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ABSTRACT 

 

An Investigation into Partitioning Algorithms for Automatic Heterogeneous Compilers 

Antonio Michael Leija 

Automatic Heterogeneous Compilers allows blended hardware-software solutions to be 

explored without the cost of a full-fledged design team, but limited research exists on 

current partitioning algorithms responsible for separating hardware and software.  The 

purpose of this thesis is to implement various partitioning algorithms onto the same 

automatic heterogeneous compiler platform to create an apples to apples comparison for 

AHC partitioning algorithms.  Both estimated outcomes and actual outcomes for the 

solutions generated are studied and scored. The platform used to implement the algorithms 

is Cal Poly’s own Twill compiler, created by Doug Gallatin last year.  Twill’s original 

partitioning algorithm is chosen along with two other partitioning algorithms: Tabu Search 

+ Simulated Annealing (TSSA) and Genetic Search (GS).  These algorithms are 

implemented inside Twill and test bench input code from the CHStone HLS Benchmark 

tests is used as stimulus.  Along with the algorithms cost models, one key attribute of 

interest is queue counts generated, as the more cuts between hardware and software 

requires queues to pass the data between partition crossings.  These high communication 

costs can end up damaging the heterogeneous solution’s performance. The Genetic, TSSA, 

and Twill’s original partitioning algorithm are all scored against each other’s cost models 

as well, combining the fitness and performance cost models with queue counts to evaluate 

each partitioning algorithm. The solutions generated by TSSA are rated as better by both 

the cost model for the TSSA algorithm and the cost model for the Genetic algorithm while 

producing low queue counts.
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1 Introduction 

This thesis will investigate partitioning algorithms for automatic heterogeneous 

compilers in regards to their design and performance, establishing an apples to apples 

comparison of these partitioning algorithms. Firstly, the background and previous work in 

the field of AHCs will be examined, and algorithms will be selected for implementation 

and comparison in a real AHC: Cal Poly’s own “Twill” [1] compiler.  After that the results 

of the algorithms will be examined. 

Heterogeneous approaches to the design of computer systems has become a popular 

approach for high throughput data processing. Accelerating programs to potentially 40x of 

their normal speed is possible by taking advantage of heterogeneous parallelization. [2] 

Due to the silicon wall [3] with regards to transistor sizing [4], offloading [5] calculations 

onto heterogeneous hardware has also become an effective solution.  Heterogeneous 

approaches are usually composed of a traditional processor combined with dedicated 

hardware logic.  This can come in the form of a Field Programmable Gate Array (FPGA) 

[6] combined with a processor.  This enables a common software interface [7], such as a 

command line interface (CLI) or graphical user interface (GUI), to combine [8] with 

accelerating hardware such as an FPGA.  Interfaces exist between the two domains, usually 

in the form of queues or shared memory.  In a heterogeneous design, software brings with 

it the expense of software engineers and test engineers.  Adding hardware means that 

verification engineers become a requirement along with RTL engineers.  This complexity 

results in higher design costs, specialized engineers, and longer project times. 
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Figure 1 Illustration of an Automatic Heterogeneous Compiler 

Automatic heterogeneous compilers are fairly simple in their operation, as shown 

in Figure 1.  Ideally they simply take some software code, and output a blended solution 

of software and hardware, such as C and Verilog. AHCs empower design teams to easily 

create a heterogeneous design without the trappings of a dedicated digital design team.  

Already preliminary technologies have attempted to explore the area of heterogeneous 

automated design such as CHiMPS [9], GreenDroid [10], and Cal Poly’s own Twill [1].   

 

Figure 2 Components of an Automatic Heterogeneous Compiler 
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These tools [8] use parsers [11] (shown in Figure 2) to read in a given software 

language [12], followed by partitioning algorithms to choose which pieces of the original 

software go into a hardware partition.  After this a compiler (or compilers) automatically 

create the necessary interfaces between hardware/software crossover points and convert 

the partitions into software code and a hardware description language (HDL). 

In Figure 2 it can be seen that the core of the AHC is made up of three components: 

cost models, algorithms, and constraints. Partitioning algorithms for heterogeneous 

computing have already been devised in order to find automatic solutions that prioritize the 

speed of the finished solution, time taken to find the solution, area usage, power usage, or 

other metrics.  The algorithm designs include genetic selection, knapsack problems, and 

simulated annealing.  However these algorithms have not been formally tested against one 

another.   

Partitioning algorithms also require a representation of the input software, and a 

cost model.  The representation [13] can be done in many ways but usually it is assumed 

to be a graph of collected instructions (called basic blocks) separated by branches. Cost 

models are used to estimate the effects of putting a piece of the original software into 

hardware or software.  These effects [14] can come in the form of latency, area usage, or 

power usage.  Cost models also predict the outcome of a whole solution, and attempt to 

constrain issues such as having a limited FPGA area, or a maximum time 

constraint.  Without these kinds of estimations, constraints, and predictions, the 

partitioning algorithms would lack necessary data to create an optimal solution for an 

heterogeneous system. 
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This paper will implement and investigate three partitioning algorithms for AHCs: 

Twill's original accumulator solution, Simulated Annealing + Tabu Search, and Genetic 

Search.  While investigating these algorithms, novel results about the suitability and 

performance of these three algorithms will be drawn from the data gathered inside Twill. 

This paper will be organized as such: Section 2 will give a background in the work 

done in the area of automated heterogeneous design.  Section 3 will present an overview 

of the terminology that will be used.  Section 4 will go into the design of the algorithms 

chosen.  Section 5 will examine the way metrics will be collected and analyzed.  Section 6 

will cover the actual implementation of the algorithm and data collection. Section 7 will 

summarize the collected data and present future work. 
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2 Previous Work 

This chapter will examine space of automatic heterogeneous compilers, partitioning 

algorithms, and cost models.   Current automatic heterogeneous compilers such as 

CHiMPS and Cal Poly’s very own Twill compiler are covered along with a handful of 

heterogeneous partitioning algorithms and current work in cost models. Chapter 3 will 

cover definitions that will be used when implementing the algorithms and in Chapter 4 the 

chosen algorithms from this chapter will be covered in further detail. 

 Heterogeneous Frameworks 

Designing a blended hardware software solution from the ground up can be difficult 

and expensive, but many frameworks [15] have been proposed to alleviate some of the 

necessary design requirements for a heterogeneous system such as a hardware-software 

communication designs, block standards for the off-CPU hardware, and methodologies 

[16].  This sub section will review the current work in the area of heterogeneous compilers.  

2.1.1 GreenDroid 

Developed by Goulding et. al. GreenDroid is a multi-core prototype with a focus 

on smaller cores called conservation cores (c cores). [10]  A host Central Processor Unit 

(CPU) uses these c-cores to carry out the frequent repetitive tasks found in programs.  Each 

collection of c-cores can be considered as a tile in the GreenDroid design, and each tile has 

a defined 32 Kbyte L1 cache which is coupled to the host CPU.   This 32 Kbyte cache is 

considered to be a shared cache, meaning that multiple devices can use the cache 

simultaneously.  This kind of hard definition helps the software and hardware interface on 

a common ground.   
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Figure 3 Hardware and Software Interfaces (Shared Memory) 

This common ground being a simple format: shared addressable memory, which is 

shown in Figure 3. This constraint means that designers are alleviated of having to design 

a hardware/software interface, and that when the interface is worked on it is well 

defined.  On top of having this constrained communication framework in GreenDroid, the 

c-cores themselves are tightly defined with a seven stage pipeline, a single floating point 

unit, 16 Kbytes of instruction cache, translation lookaside buffer, and the 32 Kbyte cache 

mentioned before. This means that the hardware portion is already defined as well, unlike 

a custom FPGA design that may have wildly unnatural interfaces and designs. Software 

designers need only to create a blend of host CPU software and c-core software to take 

advantage of the GreenDroid heterogeneous framework. 

This kind of restrictive framework means that implementation is standard for the c-

cores, and that software designers can easily start using the technology since there will be 

no RTL necessary.  Also since the cores are pre-defined, interaction between the c-cores 

and the host CPU will already have management hardware or software in between to 

manage data sharing between the various threads of the whole system.  GreenDroid is 

limited by the c-cores however, and this system can be considered to be "limited 

heterogeneous" because of the well-defined c-cores.  
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2.1.2 CHiMPS 

Standing for Compiling High-level languages into Massively Pipelined Systems, 

CHiMPS is a high level synthesis tool that is intended to be used on a CPU and FPGA. It 

takes C code and turn it into CHiMPS Target Language (CTL) instruction blocks.  These 

blocks can then be processed into HDL or reversed back into C, allowing a heterogeneous 

solution to be created.  The concept of taking a common programming language and 

generating a blended solution that can run on a normal CPU core and custom logic is more 

flexible than GreenDroid in its design, but loses the elegance of a shared cache and 

constrained design methodologies like the c-core.  This flexibility of custom logic 

eliminates unneeded parts of the c-cores or may allow operations that the c-cores could still 

not do effectively. CHiMPS was able to be tuned using #pragma statements that could 

throttle cache updates, implementation styles, loop unrolling, and other features.  Much 

like compiler passes, these controls allowed some customization in the output generated 

by CHiMPS.  Speedups compared to original C code were present but quite varied from 

2.1x to 36.9x with a mean of 6.7x.  At most 428.5% of the available hardware space was 

taken up, and at least 4.4% of the area was taken up.   Keeping automatic designs within 

constraints of an FPGA in areas such as LUT counts, which is a physical limitation to the 

chip, is difficult and the use of an algorithm or threshold to eliminate impossible solutions 

is required, and CHiMPS had issues managing the available hardware properly. 

 Partitioning Techniques 

In the field of hardware software partitioning, a large amount of prior work has 

been done in devising new heuristics.  These algorithms attempt to tackle the NP-hard 

problem of hardware software partitioning with a variety of “natural phenomena” such as 
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imitating evolution, annealing, or backpack packing. [17]  Cost models will estimate the 

effects of placing an instruction in hardware or software, thus aiding the algorithm in rapid 

simulation.  The estimations include data on an instructions implemented area, power, or 

latency cost. In testing they also tend to not use real input code, and instead settle on a 

Gaussian distribution of arbitrary cost values to represent a program dependence graph. 

True implementation of the algorithms is not common and many solutions end up not being 

fully realized. 

 

Figure 4 Taxonomy of Algorithm Approaches 

As seen in Figure 4, there are two major traits that partitioning algorithms pull 

from: randomness and sorting.  These two major traits play roles in three styles of 

algorithms, which in turn create four actual algorithms that we use.  The styles of 

algorithms will be covered in the following sections, giving an overview into Simulated 

Annealing, Tabu Search, Genetic, and Knapsack algorithm families. 
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2.2.1 Simulated Annealing 

Inspired by annealing metal [18], variables in the system include temperatures and 

cooling rates.  Randomness and greedy selection is employed in simulated annealing. Some 

initial starting point (in the case of HW/SW heterogeneous design: a pure software 

solution) for the solution is used along with a starting temperature.  The temperature goes 

into an pseudorandom m exponential equation that dictates the change of a given piece of 

the solution.   

 

Figure 5 Simulated Annealing Visual of Heat Chaning a Solution 

Imagine that Figure 5 consists of a bar showing encountered instructions and the 

changes made to the HW/SW solution colored in with the heat color, along with an 

indicator of the heat of the solution on the left. With a higher temperature, more random 

changes are prone to happen.  As the temperature is decreased, further iterations will result 

in fewer changes until the solution is “cooled” resulting in no further changes.  As the 

solution cools down, a local search is conducted near solutions that are close to the current 

solution.  Nearby better solutions will become the current solution, and the process of 

adding randomness and cooling further will continue.  This cooled solution should ideally 

be the global minima or maxima [19] in the field of possible solutions it is however prone 
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to issues such as being stuck in valleys caused by local minima.  This is due to the fact that 

this algorithm design is greedy by nature.  It does not hold memory of previous runs, and 

does not attempt to follow a heuristic. However the gradually “cooling” randomness factor 

added is intended to move around the solution enough at high energy levels to trump 

becoming stuck in a local minima/maxima as most basic greedy solutions do. 

In the paper “Integrated Heuristic for Hardware/Software Co-design on 

Reconfigurable” Devices by Liu et. al. a hybrid algorithm using Simulated Annealing (SA) 

and Tabu Search (TS) is explored.  The SA portion will be reviewed here and the TS 

portion will be explored after.  The SA portion is a constructive partitioning, meant to 

achieve a solution given some constraints. Wang et. al. uses SA to generate a small local 

set of results, and to hone these results using TS.  To evaluate performance of an SA 

solution, a few cost metrics are used.  Predecessor instruction latencies for a selected task 

along with successor instruction latencies are included, along with the latency tradeoff of 

a given task in hardware or software.  The communication penalty between one node and 

another is also considered, along with the total penalty of a note (with its predecessors) to 

another node. The total performance of a system can be found by evaluating a simple 

equation that takes the communication penalties into account. Using this final performance 

calculation, a given simulated annealing solution can be evaluated against another. 

2.2.2 Tabu Search 

Tabu search is a search created by Glover in 1986, and is a metaheuristic [20]  (or 

in our case, an iterative partitioning pass) that focuses on neighboring solutions.  By 

examining partitioning solutions nearby to a given partitioning solution, an exhaustive 

graph of solutions can be explored greedily without having to generate the whole 
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graph.  This allows an extensive exploration while having consistent memory/processing 

requirements throughout the runtime, since the Tabu Search is a localized search.  At any 

time there is only the solution under investigation, it’s local neighboring solutions, and the 

best solution found so far.   Each solution is considered in a graph of possible solutions.   

 

Figure 6 Example of a Tabu Search across a Graph of Solutions 

There are 3 kinds of solutions: gamma solutions, tau solutions, and tabu 

solutions.  Tau solutions are the winning solutions of local searches, which are compared 

against gamma solutions (the best-found-so-far solutions).   Upon being “better” than the 

gamma solutions, a tau solution becomes the next gamma solution.  Regardless of this 

result, the tau solutions become tabu solutions.  Tabu search hinges on tabu solutions, 

which attempt to solve the local minima/maxima problem by enforcing a rule that 

examined solutions go into a tabu list.  Any solutions considered to be “similar” to tabu 

solutions are avoided for some number of iterations of the tabu search.  Similarity of 

solutions is user definable, so ranges of solutions can be considered similar. Tabu solutions 

may be bad or even good solutions choices, resulting in a “worse” local search overall, but 

they attempt to force the search to look in areas that a typical greedy search would avoid. 
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Wang et. al. uses the Tabu search to refine their SA pass, Tabu Search can be used 

to refine any pass such as genetic, or even uniform randomness.  

The tabu search does not have anything that defines it as a HW/SW partitioning 

method, because at this point the solution is abstracted away into a singular “performance” 

score.  

2.2.3 Genetic  

Genetic algorithms [21] use the idea of natural selection to drive solution 

formulation, with a population of solutions having a “genome” complete with alleles that 

determine characteristics of each member of a generation.  The generation is examined to 

find the best performing solution by comparing fitness ratings.  After this, two high fitness 

solutions are randomly chosen, and their genomes undergo crossover with one 

another.  Then these new genomes undergo mutation, resulting in children for the next 

generation.  This is done until a new generation is at a sufficient size, and then the process 

starts over once again.  The best solution across all generations is considered to be the best 

solution.  This relies on mutations and crossover to generate enough variance in the 

population to avoid getting trapped in a false “best case” found inside a local minima or 

maxima. 
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Figure 7 Visualization of the Genetic Method with Two Genomes 

Mishra et. al. [22] proposes applying this theory of genetic selection into the space 

of hardware/software partitioning. They begin their algorithm with a population that has a 

genome, which is a bit pattern defining which portions of the original software solution go 

into hardware or software. After this a scoring must be given to the solution. The Objective 

Function (OF) is responsible for calculating the fitness of a solution, which is the scoring 

mechanism for the Genetic algorithm. For this implementation of a genetic algorithm, the 

communication costs between HW and SW edges are not considered. This can result in 

numerous SW/HW jumps. 

2.2.4 0-1 Knapsack 

A knapsack solution [17] is quite simple, where each piece of a solution is 

visualized as a box, and a knapsack exists that must be filled with the boxes.  Ordered by 

priority according to a given cost model, the pieces of the solution are stored into the 

knapsack until there is no more room.  This result is akin to taking the best pieces of a 
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solution along, emphasizing a limited amount of space/resources represented by the size of 

the knapsack. [23] 

In the research done by Chen et. al: “One-dimensional Search Algorithms for 

Hardware/Software Partitioning”, the NP-hard problem of HW/SW partitioning is 

attempted to be surmounted using a one dimensional 0-1 knapsack search.  Giving a 

knapsack capacity of K, and a set of items S, they attempt to find a subset to maximize 

their profit (score).  In order to greedily fill the knapsack, the profit to weight ratios is 

ordered so that the most lucrative options are “packed” first. 

 

 

Figure 8 Parallel Tasks on Limited Discrete Hardware 

As seen in this illustration, FPGA area is a limited resource, but time is not as 

limited.  Given a program that has blocks A, B, C, and D where B is dependent on D and 

A, and D is dependent on C, we desire to implement the components in 

hardware.  Observing the FPGA dimension purely, we can see no overlap between A, B, 

C, and D since they must fill in distinct areas of the FPGA.  However, since the resource 

of time can be run in parallel, we run C+D simultaneously with A.   
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Chen et. al. describes the Software and Hardware cost to be the following, with x 

being a solution of problem set P.    SW and HW costs are defined by a scalar constant.  The 

communication cost between nodes is also defined by an arbitrary scalar cost to represent 

a queue between hardware and software elements. These costs can be used to visualize the 

“ideal” minimization / maximization problem P and Q. 

 Cost Models 

In order to dictate how well (or poorly) instructions in a task graph may perform as 

hardware or software, cost models [24] are required to predict the outcome using traits like 

cycle time, area usage, and power usage.  These models [25] may have one, some, or all of 

the following traits noted before, and algorithms can be tuned to focus on a subset [26] of 

the traits included in the model [27].  This allows automated design that can be aware of 

latency and area usage. 

The scoring of cost factors such as cycle time, area, power, and communication 

costs are evaluated as a unitless number. Many models use a scalar value for software cost 

of that particular node.  What is this cost? It is not described, or calculated.  It just 

“is”.  Solutions can still be reached this way, but it helps to have some more realistic cost 

models in order to correctly estimate the outcome of the partitioning algorithm. [28] 

Work done in this area, such as Rupp et. al. in “Static Estimation of Execution 

Times for Hardware Accelerators in System-on-Chips” [29] predict worst case execution 

time and best case execution time with a control flow graph representing various operations 

to evaluate.  Fidelity calculations are used to find Worse/Best Case Estimated Time results, 

and can be used to find an execution time profile.  Since hardware offloading allows speed 

increases, the latency of instructions in hardware and software are extremely important. 
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2.3.1 Cycle Time 

Called cycle time, or latency, this is considered to be how long it takes for a given 

set of instructions to finish.  In software, it is how many clock cycles will be necessary to 

complete the instruction, while in hardware, it is how many clock cycles will pass until the 

hardware has completed its “instructions”. Traditionally hardware is faster than software 

in this cost domain.  Hardware also has the ability to run in parallel, since logic evaluation 

can happen instantaneously in its own dedicated area of silicon disregarding a normal 

pipeline.  This opens up the prospect of parallelization, since multiple instructions in silicon 

can run at the same time, as opposed to a typical pipeline.  One caveat is that simultaneous 

hardware implementations are still limited by the longest instruction, queuing logic, and 

variable dependencies. 

2.3.2 Area 

Area is one cost trait that software trumps when compared to hardware.  For 

software, all instructions share the same area: being the silicon processor the software is 

running on.  For hardware: each instruction/logic network has to have it’s own dedicated 

physical area.  This is a major constraint in design, as an FPGA is not limitless.  Physical 

area can rapidly get very expensive with the use of digital signal processing (DSP) blocks, 

or with massive parallelized operations.  Traditionally this trait is inversely related to the 

cycle time benefits, as repeated operations or sets of similar operations tend to be 

parallelizable.  One excellent example is a for-loop or matrix. 
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2.3.3 Power 

Power is a blended trait [30], as the power use efficiencies of software or hardware 

can be lucrative depending on the application.  If a processor runs too long, it will burn a 

small amount of power over a long period of time, whereas hardware, while being fast, can 

burn a large amount of power in a short amount of time.  Power usage can be tuned in 

software by clocking down a processor, or by using dark logic controls in hardware to turn 

off unused logic areas at certain times in a program. 

2.3.4 Crossings 

In the space of heterogeneous solutions, the extra cost of interfaces between 

hardware and software is a critical concern, as each crossing adds time, power, and area to 

a design that did not have it beforehand.  As such, extensive cuts in a task graph may result 

in the area costs of crossings becoming more expensive than the actual benefits found by 

making the cuts in the first place.  This tradeoff is one that must be considered and managed 

in automated design. 

 Twill 

Doug Gallatin’s hardware software cosynthesis tool chain called “Twill” is 

designed to take C code and creates a blended solution using a hard-coded partitioning 

heuristic and cost model.  Twill’s tool chain creates fully functional logic and software, 

running the software off of a soft-core processor.   Twill contains the possibility to have its 

heuristic and cost model modified.  This platform lets the algorithms in question for 

heterogeneous solutions be tested in a live environment with real instructions to process. 
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2.4.1 Inspiration 

Twill draws from earlier heterogeneous compilers, such as the NAPA C compiler 

[31], CHiMPS, and ROCCC systems.  These all intended to take care of loops by 

parallelizing them in an FPGA, and in some cases solve difficult issues such as 

recursion.  Overall these systems took software code in and split the code into hardware 

and software. 

As heterogeneous systems started to become more popular, the need for operating 

systems to be designed with off-processor logic grew.  Projects such as ReconOS [32], 

hThreads, and other RTOS/OS centric heterogeneous support frameworks were created to 

support the output of heterogeneous compilers.  These are thread based to allow multiple 

processes to run.  However, these threads are designed to exist in two possible states: 

hardware and software.  This sort of awareness makes projects such as hThreads lucrative 

to heterogeneous combinations of software and hardware because since they are well 

defined, they impose some constraints on how processes interact. 

Systems such as SPARK [33] and LegUp [34] have attempted to put the elusive 

hardware design aspect in the hands of the software programmer as opposed to the 

hardware engineer by allowing users  to rapidly deploy hardware solutions.  This means 

that all a software engineer is required to do is write C code with minimal knowledge of 

hardware design.  Then the C code can be readily converted into synthesizable RTL.  This 

was also a desired trait for Twill, since writing a heterogeneous system can be complex. 

Twill sought to unify the heterogeneous compiler, HW/SW interface framework 

insulation, and software engineer empowerment into one toolchain flow. 
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2.4.2 Architecture 

Twill was created with three major parts: a compiler, a software runtime, and a 

hardware runtime.   

 

Figure 9 Twill Architecture with Input and Output Files [1] 

The Twill compiler takes a single threaded C program and outputs a variety of C 

and Verilog files.  The Verilog files are combined with the Twill hardware runtime and be 

synthesized using Xilinx’s XST.  The C files are combined with Twill’s software runtime 

and undergo a final compilation pass in Xilinx’s GCC Microblaze Compiler.  The result is 

a soft core processor running C code that interfaces with the hardware around it, which is 

defined by the Verilog.  This is placed onto an FPGA. 

2.4.3 PHI Nodes and Fake Dependencies 

When examining software for potential heterogeneity, the order of execution does 

not matter.  Only variables dependent on previous operations or calculations do.  These 

dependencies are the “true” dependencies, while the original branching code flow is 
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considered to be made up of “fake” dependencies. The start and the end of the function will 

be preserved, but past that the software that calls a heterogeneous function expects to put 

data in and receive data back.  This insulation means that tearing apart the “fake” 

dependency code flow is fine as long as the “true” dependencies are maintained so that the 

function can still return a proper value.  

 

Figure 10 Basic Blocks with Fake Dependencies (Gray Arrows) and True 

Dependencies (Red Arrows) [1] 

To visualize how the dependencies play into the code, let’s examine the idea of 

basic blocks and PHI nodes in Figure 10. As shown, true dependencies can be found 

between BB3 and BB5, but not between BB1 and BB3.  This means that BB3 and BB2 can 

process before or during BB1, however BB5 must wait for BB2 or (BB3 and BB4). 

 

 

 

 



  

21 

 

2.4.4 Twill Compiler 

 

  Figure 11 Twill Compiler Toolchain Flow [1] 

The compiler relies on a few major pieces of software to run.  Currently it is 

executed using a Python script, which in turn calls Clang, LLVM Transforms [35], and 

LegUp. [34]   Clang (Figure 8) is responsible for turning the input C code into LLVM 

Instructional Representation (IR), so that the LLVM Transforms can operate on the 

exposed instructions. Standard and custom LLVM Transform passes are run in order to 

partition the code, garnering multiple files. LegUp is tasked with taking the hardware 

partitions and turning those into Verilog. 

Clang is called with “-O2”,”-ffreestanding”, and “-fno-builtin” flags to avoid 

LLVM manipulations to the memory that are not explicit in the original C.  The point of 

Clang is to get the code into a workable IR, optimization is not a primary concern.  

After Clang has run, the LLVM IR is now exposed.  The following passes are run 

in order to prepare the IR for the custom Decoupled Software Pipelining (DSWP) pass: 

“basicaa”, “mem2reg”, “mergereturn”, “lowerswitch”, “indvars”, “inline”, “always-

inline”, “simplifycfg”, “gvn”, “adce”, and “loop-simplify”. 
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The custom DSWP pass ensures that both hardware and software will have address 

references to the global variables.  A few more stock passes are run in order to prepare the 

IR for the Program Dependence Graph (PDG).  These passes are “deadargelim”, 

“argpromotion”, and “constprop”. 

The PDG is a graph that shows collections of instructions and their related 

instructions in the form of parents and children.  These are control flow dependencies, and 

also “invisible” PHI node dependencies. PHI nodes show up where data is intended to be 

used, like a variable, but a block beforehand must calculate it.   

The PDG is reliant on LLVM’s normal “basicaa” and “loops” information.  Using 

this information, a graph is created with nodes containing a set of instructions.  The loop 

data helps expose possible parallelism points. The nodes also will have a cost associated 

with them, and in Twill’s case it is the estimated cycles the instruction is expected to take.   

Once this PDG has been generated, the DSWP pass runs a very basic partitioning 

algorithm to divide all the nodes of the PDG between the available partitions.  The 

developer specifies how much of the program will become software as opposed to 

hardware. 

In order to divide the nodes between the available partitions, a sort is conducted 

that finds all the PDG nodes that are able to be placed into the hardware partition.  As the 

hardware partition fills up there is a check against the defined percentage.  Once the 

partition has been “filled” the rest of the PDG is either placed into the next hardware 

partitions, or into software.  
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For nodes to be part of this partitioning process they must be able to be in either 

software or hardware. Nodes that may not fall into this category include the start of a 

function or the end of a function, or system/library calls such as printf(). 

After the division of nodes, enqueue and dequeue pairs are created to bridge 

crossings between hardware and software.  This process establishes the new control flow 

to protect the PHI nodes.  Then the resulting instructions for partitions are combined into 

basic blocks, only lacking branch and call site instructions. 

Branches are added appropriate to branch targets, and PHI node dependencies are 

attempted to be resolved to avoid accessing data before it is available.   

2.4.5 Control Dependencies 

Twill attempts to find loops in programs, defined by for () blocks, and places the 

enqueue/dequeue pairs in four different cases of for block construction. 

 

Figure 12 Twill For Loop Pairs [1] 

Identification of these loops are paramount, as repeated operations may not have 

dependencies on the previous operation (the 100th iteration of the loop needs no knowledge 

of any other iteration to complete).  This makes certain loops a lucrative target for 
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parallelization, leading to hardware designed to replace the for loop, doing up to 100 

operations simultaneously.  Repeated operations in code can come in a variety of ways, 

and can either be dependent or independent. 

2.4.6 Hardware Software Splitting 

Once the partitions are finalized, the hardware designated IR is sent off towards 

LegUp to be turned into .v sourcecode. 

2.4.7 Future Work 

A variety of hardware software partitioning heuristics can be chosen with similar 

traits or designs, along with a real cost model to be used inside the heuristics.  With these 

heuristics and the modified Twill system it is possible to gather meaningful data and 

preform heuristic comparisons.  Implementation and testing of these heuristics will give us 

the truth to whether or not they actually get results.  Some may perform better than others 

due to their different approaches. 
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3 Definitions 

In this section, important definitions used throughout this thesis are covered.  A 

singular instruction, graph of instructions, or partition is carefully defined in order to make 

the implementation, testing, and results of this thesis clear. 

 General 

SCC - Strongly Connected Component, a representation of an Instruction 

Heterogeneous Solution - A program that is divided into hardware and software 

Hardware/Software Partition - The portion of a heterogeneous solution in 

hardware/software 

Program Dependence Graph - The graph of SCCs that is generated and used to 

make the software and hardware partitions 

SCC Instruction Node - Also called an SCC, these contain the instruction and 

pointers to the next instruction. 

Directed Acyclic Graph - A graph of instructions that exists initially as a software 

only homogenous solution 

Partitioning Algorithm - An algorithm that splits up a homogenous software 

solution into a heterogeneous solution.  Made up of a heuristic and a cost model 

Solution Node - A singular heterogeneous solution intended to be used in a search 

graph, contains extra metadata describing the solution enclosed within 

Heuristic - A function used to move across a graph of solution nodes in a manner 

dictated by a cost model 

Cost Model – Used to generate a rating, dictates how instructions in a given solution 

are evaluated according to implementation costs in hardware or software. 
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4 Algorithm Overview 

In this section the algorithms chosen for implementation and testing in Twill are 

reviewed in depth.  Supporting frameworks such as the Program Dependence Graph 

(PDG), Solution Set, and Solution Node will be illustrated.  Following the frameworks, the 

Tabu Search Simulated Annealing (TSSA) algorithm’s use of a combined Tabu Search 

(TS) and Simulated Annealing Neighborhood Generator (SANG) is expanded upon.  After 

TSSA, the Genetic Search (GS) algorithms design with generations, genomes, mating, and 

mutation will be covered.  Finally Twill’s original Accumulator algorithm is illustrated.  In 

Section 5, the way these algorithms are scored and judged is described.  Afterwards in 

Section 6 the implementation of TSSA and GS will be explained. 

 Partitions 

4.1.1 Solution Set 

A solution set is a collection of hardware-software implementations of the same 

function that LLVM is operating on.  A solution set is made of solutions that may be 

connected via a parent/child relationship, or through a different kind of hierarchy.  The 

connections make it possible to move across the solution set, treating it as a graph.  This 

let's search algorithms such as Tabu Search move across the space of generated hardware-

software solutions.  Each solution is encapsulated within a solution node. 
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4.1.2 Solution Nodes 

 

Figure 13 Solution Node Construction and Metadata 

Solution nodes contain the actual hardware/software solution along with a 

collection of metadata, seen in Figure 13.  The metadata is generated by cost model 

calculations, and by partitioning algorithms.  Included inside metadata are the fitness and 

performance scores, along with hardware and software counts, total instruction counts, and 

time taken to generate the solution.  Flags and other notes for search patterns to use while 

traversing the solution set are included as well.  One important flag for example is the 

“tabu” flag, as it will help dictate the tabu search. 

 Tabu Search Simulated Annealing Algorithm 

4.2.1 Overview 

The Tabu Search - Simulated Annealing algorithm is designed to find the best result 

it can find with a local search space and allowed time.  The algorithm is split into two parts, 

named the Simulated Annealing Neighborhood Generator (SANG) and the Tabu Search 

(TS): together they are the TSSA algorithm.  This design was intended to leverage the 

power of an abstract tabu search onto a solution aware simulated annealing pass.  While 
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SANG examines the actual instructions, the TSSA Tabu pass only compares rated 

performance which can be represented with a single number via the TSSA cost model, 

making the Tabu Search problem agnostic.   

This algorithm was chosen because it has two different algorithms to use, SANG 

and TSSA (Tabu Search over SANG), and due to it’s simplistic qualities.  The pseudo-

random evaluation was easily realizable, and had no ordering or sorting of a solution. This 

means that processing power will not be wasted attempting to order some set of data, and 

instead it can be used to generate more solutions. 

 

Figure 14 Parent Child Inheritance Inside a SANG Graph 

The parent-child inheritance (shown in Figure 14) of the algorithm is promising as 

well, as it attempts to guarantee that the stronger solutions will be further improved with 

every other iteration of the algorithm. 

It is assumed that this algorithm will perform well, and that it’s pseudo-random 

greedy search will find a greedy, but acceptable solution.   It's rapid generation of varied 

solutions with a localized search appears to be well suited to the problem of hardware 

software heterogeneous solutions. 
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4.2.2 Simulated Annealing Neighborhood Generator 

To explore related solutions, neighbors of a given solution can be created using 

simulated annealing.  SANG generates a given set of annealed solutions from one parent 

solution.  Two trait variables are passed on with permutations from the parent, the starting 

temperature and the cool down speed.  The solution starts out at a given temperature, and 

with the initial settings.  Each instruction is then examined, with it's costs being 

estimated.  If the path cost is above a given threshold, it will automatically set the examined 

node into hardware in an attempt to alleviate the software path cost.  If the past cost is still 

below a given threshold, but if a random [0,1] outcome is greater than exponential function 

using the change in cost and current temperature, then the move to hardware will still be 

made.  Any SCC instructions that were initially hardware are reset to software as well, 

effectively inverting the solution from the parent. 

 

Figure 15 SANG Algorithm [36] 
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This greedy algorithm is self-enclosed and can be run multiple times with various 

tweaks to it’s traits, criteria, and thresholds. The Alpha and Beta values seen in Figure 15 

are supposed to be cost oriented values, and can be set to any desired criteria.  Once 

neighbors have been generated it’s possible to explore a graph of possible HW/SW 

partitions using the tabu search, and refining of this search can be done with further passes 

of SANG on any given tabu solution.  Evaluating the generated solution is done by 

calculating the communication costs. 

 
Figure 16 SANG Communication Costs [36] 

 
Figure 17 SANG Solution Rating (Performance) [36] 

As noted, simulated annealing has a number of different control points.  The initial 

temperature (the entropy of the system), and the cool down factor (how fast the system 

settles down), are easily controllable.  They also generate very well defined results, giving 

us consistent output along a probability curve.  The size of the neighborhood generated can 

be modified as well, making SANG feasible on machines of any power, and in turn letting 

machines that have extra resources easily create a larger neighborhood.   SANG also 

inverts the previous entry (only SW instructions are allowed to become HW instructions, 

and any HW instruction become SW instructions again).  This inversion lets two opposite 

solutions be evaluated rapidly, so that an optimal approach can be reached from both 

solution sides (all HW vs all SW). 
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4.2.3 Pre-Generated SANG Maps 

For testing, SANG solutions will be pre generated in a massive tree so that the 

TSSA algorithm can be “tracked” as it moves through the previously generated 

space.  With only a few iterations, this process is sufficient to flood memory, disk space, 

and processing time of many systems, but it will give us an omniscient view of an 

algorithms performance. 

4.2.4 TS 

The second half of the TSSA algorithm is the Tabu Search.  It can be seen in Figure 

18.  TS starts with an initial solution node, which is automatically a tau solution node.  Tau 

solution nodes are the “winning” solution node.  The initial solution node is passed into 

SANG to generate child solution nodes with similar traits (plus permutations to give 

variety).  The best solution out of all of these solution nodes is found, becoming the tau 

node.  At this point, the tau solution node is compared against the gamma solution node, 

which is the “output” of the Tabu Search.  If there is no gamma node, the tau node becomes 

gamma by default.  If there is a gamma node, the two are compared and the winner is 

declared the gamma node.  Regardless of this outcome the tau node is declared tabu from 

here on out.  This means that it is put into a list that every potential tau node is checked 

against later in the tabu search process.  This tabu list can eventually decay, so that older 

entries may become not tabu after some given number of cycles.   After the tabu list has 

been added to and upkeep has been orchestrated, a new neighborhood is generated using 

SANG to permute the traits of the first node generated by the previous SANG pass.    The 

whole process then starts over again, using this first node as the new “initial node”, until it 

is deemed by some user defined end condition. 
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Figure 18 Tabu Search Pass for the TSSA Algorithm [36] 

The idea of a tabu node is the crux of the Tabu Search: a tabu solution node means 

that it will never again look at nodes having the same traits as the tabu (since it has already 

evaluated nodes of that type) node.  This makes TS a greedy style search focused on 

reducing the HW/SW graph as fast as possible.  TS also engages in “following” lucrative 
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solutions, as the best solution out of a neighborhood will become tau, possibly gamma, and 

will be used as the parent for the next generation of solutions. 

Tabu search is localized, meaning that it can iterate repeatedly without consequence 

to memory, thus the only factor it has to worry about is time.  Like SANG, TS can also be 

limited on how much effort it puts into refining it’s search. 

 Genetic Search Algorithm 

4.3.1 Overview 

The Genetic Search algorithm is designed to find the best result with a local search 

space and allowed time.  The algorithm is split into two parts, a realization of a generation's 

worth of genomes into solutions and the creation of a new generation based on the best 

solutions from the previous generation.  Unlike TSSA there is no two part generation + 

search algorithm, only multiple generations intended to both increase diversity and hone in 

on desired traits. 
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Figure 19 Genetic Algorithm [22] 

This algorithm in Figure 19 exhibits some randomness with mutations, but also 

displays the trait of common genetics with the idea of alleles, crossovers, and 

mutations.  These traits have been proven to be beneficial with reaching an ideal solution 

in other problem spaces.  Along with being a good solution generator, a genetic search also 

usually keeps good traits intact during crossover.  This means that when a good trait is 
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found, minimal changes to it may occur during crossover or mutations, but enough small 

changes may eventually yield a stronger solution.  

The lack of reliance on randomness, and emphasis on persistence of good traits, 

makes this a great choice for a partitioning algorithm. This may generate a noisy solution, 

due to mutations, but by emphasizing the desired traits, a gradual progression towards an 

ideal outcome will emerge. 

4.3.2 Population 

The population will be controllable in size, as with the generations.  However the 

“mating” process will be done by selecting the most fit solutions in a population and mating 

two into two children (from the results of a crossover) until the new population is the same 

size as the old population.  This will ensure a “localized” style search in regards with 

memory constraints in the compiler, as a growing population could quickly cause a major 

lock up or memory failure.  An exhaustive searches explored size is easy to calculate since 

the following equation will be true: 

EXPLORED SOLUTIONS = LIMIT_GENERATION * LIMIT_POPULATION 

4.3.3 Genomes 

The genome was constructed to be a bit pattern that would correspond with the 

assignment of encountered instructions. Stored as an array, it was easy to splice, mutate, 

and move along the bit pattern.  The bit pattern must be sufficiently sized to have unique 

results for each encountered instruction. This requires knowing how large the input code 

sample, which only needs to be calculated once during use of the genetic algorithm. 
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4.3.4 Crossover 

Crossover of genomes mimics biological crossover, where chromosomes separate 

at given indices.  Then “genetic information” (which is the HW/SW partition assignments) 

can be swapped between two chromosomes with the same chromatids, but with different 

alleles (which lead to some different trait outcomes).  Two genomes of the same size 

separate at the same points along their length, called the loci. If one genome is called A 

and one B, one part of A is merged with its complementary B part, and the versa occurs 

where the left over B part merges with the complementary A part.  The crossover point is 

defined to be random. 

4.3.5 Mutation 

Driving genetic diversity, mutation occurs along with crossover to ensure that 

“fresh” combinations of alleles are created, so that a population will not stagnate, thus 

allowing evolution, as opposed to blind refinement.  Blind refinement would lead to whole 

populations becoming trapped in a local minima/maxima.   

Earlier in generations, it can be popular for mutations to be a bit more aggressive, 

as a good solution has not shown itself yet, so many different possibilities must be explored 

quickly.  As the best solutions begin to emerge, the mutations begin to slow down so that 

the crossover function can refine the solution. 

Mutations are done by randomly indexing a genome and flipping the bits found 

after that index.  This can be done any number of times. 

 

 



  

37 

 

4.3.6 Fitness 

For each solution there is a total fitness that can be calculated by using the 

genome.  Total fitness is used to evaluate one member of a population against another, and 

it is calculated through a collection of costs.  Fitness calculations will be covered in Section 

5. 

4.3.7 Parameters 

The following areas of the genetic algorithm were modulated in order to change the 

time required to obtain a solution. 

 

 LIMIT_GENERATION - The number of “iterations” the population will go 

through.  By defining this as a modulated value, multiple iterations of the genetic 

algorithm can be run with varying generation limits to determine the effectiveness 

of 20 generations as compared with 5. 

 LIMIT_POPULATION - The amount of solutions each population will have.  Like 

LIMIT_GENERATION this value is also modifiable. 

 LIMIT_ALLELE - The length of the genome for each solution 

 LIMIT_MUTATIONS - The amount of mutations the initial generation starts with 

 DEC_MUTATIONS - The amount mutations decrement by each 

generation.  Unlike the limits, this value will change how fast the mutations will 

persevere for (LIMIT_MUTATIONS/DEC_MUTATIONS) = max generations. 

 

The genetic algorithm follows the following loop complexity: 
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FOR EACH GENERATION 

 FOR EACH POPULATION 

  FOR EACH ALLELE 

 N*LOG(N) POPULATION SORT 

 FOR EACH POPULATION 

  FOR EACH POPULATION * 2 

  FOR EACH ALLELE * 4 

FOR EACH MUTATION 

Which gives us the following rough equation for operations needed: 

OPS = (GEN * POP) (LOG(POP) + ALLELE * (1 + 16 POP * MUTATION) 

Using a starting base of 20 generations with a population of 20 and an allele size of 

1 with 1 mutation each cycle we get the following growth in our system.

 

Figure 20 O(n^2) Population Increase 
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As expected in Figure 20, the generational increase results in a linear growth, but 

the population increases show that we have a complexity of O(n^2). 

 Twill’s Original Accumulator 

Twill’s original accumulator design focuses on the Knapsack idea of packing a 

limited space.  The space in question is a percentage of the total code’s software latency 

time.  Each instruction contributes a certain amount to this latency, as illustrated in Figure 

21. 

 

Figure 21 Illustration of Accumulator HW/SW Partitioning  

Out of the original instructions, with their delay times, the whole program can be 

visualized as a bar.  The desired percentage to be in software (yellow) as opposed to 

hardware (green) is set in the desired bar.  Since the division does not fully take the fourth 

instructions latency up, it does not become software, but rather becomes hardware.  This 

threshold behavior is induced because an instruction cannot become partially hardware or 

software, so a decision must be made one way or the other.  The resultant instructions are 

then designated according to the Accumulated outcome.  
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5 Cost Models and Criteria 

Each algorithm comes with its own cost model, for the Tabu Search Simulated 

Annealing (TSSA) it is the Performance Rating and for the Genetic Search (GS) it is the 

Fitness Rating. These rating systems are described with regards to their design and 

expected implementation.  Along with the rating systems, other methods of evaluating 

these algorithms are explained, including time to find a solution, RAM requirements during 

runtime, and cuts across the Program Dependence Graph (PDG) created for partition.  In 

Section Six, the Heuristics (Section 4) and Ratings (Section 5), are implemented in 

Twill.  Section Seven will cover the testing and results of each algorithms implementation 

in Twill. 

 Evaluation 

To evaluate the algorithms, a rating and cost model is needed.  The cost model will 

judge the partitions using costs will estimate costs such as latency, area, and power 

costs.  The costs must be defined for the compiler, with information about hardware and 

software costs for various instructions.  Then the cost model will be run across the partition 

after the partition has been generated.  The separation of the cost model and partitioning 

algorithm means that different cost models can be explored using one single method of 

partitioning. 

For this work, we decided that every algorithm’s cost model would be used on each 

algorithm.  For example, a Genetic solution would be rated with a Genetic Fitness and a 

TSSA Performance rating together.  This way an algorithm that produces a good solution 

across the board can be seen as a “strong” solution, while an algorithm that produces a 

solution that has contradicting ratings may be a result of a bad cost model. 
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 Costs 

For all cost models, costs are used.  These help the model estimate power, area, and 

timing usage.  There are four major costs that are used. 

 SW_TIME - The software time for a given instruction 

 HW_TIME - The hardware time for a given instruction 

 SW_COST - The software cost for an instruction 

 HW_COST - The hardware cost for an instruction 

While cost is a very general description, papers insisted on using it.  Cost in this 

term can mean power usage, area usage, or other cost factors.  Many algorithms discern 

time as its own unique cost since heterogeneous solutions focus on reducing processing 

time along with one another dimension, hence the nebulous names of HW_COST and 

SW_COST. 

SW_TIME is found by using the calculated latency generated by an 

instruction.  HW_TIME will use the same latency, but will divide by a constant to represent 

the speedup created by putting an instruction in dedicated hardware (no 

pipeline/etc).  SW_COST is a more nebulous cost, and it was decided that this would 

represent the area usage of SW.  The area usage of SW represents the static processor, 

while the HW_COST is the LUTs needed to implement the custom logic. 

5.2.1 Area Costs 

With SW_COST and HW_COST values required, it was decided that the costs 

would be relative.  SW_COST was designated to imply the area cost of a whole processor’s 

worth of silicon or the divided cost of a whole processors worth with regards to the amount 

of instructions in software.  The second SW_COST designation means that if five 
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instructions are implemented in software, the total cost of the processor area wise will be 

split across those five instructions.  This style is done to entice models to penalize 

extremely low SW assignments, where in the worst case no instructions are implemented 

in software so a whole processor is sitting there as dead silicon.  Now with this area of 

processor linkage to SW_COST, the HW_COST naturally will the area needed to 

implement the given instruction in hardware.  This can be done by examining the size of 

the data used in the instruction and the operation.  If the instruction is basic, such as an add 

or subtract, the HW_COST will be low, but if it is a division or multiplication, it will be 

higher.  Along with the operational HW_COST, the width will play a role in the 

HW_COST as well.  With these definitions of HW_COST and SW_COST per instruction, 

and the time related HW_TIME and SW_TIME definitions, an algorithm can correctly 

estimate the performance of a solution, and in turn correctly follow the contours created by 

a search across a set of given solutions. 

 Cost Models 

5.3.1 Performance 

Brought forth in the TSSA algorithm, a performance rating can be calculated for a 

given solution.  The core equation is as follows in Figure 22. 

 

Figure 22 Performance Rating Calculations 

Higher times and higher penalties result in a higher score.  Heterogeneous 

cosynthesis is all about minima, so it makes sense that our evaluation metric follows the 
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same minima focused calculation.  This may make it difficult to represent as a low 

“performance” is seen as desired outcome. 

The first maximum evaluation between SW time and HW time is the comparison 

of the total time for the SW and HW partitions.  Penalties are more involved, since they 

focus on previous instructions to evaluate the communication costs.  Communication costs 

are calculated in the following manner inside Figure 23. 

 

Figure 23 Performance Rating Communication Costs 

5.3.2 Fitness 

Fitness ratings originate from the Genetic Algorithm, and examine the HW and SW 

costs/timing results.  Unlike the Performance algorithm, communication costs are not 

evaluated, and SW costs are considered only once.  This is due to the fact that software 

costs as the area needed (a processors’ area does not change) along with hardware’s area 

costs.   These calculations are seen in Figure 24 and 25. 
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Figure 24 Fitness Rating Calculation for a Given Solution 

The cost variable constantly accumulates hardware costs, but will only have the 

software cost added once.  This represents the processor (since SW instructions found later 

on will run on the same processor) opposed to the custom hardware needed.  The time for 

both hardware and software is loaded into the execution time array, and is then injected 

into start time and end time arrays.  The patterns represented here are the genomes used in 

our algorithm. 

After the Cost and Time have been calculated, we then calculated the fitness. 

 

Figure 25 Fitness Rating Calculation 
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Time Restriction (tr) is a constraint deadline that we use to shape the fitness 

calculation.  The K1 and K2 values will be used to bias the fitness calculations to make 

cost or timing become more expensive.  Based on the accumulation of time calculated from 

the cost model in Figure 26, whether it is below or above the tr constraint in Figure 27 will 

dictate what factors go into the fitness rating. 

 Test Code 

In order to test the algorithms, input code must be used.  The CHStone benchmark 

[37] for High Level Synthesis was selected to become part of the test code because of it's 

intention to be an HLS benchmark.   Along with CHStone tests a variety of smaller samples 

were selected to have smaller pieces of code that would be used during debug and polishing 

of the implemented algorithms. 

5.4.1 CHStone Media Processing 

With video being a prominent use of blended solutions, media processing was a 

major focus in the CHStone Program Suite.  For the set of media tests a "Linear predictive 

coding analysis of global system for mobile communications" (GSM) was included along 

with JPEG image decompression and MPEG-2 motion vector decoding.  The JPEG code 

sample had the most lines of C code at 1,692 lines and 1,029 addition/subtraction 

operations.  It also contained the most branches, with 213 if statements, 64 switch 

statements, 90 for loops, 27 while loops, and 228 breaks. 

5.4.2 CHStone - Security 

Along with media processing, security applications are also of interest in the field 

of heterogeneous computing.  The AES, Blowfish, and SHA encryption standards were 
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included as well.  SHA and Blowfish both had a light amount but a large amount of logic 

and shifting operations.  AES came in with the largest amount of shifts, with 758 operations 

across its 716 lines of code. 

5.4.3 CHStone - Intentions 

 

Figure 26 CHStone Operation Distributions [37] 

CHStone intends to cover a variety of program styles with regards to the types of 

operations a program may include, as shown in Figure 26.  As noted in the previous 

sections, AES has a high amount of shifting compared to the other algorithms, and 

JPEG/GSM have sizeable amounts of multiplication.  Division is fairly uncommon, except 

for the AES implementation. Along with a visualization of the operations, it is also 

interesting to see the distribution of control flow statements. 
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Figure 27 CHStone Branch Distribution [37] 

Shown in Figure 27, the control flow statements of the CHStone programs are 

dominated by assignments, to the point where the Y axis of this graph only reaches 60% 

of the program, since the other 40% is assignments across the board.  MIPS is extremely 

heavy on control flow changes, with many goto/breaks.  Apart from MIPS, the rest of the 

algorithms have a fairly low distribution of goto/breaks, but the encryption and media 

processing algorithms contain sizeable amounts of loops. 

 Criteria 

To evaluate the performance of the algorithms, some data points must be used to 

empirically compare them.  The following points of interest were devised to evaluate the 

algorithms’ performance. 

 Cost Models 

o Total Performance Rating 

o Genetic Fitness Rating 

o Correlation of Performance / Fitness 
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 Resources Needed to Find Solution 

o CPU Time Needed 

o RAM Needed 

 Resultant Solution Traits 

o Number of Cuts in the Program Dependence Graph (PDG) 

o Implemented HW/SW Percentages 

o Resultant Queues from Cuts 

These criteria focus on a number of factors, but first the ratings generated by the 

cost models are extremely important.  These ratings will dictate the solution generated by 

the compiler, if the rating system produces inconsistent results then the ratings cannot be 

trusted.   Once the rating system has been verified to be consistent then the solutions can 

be checked against the ratings with factors such as the cuts generated in the PDG.  The cuts 

calculated can also be examine with the queues actually generated in the ending .v/.c 

resultant files generated by Twill. 

A correlation of Performance and Fitness is also important, as this will show 

whether or not evaluations of solutions from one algorithm will still be “good” in the eyes 

of another algorithm.  If Fitness is positively correlated with Performance, this means that 

a good fitness rating means the solution will have a good performance rating.   

Along with the solution reached, the time required to obtain the solution is also 

important.  Many papers go into detail about this aspect of heterogeneous computing, since 

this problem space is considered to be NP-hard.  Resultant ratings will be compared with 

the time necessary to determine if the time to compute the solution is “worth” the 

time.  This “worthiness” also goes for memory usage, but most of these solutions do not 
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have memory issues as they focus on a local search, except for an exhaustive 

SANG/random partition generation. 

The amount of cuts in the graph is also important as the more cuts there are, the 

more hardware is generated to handling enqueueing/dequeuing.   With each hardware-

software crossing, software is also generated on the other side as well.  A solution that 

generates a minimal amount means that communication costs will be minimal, and a 

solution that has a high amount of queues means that the algorithm that generated it may 

not be as elegant as intended once the communication costs come into play.  



  

50 

 

6 Implementation 

Both the Tabu Search Simulated Annealing (TSSA) and Genetic Search (GS) are 

implemented in Twill, with notes and diagrams showing how it was integrated inside the 

LLVM Twill Transforms.  Along with the heuristics implemented, the ratings, cost models, 

and representations of a partition solution node and solution graph are also 

illustrated.  Following this implementation, Section Seven displays the results of both 

TSSA and GS, with Chapter Eight summarizing and concluding the thesis. 

 Partition Representation 

6.1.1 GraphNodes and GraphNodeLists 

To create “nodes” for the graph of possible partition outcomes, a new set of classes 

was created: the GraphNode class.  The GraphNode is the implemented version of a 

Partition Solution that is intended to be used inside an LLVM transform. Inside GraphNode 

exists the following: 

 A HW and SW partition - This is required, and is the main focus of the partitioning 

algorithms 

 Traits for SANG 

 Genome for the Genetic Algorithm 

 Performance Rating - TSSA-based rating of HW/SW partitions 

 Fitness Rating- GA-based rating of HW/SW partitions 

 HW instruction count - Instructions in Hardware 

 SW instruction count - Instructions in Software 

These are mainly represented with ints and doubles, as they are scalar values.  The 

genome and partitions are represented in vector format. 
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 LLVM Transform Additions 

Leveraging the DSWP Transform that was implemented in LLVM as a part of 

Twill, additions were made to the location where Twill’s Accumulator partitioning method 

was called.  For the thesis it was planned that the Genetic Algorithm, original Twill 

algorithm, and the TSSA algorithm would all run across the same PDG so that their results 

with the same input code could be captured. 

6.2.1 Genetic Search 

The genetic search was enclosed by three for loops to capture solutions for ranges 

of population, generation, and mutation counts.  Enclosed within, it was assumed that 

population, generation, and mutations were properly set.  A for loop ranged from zero to 

the number of decided generations.  A vector of population genomes exist with an equal 

vector of GraphNodes within.  The genomes are included inside the GraphNodes, but it 

was decided to have a “children” copy so that the current GraphNodes would not be 

modified.  Following the population variables defined, a function generates the 

GraphNodes according to their respective genomes.  Within the function, the ratings are 

also calculated and added to the GraphNode.  At this point there is now a free floating 

genome paired with a GraphNode that has the same genome within it along with a 

generated solution and ratings for the solution.  The vector of GraphNodes is then ordered 

by best fitness. A biased random selector selects two of the best GraphNodes, and then 

performs a crossover of the two solutions’ genomes.  Since the genomes are arrays, this is 

done with some simple indexing.  The new genomes are stored in the vector of genomes 

that is apart from the vector of GraphNodes.  Finally the mutations are applied to each of 

the new genomes.  The number of times a genome is mutated is defined earlier. Random 
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points are chosen in the genome using a modulus operation and from that random point to 

the end of a genome the HW/SW bits are inverted.  Following this mutation, two random 

solutions are selected again until the amount of new solutions is the size of the 

population.  Out of all the current GraphNodes, the one with the best solution is compared 

against the “winning” node.  If it is better than the winning node or if there is no winning 

node, it becomes the new winning node.  The new genomes are then generated into full 

solutions and the process of rating, ordering, crossover, mutating, and comparison happens 

again for the number of generations that has been defined.  After all the generations have 

been finished, the winning node is submitted as the best possible solution. 

6.2.2 Accumulator 

The accumulator was not changed, but the rating calculations were added to it’s 

partitioning algorithm in order to rate the solutions.  Along with adding the ratings, a for 

loop enclosed the Accumulator intended to range from 0 to 1 in selectable increments in 

order to capture the solutions for the whole range of possible Accumulator solutions. 

6.2.3 Simulated Annealing 

For the simulated annealing, three for loops were added to change the inital 

temperature, cooldown, and depth of the SANG graph.  Since the SANG graph is built up 

using parent-child inhertiance it was important to create a graph generation system that 

would operate smoothly as the size of pending nodes to generate grew.  A FIFO queue was 

created in order to store the parent nodes, and the first “head node” was set inside with the 

partition being 100% software (in order to represent the input of the code).  A while loop 

checks the depth of the children it generates from a parent popped from the FIFO queue.  If 
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the depth is over the maximum depth, it will end and proceed to the Tabu 

Search.  Otherwise, the children nodes are created using the popped parent node as a 

template.  For simulated annealing, the parent HW/SW distribution is taken and 

inverted.  A loop runs over all instructions. All HW instructions become SW instructions, 

and all SW instructions have a chance to become SW instruction as designated by a 

check.   The check is whether a randomly generated number from 0 to 1 is less than the 

exponent of the delay cost delta of implementing the instruction in hardware over the 

current temperature.  This is done with simple if statement branches.  After each instruction 

has been evaluated, the ratings are calculated for the solution.  Upon finishing the task the 

GraphNode then has children pointers (with a blank GraphNode class) created inside it and 

a parent pointer referencing its original parent.  The depth of this new node is +1 the depth 

of the parent node. Following this creation of links for the whole SANG graph, the 

GraphNode is placed at the end of the queue.  The next parent is popped off and processed 

as well, until the depth limit has been reached.    For each node created, it can be compared 

against a “winning node”.  This node is distinct from the genetic winning node, and is 

called the SANGWinningNode in the code.  The same comparison operation follows, and 

the best performance node takes the place of the SANG winning node.  The original SW 

head node stays intact in its own variable so even after the queue is expended there is a 

graph with the original 100% software at the top that can be traversed by using the child 

pointers located in each GraphNode. 

6.2.4 Tabu Search 

Following the SANG graph generation, the Tabu Search will use the head node as 

a starting point in it’s search.  Any neighbors for a given node have been generated as well, 
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but typically with the Tabu Search the neighbors would be generated upon examining a 

node.  This keeps Tabu Search as a local search, as opposed to an exhaustive search like 

SANG.  Starting at the head node, the head node is predeclared as a tau node, meaning it 

is the best node found in the current group of nodes examined, and since there is no gamma 

node, it becomes the gamma node as well (the best found across all of the Tabu 

Search).  Per the rules of the Tabu search, it becomes off limits.  The children around are 

added to an empty list of Nodes.  This list will be used as a FIFO queue, and it will be filled 

up to a certain size (the number of children). The best possible node will be found out of 

the children using a basic performance comparison, and it’s children will fill in the 

list.  Any nodes that are present in the children list and the tabu list are eliminated. The best 

possible node out of the surviving is now designated as the new tau node, and it will be 

compared against the gamma node.  If it is better than the gamma node, done with a simple 

if check, it becomes the gamma node.  It is then added to the tabu list so nodes like it are 

avoided.  This whole search pattern is inside a for loop, and will iterate as many times as 

is desired.  Once the search has been run for the desired time, the gamma node, and the 

solution within, is presented as the best solution found. 

6.2.5 Output 

It was important to gather the data stored in the GraphNode for each solution 

found.  The points of interest such as the HW count, SW count, performance rating, and 

fitness rating were printed out in a tab delimited format for processing later.  Their traits 

were also printed as well, such as what generation they were from for genetic solutions, 

and what temperature the solution started at for TS/SANG solutions. Following the 

collection of this data the Genetic, Accumulator, SANG, and TSSA best solutions were 
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pushed through the rest of the Twill compiler to see the queues created and output .c / .v 

files. 
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7 Results 

With both the Tabu Search Simulated Annealing algorithm and the Genetic 

algorithm implemented in Twill, their characteristics, processing time, and results are 

examined.  Along with these two new algorithms, the original Twill Accumulator 

partitioning algorithm’s performance will be documented as well with the new rating 

systems used in both the TSSA and Genetic algorithm.  

 Combined Cost Models 

Both cost models were implemented across all three algorithms, and modifications 

were made to the following variables.  A selection of these runs have been shown below in 

Table 1.  A variety of runs were used, but these tests show some of the search space.  High 

hardware costs can be seen in test 3 and 4, with equal costs in test 5.  The K1/K2 values 

also are weighted differently, with K1 changing the severity of the time portion of the 

fitness calculation, and K2 changing the cost portion of the calculation. 

Table 1 Cost Model Configurations 

TEST HW_COST SW_COST HW_TIME SW_TIME K_ONE K_TWO 

1 2 3 2 6 0.3 0.1 

2 2 3 2 6 0.3 0.3 

3 5 3 10 6 0.1 0.3 

4 5 3 10 6 0.3 0.3 

5 10 10 10 10 0.3 0.3 

 

Using these values, sample code was run and scores were taken from the three 

algorithms.  In Figure 28 and 29 the fitness and performance scores are shown separately.  

It should be noted that the scores for the TSSA and Genetic algorithms are much smaller 

than the accumulator scores.  Test 1 came out ahead for the Accumulator, and was designed 

to reward hardware placement (33% cheaper cost, 300% faster instructions) with an 
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emphasis on timing (0.3 K1) rather than costs (0.1 K2) for the fitness model.  Because of 

it’s scores with the Accumulator, the settings from Test 1 were used for the rest of the 

thesis. 

 

Figure 28 Fitness Scoring Outcomes from Cost Model Tests 

 

 

Figure 29 Performance Scoring Outcomes from Cost Model Tests 
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In deeper detail, the cost models can be examined looking only at the Genetic and 

TSSA outcomes.  This is important since the the TSSA and Genetic algorithms are the two 

that we desire to compare the most. 

 

Figure 30 Fitness Scoring Outcomes minus Accumulator Results 

 

Figure 31 Performance Scoring Outcomes minus Accumulator Results 
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One interesting outcome in Figure 30-31 is how on the Genetic algorithm, TSSA 

still comes out ahead with Test 1, but with tests 2-5 it does not using the Fitness cost model.  

Note how the Genetic algorithm does not perform better than TSSA with regards to the 

Performance cost model.  From here it was decided that TSSA would outperform Genetic 

regardless of changes to the parameters of the cost model with regards to the Performance 

cost model. Genetics’ scoring in its own domain (Fitness rating) is unreliable since 

according to different cost parameters it either wins or loses. In all, this shows that the 

TSSA algorithm is able to consistently find a solution that the Performance cost model 

considers strong, showing that regardless of the changes to cost parameters, TSSA with 

Performance will still find a good solution according to the rules stated by the cost 

parameters. 

 Accumulator Results 

With Twill’s original accumulator, we can define a target percentage of SCC 

instructions to be in hardware.  Ideally, Twill will generate a hardware partition exactly as 

large as the target percentage that has been defined.  However testing of Twill’s 

Accumulator Partitioning Algorithm found that the algorithm operates on latency 

thresholds.  Latency thresholds are set by the user, and the cumulative latency of all the 

SCC instructions in hardware are summed together and judged against this threshold.  This 

meant that while 30% hardware may be desired, there may only be a choice between 20% 

and 50%.  This resulted in partition outcomes that would tend to follow a smooth sloping 

0-100% instructions-in-hardware outcome, but would succumb to flat valleys where the 

threshold could not be crossed.  The partitions generated could still be evaluated using the 

Fitness and Performance ratings however.  The only issue to keep in mind is that a clean 



  

60 

 

range could not be obtained by the design of Twill’s Accumulator.  Test code was run 

through the accumulator in order to see the shape that the cost models would generate under 

a single cut that moved across the original homogeneous partition.  A very strong trend 

was observed in both the performance and fitness ratings with Figures 32-33. 

 

Figure 32 MIPS Performance Ratings Given Different Amounts of HW 

Implemented 

 

Figure 33 MIPS Fitness Ratings Given Different Amounts of HW Implemented 

It is clear that both ratings have “sweet spots” where the best fitness and best 

performance can be achieved.  As seen in the results of a MIPS simulator being the test 

case, the fitness minima can be seen where 60% of the SCCs are implemented in 
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hardware.  The performance maxima also has its sweet spot at this location, seen in Figure 

34 and Figure 35. 

 

Figure 34 MPEG-2 Performance Ratings 

 

Figure 35 MPEG-2 Fitness Ratings 

Other test code shows performance favoring high hardware counts up to a point 

where higher hardware counts do not result in lucrative trade offs.  Fitness ratings of the 

same outcome show extreme favoritism to low hardware counts because of its 

implementation of SW_COST and HW_COST.  Unlike performance ratings, fitness 
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ratings only count SW_COST once.  Leveraging both, the best spot for minimal ratings is 

at 50%. 

 Tabu Search Simulated Annealing Results 

7.3.1 Simulated Annealing Neighborhood Generator 

Creating SANG inside LLVM required the creation of a cost model, and it is built 

into DSWP’s pass as the “Partitioning Algorithm”.  This made it so that SA could be run 

at any time on a given PDG.  Inside a graph node, trait1 and trait2 dictated the starting heat 

and cool down increments respectively.  The heat of a node was decided to factor into the 

A/B calculations to give a contour to the energeticness of a system, and the cool down 

factor was tuned to give a meaningful decrease in the chance for a solution to change 

drastically.  The initial head was also tuned to ensure that the initial runs were radical 

enough that the chance for a solution change was extremely high. 

As noted before, SANG examines the parent solution initially.  For each instruction 

encountered, it checks the parent solutions partition for that instruction.  If it exists in the 

parent's SW partition, it will continue the evaluation.  If it is not part of the SW partition 

(and thus is part of the HW partition), it will turn in back into SW.  Now back to the SW 

instruction, there are two chances it has to become HW.  This was done by inverting the 

partition assignments for each SCC instructions. 

Either a random(0,1) variable being greater than exponent(A/B) or A > B will turn 

an instruction into HW.  This A B comparison was decided to be derived from the current 

latency costs and the total costs respectively.  The costs were also normalized. This process 

of HW/SW partition assignment goes on until all the instructions have been accounted 

for.  After this the performance (TSSA) and fitness (GA) costs can be evaluated. 
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Tuning was required to give the random(0,1) comparison a “valid” competitor, 

being exp(A/B).  It was desired to have exp(A/B) fall into 0-1.0 so that the random 0.0-1.0 

could create a threshold when exp(A/B) gets evaluated.  Along with this evaluation, the A 

> B is also going to be investigated as well, as a balance should be struck there. 

The cost model was done using an accumulating delay time (for the code being 

processed) called SW_TIME while there also existed the HW_TIME result for a given 

instruction.  Like originally, the delay time is extracted from an estimation on the latency 

cost for the given instruction.  This latency cost can be used to represent SW_TIME, being 

the time cost of running the system in software.  Along with SW_TIME, HW_TIME takes 

the latency and divides it b a scalar value to simulate the speedup of having an operation 

in silicon. Along with the general time costs, there is also the “generic” 

HW_COST/SW_COST.  This cost value is supposed to represent a second constraint, such 

as area or power.  The random element in SANG, and the variability of trait1 and trait2 

allowed some difference in the distributions of hardware and software. 

To show the operation of the algorithm, we have here a parent partition 

distribution.  The instructions are ordered in an array by the order of occurrence during the 

SANG pass.  As explained, it’s clear that the highlighted points are the ones that can be 

turned into HW since they exist as SW in the parent.  Anything assigned to HW will 

become SW automatically.  This operation is carried out many times, for a set number of 

generations.  With each generation of the SANG pass, in full implementation, the solution 

set grows drastically.  Assuming 5 children per parent are created, we get the following 

growth in Table 2.  
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Table 2 Solution Node Growth 

Iteration Explored Nodes Total Nodes Children Created 

1 0 1 5 

2 1 6 30 

3 7 36 180 

4 43 216 1080 

5 259 1296 6480 

6 1555 7776 38880 

7 9331 46656 233280 

8 55987 279936 1399680 

9 335923 1679616 8398080 

10 2015539 10077696 50388480 

 

Iterations are the amount of times that the edge nodes (children in the previous pass) 

as explored and used to generate new children.  Explored nodes is the total amount of nodes 

that have had partitions generated and rated.  Total nodes are the existing nodes at the time 

of the given iteration (this includes the unexplored fringe nodes).  Children Created as the 

results of the fringe nodes generating five children each. As it can be seen, there is an 

exponential increase in the amount of nodes required for each consecutive SANG pass. 

Assuming we iterate 6 times: in order to run the next iteration, there must be all of 

the total nodes generated at a given time, which begins to rise drastically by iteration 

7.  With 233,280 nodes created, each having a map of HW/SW partitions, while keeping 

track of 46,656 current nodes, a typical machine will start having issues running the search 

any further.  Given sufficient time, memory, and processing power though, an exhaustive 

SANG search can probably reach a sufficient solution. 

One major limitation is memory, as assuming each node requires 1 kilobyte of 

memory, then by iteration 7 we require 233 megabytes of memory to observe each 

node.  After this point, further iterations reach the gigabytes, with iteration 10 requiring 10 
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gigabytes.  The amount of paging and swapping necessary to render this correctly becomes 

ludicrous, and a local search shaping algorithm starts to sound extremely refreshing. 

7.3.2 Cuts and Hardware Nodes 

It was desired to generate data based on the amount of SCC instructions assigned 

to hardware and the cuts done over the PDG of SCC instructions.  This data was collected 

over a variety of test cases and examined to ensure that the number of cuts and hardware 

instructions were not linear, since the same number of cuts done in different ways can 

generate different amounts of HW/SW distributions.  If this relation was extremely linear, 

this would indicate a problem in the SANG system as one of the hinging factors is its ability 

to do widely different cuts than Twill’s original Accumulator method.  A general trend of 

more instructions/more cuts was expected still though, as the more variety there is in a 

system, the more the system will have the irregular element.  The irregular element is 

hardware in this case, as the system starts of originally as all software.  The results are 

shown in Figures 36-38. 
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Figure 36 MIPS Cut and Node Relations Using SANG + Performance Ratings 

 

Figure 37 MIPS Cut and Node Relations Using SANG + Fitness Ratings 

 

Figure 38 Blowfish Cut and Node Relations Using SANG + Performance Ratings 

The cut and hardware distributions were expected, and the spread of cuts and 

hardware instructions shows that SANG has a very broad search relative to both the cuts 

made and the amount of hardware used.  This is important, as this kind of variability is 

desired in a search like Simulated Annealing. 
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7.3.3 Cuts and Scores 

The cuts that were made and the scores that are achieved by these algorithms is one 

of the main concerns.  To gather data on the score/cut tradeoffs, iterations of the SANG 

algorithm were run using different starting temperatures, cool down rates, and 

depths.  These were modulated and then scored against each other to see what configuration 

the algorithm should be in to get the strongest result.  The algorithms had cut counts and 

scoring added to them in order to make this data gathering possible. The cut and HW 

instruction distributions were tallied in a variety of test cases, using code such as a MIPS 

simulator, AES encryption, or a Blowfish Encryption. 

 

Figure 39 Blowfish SANG Performance by Cuts Results 
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Figure 40 MPEG-2 SANG Performance by Cuts Results 

 

Figure 41 MIPS SANG Performance by Cuts Results 

It’s clear that a wide range of cuts can get you some similar performance ratings, 

seen in Figures 39-41.  The lowest ratings show up with the lowest amounts of cuts, 

meaning that a careful cut method will garner a better performance score as opposed to a 

large amount of cuts, such as 25~30.  With more cuts comes more queues, and more 

communication delays.  The Performance Rating system does take into account these 
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ratings.  To preemptively compare TSSA/SANG with the genetic algorithm, the genetic 

fitness scoring will be examined as well.  Firstly, with SANG as the shaping and 

Performance as the Scoring, the MIPS code sample got the results shown in Figure 

41.  Scoring the solutions found by SANG/Performance scoring using  the Fitness scoring 

showed the following cut/fitness distribution in Figure 42. 

 

Figure 42 MIPS SANG Fitness by Cuts Results 

While in the Performance Algorithm there is a split, showing that there are optimal 

and no optimal cuts, with the fitness algorithm and it’s disregard for communication costs, 

there are no optimal or non-optimal cuts. 

Changing the system to run a SANG/Fitness scoring was then done to study the 

effects of using the fitness algorithm.  Both the performance and Fitness Ratings were 

seen.  This configuration means that SANG was still used, but the fitness rating was used 

to contour the results.  The following Figures, 43 and 44, uses MIPS code as the input. 
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Figure 43 MIPS SANG Performance by Cuts Results 

 

Figure 44 MIPS SANG Performance by Cuts Results 

The performance scores rise dramatically, and the fitness scores do not improve 

compared to the SANG/Performance scoring, which garnered the same Cut and Score 

results with admittedly more spread, but as a whole using the SANG/Fitness combination 

of scoring harmed the Performance Rating of the solutions (105 compared to 169). 
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7.3.4 Hardware and Scores 

While the cuts and score relations give valuable data, the relation of hardware 

instructions to score is also desired.  Shown from both the data seen in cuts made vs. 

hardware instructions data and cuts made vs. performance scoring, we can expect that we 

will have a range of performance outcomes for the same number of hardware instructions. 

 

Figure 45 Blowfish HW Nodes Used with Resulting Performance Ratings 

 

Figure 46 MIPS HW Nodes Used with Resulting Performance Ratings 
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A general downward trend is observed in Figures 45-46, but with a range of 

instructions in hardware, a split is seen in the rating while the hardware instruction counts 

stay the same.  The cost differences can be quite drastic, as shown in the MIPS result as 

opposed to the Blowfish result. 

7.3.5 Iterations and Scoring 

To ensure that iterations did indeed shape the Performance Rating to an optimal 

value, the scores found were plotted with the iterations they were found with.  This is done 

to show the range of solution outcomes that can be expected with a given set of iterations 

seen in Figure 47. 

 

Figure 47 SANG Iterations with Resulting Performance Ratings 

As the iterations increased, the score range for best results shrank exponentially as 

the ideal outcome was found.  There is a tradeoff, as described beforehand the amount of 

memory and time needed to operate on higher iterations is massive, and tabu search will 

help localize this search, allowing deeper iterations without having to use massive amounts 

of processor time and memory to generate a solution.  It is clear that these graphs all follow 
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a very similar distributions.  This means that despite the randomness, SA was still shaping 

the outcome of our partitions according to a cost contour defined by the A/B definitions 

(used in the comparison and exponent calculations).  While any of solutions found with 

SANG are valid, let’s see if we can get tighter distributions around the best case scenario 

using the tabu search. 

7.3.6 Tabu Search 

The tabu search will act as if it can only see locally and move through the SANG 

map we have created. Unlike the A/B focused SANG pass, the Tabu Search only cares 

about comparing performance of each algorithm.  This means that the more complex 

performance calculation is what defines the tabu search. Starting at the center solution 

node, it examines it and all its children, looking for the best solution, as noted before with 

the idea of the “TAU” solution node.  Upon exhausting the nodes, it sets the tau node as 

tabu and gathers the next set of children and continues its search.  If a tau node was found 

to be gamma (the best possible so far encountered), then it will be set as gamma. 

Assuming that the TSSA algorithm only creates SANG children when needed we 

get the following solution node requirements per iteration in Table 3. 
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Table 3 Tabu Search Children Growth 

Iteration Explored Nodes Total Nodes Children Created 

1 1 6 5 

2 7 11 5 

3 18 16 5 

4 34 21 5 

5 55 26 5 

6 81 31 5 

7 112 36 5 

8 148 41 5 

9 189 46 5 

10 235 51 5 

 

Unlike an exhaustive SANG pass, we do not need to save the parent nodes after 

creation, but even with saving, after 10 iterations we cover 235 nodes rather than 2015539, 

in the time it takes for roughly 5 generations of SANG to be created in full.  Since TSSA 

can explore up to 10 iterations deep in this time as shown in Table 3, it has the chance to 

find solutions in iterations 6-10 of SANG that would have taken much longer to 

generate.  This directed and greedy search that follows the best performance node contours 

and shapes the outcome distribution of HW/SW nodes aggressively.   We can see this 

search actively running with the following Performance vs. Iterations graph for various 

input samples. 
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Figure 48 MIPS Code with the TSSA Pass 

 

Figure 49 GMS Code with the TSSA Pass 
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Figure 50 AES Code with the TSSA Pass 

As it can be seen in Figures 48-50, the tabu node in each iteration is shown 

alongside the gamma node.  The gamma node is the best one found so far. Sometimes the 

Tabu Search does get more concrete results than the SANG passes that it searches across, 

but if early distributions of HW/SW SCC instructions are effective enough they will stay 

as the gamma node if no better solutions can be found, like in the AES example.   

 Genetic Search Results 

7.4.1 Population Evaluation 

For each generation, the population is defined initially by just a genome and then 

is generated into an actual partition distribution.  This distribution includes the ratings for 

fitness and performance, just like the TSSA/SANG/Random/Allocator solutions.  After the 

solutions are evaluated, their genomes will be extracted, and the solutions will be destroyed 

(unless it is the best possible found).  This allows the genetic search to stay local, and avoid 

rapid exponential growth like the exhaustive SA algorithm. 
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After creation, the population is sorted by fitness to create a distribution with the 

highest performing solution on one end of the spectrum and the worst on the other end of 

the spectrum.  Once this occurs, two random numbers are rolled to determine which 

solutions to pick out of this sorted array of solutions. 

7.4.2 Crossover and Mutation 

Once two solutions are selected, their genomes are crossed over by choosing a split 

point in the alleles and copying over the needed data into two new genomes. After crossing 

over, a modulo operator is called with respect to the size of the genome array. For 

LIMIT_MUTATION times, the bit designated by the modulo operator is flipped.  Since 

we usually are dealing with a SW/HW partition, software becomes hardware and vice 

versa. 

After mutation is over, the process starts again with new genomes. 

7.4.3 Cuts and Hardware Instruction Nodes 

Like in the SANG algorithm, the amount of instructions compared to cuts was 

studied. 
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Figure 51 MIPS Nodes and Cuts Relationships 

 

Figure 52 MPEG-2 Nodes and Cuts Relationships 
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Figure 53 Blowfish Nodes and Cuts Relationships 

All of these distributions in Figures 51-53 were created by Genetic Algorithms 

using Fitness as a rating system. The characteristics of each graph are similar to one 

another, showing a linear increase from 10-30 cuts, and a curve downward past that 

point.  Some of the higher cut solutions had extremely low numbers of hardware in them, 

meaning that hardware was becoming “pockmarked” with small bits of hardware 

interleaved with software. 

7.4.4 Cuts and Scores 

The relationship between the number of cuts and the fitness score calculated was 

also decided. 
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Figure 54 MIPS Fitness and Cuts Relationships 

 

Figure 55 MPEG-2 Fitness and Cuts Relationships 
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Figure 56 Blowfish Fitness and Cuts Relationships 

As shown in Figures 54-56, the fitness score of the genetic algorithm stayed quite 

stable with the amount of cuts given.  It must be kept in mind that the genetic algorithm’s 

fitness calculation does not take communication costs into effect.  However, the genetic 

algorithm’s fitness rating does tend to rate less cut graphs with a better fitness score. 

7.4.5 Hardware and Scores 

Taking a look at the relation of hardware instructions assigned compared with the 

fitness scores we get the following outcomes. 
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Figure 57 MPEG-2 Nodes and Fitness Relationships 

 

Figure 58 Blowfish Nodes and Fitness Relationships 

A lower amount of hardware instructions is seen as lucrative as seen in Figure 57-

58, but also a strikingly high amount of hardware is also seen as desirable as well.  Each 

data point is an outcome of a multi-generational pass, and as such, this means that for some 

population/generation/mutation combination, a high amount of hardware was seen as 

lucrative for the same problem set that many earlier iterations of 
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population/generation/mutation saw as undesirable.    It is also possible that lower 

population/generation counts would not allow the genetic algorithm to explore the solution 

space very well, because coupled with lower mutation counts, a software heavy solution 

may seem like the best. 

7.4.6 Time Taken and Score 

Along with the general score, it was desired to see if spending more time did indeed 

generate tighter results.  If not, this may mean that the genetic algorithm is not following 

contours correctly. 

 

Figure 59 MIPS Time Taken and Resulting Solutions Given Multiple Genetic Runs 
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Figure 60 MIPS Time Taken and Resulting Solutions Given Multiple Genetic Runs 

 

Figure 61 MIPS Time Taken and Resulting Solutions Given Multiple Genetic Runs 

Using Performance as a Contour 
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Figure 62 MIPS Time Taken and Resulting Solutions Given Multiple Genetic Runs 

Using Performance as a Contour 

As shown with Figure 59 - 62, using the genetic algorithm together with the fitness 

rating does get a tighter genetic score as time used to calculate the solution 

increases.  However the performance rating is all over the place, with no clear trend.  Using 

the genetic algorithm with the performance rating instead of the fitness rating does garner 

tighter performance and fitness scores for the solutions.  The changes to the fitness ratings 

and quite drastic and exponential, while the performance scoring is more gradual, but 

definitely more spread out at the start as opposed to later. 
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Figure 63 MPEG-2 Time Taken and Resulting Solutions Given Multiple Genetic 

Runs 

 

Figure 64 MPEG-2 Time Taken and Resulting Solutions Given Multiple Genetic 

Runs 
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Figure 65 MPEG-2 Time Taken and Resulting Solutions Given Multiple Genetic 

Runs Using Performance as a Contour 

 

Figure 66 MPEG-2 Time Taken and Resulting Solutions Given Multiple Genetic 

Runs Using Performance as a Contour 
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With this test case in Figure 63 through 66, some “bouncing” of scores is also 

seen.  Using the genetic algorithm with a fitness rating, the resultant fitness rating can be 

in three different places with the performance rating still being scattered.  Using the 

performance rating instead gets a cleaner fitness rating over time result along with a cleaner 

performance rating over time result. 

 Cuts and Queues 

While a performance or fitness rating may be good, it was important to see how 

estimated cuts actually lined up with the amount of queues created.  Normalizing the 

number of cuts and number of queues by the amount of SCC instruction nodes, the 

following graph was generated using the best case results from Twill’s Accumulator 

algorithm, the Genetic algorithm and the TSSA algorithm. 

 

Figure 67 Overall Cut and Queues Generation Relationships 

This positive linear trend in Figure 67 showed that using cut estimations for 

comparing algorithm performance according to queues generated, resulting in actual 

communication costs.  By passing over 0% to 100% of a solution in hardware according to 
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the Accumulator algorithm, it was possible to obtain the queue count for the same range of 

HW/SW that the Genetic, Tabu Search, and Simulated Annealing results generated. 

As seen in Twill's original runs, certain percentages of hardware/software blends 

would generate an extremely large amount of queues, rendering the solution not lucrative 

at all.  For example for the MIPS system, from 40% to 80% software implemented, the 

amount of queues would climb to the hundreds (seen in Figure 68).   

 

Figure 68 Queues Generated with Similar HW/SW Distributions 

Combining the runs done across the same MIPS test code with Genetic, SANG, and 

TSSA the best case of queues generated could be found.  It was on average 100 less than 

the original implementation.  It’s clear that the ability to do multiple cuts in the PDG with 

solutions such as SANG, TSSA, and GA lets better solutions be explored in areas that 

Twill’s Accumulator algorithm would generate an extremely bad solution.  This does not 

mean that across the board SANG, TSSA, and GA generate better solutions all the time, as 

Twill can still generate extremely low queue counts for other HW/SW percentages.  
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However as noted, previously unexplored areas of HW/SW distributions can now be 

explored. 

 

 

 

  



  

91 

 

8   Conclusion 

Given the implementation and evaluation of the algorithms individually, it’s time 

to compare the algorithms and observe which partitioning algorithm out of Tabu Search 

Simulated Annealing, Genetic Algorithm, and Twill’s original accumulator, are the most 

effective and why.   The main focus will be on each algorithm’s ability to generate a low 

number of cuts while still delivering a heterogeneous solution.  Further work that can be 

done on Twill with these new algorithms will be covered as well. 

 Tradeoffs 

With solution generation in heterogeneous automation, the balance between time 

taken to find a solution and the solution quality is important.  In the domain of time taken 

for each solution, we can see that TSSA is the strongest contender in time taken on the 

Fitness and Performance front.  This is due to it’s trait of “thrashing” that embraces pseudo 

randomness as a solution, but still manages to shape it properly using the performance 

algorithm. 

With regards to the quality, the TSSA solution trumps in time, but on larger code 

samples the time taken to get to an ideal solution increases.  With larger, more dynamic 

code bases, the time taken to reach the optimal solution will increase for all 

algorithms.  With this knowledge we can create the following graph showing the effect of 

input code size with time taken to reach an optimal solution.  An optimal timing solution 

is the solution that stays static so that out of the whole time spent running the program, ¼ 

of the time is spent on the same solution.  At this point, further changes to the solution are 

an unlikely possibility.   
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 The Cause: Cost Model or Algorithm? 

Using a different cost models inside the algorithms was explored, but the solutions 

generated did not help GA’s performance ratings or TSSA’s fitness ratings.  This was done 

to see if the cost model or algorithm was the cause of differences in the Genetic and TSSA 

algorithms.  To do this, the comparisons in the LLVM Transform were swapped from 

performance to fitness and fitness to performance respectively.  This means that the 

Genetic algorithm could be run but the performance would be used to rate the solution and 

decide which population members would be mated.  The resulting solutions would still 

have both their fitness and performance ratings regardless, so these could both be extracted.   

 

Figure 69 Combinations of Algorithms and Cost Models with Fitness Rating 

Outcomes 
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Figure 70 Combinations of Algorithms and Cost Models with Performance Rating 

Outcomes 

As seen in Figure 72 and 71, using the vanilla Genetic Fitness algorithm resulted in 

the best fitness solution, while changing TSSA's comparison from performance to fitness 

did not modify the solution's fitness rating much.  The Genetic Algorithm using the 

Performance rating did result in harming the fitness rating however. In the space of 

Performance ratings, using Fitness ratings in TSSA did not harm the results as much as 

Genetics’ blending with Performance.  The performance ratings of Genetic were left 

largely unchanged.  

Overall swapping the cost model did tend to harm their “normal” ratings, being 

TSSA’s performance and GA’s fitness respectively.  For the Genetic algorithm, the cost 

model swap ended up harming the results much more, increasing the rating by 160% as 

opposed to 15% for TSSA's swap.  As such, it can be said that TSSA appears to handle 

different cost models better, merely using them as shaping, while genetic search does not 

benefit from a different cost model as much. 
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 Summary 

Examining the data shown throughout this thesis, it is clear that the optimal 

algorithm to use is TSSA due to its excellent tradeoffs with regards to solution time and 

solution quality, it’s minimization of graph cuts, it’s ability to examine high HW and high 

SW count solutions quickly, and it’s ability to rapidly search a large graph using a fast local 

search.  

 

 

Figure 71 Fitness Scoring with CHStone Tests 

 

Figure 72 Performance Scores with CHStone Tests 
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Examining the scores of various CHStone tests in Figures 69 and 70, an outcome 

similar to the cost models was examined.  Performance was dominated by TSSA, and the 

best Fitness scorings also came from TSSA as well.  The TSSA algorithm was the most 

dependable algorithm compared to the Accumulator and Genetic Search algorithms 

because of its consistently strong Performance scores along with its generally stronger 

Fitness scores 

 Future Work 

This thesis focused mainly on the prospects of different partitioning algorithms 

being used inside Twill (or other automatic heterogeneous programs) and their 

results.  Overall this work achieved comparing and examining the options at hand, but there 

are still other important areas to cover in the space of heterogeneous compilation.  The cost 

models used with the algorithms were fairly basic, and factors such as software/hardware 

costs and software/hardware time tradeoffs were not considered or expanded upon.  Further 

work in this area can lead to better estimations and more accurate solutions when multiple 

constraints come into play.  The algorithms and cost models here were fairly unconstrained. 

The prospects of thread scheduling was not covered either in this dissertation, and 

scheduling is massively important in heterogeneous computing.  Combining a well-defined 

cost model and scheduling algorithm with the partition algorithms covered in this thesis 

will pave the way to a formidable automatic heterogeneous compiler.  Along with these 

potential exploration points, the full toolchain of Twill was not used.  The final component 

of turning the partitioned code into a bit stream to be loaded onto an FPGA and tested was 

not done due to basic block malformation caused by the recompilation after the partitioning 

algorithm finished its analysis.  Implementing this final stage of Twill correctly will help 
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solidify the data found in this investigation, and will answer the question as to whether the 

cost models can accurately model solution performance on Twill.  
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APPENDICES 

A   Definitions Restated 

SCC - Strongly Connected Component, a representation of an Instruction 

Heterogeneous Solution - A program that is divided into hardware and software 

Hardware/Software Partition - The portion of a heterogeneous solution in 

hardware/software 

Program Dependence Graph - The graph of SCCs that is generated and used to 

make the software and hardware partitions 

SCC Instruction Node - Also called an SCC, these contain the instruction and 

pointers to the next instruction. 

Directed Acyclic Graph - A graph of instructions that exists initially as a software 

only homogenous solution 

Partitioning Algorithm - An algorithm that splits up a homogenous software 

solution into a heterogeneous solution.  Made up of a heuristic and a cost model 

Solution Node - A singular heterogeneous solution intended to be used in a search 

graph, contains extra metadata describing the solution enclosed within 

Heuristic - A function used to move across a graph of solution nodes in a manner 

dictated by a cost model 

B   Early Rating Comparison 

Herein lay some early results of comparing ratings and scorings before the final 

results shown in the conclusion. Exploring these previously uncharted HW/SW 

distributions that were off limits to Twill’s Accumulator algorithm, it was desired to see 

whether GA, SANG, or TSSA was a stronger algorithm according to their self-defined cost 
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model.  Both the Performance rating and Fitness rating were applied to all solutions 

generated in order to study which solution would generate the strongest across-the-board 

solutions. 

B.1 Using the Performance Rating 

In order to see which algorithms generate the strongest solution, all the algorithms 

were scored according to performance and fitness as ratings.  These values were then 

compared with one another to answer the question: does using one algorithm over another 

get us a better overall result?  The performance ratings for a given code sample were 

collected and normalized to avoid differences in scoring due to changes in the encountered 

SCC nodes.  In Figures 73-78, code samples are shown with their performance and fitness 

ratings. Keep in mind that performance ratings are rated to have lower solutions being 

better as performance ratings were generated with penalties and communication costs in 

mind.  Fitness ratings will also follow a lower is better rule, as fitness ratings are made up 

of the latency overhead. 

 

 

Figure 73 MIPS Performance Scores 
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Figure 74 MIPS Fitness Scores 

 

Figure 75 MPEG-2 Performance Scores 

 

Figure 76 MPEG-2 Fitness Scores 

 

Figure 77 AES Performance Scores 
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Figure 78 AES Fitness Scores 

It is clear here that the genetic algorithm, while generating very good results 

compared to the accumulator, underperforms in even its own fitness scoring at times.  This 

makes using TSSA or SANG quite lucrative.  Granted, SANGs use of inverting SW/HW 

SCC instructions for a given solution’s children (“thrashing”) results in a quick traversal 

of high amounts of SW and high amounts of HW early on in it’s algorithm.  The genetic 

takes time to explore the high HW domain, as the mutations must occur and survive the 

high SW cost solutions first. 

 


