feedback, from a command, from

observation, and from reflection. Feedback usually comes from the player; the learner

is either rewarded or punished based on the action performed. Similarly, commands

are also usually from the player. The learner is explicitly told what to do, and as

such learns what behavior is expected of it. Learning from observation can come

from observing anything similar to the learner, be they the player or other similar

automated agents.

To learn expected behavior through observation is more complex in that the

learner must distinguish between agents it should be observing and agents it should

not, as well as determining what is good or bad without explicit feedback [36]. Mim-

icA makes no assumptions as to which agents it should observe and which it should

not. Instead, it relies on the game developer to take any actions that should be ob-

served and pass them to the framework. Lastly, learning from reflection can tie in

with the previous section on goal oriented planning. The learner is able to reflect on

the goal it had and the action it took. The learner can then determine how well the

goal was satisfied based on that action, and determine how useful that action was.

This does, however, imply that goals have more than a boolean success or failure

state.
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2.3.1 Case Based Learning from Observation

Of particular interest for this thesis is learning from observation, as MimicA aims

to learn its behavior by observing the performance of the player. In learning from

observation, the observed expert behavior is represented by a vector of learning traces

which contain a game state paired with an action. We refer to these later as vector-

action pairs. Case based learning from observation approaches learning from obser-

vation through case based reasoning. Multiple case acquisition strategies for learning

from observation are presented by Ontañón and Floyd’s [14]. These include reac-

tive learning, monolithic sequential learning, temporal backtracking learning, and

similarity-based “chunking” learning.

In reactive learning, the system generates a case for each learning trace [14]. These

cases contain the same game state and action as the trace that generated them. These

can then be used by the learning agent to determine what action should be taken

based on a specific game state. This approach, however, can have issues when it

comes to ensuring that certain actions happen after each other, as no action order

or temporal information is stored unless it is a part of the game state. Monolithic

sequential learning is an approach that attempts to solve that problem by learning

a single case for an entire learning trace set. The case contains a game state and a

sequence of actions that will be executed in the same order as was in the learning

trace. These two approaches have opposite problems. While reactive learning does

not maintain any order to actions performed, sequential learning does not have the

ability to change based on current situations. As such, neither is ideal for a good

learning from observation system.

Temporal backtracking and similarity-based “chunking” both attempt to be the

best of both worlds [14]. Temporal backtracking creates cases in almost the same

way as reactive learning, with the exception that it adds a link to the previous case.
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Instead of retrieving one case to perform, the system retrieves multiple cases based on

their similarity to the target state. If they all correspond to the same action, then that

action is performed. Otherwise, the system starts comparing previous cases through

temporal backtracking with the previous action of the current state, going as far back

in time as necessary to determine what action to perform. This can, however, have

the drawback of taking more time to find the appropriate action.

While temporal backtracking ties every case to the previous one, similarity-based

“chunking” instead attempts to group cases based on how similar their corresponding

game states are [14]. Chunks are created for cases where the similarity between their

game states is above a certain threshold. Then, when the system queries for an

action to perform, the chunk determined to be optimal is returned, and every action

in that chunk is executed. This provides a similar benefit to temporal backtracking

where actions are more likely to be performed in the same order as they were learned,

while at the same time avoiding the longer runtime of retrieving an action. However,

“chunking” can have the same, albeit reduced, downside as monolithic sequential

learning, in that it is possible not all actions in a chunk need to be performed, even

though they were performed in sequence at one point.

2.4 Classifiers

This project makes use of a Decision Tree classifier and a Naive Bayes classifier as

two of the three methods for determining which action the companion AI should take.

The basics of these classifiers are discussed below, while the specific details for their

use in this project are discussed in section 4.2.
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2.4.1 Decision Trees

Decision Trees make use of a branching tree like data structure in order to determine

what action an AI should make at a given time. Each node in the tree represents

some state variable to be examined, while each edge coming off of a node represents

a specific value or set of values that the state of that variable can be in. The leaves

of the tree are actions that can be taken by the AI.

In order to make use of a Decision Tree, it must first be trained. The training step

is what constructs the tree that will be used later, creating the nodes, branches, and

leaves. This can either be done before the program is run, if the programmer knows

the states that should be examined and actions that can be taken, or at runtime, if

the programmer does not know what to include in the tree ahead of time. If done

at runtime, the tree may be retrained after more time has passed or more knowledge

has been gained, as is the case for this project. This has the advantage of being able

to update the tree as new information is gained, as we discuss in section 4.2, however

it also has to possible downside of causing delays as the tree is retrained.

After the tree has been trained, a current state can then be classified in order

to find the action to perform. This is done by starting at the root of the tree and

traversing it, following the branches that correspond with the current values of the

different state variables held in the nodes of the tree, until an action is reached. This

is the action that the current state has been classified into, and the AI will then

perform.

2.4.2 Naive Bayes

The Naive Bayes classifier uses probabilities to determine what action an AI should

make. It works by examining action-feature vector pairs. Feature vectors are a
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collection of state data at a given time, in this case the time that the paired action

was performed.

Like Decision Trees, Naive Bayes requires training before it can be used. This takes

the form of a collection of action-feature vector pairs that will be examined in order

to classify a current state. As with Decision Trees, the Naive Bayes implementation

can be retrained as more pairs are generated, in order to have more data to examine

and work with.

To perform classification, Naive Bayes looks to find the maximum probability of

some action given the current state. This is done by multiplying the probability of the

action with the probability of each individual feature of the current state given that

action. These probabilities are found using the training data. The probability of an

action A is the number of times that action A occurred out of all of the actions which

have occurred. The probability of an individual feature given action A is the number

of times that the feature occurred in the action-feature vector pair out of every pair

containing action A. Following this classification, which generates probabilities for

each possible action, the highest of these probabilities can be used to determine the

best action to perform next.

2.5 Adaptive Gameplay

The idea of adapting some aspect of a game to fit the player’s needs can occur in

more ways than just a well done AI companion. A common approach is through

dynamic difficulty adjustment. Although the means of performing dynamic difficulty

adjustment can be varied, the process is ultimately some variation of monitoring a

player’s performance and changing some aspect of gameplay accordingly. One such

type of dynamic difficulty adjustment is through negative feedback [30]. In games

using this approach, the game gets harder as the player does better, and then gets

11



easier again when the player makes a mistake. This is done with the intent of keeping

a game at a more stable state. An example might be a game where, as the player gets

more points, the game speeds up, thereby making it more difficult for the player to

continue getting points. When the player hits an obstacle and loses points, the game

slows back down.

While negative feedback is generally seen to increase the difficulty of games, dy-

namic difficulty adjustment can also be used to decrease the difficulty of games,

making them easier for players. An example of this can be seen in the Hamlet sys-

tem, presented by Hunicke [16]. This system, integrated into the game Half-Life, is

designed to examine the current state of the player and the game and possibly offer

aid to the player or make it harder for them by reducing health and ammo drops.

This could take the form of an increased chance of a health drop if the player is low

on health, or an increased chance of an ammo drop if they are low on ammo. This

was shown to help reduce the number of times that players died in the game.

Additionally, Hunicke showed that the addition of the Hamlet system to Half-Life

increased the enjoyment of players that were previously experienced with the game.

This supports the findings of a survey on game adaptivity, which found that cur-

rent work in game adaptivity produced good results in adapting towards an optimal

skill level, as well as positively impacting fun, frustration, predictability, anxiety and

boredom [22]. This helps emphasise that creating forms of adaptive gameplay, either

through a method such as dynamic difficulty adjustment similar to the Hamlet sys-

tem, or through a companion AI such as MimicA, can have a positive impact on the

games that make use of these methods.
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2.6 Real-Time Teammate AI

Real-time teammate AI in video games involves agents that can accomplish a variety

of team oriented behaviors, while also allowing for player participation. These include

taking into account the behavior, needs, goals, plans, or intentions of other agents on

the same team, acting as part of coordinated behaviors, performing actions relevant to

shared goals, and prioritize for player participation when possible [23]. It is important

that the agent not only works towards the goals of the team, but also allows for

player focused gameplay in order to provide more enjoyment for the player. While

it is possible to develop agents that complete team objectives, if they do so without

involving the player then it doesn’t allow for much of a team based game.

Player focused teammate AI can be difficult to accomplish because each player

is different [23]. This is the benefit of the real-time component. It allows the AI

to develop and adapt to each player’s preferences and playstyles. This can be done

through the variety of learning and observation methods that were discussed in pre-

vious sections. MimicA seeks to do this through a learning by observation method

discussed later in this paper.
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Chapter 3

RELATED WORK

In this chapter we present a number of pieces of related work to this project. Most

prominent among these is the discussion of jLOAF and Darmok 2. However, we also

provide a brief discussion of offline learning as well as presenting a few examples of

companion AI in previously published games.

3.1 Offline Training

In their paper on learning policies for first person shooter (FPS) games, Tastan and

Sukthankar present an approach to improve the performance of bots in FPS games

using inverse reinforcement learning [32]. They utilize a finite state machine that

causes their bot to switch between one of three different modes, at which point the

bot performs a policy lookup based on the current game state.

The policies examined are trained into the program by human players beforehand.

As players play the game, the system records sets of states, actions, and rewards,

compiling a collection of player demonstrations. These demonstrations are then used

in offline training to create a set of policies that the bot will access in game.

While Tastan and Sukthankar attempt to create a more intelligent bot through

evaluation of player demonstration, doing so through offline learning of a training set

gathered ahead of time inhibits the possible uses. While this approach may work for

a FPS game where the number of states a player and the world can have at any given

time may be smaller, it may not if applied to a modern role playing game (RPG)

or real-time strategy game (RTS). The number of possible player and game states

in those types of games is significantly larger, making it so offline training would
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need to be significantly more extensive. MimicA attempts to avoid this problem

through online learning, while the player is playing the game. This aims to avoid

missing possible usecases, as well as tailoring the experience more to a single person

as opposed to a general audience. And while the large number of possible and ever-

changing game states may also be a problem for online learning, previous work such

as the TEAM and TEAM2 mechanisms presented by Bakkes, Spronck, and Postma

has shown for online learning to still be effective [3].

3.2 jLOAF

A case-based reasoning framework, the Java learning by observation framework,

jLOAF, is presented by Floyd and Esfandiari [13]. Their framework aims to aid

in the development of agents in different environments, where the agents learn the

behaviors they will perform without explicitly being told about necessary tasks or

goals. They use case-based reasoning for action determination, and the framework

breaks actions and inputs into atomic and complex parts in order to better represent

possible inputs to the system and actions to perform.

As a part of the jLOAF framework, preprocessing steps are performed on the cases

retrieved thus far. This preprocessing comes in four steps, feature selection, redun-

dancy removal, case base analysis, and case base restructuring. In feature selection,

the framework attempts to identify important features in order to optimize analysis

and retrieval of cases. Redundancy removal, as it sounds, works to remove duplicate

or highly similar cases in order to free up computational or storage space.

Case base analysis doesn’t explicitly change the case base like the previous two

steps. Instead, it examines the cases retrieved so far and attempts to find areas

of the problem space under or over represented to modify what is recorded in future

observation sessions. Lastly, case base restructuring simply modifies the way in which
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the case base is structured in order to expedite case retrieval.

The premise of jLOAF is very similar to the purpose of MimicA. However, while

both attempt to create a framework for a general agent that can operate without

prior knowledge of the domain, the preprocessing steps that jLOAF has seem to

conflict with this. While Floyd and Esfandiari do not discuss how the preprocessing

steps are performed, the feature selection and case base analysis steps described seem

to require knowledge about the current domain in order to operate effectively or

accurately. This could potentially be gained from the user of the framework, however

that would require them to put more effort towards the use of the framework. MimicA

attempts to avoid this and to require as little from the game developer as possible, in

order to provide the developer with a useful framework that doesn’t require significant

overhead to learn and use.

A more detailed example of how an automated agent using jLOAF would interact

with the environment around it is provided in a second paper by Floyd and Esfandiari

[12]. They discuss creating an agent with three distinct modules, a perception module,

a reasoning module, and a motor control module. The reasoning module is the heart

of jLOAF. The module is designed to be used in a wide variety of domains without

being altered. The reasoning module will receive input from the perception module

and provide output to the motor control module. These other two modules will

be domain specific, modified to interface between the specific environment and the

generic perception module. This is similar to our approach with MimicA. While we

don’t have specific modules in the same way jLOAF does, MimicA acts in much the

same way as the reasoning portion of jLOAF, taking domain specific information from

the game developer, processing it in a generic way, and providing a domain action

back to the game developer.
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3.3 Darmok 2

Darmok 2 (D2) is a real-time case based planning system for RTS games developed

by Ontañón et al. [27]. D2 is a planning system designed to be domain independent,

capable of learning how to play RTS games through human demonstration. It com-

bines many of the key concepts already discussed in sections 2.2 and 2.3 of this thesis.

D2 uses demonstrations, plans, and cases in order to operate effectively.

Demonstrations in D2 are represented as time, state, action triples, similar to the

state-action pairs discussed in section 2.3.1. A key difference is the representation

of actions in D2. Since actions in RTS games are not always successful, D2 adds

more than just preconditions and postconditions to the actions, including success

conditions, failure conditions, and pre-failure conditions. Demonstrations can then be

combined into plans consisting of transitions and states. These plans are then stored

as cases. Cases also contain episodes, which is an object containing the outcome of a

plan when executed at a specific game state. In addition to human demonstrations,

D2 requires a set of goals, preset on a per domain basis. It looks for these goals in the

plans obtained from the human demonstrations. After D2 has a case base which it

will operate off of, when it retrieves a plan from the case base it attempts to modify

the plan to fit the specific situation before acting on that plan.

While MimicA does not make use of planning in its current iteration, a system

like Darmok 2 can provide good insight into possible future work. More discussion of

the possible extension of planning into the MimicA system is discussed in section 8.

3.4 Published Titles

Typically, the avatar presence of a player in a game is a feature of FPS or RPG genre.

Most RTS games, including the tower defense genre that Lord of Towers is based on,
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do not have a player avatar. We point to two well-known titles that exhibit some

genre-mixing to demonstrate existing use cases: Battlezone [1] and Brütal Legend

[11].

Based on the arcade game of the same name, Battlezone is an influential game

that experiments with mixing the FPS and RTS genres. The player has an avatar

that can enter vehicles and engage in FPS style battle, but the player also controls

a base and can give commands, build orders and upgrade orders to the units there.

The game received generally positive reviews [24].

Similarly, the 2008 game Brütal Legend, had elements of RPG and RTS mixed

together for some of the battle scenes. The player controls the main character, but

can also give commands to a number of companions who are partly AI-controlled.

Interestingly, it was this mix of genres that is generally considered to be the weakest

part of Brütal Legend, leading one reviewer to write:

But before you know it, you’re doing much more managerial work. The
on-foot dungeons and one-on-one boss battles disappear, and the rest of
the game’s big story beats are played out strategically... Your job, instead,
is to shuffle like crazy through a host of menus: Send your units to control
a tower. Play a guitar solo to buff up your warriors. Load in more units
from another menu. Level up your base so you can bring in better units.
All I could think was, “This is not what I bargained for” [18].

Kohler’s frustration is in part that the RPG+RTS gameplay is too difficult to

manage, precisely because the RTS control of the companion units is too much of

a distraction from the role-playing battle experience. With the MimicA framework,

we can create NPCs with mimicking AI behavior that could eliminate the need to

micromanage within the rest of the RTS subsystem.

In addition to these mixed genre games, there are many notable games with one

or more companions, for better or worse. These are most commonly seen in RPGs

like Elder Scrolls V: Skyrim [4], the Dragon Age series [6], the Mass Effect series [5],
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or the Dark Souls series [15]. While not always seen as a companion AI, automated

teammates in RTS games such as Black and White 2 [20], the Starcraft series [8] and

the Warcraft series [7] are also important to pay attention to, as they have much the

same purpose. That is, to provide support for the player in their accomplishment of

the game’s goals.

The companions in the two types of games commonly differ in the amount of

interaction the player has with them. In RPGs it is more common for the player to

be able to directly give orders to their companions, instructing them to do a variety

of things in the game. While the player is able to instruct their companions at times,

sometimes the method in which the companion carries out those instructions is not

what is desired by the player. MimicA aims to address that problem by developing a

companion that performs in the same way as the player, thereby doing what the player

desires. However, it is important to note that mimicking behavior may not always be

desired. It may be better for the companion to perform a different, complementary,

set of actions to what the player can perform. While we acknowledge this, we focus

specifically on those types of games where the companion will be performing the same

actions as the player and therefore the mimicking behavior would be useful.

RTS games, on the other hand, usually do not allow for players to give instructions

to the AI teammates, even if they are on the same team working towards the same

goal. On occasion, in games such as Starcraft, the player can request resources from

their AI teammates, however they aren’t guaranteed to receive them when needed,

or at all. MimicA could be used in these types of games to create a better teammate

AI that would work with the player to accomplish the goal, while at the same time

supporting the player if the situation is right.
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Chapter 4

DESIGN

MimicA and Lord of Towers are built using the Unity game engine [35] and C#.

Specifically we use Unity 2D to create Lord of Towers. We use Unity due to the pre-

vious familiarity we had with the engine, as well as the initial development overhead

handled by the engine. This allows us to spend more time focusing on the develop-

ment of the MimicA framework. MimicA is built as a series of C# scripts which are

then added to Unity objects. Lord of Towers then references these scripts in order to

integrate with MimicA as described in section 4.3.

Figure 4.1 shows the general flow of MimicA. A player action and current game

state are combined into a vector-action pair, which is then stored in the vector-action

pair dictionary. This dictionary is then used to create a model, as we discuss in

section 4.2. When a companion needs an action to perform, the current game state

is provided to the model and the current best action or set of actions is produced.

This flow is discussed in more detail in the following sections.

4.1 Action Observation

MimicA is built to interact with a game through observation of actions performed by

the player. These can be any action, or possible inaction, a player of the game could

make through the normal course of gameplay using intended interfaces. These actions

can be anything a developer wants to have in their game. Specific state information

about the action (such as where it was triggered) is maintained in order to provide

the AI with context. However, details about the exact object that the action was

performed on are not maintained for two reasons.
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Figure 4.1: General flow for MimicA

First, the exact object may change in the future of the game. For example, an

attack action could be performed; however storing the specific enemy attacked is

not useful because that exact enemy may not exist the next time an attack action

needs to be performed. Secondly, we want the AI to be as generic as possible. It

should determine through gameplay what needs to be done and where. So using the

attack example again, while the same enemy might still be in the game when the AI

determines what to do next, it is better for the AI to attack a different enemy, based

on the current state of the game.

Any time an action is performed by the player it is paired with the state of the

game at that moment in time, and recorded. The game state is represented by a

vector of features designed to capture any and all important aspects of the game at

any given point. The game designer, through an interface with the MimicA library,

provides this game state, or feature vector. It is left up to the designer to decide

what features are important in consideration of actions. The more features that are
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present in the game state the more data the companion will have in order to make

a decision of which action to perform, however this will also potentially increase how

long the system takes to retrieve and use the vector. Once the feature vector has been

created, and it has been paired with the action just performed, this vector-action pair

is stored in a dictionary for later retrieval and comparison.

4.2 Action Determination

When the AI companion needs to determine what action to perform next, it once

again creates a vector for the current game state. MimicA then offers three different

ways of determining what action to take based on the created vector.

4.2.1 K-Nearest Neighbor

The first, and possibly simplest, way MimicA provides for determining what action to

take is through a K-Nearest Neighbor algorithm. MimicA takes the current feature

vector and compares it to each of the other vectors stored in the vector-action pair

dictionary, generating a list of vectors and corresponding actions most similar to the

current vector.

In order to perform this comparison, MimicA first converts the value of every

feature in each vector into a number. For features which are already numbers, their

value is added to a list. For features that are booleans a one or zero is added to the

list depending on whether the boolean is true or false respectively. For enumerations,

MimicA takes the integer value of the enumeration and adds that to the list. This

means if certain values of an enumeration are not equally different from each other,

the game developer must assign non-default values to the enumeration when creating

it.
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For strings, MimicA either adds a zero or some maximum value to the list. The

system compares the value of the string for the current state vector and the compared

vector to determine which value to add. If the two strings are the same then a zero

is added to the number list for both vectors. If they are different, a zero is added to

the list for the current state vector, while a maximum value is added to the list for

the compared vector. This maximum value is equal to the largest number in both

lists after all other numbers have been set. MimicA performs a similar process for

any other non-primitive objects in the vector, using the equals method of the object

to determine equality, and adding a zero or a maximum value to the number lists

in the same manner as is done for strings. Although it could be useful to require

developers to provide a method that returns the value to be used instead of just a

zero or maximum value, we opt not to do this for the sake of simplicity and ease of

use by the developer.

After the system generates the number lists and finds a maximum value, each

of the numbers in both lists are divided by the maximum value. This normalizes

the data so that features that naturally are larger numbers because of what they

represent in the game do not impact the action determination more than features

that naturally are smaller numbers. After this, a third list of numbers is generated

where each value in the third list is the difference between the corresponding values

in the original two lists. This is the normalized difference for each feature of the

two state vectors. Lastly, a root mean squared operation is performed on the list

of normalized difference numbers in order to determine a final, single value for the

difference between the two state vectors.

This is done for every vector-action pair that is stored in the dictionary. When

it has examined all of the stored pairs, MimicA returns an ordered list of the five

best vector-action pairs. It is then left up to the game developer to determine how

to proceed and what to do with the information. This is done in order to generalize

23



the MimicA framework as much as possible, avoiding imposing restrictions on how

actions are implemented. Instead, it is left up to the game developer to determine

how to use the list of best actions as they see fit.

4.2.2 Decision Tree

Another method for action determination MimicA has is using Decision Tress. De-

cision Trees, as previously mentioned, require training before they can be used as a

classifier. While decision trees can be trained prior to runtime, this would require

knowledge of the features that make up the feature vectors, what possible values

those could have, and what possible actions could be performed. This knowledge

would be impossible to have however from the perspective of the MimicA framework,

as we wanted the framework to be as general as possible, and would have no way of

knowing in advance the necessary information for the different games the framework

could aid in.

In order to solve this problem, MimicA uses entropy and information gain in order

to dynamically build a tree based on the data in the vector-action pair dictionary at

the time of training. Entropy is a measure of the purity of a node in terms of number

of possible actions, and information gain is the entropy of a parent node minus the

average entropy of its children.

For a Decision Tree, each node is a specific feature to compare on. To dynamically

determine which feature to use at any given node, we pick the feature that gives the

most information gain. Entropy is calculated as the sum over every action of the

negative probability of an action multiplied by the log base two of the probability of

the action, see equation 4.1, where pi is the probability of action i.

entropy =
∑
−pi ∗ log2pi (4.1)
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After we calculate the entropy of the current node, we pick a feature and create

a set of child nodes based on the possible values of the feature.

For features with discrete values, such as booleans or enumerations, this is easy,

where each path to a child node is a specific, discrete value. For features with con-

tinuous values, such as numbers and objects this is more difficult. For features that

are primitive numbers, MimicA creates children based on the z-score of the value,

using the values in the training set to perform the calculation. For non-primitive

objects, MimicA requires that game developers implement an interface containing a

“decisionTreeBin” method that returns a discrete numerical value then used as the

possible children. This is an unfortunate limitation in that it adds additional work

for the game developer that might otherwise be avoided.

After the different bins have been created for a specific feature, we place vector-

action pairs into each bin corresponding to the value of the feature for each vector.

Once each pair has been placed in a bin, we are again able to calculate the entropy of

each of the child nodes, and using that information we then calculate the information

gain for our current feature. Doing this process for every feature in our feature vector,

we find the feature that gives us the most information gain and assign that feature

to the current node before recursively performing the same process for each of the

children. A stopping point is reached when either the entropy of a node is below a

specific threshold, or the current node is a specific number of levels down the tree.

At this point, a leaf node is generated by selecting the highest occurring action out

of those in the current node.

When the companion AI needs a new action to perform MimicA obtains the

current game state vector and then traverses the decision tree, comparing the value

of features in the current vector with those stored in the nodes of the tree to reach

a leaf node containing an action to perform. However, since the training process
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involves stepping over all unused features at every node in the tree, this can result

in potentially long runtimes in order to construct the tree. Due to this, the decision

tree must be manually ordered to train with what is currently in the vector-state

dictionary. This means it is the responsibility of the game developer to determine

when it is best or how often to train the tree, and to make sure the tree has been

trained before attempting to determine a best action. While we do not currently

have the data, it would be beneficial to provide the game developer with some form

of heuristic in order to aid in determining when training should be performed.

4.2.3 Naive Bayes

The final method MimicA provides for action determination is with the Naive Bayes

algorithm. Naive Bayes uses probabilities in order to determine which action is best

to perform. Using this algorithm, the probability of an action given some state vector

is equal to the probability of the action multiplied by the probability of a feature

given the specified action, for each feature in the state vector, as shown in equation

4.2.

p(action|vector) = p(action) ∗ p(feature1|action) ∗ ... ∗ p(featuren|action) (4.2)

This algorithm requires use of a training set, similar to the Decision Tree method.

While MimicA utilizes a “train” method that must again be called by the developer

to create the training set, the runtime of this algorithm is short. It will generate a

probability for every action in the training set and perform a calculation for every

feature, so while it will take longer as more actions and features are introduced it will

not take a long as the Decision Tree classifier. For the number of actions and features

that we had for Lord of Towers, the training of the model for Naive Bayes was fast
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enough that it would not have been noticeable if the system had been trained every

time a new action was needed.

MimicA calculates the probability of every action it knows through the current

training set given the current state vector. In order to perform this calculation Mim-

icA requires the probability of an action and the probability of each feature given the

same action. It finds the probability of the action A as the number of times action A

has occurred out of the number of total actions in the training set.

In order to find the probability of a feature F given the action A, MimicA gets

the value of feature F from the current state vector and then compares it to the value

of feature F for every vector in the training set whose corresponding action is A. The

probability of feature F given action A is then the number of times feature F is equal

for both vectors, divided by the number of occurrences of action A in the training set.

This process is done for every feature in the vector, then the values are multiplied

together and multiplied with the probability of the action. The resulting value is the

probability of the action given the current state vector.

Due to the possibly large number of features and the possibly large number of

vector-action pairs in the training set, it is possible the probabilities that would be

generated would be incredibly small, possibly hindering comparison. In order to help

alleviate this, we used the product rule of natural logarithms. With this we were able

to sum the natural log of each of the probabilities in place of multiplying them, and

determine the probability using that sum, as shown in equation 4.3.

ln(p(action|vector)) = ln(p(action)) + ln(p(feature1|action)) + ...

+ ln(p(featuren|action))

(4.3)

After each of the probabilities has been found, the Naive Bayes implementation

performs similarly to the Nearest Neighbor method and returns the five best actions
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Figure 4.2: A class diagram for MimicA and its basic interaction with a
game that uses it

to the game developer. Again, it is then up to the developer to determine how to

handle those actions.

4.3 API

This section will provide further details into the MimicA API presented to exter-

nal developers. The main parts that allow MimicA to work are the observation of

performed actions and the state of the game. A basic class diagram can be seen

in figure 4.2, while more details on the interaction of the classes in MimicA and in

implementing games can be found in the rest of this section.

In order to allow MimicA to observe the current state of the game, developers are

required to extend the abstract GameStateVector class with their own class containing
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Table 4.1: Sample game state data and values

Parameter Name Possible Value

lastAction Build

timeSinceLastAction 10

currentResources 250

closestEnemyDistanceToBase Distance.Faraway

any relevant information about the game. Each piece of game data should be stored

in private instance variables in the developer created class. MimicA is then able

to use C# reflection to obtain and use the data stored in these private instance

variables. Only important game data should be stored in private instance variables.

Any information needed by the developer to gather the data should be left in local

variables. This is due to the use of reflection on the part of MimicA.

By using reflection, MimicA is able to gather all of the data stored in the created

vector class, without having to rely on getting a list of data from the developer. This

is also beneficial because some games may have hundreds or more pieces of game data,

making it very possible to forget to include one in a returned list. Using reflection

makes sure none of the data is missed. Table 4.1 shows an example of some of the data

gathered for our Lord of Towers game for use in the game state vector and sample

values. It is important to note the values can be anything the developer wants. They

simply need to be able to be compared as discussed in the action determination section

of this paper.

In order to complete the action side of the vector-action pair, MimicA requires

game developers to tie in with the GameData class. This class provides an addE-

vent method developers are required to call any time an action is performed. This

method, shown in figure 4.3, takes in a copy of the action performed and the current

GameStateVector that is generated at the time of the actions, adding the pair to the
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Figure 4.3: The addEvent method MimicA uses

Figure 4.4: The addEvent method Lord of Towers uses

vector-action pair dictionary. An example of how this is handled in Lord of Towers

is shown in figure 4.4. The addEvent method in the Lord of Towers gathers a variety

of information, creates a new GameStateVector, and passes that vector as well as the

Event performed to MimicA.

When the game reaches a point where a companion character has been introduced,

the developer can request, through the GameData class, an action for the companion

to perform. It is important to note that the developer should not attempt to request

an action to perform until MimicA has been provided with some previous actions

to learn from, in order to make sure that the companion has some information to

base its decisions on. The method used depends on the classification method being

used. If using the Nearest Neighbor method, the developer makes a call to the

getNearestNeighborEvents method, passing the current game state. MimicA then

uses the current game state and returns an EventsToDo object containing the five

best actions. The details of this action are discussed in the K-Nearest Neighbor

section above.

If the Decision Tree or Naive Bayes methods are used instead, the developer must

first train the classifier by making calls to the trainDecisionTree or trainNaiveBayes
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methods accordingly. As mentioned above this isn’t something done every time an

action is needed, only at certain intervals. The decision regarding how often to train

is left up to the developer. Once the classifier has been trained, the developer can

make a call to the decisionTreeClassification method or the naiveBayesClassification

method, again passing the current game state vector, in order to retrieve the best

actions to perform. It should be noted that because of how decision tree classification

works, only one action is returned from the decisionTreeClassification method as

opposed to the five returned from the other methods.
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Chapter 5

CASE STUDY: LORD OF TOWERS

As part of this thesis we developed a tower defense game, Lord of Towers, to go along

with MimicA and aid in validating the features of the system. As shown in figure

5.1, the player has a physical presence in the game. Although this is abnormal for

most tower defense games, it is not unique, and can be seen in games like Dungeon

Defenders [34] and Defender’s Quest [19]. Another notable difference about the game

is the lack of a pre-defined path for the enemies to follow. Instead, the enemies come

in from the right side of the screen and proceed to attack the player, moving around

anything the player has built. Again, while abnormal, there are other tower defense

games that exhibit this same behavior, such as Desktop Tower Defense [29]. A final,

notable, difference is after six to ten minutes into the game, the player controlled

character will die. While this removes any additional training or information that the

companion characters would receive, this is done in order to receive better feedback

on how the companions behave without the player around.

The player can select to build and upgrade towers and to build walls and trenches

in support of the defense of their base. They can also repair walls, trenches, and

towers if they become damaged at any point during the game. Additionally, the

player character will automatically attack enemies that come into range as long as

no other action is being performed, and they can go heal if they take damage. The

actions that are conveyed from the game to MimicA are the build wall, build trench,

build tower, upgrade tower damage, upgrade tower speed, repair, go heal, and move

actions. The player starts the game with limited resources and more are gained

upon defeating enemies. Once the player feels they are sufficiently prepared to start

defending they press the start waves button to begin the enemy attack, similar to
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Figure 5.1: The start of gameplay for Lord of Towers

what is shown in figure 5.2.

After the game proceeds for a time, the first companion is introduced, as shown in

figure 5.3, and will proceed to assist the player in any tasks the player has performed

previously. In this game, building a structure inherently has two actions for the

player, the initial build, and then a repair action until the tower is at full health.

These two actions are performed back-to-back by the player controlled character as a

result of a build request. This sequence will allow the companion to repair buildings

even if the player hasn’t explicitly used the repair command before. As can be seen

in figure 5.3, at the time the first companion is introduced, the countdown before the

player dies starts, and a timer appears.

Additionally, in figure 5.3 a prompt is shown of the companion asking the player

before performing an action. This is to avoid the companion spending all of the

player’s resources if the player intends to use the resources for something. This does,
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Figure 5.2: The first wave of enemies

Figure 5.3: The first companion is introduced
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however, highlight a problem that exists in MimicA. While MimicA is designed to

take action based on the actions the player has previously performed, it does not have

a way to take into account a player’s plan, possibly causing conflict with the player.

In the case of Lord of Towers this prompt also serves for additional training for the

companion. If the player selects that the companion can perform the action they are

requesting, a new vector-action pair is generated based on the current game state

and the action the companion is performing, and that pair is added to the dictionary,

effectively reinforcing that action for the companion.

After three more minutes, the player dies and a second companion will join the

game, as shown in figure 5.4. This companion will operate based on the same stored

data as the first companion, however the two of them are able to perform indepen-

dently, acting based on whatever action makes the most sense for them when they

need another action to perform. While this may be the same action, such as repairing

a tower at the same time, they will also perform independent actions. After three

more minutes, a third and final companion will join the game, operating the same as

the previous two.
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Figure 5.4: The player dies and a second companion takes its place
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Chapter 6

USER STUDY AND RESULTS

In this chapter we present the process that we undertake in order to validate the

performance of the MimicA system. Additionally, we present the results of the study

we performed as well as a discussion of the results.

6.1 User Study

In order to test the effectiveness of the MimicA framework we asked 30 people to

play Lord of Towers and answer a survey about their experience. The participants

in the study are all in college or graduated from college within the last year. They

were found through the graduate program at California Polytechnic State University,

through the Study Session program at the same school, or are friends of one of the

researchers.

To begin, participants receive a set of instructions on where to obtain and play

the game, some details about the game itself, and some general information about the

study. Additionally, participants receive instructions on which type of the game to

play. While the participants are not told what the types meant, each type corresponds

to one of the three possible classification methods MimicA makes use of, as discussed

in section 4.2. We evenly test each of the three classification methods in order to

determine if one of the methods is perceived to produce better companion behavior.

However, as the three classification methods perform the same function, we do not

expect there to be a significant difference in results among the three methods. The

participants are told nothing about the companion other than it will help them in

the game. This is done in order to avoid biasing the participants about what the
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companion does and receive more accurate feedback about the perceptions of the

companion’s performance. The full instruction message sent to participants can be

seen in appendix A.

After participants finish playing the game three times, we ask them to take an

online survey about their experience. The survey includes questions about both

the game and the AI companion, and includes both free form responses and multiple

choice questions. The full survey can be seen in appendix B, and some of the questions

and responses will be discussed in more detail in the following section.

As a part of the analysis of the participants’ responses, we code one of the free

form answers we receive. The question is “How do you think the companions were

programmed?” We ask three coders, individuals familiar with the project, to take the

responses given by the participants and code them as one of four possible categories.

These categories, as well as a sample response that fell into each category can be seen

in table 6.1. If two of the three coders agree on a code for a particular response, we

count that as a true response in that category. Out of the 30 responses we received,

a category was unanimously agreed upon for 18 of these responses, while a category

for each of the other 12 responses was agreed upon by two of the three coders. The

three coders never produced three separate codes for the same response.

6.2 Results

One of the main things we hoped to see in our feedback was if people were able to

recognize that the companion was performing actions based on what the player had

done before. As such, we took great care in making sure little information about the

game and companion was given ahead of time, and that the questions of the survey

are organized in such a manner as to not reveal the companion’s behavior too early.

Towards that end, our first question asks if the participant has played the game
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Table 6.1: Coded categories and a corresponding sample response

Code Code Category Sample Response

1 They built things regardless of

what else was going on

“They appear to move and build

at random”

2 They do what is needed based on

what else is going on, but don’t

rely on player behavior

“Finite state machines”

3 They mimic the player or were ef-

fected by player behavior in some

way

“To replicate what the user is/has

been doing”

4 Other “No idea”

before. As part of an early prototype we had members of the Game Development

Club and the Interactive Entertainment Engineering class at Cal Poly playtest the

game. This question was present to make sure we could exclude any responses from

prior participants. However, it is possible the wording of the question caused possible

issues with this response. One of the participants asked if the question was intended

to ask if they had played the game ever, or rather had they played the game before

taking the survey. In the first case their answer would be no, but in the second

case it would be yes. We later changed the wording of the question to specify that

we were asking if they had played the game before this study. Prior to this change

being made, five of the 30 participants indicated that they had played the game

before. However, we believe that no one who had been given the game up to the

point where we changed the wording of the question had in fact played the game as

part of our earlier prototype. After we changed the wording of the question none of

the participants indicate they had played the game before.

The next few questions of the survey are intended to elicit feedback about how
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Figure 6.1: Responses for our 30 participants with regards to how much
they enjoyed the game

players felt about the game itself, as well as how familiar they were with the tower

defense genre. We ask users how much they agree with three statements: “I enjoyed

the game”, “I enjoyed the game more than a traditional tower defense game”, and

“I am familiar with other tower defense games.” The possible answers range on a

five-point Likert scale from “strongly disagree” to “strongly agree.” The results are

shown in figures 6.1 and 6.2. As figure 6.1 shows, a majority of the participants enjoy

the game. However, on average, participants are neutral about enjoying the game

more than a traditional tower defense game.

Additionally, while a majority of participants are familiar with the tower defense

genre, some felt they were not, thereby possibly impacting their answers. We also

examined this question by sorting the answers by classification method in order to

better understand if a particular method might be biased more in regards to famil-

iarity with the genre. The results can be seen in figure 6.3. Of the three methods,
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Figure 6.2: Responses for our 30 participants with regards to their famil-
iarity with tower defense games

Decision Tree only had one participant who was not familiar with the genre, while

both K-Nearest Neighbor and Naive Bayes had three.

Next, the survey has questions that begin to focus on the companions in the game.

First, we ask participants, “How do you think the companions are programmed?” As

mentioned in the previous section, this is a freeform question, the answers of which

are coded into categories found in table 6.1. The results of this coding can be seen in

figure 6.4. This was interesting, because even though a good number of participants

recognized that the companion was doing things based on the player’s behavior, or at

least that it was responding to some part of the game state, an equal number of the

responses could not be categorized, usually with answers along the lines of “I don’t

know.” This could be in part due to the participants that were not necessarily game

developers or didn’t have a programming background.

We further break this question down based on classification method, as shown in
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Figure 6.3: Responses for our 30 participants, 10 per classification method,
with regards to their familiarity with tower defense games separated by
classification method

figure 6.5. The participants who recognized the companion was performing actions

based on the player’s behavior the most were using the Naive Bayes classification

method, however this method also had the most people who couldn’t be categorized.

K-Nearest Neighbor had the most participants who recognized either the companion

was performing actions based on the player’s action or based on some other part of

the game state, as well as the least number of participants whose responses could not

be classified.

The next question on the survey begins to address the actual behavior of the

companion, asking participants to indicate if they noticed the companion doing any of

a number of things. The possible options, as well as the responses, can be see in figure

6.6. When directly asked, 22 of the 30 participants indicate noticing the companion

performing similar actions to themselves. Additionally, 17 of the participants felt

the companions were performing actions useful to them. This number is lower than
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Figure 6.4: Coded responses for freeform question “How do you think the
companions are programmed?” (1) They built things regardless of what
else was going on. (2) They do what is needed based on what else is going
on, but do not rely on player behavior. (3) They mimic the player or were
effected by player behavior in some way. (4) Other.
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Figure 6.5: Coded responses for freeform question “How do you think the
companions are programmed?” separated by classification method

would be desired. Since MimicA aims to follow player behavior, especially in a tower

defense game the goal would be for the companion to always perform an action seen

as useful to the player because it is an action the player would also do.

The results for this question when separated by classification method can be seen

in figure 6.7. All 10 of the participants using the Decision Tree classification method

indicated that they noticed the companion performing similar actions to themselves.

Naive Bayes had the worst response for this category with only half of the participants

noticing the companion performing similar actions to themselves. Both the Decision

Tree method and the Naive Bayes method had six participants, and the K-Nearest

Neighbor method had five participants, who felt that the companions were performing

actions useful to them.

We next ask the participants if they ever wished the companions would do some-

thing they were not. If they indicated yes we asked what they wished the companions
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Figure 6.6: Participant responses when directly asked about various com-
panion behavior

Figure 6.7: Participant responses when directly asked about various com-
panion behavior, separated by classification method
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would have done. 23 of the participants indicated yes, that they wish the companions

would do something that they were not. While many of the responses to the follow

up question don’t necessarily indicate whether the problem was with the game or

with the framework, a majority of the problems could likely be addressed on the side

of the game. Most of the responses were along the lines of “don’t disrupt the path

that I created”, “don’t fill in the gaps that I leave to make a maze”, or “companions

needed to repair buildings that they just built.”

The first two types of responses don’t necessarily indicate there is anything wrong

in terms of what the companion is selecting to do, but rather where it is selecting

to do it. This could be solved with better interpretation on the part of the game

that, once an action has been determined by the MimicA framework, tries to better

understand the strategy the player is using and to follow the same strategy. This

could, however, also be addressed inside MimicA with the introduction of more types

of planning, which is discussed more in section 8.

The third type of response, indicating the companion is not following up on an

action it just performed, is a problem discussed in section 2.3.1. It is a known prob-

lem in case based learning that, depending on the method used, actions performed by

the agent may not be in the same temporal order as those performed by the expert.

However, this could also be solved in the game. As it stands in Lord of Towers, build

and repair are two separate actions, leading to the observed problem that companions

don’t always repair a tower to full health right after they build it. While we don’t

want to remove the repair action altogether, it would make sense from a game devel-

opment standpoint to immediately follow the build action by a repair action for the

companion, just as it works for the player. This would not prevent other companions

or the player from helping to “repair” a newly constructed building to full health, but

it would result in more fully constructed buildings. So although this is a known issue

for case based learning agents, this could likely be solved on the game side, as opposed
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to relying on a solution on the framework side. However, this would put more of a

burden on the game developer to handle how actions like these would interact with

each other in a different game. Alternatively, if a solution could be found on the part

of the framework, it could possibly open up a wider range of dynamic behaviors where

the companion decides it doesn’t need to finish building something because there is a

more urgent need elsewhere, and instead will come back to finish the building after.

Next, participants are again asked to rate their agreement with a number of state-

ments, this time focusing on the companion. The statements were “The companion/s

was/were useful to me”, “The companion/s would protect me”, “The companion/s

was/were performing actions that I would do”, and “The companion/s was/were

learning from the actions that I was performing”, again answering on a Likert scale.

While two of these statements aim to gather much the same data as was discussed

above and presented in figure 6.6, the final statement is the most important of the

group. We are now directly asking participants if they noticed any form of learning

behavior based on the player. The results of this question can be seen in figure 6.8,

and it is important to note that only 29 of our 30 participants answered this question.

When directly asked, just over half of the participants either agreed or strongly agreed

that the companions were learning from the actions the player was performing. Only

six of the participants felt the companions were not learning from the actions the

player was performing.

We focus more on whether participants felt the companions were learning from

their actions by separating the results by classification method, as can be seen in figure

6.9. The Decision Tree method and the Naive Bayes method had the best response,

each having six participants per method who either agreed or strongly agreed the

companions were learning from the actions the player was performing. K-Nearest

Neighbor only had four participants who either agreed or strongly agreed, and was

on average neutral.
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Figure 6.8: Participant responses regarding companion behavior

Figure 6.9: Participant responses for agreement on the companion learning
from actions they were performing
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At this point in the survey, we tell the participants that the companions are

programmed to learn from the player’s behavior, asking the participants to take the

perspective of a game developer to answer the question “if this AI was available as

a library/plugin that you could use to aid in development of your game, would you

use it,” and why or why not? This question garnered mixed results, most likely due

to the broad range of participants that were in the study. 21 of the participants said

they would use such a plugin, eight said they would not, and one didn’t provide an

answer. It may be important to note, however, that two of the participants who said

they would not use it followed up by saying it was because they were not a game

developer.

Of the 21 that responded they would use a plugin like this, many of the follow up

responses indicated they would use it because it would take away some of the load

for the game developer or it would help expand upon the possible strategies available

in the game, both features that MimicA aims to provide. One of the main points of

opposition to a companion like this was that a companion which simply mimicked the

player isn’t always desired. It might be better for the companion to provide a support

role, performing actions that aid the player but don’t directly copy them. This is a

valid concern for a framework like this, and why it might be less useful depending on

the game environment.
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Chapter 7

CONCLUSION

In conclusion, we present in this chapter a number of challenges that were faced in

the development of this project, as well as a summary of the contribution which this

project makes.

7.1 Challenges

In this section, we discuss several challenges encountered while developing the Mim-

icA framework. These are: the general issues concerning frame of locality and relative

space designation, idle waiting behavior, external requirements expected of a com-

panion AI which are not necessarily learned behavior (example, avatar protection),

and finally build/repair overlap.

7.1.1 Frame of Locality and Relative Space

A major problem encountered in the development of MimicA is determining how to

tell the system where an action took place. While Lord of Towers uses a built in grid

to determine where characters can move and where buildings can be placed, requiring

MimicA to work with a grid system would be too restrictive. This would especially be

seen when a companion utilizing MimicA determines what action needs to be taken

next. If MimicA operates by using a specific grid, then the companion would attempt

to perform the action in the exact same space every time, which would likely not be

helpful for the player.

As an alternative approach, we opted to use a relative space system in the game.

Each grid square is located in one of six sectors and sector information is stored as part
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of the vector-action pair. This allows the companion to know the sector an action is

performed in, and then use some knowledge programmed into the game to determine

where in that specific sector an action should be performed. This allows for much

more general behavior than would be seen otherwise, however, the behavior is handled

by the game, not by MimicA. As such, it would be equally possible for a developer

to not even include a position in the vector-action pair, and simply determine where

to perform an action when needed.

7.1.2 Idle Waiting

Another problem that quickly becomes apparent while developing MimicA is the

amount of time companions spent waiting. “Wait” is included as an action in Lord of

Towers because the player will not always be doing something. A player could spend

time waiting to determine what to do next and we want this behavior to be reflected

by the companion.

Unfortunately, the companion performed this wait action much more frequently

than we expected. This was alleviated somewhat by increasing the duration of player

idle time necessary before generating a wait action, however it still did not completely

solve the problem. Another idea we considered was to make it so there wasn’t a wait

action at all, and instead make it so the companion only waits if all the actions MimicA

returned didn’t make sense to do at the time (e.g. not enough resources to build, no

damaged buildings to repair, etc.) Ultimately, as MimicA attempts to impose as few

restrictions as possible on the actions a game can have, the framework provides no

limitations to prevent large numbers of wait actions from being performed. This is

instead left up to the game developer to handle, if wait actions are even relevant to

the game.
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7.1.3 External Requirements

While MimicA is designed to provide a game developer with actions for a companion

to perform based on the current game state, there may be times when the developer

wants the companion to do one thing no matter what. An example of this could be

having the companion move to protect the player’s character any time they are being

attacked. Determining how to handle this and attempt to integrate the behavior into

MimicA is a problem during development of the framework.

Certain behaviors like this could be tied into the game state vector. For example,

in Lord of Towers, if the player were to move to assist a companion being attacked,

that action would be recorded and paired with the current game state, and the com-

panion would learn from that and possibly perform similar behavior in the future.

However, this is reliant on the player performing the action first. Ultimately we

decided this was the behavior we desired from MimicA. The intent behind the frame-

work is to provide actions to perform based on learned behavior from the player, so

if the player hasn’t performed an action, then the framework won’t say that an AI

should either. If a game developer wants a companion in their game to act with some

default behavior in certain situations, it is up to them to provide that overriding

functionality before performing the action suggested by MimicA.

7.1.4 Build/Repair Overlap

Lastly, for Lord of Towers we want to separate the creation of a building into two

actions, a build and a repair. This means a building is placed at minimal health,

and then is “repaired” up to the maximum health for that building. We want this

functionality in order to allow for situations where a player or companion can start

construction of a building, and other friendly characters could come over and assist

with finishing off that building.
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While the player is designed to immediately transition from initial construction

to repair, the companion is not. Instead, if the companion receives a build order from

MimicA it will complete that build order and then request the next action to perform

from the framework. We noticed right away that MimicA was not always instructing

the companion to repair the building it just constructed, opting instead for some

other action deemed more relevant. In an attempt to remedy this, we added more

features to our game-state that focus around what actions are more often performed

after others. While this did help, it didn’t completely solve the problem. However,

as discussed in the results section, we feel this problem is not a significant hindrance

to MimicA. While it is a problem that exists in many case based learning systems, it

can be remedied, if not solved, in the game itself, and therefore we do not attempt

to change the observation system in order to compensate.

7.2 Summary of Contribution

In this paper, we present the MimicA framework, a system for governing the behavior

of companion AI. We posit that certain games can benefit greatly from an open

framework designed to fully automate the companion AI for those games where it

makes sense to have companions learn behavior through actions of the player. The

challenge is for the task assignment system to intelligently choose the right companion

and assign it the right task at the right time. While this study presents three different

classification methods, this is done for the sake of testing, in order to see if one method

is perceived to be better than the others. Ultimately the framework would likely be

composed of only a single classification method.

Our user study on Lord of Towers suggests that such a framework can be easily

used to showcase games with a new form of companion AI for video games. This

companion will perform alongside the player and operate by learning from the player
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without explicit teaching by the player. Out of 30 participants, a majority agrees

that the companions are doing useful things. As expected, there is not a significant

difference between the number of participants that find the companion useful when

separated by classification method. Further, 16 of the 30 agree that the companion

learns from the player while six disagreed with this (the remaining participants were

neutral on the matter). When separated by classification method, more participants

who use the Decision Tree or Naive Bayes methods indicate that the companion

learns from the player. The results act as proof of concept for MimicA. Of the three

classification methods, participants who use the Decision Tree method generally have

the most positive response. Users generally understand what companions are doing

and find them helpful, supporting our belief that this is a useful framework to continue

to explore.
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Chapter 8

FUTURE WORK

For future work, it would be beneficial to attempt to integrate MimicA with an

already functioning game. While Lord of Towers was good as a case study for the

framework, too many of the problems that arose in development or were brought up

in our study could have been the result of the game, not the framework. As such,

using the framework with an existing game would be beneficial to clear up some of

the possible issues. Additionally, integrating with a previous game would potentially

allow for a more objective way of determining companion performance. It would be

good to objectively measure companion performance by initially training them and

then letting the game run to see how long the companions can last on their own. Doing

so in a already balanced game would provide much better feedback than attempting

to do so in Lord of Towers.

As mentioned in section 3.3, extending MimicA to take advantage of planning

would be particularly useful. In its current state, MimicA has no form of planning

incorporated with the methods in which it determines what action should be per-

formed next. Adding a planning system to the framework would allow MimicA to

perform more advanced action determination, thereby enhancing the performance of

the framework.

Additionally, it would be beneficial to detach MimicA from Unity. While devel-

oping Lord of Towers in Unity made the most sense based on time constraints and

prior knowledge, it restricts the possible audience for the framework. Being able to

separate MimicA away from Unity into just a C# library, or even be able to imple-

ment it in other languages, would be highly beneficial towards expanding possible use

cases.
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APPENDICES

Appendix A

USER STUDY INSTRUCTIONS

Figure A.1 shows the message that was sent to participants of the user study. The

game type was selected before the message was sent.
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Figure A.1: The message sent to participants of the user study for instruc-
tions
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Appendix B

FEEDBACK SURVEY

The following figures show the feedback survey that was given to participants of the

user study.
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Figure B.1: Part one of the first question of the feedback survey, providing
information to the participants

Figure B.2: Part two of the first question of the feedback survey, providing
information to the participants
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Figure B.3: Page two of the feedback survey

Figure B.4: Page three of the feedback survey
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Figure B.5: Page four of the feedback survey

Figure B.6: Page five of the feedback survey
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Figure B.7: Page six of the feedback survey

Figure B.8: Part one of page seven of the feedback survey

Figure B.9: Part two of page seven of the feedback survey
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Figure B.10: Page eight of the feedback survey
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