
AUTOMATING SELF EVALUATIONS FOR SOFTWARE ENGINEERS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Jonathan Rodrigo Alaura Miranda

June 2016

c� 2016

Jonathan Rodrigo Alaura Miranda

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Automating Self Evaluations for Software

Engineers

AUTHOR: Jonathan Rodrigo Alaura Miranda

DATE SUBMITTED: June 2016

COMMITTEE CHAIR: David Janzen, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Lubomir Stanchev, Ph.D.

Associate Professor of Computer Science

iii

ABSTRACT

Automating Self Evaluations for Software Engineers

Jonathan Rodrigo Alaura Miranda

Software engineers frequently compose self-evaluations as part of employee perfor-

mance reviews. These evaluations can be a key artifact for assessing a software

engineer’s contributions to a team and organization, and for generating useful feed-

back. Self-evaluations can be challenging because a) they can be time consuming,

b) individuals may forget about important contributions especially when the review

period is long such as a full year, c) some individuals can consciously or unconsciously

overstate their contributions, and d) some individuals can be reluctant to describe

their contributions for fear of appearing too proud [24].

UNBIASED, Useful New Basic Interactive Automated Self-Evaluation Demon-

stration, is a web application designed to tackle the challenges of performing a self-

evaluation by automatically gathering data from existing third party APIs, perform-

ing an analysis on the data, and generating a self-evaluation starting point for soft-

ware engineers to build o↵. The third party APIs currently supported are: Bitbucket,

Gmail, Google Calendar, GitHub, and JIRA.

iv

ACKNOWLEDGMENTS

• A special thanks to my Mom and Dad for everything. Shout out to my big

brothers, JJ and Chris, my big sister, Cheryl, and my little brother, Christian.

We made it!

• A big thanks to Dr. Janzen for the idea, keeping me motivated, and advising me

through this entire thesis process. Thanks to the Cal Poly CSC Department.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Contribution . 1

2 BACKGROUND . 3

2.1 Self Evaluations . 3

2.1.1 Self Evaluation Questions . 3

2.1.2 Challenges . 4

2.1.3 In Capstone Courses . 5

2.2 Email . 5

2.3 Calendar . 6

2.4 Source Code Repositories . 7

2.5 Software Management Tools . 8

3 UNBIASED FEATURES . 9

3.1 Solving Self Evaluation Challenges 9

3.2 Accessing User Data on Third Party APIs 10

3.2.1 Gmail . 10

3.2.2 Google Calendar . 11

3.2.3 GitHub . 11

3.2.4 Bitbucket . 12

3.2.5 JIRA . 13

3.3 Third Party Data Analysis . 14

3.3.1 Gmail . 15

3.3.2 Google Calendar . 16

3.3.3 Bitbucket . 17

3.3.4 GitHub . 17

3.3.5 JIRA . 19

vi

3.4 Automatic Self Evaluation Generation 20

4 UNBIASED SOFTWARE DESIGN . 32

4.1 Overview . 32

4.2 Technologies Used . 33

4.2.1 Google App Engine . 33

4.2.2 Google Polymer . 34

4.2.3 OAuth 2.0 . 35

4.2.4 Natural Language Toolkit . 35

4.2.5 urlfetch . 35

4.2.6 apiclient.http . 37

5 VALIDATION . 38

5.1 Validation Framework . 38

5.2 2016 Capstone Pre-Evaluation Survey 39

5.3 2016 Capstone Post-Evaluation Surveys 40

5.3.1 2016 Capstone Post-Evaluation Survey for Control Group . . . 40

5.3.2 2016 Capstone Post-Evaluation Survey for Testing Group . . . 40

5.4 Results . 42

5.5 Analysis . 43

5.5.1 Does using UNBIASED save software engineers time? 43

5.5.2 Does using UNBIASED help software engineers perform more
accurate self-evaluations? . 45

5.5.3 Does using UNBIASED increase the number of sources software
engineers use when performing a self evaluation? 46

5.5.4 Does using UNBIASED make it easier for software engineers to
write their self evaluations? 48

5.5.5 Does using UNBIASED increase the quality of the self evaluation? 50

5.5.6 Do software engineers like using UNBIASED? 50

6 RELATED WORK . 53

6.1 Bitbucket Analysis Tools . 53

6.1.1 Awesome Graphs for Bitbucket 53

6.2 Gmail Analysis Tools . 53

6.2.1 Gmail Meter . 54

6.3 Calendar Analysis Tools . 54

vii

6.3.1 GTimeReport . 54

6.4 GitHub Analysis Tools . 55

6.4.1 GitHub Pulse . 55

6.4.2 Git Commit Log Analysis Made Easy 55

6.4.3 Git Inspector . 56

6.5 JIRA Analysis Tools . 56

6.5.1 JIRA Reports . 57

6.6 Discussion . 57

7 CONCLUSIONS . 58

7.1 Discussion . 59

8 FUTURE WORK . 60

BIBLIOGRAPHY . 61

APPENDICES

A Pre-Evaluation Survey . 64

B Post-Evaluation Survey for Control Group 67

C Post-Evaluation Survey for Testing Group 70

D Survey Results . 74

viii

LIST OF TABLES

Table Page

4.1 JIRA Time Data for Sequential and Batch Requests 36

4.2 GitHub Time Data for Sequential and Batch Requests 36

4.3 Gmail Time Data for Sequential and Batch Requests 37

4.4 Google Calendar Time Data for Sequential and Batch Requests . . 37

ix

LIST OF FIGURES

Figure Page

3.1 User interface to query the Gmail API. 11

3.2 User interface to query the Google Calendar API. 12

3.3 User interface to query the GitHub API. 13

3.4 User interface to query the Bitbucket API. 14

3.5 User interface to query the JIRA API. 15

3.6 An example Gmail analysis. 22

3.7 An example Gmail analysis that shows when a user wants to see
which emails contain a particular keyword. 23

3.8 An example Google Calendar analysis. 24

3.9 An example Bitbucket commit analysis. 25

3.10 An example Bitbucket issue analysis. 25

3.11 An example GitHub issue and pull request analysis. 26

3.12 An example GitHub commit analysis. 27

3.13 An example JIRA issue analysis for Issue Stats, Issue time breakdown
by issue type, and Issue time breakdown by issue status. 28

3.14 An example JIRA analysis that lists all the issues on which the user
has logged work. 29

3.15 An example JIRA analysis where UNBIASED can glean accomplish-
ments, accomplishment details, strengths, and areas of improvement
to populate the self evaluation form. 30

3.16 An example self evaluation generated from JIRA and GitHub data.
Note that the generation comments were left in for clarity but it is
expected that users will remove those comments. 31

4.1 Simple deployment diagram of the UNBIASED system. 32

4.2 Diagram of the interaction between Handler, Service, and Analyzer. 33

5.1 Survey results for the amount of time the Testing Group spent per-
forming self evaluations in Spring 2016. 44

5.2 Survey results comparing the amount of time spent performing self
evaluations in Spring 2016 vs Winter 2016. 44

x

5.3 Survey results for how accurate the Testing Group ranked their self
evaluations in Spring 2016. 45

5.4 Survey results comparing the accuracy of the self evaluations in
Spring 2016 vs Winter 2016. 46

5.5 Survey results for what sources the Testing Group used when per-
forming their self evaluations in Spring 2016. 47

5.6 Survey results comparing the number of sources used when perform-
ing self evaluations in Spring 2016 vs Winter 2016. 48

5.7 Survey results for how di�cult it was for the Testing Group to per-
form their self evaluations in Spring 2016. 49

5.8 Survey results comparing the di�culty of performing self evaluations
in Spring 2016 vs Winter 2016. 49

5.9 Average word length of Self Evaluations performed in Spring 2016. 50

5.10 Survey results for how likely the Testing Group would want to use
UNBIASED again in the future. 51

xi

Chapter 1

INTRODUCTION

Software engineers perform self evaluations to assess their strengths, accomplish-

ments, contributions, and areas of improvement. These self evaluations can be used

to generate feedback for improvement or as a way to rationalize a promotion or raise.

Performing a self-evaluation is challenging because it can take a lot of time. It is also

easy for software engineers to forget to include important details. Another challenge

is ensuring that the self evaluation is unbiased and credible.

Software engineers use a variety of tools that track their activities and contribu-

tions. When performing a self evaluation, an engineer can consult these tools as a

helpful resource. Project management tools hold a record of all the work a software

engineer has done. Software repositories are a similar resource, but with changes

made to the source code. Emails hold a record of communication between an engi-

neer and their peers, clients, or supervisors. A calendar or planner is a record that

tracks where an engineer spends their time.

1.1 Contribution

The contribution of this thesis is a new web application, Useful New Basic Interactive

Automated Self Evaluation Demonstration, or UNBIASED for short. UNBIASED

is designed to help software engineers perform their self evaluations. UNBIASED

can automatically request data from third party APIs, analyze the data, and use

the resulting analysis to generate content to fill out a self evaluation. UNBIASED

currently supports the following third party APIs: Bitbucket [3], Github [6], Gmail

[8], Google Calendar [11], and JIRA [15].

1

This thesis aims to answer the following hypotheses:

• HYPOTHESIS-1: Can we solve the challenges of the self evaluation process for

software engineers?

• HYPOTHESIS-2: Can we automatically generate a self evaluation for a software

engineer?

2

Chapter 2

BACKGROUND

2.1 Self Evaluations

This section discusses the background of self evaluations: questions commonly an-

swered, challenges related to performing a self evaluation, and the use of self evalua-

tions in software engineering courses.

2.1.1 Self Evaluation Questions

This thesis focuses on the following five questions commonly found in self evaluations:

• QUESTION-1: List each of your major personal accomplishments/jobs on the

project this quarter.

• QUESTION-2: You may describe [some of] them in detail if you feel it’s appro-

priate or useful.

• QUESTION-3: In what specific ways could/should you have contributed more

to your team project? Explain without making excuses.

• QUESTION-4: Assign yourself a project grade.

• QUESTION-5: Explain the rationale for the grade and justify it with specific

details. Do not repeat material from earlier sections.

Note that these questions are gleaned from a self evaluation form given to software

engineering students in a Capstone course, but they are general enough to be applica-

ble to all software engineers. QUESTION-1 and QUESTION-2 emphasize what the

3

individual has accomplished during the self evaluation period. This lets the reviewer

know what the individual has actually achieved. QUESTION-3 asks individuals to

point out areas of improvement. This lets the reviewer know that the individual is

aware of their weaknesses, and can be used as a starting point for how the individ-

ual can improve in later self evaluations. QUESTION-4 asks the individual to grade

themselves on a familiar and common academic scale (A to F). This lets the reviewer

know how the individual views the quality of their own work. QUESTION-5 asks

the individual to rationalize the grade they gave themself. This is an opportunity for

individuals to point out their strengths and to back up their claims with evidence.

2.1.2 Challenges

This thesis will focus on the following three challenges software engineers face when

performing a self evaluation:

• CHALLENGE-1: Self evaluations can be time consuming.

• CHALLENGE-2: Individuals can forget about important contributions.

• CHALLENGE-3: Self evaluations can be biased and lack credibility.

CHALLENGE-1 highlights that self evaluations can be time consuming. The

quality of the self evaluation will increase with more time, thought, and consideration.

To perform a proper self evaluation, an engineer has to take time and reflect. First,

the engineer has to go through a variety of resources to help them recall what they

worked on. And then the engineer has to write their self evaluation, which comes

with its own challenges.

CHALLENGE-2 highlights that individuals do not always remember what they

contribute to a project. Consider that it is especially hard to remember accom-

plishments you made a year ago, versus accomplishments you have made in the last

4

four months. Work performed by software engineers is commonly documented in

one form or another, but this still presents a challenge. There is some overlap with

CHALLENGE-1, where individuals may have to spend a lot of time going through

various records to help them recall what they have done. And once they find the data

they need, they still need to prioritize what tasks are significant.

CHALLENGE-3 highlights that self evaluations lack credibility. Because self eval-

uations are written by oneself, there is potential for individuals to understate or over-

state their contributions. In a 2006 study by Herbert [24], they found that individuals

tend to not mark themselves accurately. The psychology behind these findings aside,

providing concrete evidence can make all statements credible.

2.1.3 In Capstone Courses

At Cal Poly, software engineering students take an academic year Capstone sequence

that consists of three courses: Software Requirements Engineering, Software Con-

struction, and Software Deployment. In these courses, teams each develop the same

system for an industrial sponsor. As part of their grade in each course, students must

perform a self evaluation (see questions in Section 2.1.2) to grade themselves, high-

light their accomplishments and contributions to the team, as well as evaluate where

they could have done more. These courses also allow students to develop multiple

skills and a unique perspective on their industry [22]. Chapter 5 will report on the

evaluation of UNBIASED in Cal Poly’s capstone courses.

2.2 Email

Emails are important to self evaluations because they contain a large record of com-

munication. As an example of the usefulness of emails, consider the case when an

email is received every time a user is being asked to perform a code review, and an

5

email is sent every time a user requests a code review. Other use cases for email

include: invitations to events and meetings, meeting agendas, reports, documents,

etcetera. Software engineering students use email to communicate with their teacher,

class, project clients, and group members. One unique thing about emails is that

there is no standard format with regard to content structure. This lack of a standard

presents the challenge of figuring out what emails are important and relevant when

running an analysis.

2.3 Calendar

Many software engineers use a calendar to keep track of di↵erent types of scheduled

events: meetings, interviews, trainings, conferences, traveling, social gatherings, and

even dedicated coding time. An event is a general term for an item on the calendar.

Google Calendar is Google’s calendar application and it allows for basic calendar

functionality as well as attendee management (inviting attendees and tracking at-

tendee responses). Some users may use one calendar for all of their events, but it is

also possible for a user to separate their events into di↵erent calendars. Consider the

use case of having multiple calendars, one for work and another for personal events.

Regardless of a calendar event’s source, the real data lies in the event information.

Event information includes a title, start and end dates and times, a location, a de-

scription, whether or not it repeats, and information on the guests (who was invited,

who accepted, who declined, who has not answered). Calendar analysis is important

to self evaluations because it reminds the software engineer where their time has been

spent.

6

2.4 Source Code Repositories

Source code repositories are used to store code and track changes in software projects.

These repositories are a useful resource because they provide a way for engineers to

take responsibility for code as well as commit messages. In this section, we will dis-

cuss two popular web-based code hosting services for source code projects. Between

GitHub, that allows unlimited public repositories, and BitBucket, that allows unlim-

ited private repositories, we are able to cover a large amount of software engineering

teams.

GitHub is the largest code host with more than 35 million repositories [6]. GitHub

allows software development teams to track issues so that they can stay on top of

bugs and add features. GitHub data includes user account information, repository

names, branch names for a repository, pull requests, issues, and commit information

(messages, size, lines touched, files touched) on a branch, and comments on a commit.

Bitbucket supports both Git and Mercurial repositories. Features include pull re-

quests and code reviews, branch comparison and commit history, and high integration

with JIRA, a popular project and issue management app discussed in Section 2.5.

With data from code repositories, it is possible to answer the following questions

relevant to self evaluations: What have I been working on? What files am I working

on? When do I usually commit code? Which of my commits are large? Which of

my commits are small? Who performs code reviews on my commits? Whose code

commits do I review? What issues have taken the most amount of my time? What

types of issues have taken the most amount of my time?

7

2.5 Software Management Tools

Software management tools are used by software engineers to help them manage their

projects. Features often include planning, tracking, and releasing software. Software

engineers are able to collaborate and track bugs, features, and all other issues related

to their software. JIRA is one popular software management tool, and it can be used

by all members of a software engineering team. With JIRA, software engineers can

create, report, and be assigned to di↵erent types of issues. Users can easily log the

amount of time spent on an issue with an optional comment to describe what they

have accomplished [15].

8

Chapter 3

UNBIASED FEATURES

This chapter discusses the main features of the UNBIASED application.

• FEATURE-0: The UNBIASED system attempts to address the challenges of

the self evaluation process.

• FEATURE-1: As a user, I can choose what data UNBIASED can access.

• FEATURE-2: As a user, I can request UNBIASED to analyze my data on

supported third party APIs.

• FEATURE-3: As a user, UNBIASED can automatically fill out parts of my self

evaluation.

3.1 Solving Self Evaluation Challenges

UNBIASED aims to solve the three challenges of self evaluations discussed in Section

2.1.2. They are presented below, again, for convenience.

• CHALLENGE-1: Self evaluations can be time consuming.

• CHALLENGE-2: Individuals can forget about important contributions.

• CHALLENGE-3: Self evaluations can be biased and lack credibility.

UNBIASED aims to solve CHALLENGE-1 by automating parts of the self eval-

uation process. Instead of manually going to each third party service and looking

through record after record after record, users can use the easy-to-use interface of

9

UNBIASED to do the work for them, and all in one place. After gathering and ana-

lyzing the data, UNBIASED can even fill out parts of the user’s self evaluation form:

accomplishments, strengths, and areas of improvement.

UNBIASED aims to solve CHALLENGE-2 by looking at all records in the third

party APIs. From this, UNBIASED attempts to prioritize and bring attention to high

impact or important records. For example, project issues that are listed as having

Critical Priority are probably a bigger contribution than a project issue that is listed

as having a Low Priority. As a fallback, in the case where UNBIASED gets the order

of items mixed up, the user is still able to examine all issues in the user interface.

UNBIASED solves CHALLENGE-3 implicitly because all of the input data to the

system has an associated third party source. This source can be used as evidence to

add credibility to claims made by the author.

3.2 Accessing User Data on Third Party APIs

We designed UNBIASED with users’ trust in mind. UNBIASED allows users to opt-

in to which third party APIs they want to authorize, and users are also responsible for

when and what data UNBIASED analyzes. The following subsections discuss more

about how users interact with third party APIs through the UNBIASED interface.

3.2.1 Gmail

Gmail provides a way to filter or query a user’s emails using their own specialized

syntax [1]. For example, to list all emails received or sent to or from a calpoly.edu

address, the user would enter: [from:*@calpoly.edu OR to:*@calpoly.edu]. If a user

wants to see all the people they interviewed, they could enter the query [interview]

and that would look up all the emails that contain the keyword [interview]. For every

10

query a user wants to perform, they must enter the query in the input field and click

on the “Search” button, and the results of each query will be shown below the search

element. The user interface can be seen in Figure 3.1.

Figure 3.1: User interface to query the Gmail API.

3.2.2 Google Calendar

Once the user grants UNBIASED access to their Google Calendar data, we are able to

present them with a list of all of the calendars to which they have access. This a↵ords

the user the option to select which calendars they want UNBIASED to analyze. The

user has the option to limit the search query between a start and end date. The user

interface can be seen in Figure 3.2.

3.2.3 GitHub

We present the user with four input fields. The first two input fields for the GitHub

repository URL and the user’s GitHub username are required. The third and fourth

are optional input fields for the start and end dates which are used to limit the GitHub

11

Figure 3.2: User interface to query the Google Calendar API.

response to be after the start date, before the end date, or between the two dates. To

begin the GitHub search and analysis, the user can click the “Search” button. The

user interface can be seen in Figure 3.3.

3.2.4 Bitbucket

Once the user authorizes UNBIASED to access their Bitbucket account, we present

the user with a dropdown list of all the repositories to which they have access. The

user must select which repository they want UNBIASED to analyze. The two optional

input fields for the start and end dates are used to further limit the Bitbucket queries

to be after the start date or before the end date or to be between the two dates. To

begin the Bitbucket search and analysis, the user can click the “Search” button. The

12

Figure 3.3: User interface to query the GitHub API.

user interface can be seen in Figure 3.4.

3.2.5 JIRA

UNBIASED is hooked into Cal Poly’s Computer Science JIRA instance, where privacy

between di↵erent projects and users is not of concern. Because of this, we are able

to bypass the user-authentication step. We present the user with a dropdown of all

the projects in the connected JIRA instance. We have an optional input field for the

user’s JIRA username. If the user presents their JIRA username, the search query

13

Figure 3.4: User interface to query the Bitbucket API.

will only look at issues where they are either the creator, reporter or assignee, or

issues that they have logged work under. If the JIRA username is left blank, then

JIRA will look at all issues within the selected Project, and will report stats for all

users found in the project. To begin the JIRA search and analysis, the user can click

the “Search” button. The user interface can be seen in Figure 3.5.

3.3 Third Party Data Analysis

In this section, we discuss the analysis performed on data from each supported third

party API.

14

Figure 3.5: User interface to query the JIRA API.

3.3.1 Gmail

For performance reasons, UNBIASED only examines the email headers, subject, and

snippet (email preview) provided by Gmail. The UNBIASED Gmail analysis is sepa-

rated into: Emails received by, Emails you sent to, and Word Frequency. An example

of a Gmail analysis by UNBIASED can be seen in Figure 3.6 and Figure 3.7.

• Emails received by: Counts the number of emails received by a particular

address. This analysis can be used to let the user know who emails them the

most.

15

• Emails you sent to: Counts the number of emails sent to a particular address.

This analysis can be used to let the user know who they email the most.

• Word Frequency: Uses natural language processing to count the number of

occurrences of a word found in all analyzed emails. This analysis can be used

to highlight words that the user may find important. The user can dive deeper

into the analysis by opening a dialog that links back to all of the emails that

contain a particular keyword.

3.3.2 Google Calendar

UNBIASED returns two analyses performed on Google Calendar data: Title Fre-

quency and Title Word Frequency. In both cases, the Title is based o↵ of the title

of the calendar event. The goal of both analyses is to identify where the user spends

their time. An example of an UNBIASED Google Calendar analysis can be seen in

Figure 3.8.

• Title Frequency: Returns a list of events, grouped by events that have the

same exact title, sorted in decreasing order by the total amount of hours spent.

There is also a column that displays the number of occurrences of each event.

This is useful to see how much time is spent in recurring events like Weekly

Meetings.

• Title Word Frequency: Uses natural language processing to tokenize the

event’s title and returns a list of events, grouped by events that contain the

word, sorted in decreasing order by the total amount of hours spent. There is

also a column that displays the number of occurrences each word appears in

a title. This is useful for events that don’t have the same exact title but can

16

be grouped together. For example, consider that all meetings, regardless of the

nature of the meeting, may have the word “Meeting” in its event title.

3.3.3 Bitbucket

The Bitbucket analysis returns an analysis of: Accomplishments, Issues, Commit

Word Frequency Breakdown, and Commits for a particular repository.

• Accomplishments: List of accomplishments generated from Bitbucket data.

See Section 3.4 for more information on how this is achieved.

• Issues: Returns a list of issues sorted by priority (Blocker, Critical, Major,

Minor, Trivial), then by status (Resolved, Open, New, On Hold, Invalid, Du-

plicate, Won’t Fix) and finally by kind (Enhancement, Bug, Proposal). We do

this to bring high impact issues to the top of the list.

• Commit Word Frequency Breakdown: Uses natural language processing

to break down commit messages and count the number of times a word appears

in a commit message. This lets the user know of frequently occurring keywords

that may indicate what they worked on.

• Commits: Returns a list of all commits made by the user sorted by date.

3.3.4 GitHub

UNBIASED analyzes all issues, pull requests, milestones, labels, and commits where

the user is concerned. It uses all of this information to figure out what the user is

working on. The analysis can be broken down into two parts.

The Issue / Pull Request Analysis looks at all issues and pull requests the user

has either created or worked on.

17

• Issues Assigned: A list of issues where the user is the assignee.

• Pull Requests Assigned: A list of pull requests where the user is the assignee.

• Number Stats: A count of the number of issues and pull requests the user

has created.

• Duration Stats: We then compute an average duration spent on: all closed

issues, all closed pull requests, and all closed issues and all closed pull requests

combined.

The Commit Analysis consists of three parts: Accomplishments, File Breakdown,

Commit Word Frequency Breakdown, and Commits.

• Accomplishments: List of accomplishments generated from GitHub commit

messages. See Section 3.4 for more information on how this is achieved.

• File Breakdown: A list of files sorted by the number of times the user has

modified it. This lets the user know what files they touched the most, which

may indicate where most of their work has been spent.

• Commit Word Frequency Breakdown: Uses natural language processing

to break down commit messages and count the number of times a word appears

in a commit message. This lets the user know of frequently occurring keywords

that may indicate what they worked on. For example, if the word Fixed appears

more often than Added, this may indicate that the user has spent most of their

time fixing bugs than adding features.

• Commits: A list of all commits made by the user sorted by date.

18

3.3.5 JIRA

The JIRA analysis can be performed on a per-project basis. Users can opt into

limiting their search to a specific user. The analysis consists of five parts: Issue stats,

Issue time breakdown by issue type, Issue time breakdown by issue status, and All

issues this user logged hours on. Examples of the JIRA analysis can be seen in Figure

3.13 and Figure 3.14.

• Issue stats: Counts the number of issues the user has created, assigned, and

reported. Also shows the total amount of hours logged by the user.

• Issue time breakdown by issue type: Reports the number of hours spent

by the user by issue types (Story, Task, Sub-Task, Bug, Epic).

• Issue time breakdown by issue status: Reports the number of hours spent

by the user by issue status (Done, In Progress).

• All issues on which this user logged hours: A list of all issues on which

the user has logged work. Each issue has bullet points that represent the work

logged by the user: number of hours the user has spent, the date, and a de-

scription of the work. Each issue’s priority, status, issue type, and the total

amount of hours spent by the user in that issue is clearly labeled. This is the

information where a user can easily glean where most of their time was spent

and what they accomplished during that time.

• Evaluation: Accomplishments, accomplishment details, personal strengths,

and areas of improvement generated from JIRA data. See Section 3.4 for more

information on how this is achieved.

19

3.4 Automatic Self Evaluation Generation

In this section, we discuss what parts of the self evaluation can be generated by

UNBIASED. To generate a self evaluation, the user must authorize at least one of

the following third party APIs: Bitbucket, GitHub, or JIRA. Below are the five self

evaluation questions that UNBIASED supports (covered in Section 2.1.1). All of

the questions besides QUESTION-4, which absolutely requires user input, can be

automatically generated. An example of a generated self evaluation can be found in

Figure 3.16.

• QUESTION-1: List each of your major personal accomplishments/jobs on the

project this quarter.

• QUESTION-2: You may describe [some of] them in detail if you feel it’s appro-

priate or useful.

• QUESTION-3: In what specific ways could/should you have contributed more

to your team project? Explain without making excuses.

• QUESTION-4: Assign yourself a project grade.

• QUESTION-5: Explain the rationale for the grade and justify it with specific

details. Do not repeat material from earlier sections.

GitHub and Bitbucket analysis can generate a response for QUESTION-1 and

QUESTION-2 using the same methodology. We generate a list of accomplishments

based o↵ of commit messages and issue titles and descriptions.

JIRA analysis can generate a response for QUESTION-1, QUESTION-2, QUESTION-

3, and QUESTION-5. With JIRA, we are able to analyze all individual contributions

separately, and then perform a comparative analysis by comparing each individual

20

to the other members in the project to gain more useful insights. Theoretically, the

same can be done for both GitHub and Bitbucket, but UNBIASED only has this im-

plemented for JIRA. UNBIASED can extract both accomplishments (QUESTION-

1) and details of those accomplishments (QUESTION-2) based o↵ of issue titles,

descriptions, and worklog comments. We attempt to answer (QUESTION-3) and

(QUESTION-5) by highlighting the user’s weaker and stronger contributions, respec-

tively, in comparison to the contributions made by others in the same JIRA project.

These contributions are based o↵ of the following criteria: number of issues assigned,

number of issues reported, number of issues created, and total numbers of hours

logged. Rationale for a higher grade could be for having the highest value in any of

these criteria. To identify ways that the user could have contributed more, we check

whether the user’s stats are more than one standard deviation below the mean of all

team members’ stats for a particular criteria. An example of the JIRA evaluation

can be seen in Figure 3.15.

21

Figure 3.6: An example Gmail analysis.

22

Figure 3.7: An example Gmail analysis that shows when a user wants to
see which emails contain a particular keyword.

23

Figure 3.8: An example Google Calendar analysis.

24

Figure 3.9: An example Bitbucket commit analysis.

Figure 3.10: An example Bitbucket issue analysis.

25

Figure 3.11: An example GitHub issue and pull request analysis.

26

Figure 3.12: An example GitHub commit analysis.

27

Figure 3.13: An example JIRA issue analysis for Issue Stats, Issue time
breakdown by issue type, and Issue time breakdown by issue status.

28

Figure 3.14: An example JIRA analysis that lists all the issues on which
the user has logged work.

29

Figure 3.15: An example JIRA analysis where UNBIASED can glean ac-
complishments, accomplishment details, strengths, and areas of improve-
ment to populate the self evaluation form.

30

Figure 3.16: An example self evaluation generated from JIRA and GitHub
data. Note that the generation comments were left in for clarity but it is
expected that users will remove those comments.

31

Chapter 4

UNBIASED SOFTWARE DESIGN

This chapter discusses the software design of the UNBIASED application. UNBI-

ASED is written in Python on Google App Engine using a variety of frameworks and

libraries. Section 4.1 discusses a high level overview of the application. Section 4.2

briefly discusses the technologies used in building the application.

4.1 Overview

In a very high level overview, the user makes a request to the UNBIASED system,

the UNBIASED system interacts with third party API(s), and then the UNBIASED

system returns a response back to the user. A simple deployment diagram of the

UNBIASED system can be seen in Figure 4.1.

Figure 4.1: Simple deployment diagram of the UNBIASED system.

On the server, each third party API is split into three components: Service, An-

alyzer, and Handlers. A diagram of the interaction between these three components

32

can be seen in Figure 4.2.

• Service: Responsible for directly connecting with the third party API.

• Analyzer: Responsible for analyzing third party API data using the corre-

sponding Service to gather the data needed.

• Handlers: Each Handler corresponds to a REST end point of the server. Some

Handlers are responsible for interacting with UNBIASED’s datastore, and oth-

ers are responsible for interacting with Services and Analyzers.

Figure 4.2: Diagram of the interaction between Handler, Service, and
Analyzer.

4.2 Technologies Used

This section briefly discusses the technologies used in building the UNBIASED sys-

tem.

4.2.1 Google App Engine

Google App Engine (GAE) is a platform as a service (PaaS) for developing and

hosting web applications [10]. GAE does a lot of the grunt work of running a web

application: scaling, load balancing, authorization, memcache, logging, search, and

versioning control, just to name a few.

33

Other PaaS options we considered were Heroku and Amazon Elastic Compute

Cloud. Each of these o↵er many of the same features, but we chose Google App

Engine for the easiness of accessing the rest of Google services, and the reliability of

running on Google’s servers.

Jinja2

Jinja2 is a templating language for Python [21]. This thesis uses Jinja2 to display

server side responses to the frontend. Jinja2 makes it easy to build reusable HTML

templates. Jinja2 allows conditionals and loop logic.

Google Cloud Datastore

Google Cloud Datastore is a NoSQL document database built for automatic scaling,

high performance, and ease of application development. While the Datastore interface

has many of the same features as traditional databases, as a NoSQL database it di↵ers

from them in how it describes relationships between data objects [12]. We use Google

Datastore Network Database (NDB) Client Library [20] to interact with the Cloud

Datastore. NDB handles automatic caching using an in-context cache and Memcache.

4.2.2 Google Polymer

Google Polymer is a new library that makes it easier to make fast, beautiful, and

interoperable web components [19]. Modern web applications are expected to be

beautiful, fast, and responsive, and Polymer takes care of most of the work and

provides boilerplate code. Polymer o↵ers features such as one-way and two-way data

bindings between code and HTML elements. This thesis makes use of Polymer’s

material design components [13], a full range of icons, two-way data binding, and

HTML elements to handle AJAX requests.

34

4.2.3 OAuth 2.0

OAuth 2.0 provides authorization flows for applications [18]. The benefit of using

OAuth 2.0 is getting access to data on a user’s behalf, without requiring access to

the user’s username and password. This thesis uses OAuth 2.0 to interact with users’

Google, BitBucket, and JIRA accounts.

4.2.4 Natural Language Toolkit

The Natural Language Toolkit (NLTK) is a Python library that allows developers to

work with processing language data [16]. This thesis uses a special fork of the project

developed by GitHub user rutherford which enables us to use NLTK on Google App

Engine [17].

This thesis utilizes the NLTK tokenizer and the part of speech tagging. A tokenizer

breaks a string (or sentence) into tokens, or sequences of characters that have a

collective meaning. In a sentence, each word can be treated as a token. Speech

tagging involves iterating through parts of a sentence and identifying words as nouns,

verbs, adjectives, etcetera.

4.2.5 urlfetch

urlfetch is a Google App Engine library that allows for asynchronous HTTP requests.

Prior to using this library, all HTTP requests were synchronous, which meant that

each GitHub commit or JIRA issue was downloaded one after another. Using this

library, we observed a 5x speed up in completing a GitHub analysis, and a 3x speed

up in completing a JIRA analysis. Tables 4.1, 4.2, 4.3, and 4.4 report the time

data comparisons with the di↵erent third party APIs.

35

Table 4.1: JIRA Time Data for Sequential and Batch Requests

Sample # Sequential (seconds) Batch (seconds)

1 150.6 41.76

2 148.2 49.54

3 149.0 52.92

4 147.3 52.31

5 149.9 51.98

Average (seconds) 149.0 49.70

Table 4.2: GitHub Time Data for Sequential and Batch Requests

Sample # Sequential (seconds) Batch (seconds)

1 162 24.05

2 168 35.83

3 168 35.38

4 162 33.05

5 168 32.27

Average (seconds) 165.6 33.12

36

Table 4.3: Gmail Time Data for Sequential and Batch Requests

Sample # Sequential (seconds) Batch (seconds)

1 10.64 29.95

2 8.08 22.21

3 8.06 31.62

Average (seconds) 8.93 27.93

Table 4.4: Google Calendar Time Data for Sequential and Batch Requests

Sample # Sequential (seconds) Batch (seconds)

1 9.77 3.49

2 7.03 3.55

3 6.80 3.15

Average (seconds) 7.86 3.40

4.2.6 apiclient.http

Google provides their own client library for performing batch HTTP requests on

Gmail and Google Calendar. Prior to using this library, each Gmail message and

Google Calendar event were downloaded sequentially. Based on our measurements,

using this library has shown a 3x speed up when conducting a Gmail or Google

Calendar analysis.

37

Chapter 5

VALIDATION

The validation framework of UNBIASED will be discussed in this chapter.

5.1 Validation Framework

Testing and validation was performed in two of Dr. Janzen’s Capstone Courses (CPE

406 Software Deployment) in Spring 2016. We determined which sections would be

the Control Group and Testing Group by a flip of a coin. We then constructed three

di↵erent surveys:

• A Pre-Evaluation Survey that asks questions regarding their self and peer

evaluations in Winter 2016.

• A Post-Evaluation Survey for the Control Group that asks the same

questions as the Pre-Evaluation, but with questions related to Spring 2016.

• A Post-Evaluation Survey for the Testing Group that is the same as the

Post-Evaluation Survey for the Control Group, but with additional questions

related to using the UNBIASED system.

Using these surveys, we are able to answer the following questions:

• Does using UNBIASED save software engineers time?

• Does using UNBIASED help software engineers perform more accurate self eval-

uations?

• Does using UNBIASED increase the number of sources software engineers use

when performing a self evaluation?

38

• Does using UNIBASED make it easier for software engineers to write their self

evaluations?

• Does using UNBIASED increase the quality of the self evaluation?

• Do software engineers like using UNBIASED?

Both sections were given a Pre-Evaluation Survey, and both sections received their

own version the Post-Evaluation Survey. Only the Testing Group was instructed to

use the UNBIASED system between completing the Pre-Evaluation Survey and Post-

Evaluation Survey. The surveys and research protocol were reviewed and approved

by the Cal Poly Human Subjects Commmittee.

5.2 2016 Capstone Pre-Evaluation Survey

The 2016 Capstone Pre-Evaluation Survey that both the Control and Testing Groups

took can be found in Appendix A.

The relevant questions are listed below for convenience:

• How much time do you think you spent on your self/peer evaluation in Winter

2016?

– less than 10 minutes

– 10-20 minutes

– 20-30

– 30-45

– 45-60

• Which of the following did you search/review while completing your self/peer

evaluation in Winter 2016? Check all that apply.

39

– JIRA

– Bitbucket or GitHub

– Gmail

– Google Calendar

– Cal Poly Email

– Slack

– Facebook

– Other (Fill in blank)

• On a scale from 1 (Easy) to 5 (Di�cult), how di�cult was it to write your self

evaluation in Winter 2016?

• On a scale from 1 (Not very accurate) to 5 (Very accurate), how accurate

(i.e. evaluation matched actual accomplishments) do you think was your self

evaluation in Winter 2016?

5.3 2016 Capstone Post-Evaluation Surveys

5.3.1 2016 Capstone Post-Evaluation Survey for Control Group

The full 2016 Capstone Post-Evaluation Survey that the Control Group took can be

found in Appendix B. This survey is identical to the 2016 Capstone Pre-Evaluation

Survey, but with questions related to the current quarter of Spring 2016 instead of

the previous quarter of Winter 2016.

5.3.2 2016 Capstone Post-Evaluation Survey for Testing Group

The full 2016 Capstone Post-Evaluation Survey that the Testing Group took can be

found in Appendix C. This survey is identical to the 2016 Capstone Post-Evaluation

40

Survey for Control Group, but with additional questions. The additional questions

are listed below for convenience:

• How much time do you think you spent on your self/peer evaluation in Spring

2016?

– less than 10 minutes

– 10-20 minutes

– 20-30

– 30-45

– 45-60

• Which of the following did you search/review within the UNBIASED Self Eval-

uation System while completing your self/peer evaluation in Spring 2016?

– JIRA

– Bitbucket or GitHub

– Gmail

– Google Calendar

– Cal Poly Email

– Slack

– Facebook

– Other (Fill in blank)

• Outside of using the UNBIASED Self Evaluatino System, which of the follow-

ing did you search/review while completing your self/peer evaluation in Spring

2016?

– JIRA

41

– Bitbucket or GitHub

– Gmail

– Google Calendar

– Cal Poly Email

– Slack

– Facebook

– Other (Fill in blank)

• Do you think you wrote a better, same, or worse self evaluation because you

used the UNBIASED Self Evaluation System in completing your self evaluation

in Spring 2016 (406)?

– This eval was better than the past.

– This eval was about the same quality as the past.

– This eval was worse than the past.

• On a scale from 1 (Not likely) to 5 (Very likely), if you had to complete another

self evaluation in the future, how likely would you want to use the UNBIASED

Self Evaluation System again?

• Tell us what you think about the UNBIASED Self Evaluation System. What

did you like? What did you not like?

5.4 Results

Of the 28 students in the Testing Group, 28 performed the Pre-Evaluation Survey,

25 performed the Self Evaluation, and 20 performed the Post-Evaluation Survey. Of

the 28 students in the Control Group, 27 performed the Pre-Evaluation Survey, 28

42

performed the Self Evaluation, and 22 performed the Post-Evaluation Survey. The

raw survey results can be found in Appendix D.

5.5 Analysis

To begin our analysis, we answer the questions outlined in the beginning of this

chapter.

5.5.1 Does using UNBIASED save software engineers time?

In the Testing Group, we asked students the amount of time it took to perform a self

evaluation using UNBIASED. As seen in Figure 5.1, 50% reported spending less than

20 minutes, 80% reported spending less than 30 minutes, 20% reported spending 30-

45 minutes, and no respondents reported spending more than 45 minutes on their self

evaluation. When comparing the amount of time taken to perform a self evaluation for

Spring 2016 compared to Winter 2016, 72% of the Control Group reported spending

the same or less amount of time. 70% of the Testing Group reported spending the

same or less amount of time. See Figure 5.2. The 2% di↵erence in favor of the Control

Group is not significant, considering that the Testing Group is using a new and

unfamiliar tool, and that they also reported using more sources (discussed in detail

below). The users also encountered errors when trying to connect to the di↵erent

API services; for example, the Cal Poly Computer Science JIRA instance went down

when everyone hit the server at once.

43

Figure 5.1: Survey results for the amount of time the Testing Group spent
performing self evaluations in Spring 2016.

Figure 5.2: Survey results comparing the amount of time spent performing
self evaluations in Spring 2016 vs Winter 2016.

44

5.5.2 Does using UNBIASED help software engineers perform more accurate

self-evaluations?

In the Testing Group, we asked students to rank the accuracy of their self evaluations

on a scale from 1 (Not very accurate) to 5 (Very accurate). 90% of the respondents

gave a rating of 3 or higher, with 45% giving a rating of 4, and 15% giving a rating

of 5. These are impressive results. Now when comparing the accuracy rating when

performing a self evaluation for Spring 2016 compared to Winter 2016, 77% of the

Control Group reported their evaluations as having either the same accuracy or more

accuracy. There is only a 3% di↵erence when compared to the 80% of the Testing

Group who reported the same. Because the di↵erence is so low, we cannot say that

using UNBIASED has significantly helped software engineers perform more accurate

self evaluations. See Figures 5.3 and 5.4.

Figure 5.3: Survey results for how accurate the Testing Group ranked
their self evaluations in Spring 2016.

45

Figure 5.4: Survey results comparing the accuracy of the self evaluations
in Spring 2016 vs Winter 2016.

5.5.3 Does using UNBIASED increase the number of sources software engi-

neers use when performing a self evaluation?

In the Testing Group, we found that 16 respondents used JIRA as a source, and

17 respondents used Bitbucket or GitHub. No respondents used Gmail or Google

Calendar when performing their self evaluation. Looking at the pre-survey results,

no respondents used Gmail in previous self evaluations, and only one respondent in the

Testing Group used Google Calendar. Based on feedback from the respondents, there

didn’t seem to be a lot of trust in the system to handle their sensitive email content.

Additionally, students reported using instant messaging communication applications

rather than communicating over email. When looking at the raw number of sources

used when performing a self evaluation for Spring 2016 compared to Winter 2016, we

found that 80% of the testing group said they used the same or higher number of

46

sources, compared to only 60% of the Control Group. See Figures 5.5 and 5.6.

Figure 5.5: Survey results for what sources the Testing Group used when
performing their self evaluations in Spring 2016.

47

Figure 5.6: Survey results comparing the number of sources used when
performing self evaluations in Spring 2016 vs Winter 2016.

5.5.4 Does using UNBIASED make it easier for software engineers to write

their self evaluations?

In the Testing Group, we asked students to rate how di�cult it was to perform their

self evaluation using UNBIASED on a scale from 1 (Easy) to 5 (Di�cult). 0% of the

respondents reported having a Di�cult (5) time, and 80% of the respondents rated

a 3 or lower. When comparing the di�culty reported to perform a self evaluation

for Spring 2016 compared to Winter 2016, we found two interesting results. Only

57% of the Control Group reported having the same or less di�culty, compared to

the expected 100% because the Control Group would not experience any change in

di�culty because they are using the same exact tool as they did in Winter 2016. The

second interesting result is that 70% of the Testing Group reported having the same

or less di�culty, which is 23% more than the Control Group. See Figures 5.7 and 5.8.

48

Figure 5.7: Survey results for how di�cult it was for the Testing Group
to perform their self evaluations in Spring 2016.

Figure 5.8: Survey results comparing the di�culty of performing self eval-
uations in Spring 2016 vs Winter 2016.

49

5.5.5 Does using UNBIASED increase the quality of the self evaluation?

As a metric for quality, we are using the average number of words per response to

each question in both the Testing Group and the Control Group. For this analysis,

we grouped QUESTION-1 and QUESTION-2 together and found that the Testing

Group has 19 more words on average. The Control Group beats the Testing Group

with a di↵erence of about 7 words for their responses to both QUESTION-3 and

QUESTION-5. Looking at the response to the self evaluation as a whole, the Testing

Group writes 5 more words on average than the Control Group. See Figure 5.9.

Figure 5.9: Average word length of Self Evaluations performed in Spring
2016.

5.5.6 Do software engineers like using UNBIASED?

The software engineers in the Testing Group reported both positive and negative

reviews of the UNBIASED system. Our Post-Evaluation survey explicitly asks the

Testing Group how likely they are, on a scale from 1 (Not likely) to 5 (Very likely),

50

they would want to use the UNBIASED system in future evaluations. Only 28.5%

reported a 4 or 5, and 57.1% said 1 or 2 (see Figure 5.10). This is a negative result,

but based on the feedback received it seems as if a lot of the problems users had with

UNBIASED can be remedied. The raw feedback can be found in Appendix D.

Figure 5.10: Survey results for how likely the Testing Group would want
to use UNBIASED again in the future.

Students 50, 58, 58, 66, 67, 69, and 73 liked the idea, concept, and simplicity of

the UNBIASED software. Student 66 noted that “centralizing the sources could be

useful” and “the idea of streamlining the process... may contribute to more accurate

analysis.” Student 58 liked that it made the “self evaluations objective rather than

subjective.” Student 68 said that the “auto generation was really nice and was pretty

accurate in displaying contributions.” Student 72 said that the tool did not seem

necessary for them but it would be “fine if it was used to evaluate peoples grades for

someone not [in] the group.” Student 76 said they mostly remember what they’ve

done in the past two months, but “it’s also nice to get a recap of what I’ve done.”

51

The negative reviews can be summarized as being buggy, confusing, unhelpful,

not needing the system, and not trusting the system. Many respondents (Students

51, 54, 63, 65, 66, 67, 71, 76, 77) reported having problems with using UNBIASED.

When the users were first instructed to use UNBIASED, the Cal Poly instance of

JIRA crashed for a few hours and this caused problems for UNBIASED. Students 50

and 54 reported that they were confused when using the application. Students 63

and 69 reported that the GitHub pull requests were of pull requests they merged and

not created, which is a bug in the system. Student 58 said that UNBIASED “requires

permissions to [their] accounts that make [them] uncomfortable.” This may be due to

a confusion where when you first open the application, a Google App Engine library

asks for access to the user’s Google email address. Some users interpreted this as

asking for access to read the user’s email and calendar data but in reality it only asks

for the user’s email address.

There was a lot of constructive feedback and many ideas were o↵ered as well.

Student 58 noted that they “did not document all [their] accomplishments throughout

the quarter since I did not know I’d be using this.” Student 77 expressed that “there

are several issues that [they] forgot to log hours on, but still resolved” and noted

that UNBIASED should display “Issues resolved by a particular user.” Student 56

noted that UNBIASED does not “see the local development that may not have been

completed or sent up to the software repository.” Student 68 said that UNBIASED

was not useful for instances of pair programming where only one engineer has the

work credited to their name.

52

Chapter 6

RELATED WORK

This chapter discusses di↵erent tools and applications that perform an analysis on

data from Bitbucket, Gmail, GitHub, Google Calendar, and JIRA.

6.1 Bitbucket Analysis Tools

This section discusses one Bitbucket analysis tool.

6.1.1 Awesome Graphs for Bitbucket

Awesome Graphs [2] for Bitbucket is an application that makes graphs and charts to

visualize contribution statistics in Bitbucket repositories. Awesome Graphs is used to

evaluate a team’s performance and to get useful data to make teams more e�cient.

To do this, Awesome Graphs analyzes a specific repository and analyzes the commits

made over the last year grouped by week. The tool uses interactive charts that can

display more detailed data once expanded. Another analysis by Awesome Graphs

is commit frequency, which counts which hours of the week have been the most

productive for each team member. They do this by showing the commit frequency

on each day of the week, at hourly time intervals.

6.2 Gmail Analysis Tools

This section discusses one Gmail analysis tool.

53

6.2.1 Gmail Meter

Gmail Meter [9] is a Google Apps Script that sends you an email containing di↵erent

statistics about your email each first day of the month. Gmail Meter gives users

di↵erent types of statistics that will help them analyze their Gmail habits. One nice

feature of Gmail Meter is that because the script is run using Google Apps Script,

Gmail data never leaves the Google ecosystem. The Gmail Meter analysis counts the

number of conversations, the number of emails sent, the number of emails received,

and the number of emails trashed. It counts the number of conversations marked as

important and marked as starred. It also computes what percentage of emails were

sent directly to the user and the percentage of how many times the user replied to

those emails. The analysis includes the top five senders and the top five recipients.

The analysis includes an area chart that shows the average flow of emails separated

by time. It uses a pie chart to display what percentage of emails are in the inbox, in

labels, in archive, or in trash. Gmail Meter also uses a bar chart to show the time

before first response which says how long it takes, on average, for the user to reply

and for the user to receive a reply. Another stat in a bar chart is the average length

of your messages in both emails received and in emails sent.

6.3 Calendar Analysis Tools

This section discusses one Google Calendar analysis tool.

6.3.1 GTimeReport

GTime Report [14] is an analysis tool for Google Calendar. It allows users to select

what calendars they want to analyze. The analysis then breaks down events by cal-

endar, event name, the weekday, date, start time, duration, location, and description.

54

The analysis also shows the event attendees and indicates which of them are accepted,

tentative, or rejected. One interesting analysis they perform is the merging of similar

events by combining items that represent the same project or task. To perform the

merge, the analysis requires one of two conditions to be met: the event titles are the

same, or the event titles are the same up to the first colon symbol.

6.4 GitHub Analysis Tools

This section discusses three GitHub analysis tools.

6.4.1 GitHub Pulse

GitHub has their own repository analysis tool called Pulse [4]. Pulse shows all active

committers and recent changes in a project’s default branch. The analysis counts the

number of active pull requests and splits them into merged pull requests and proposed

pull requests. It also counts the number of active issues and splits them into closed

issues and new issues. Pulse provides a way to see unresolved discussions, so users

can see what still needs to be done. Pulse provides a nice summary of its results.

An example summary is as follows: “67 authors have pushed 3,423 commits to all

branches, excluding merges. On master, 2,051 files have changed and there have been

126,228 additions and 25,867 deletions.” Pulse is a nice tool because it does all the

work for the user automatically.

6.4.2 Git Commit Log Analysis Made Easy

Git Commit Log Analysis Made Easy (GCLAME) is a Git log analysis tool from

eazyBi [5]. GCLAME uses charts and visualizations to bring attention to meaningful

stats. Their analysis includes git changes by quarter and includes charting total

55

lines, number of commits, changes per commit, number of additions, and number of

deletions. There is also an analysis that is performed based on the hour of the day:

number of changes, commits, and changes per commit. These stats are helpful to

software engineers that want to learn when and where (with regards to files) they

do the most amount of work, but the stats are not necessarily useful for filling out a

performance-based self evaluation. The way this tool works is that the user has to

go on the command line and export their Git log and upload it to the service. After

analysis, they allow exportation of the data via CSV, Excel, and other outputs.

6.4.3 Git Inspector

Gitinspector is another analysis tool for Git repositories [7]. This tool shows various

statistics on a per author basis in the form of tables and chart visualizations. From

the stats, authors are able to see their workload and activity in a commit. This

tool allows filetype filtering, to ignore certain file types like xml or json files. One

interesting metric they have is the number of lines of code in the repository that the

author has written that are still in the current revision. This has the potential for

indicating the quality of the code the author writes, but there is a lot of potential

for bias as well. To use this tool, users have to download the application, edit a

configuration file, and run a command on the command line.

6.5 JIRA Analysis Tools

This section discusses one JIRA analysis tool.

56

6.5.1 JIRA Reports

JIRA provides in-house agile reports, issue analysis reports, and forecast and man-

agement reports. Agile reports help track the project as a whole. The issue analysis

reports analyzes issues on a per project basis. The forecast and management reports

track time estimates for remaining issues based on certain criteria like project and

user. These built-in reports can be helpful to software engineers performing a self

evaluation, but none are especially useful for examining an individual’s contribution

to the project.

6.6 Discussion

UNBIASED takes inspiration and builds upon the ideas of many of these tools with

regard to how the user queries the data, and the data analysis itself. For example, the

specialized syntax that GTime Report requires inspired the automatic nature of the

same functionality by tokenizing event titles for the Google Calendar analysis. Look-

ing at analysis tools that aren’t necessarily helpful to software engineers performing

a self evaluation, like Gmail Meter, helped inspire viewing the data analysis from a

new perspective. The complexities to run analyses like GCLAME and Git Inspector

inspired UNBIASED’s simple design.

57

Chapter 7

CONCLUSIONS

In this section we discuss the results of our hypotheses introduced in Chapter 1.

• HYPOTHESIS-1: Can we solve the challenges of the self evaluation process for

software engineers?

• HYPOTHESIS-2: Can we automatically generate a self evaluation for a software

engineer?

With regards to HYPOTHESIS-1, we have crafted solutions for the challenging

aspects of the self evaluation process of Software Engineers. UNBIASED aims to

solve the challenge of self evaluations being time consuming by automating parts

of the self evaluation process: acquiring data, analyzing the data, and generating

a result. Based on our results, we found that 30% of the Testing Group reported

spending less time when using UNBIASED.

UNBIASED aims to solve the challenge of individuals forgetting about important

contributions by showing the users all the information gleaned from third party APIs,

and bringing special emphasis to high-impact / important information. UNBIASED

aims to solve the challenge of self evaluations being biased and lacking credibility

implicitly because all of the data extracted has a source. For both of these challenges,

our results show that 90% of the Testing Group rated the accuracy of their self

evaluation as 3 or higher (on a scale of 1 being Not very accurate and 5 being Very

accurate. More detailed information can be found in Section 3.1.

With regards to HYPOTHESIS-2, we have developed a way to automatically

generate a self evaluation for a software engineer. The generation includes extracting

58

accomplishments and accomplishment details, as well as figuring out strengths and

areas of improvement by comparing users on a project-based level. We showed that

it is possible, and some students (5 and 73) found that it was helpful. Because

more than 50% of the students responded that it is unlikely they would want to use

UNBIASED in the future, there is still more work that needs to be done. More

detailed information can be found in Section 3.4.

7.1 Discussion

The final result of this thesis is an application that tackles the challenges of self eval-

uations for software engineers. UNBIASED currently supports the analysis of emails,

calendars, software repositories and software management tools through the following

third party APIs: Bitbucket, GitHub, Gmail, Google Calendar, and JIRA. Our re-

sults show that UNBIASED increases the accuracy of self evaluations, decreases the

di�culty of performing a self evaluation, increases the number of sources used when

performing a self evaluation, and in some cases UNBIASED decreases the amount

of time needed to perform a self evaluation. To ensure that people will like and use

UNBIASED in the future, we can use the feedback given by the students to make

improvements to the system.

59

Chapter 8

FUTURE WORK

For future work, there are plans to commercialize an entire system that builds upon

the UNBIASED application and incorporates additional peer and supervisory eval-

uations. Implementation-wise, there is room for integration with more third party

services and APIs to better support a wider array of software engineers.

This tool is only as useful as the data it can analyze. Additional research into mak-

ing instructions or defining standards can be made to aid software engineers in pro-

viding meaningful issue descriptions, worklog comments, commit messages, etcetera

to make it easier for UNBIASED to analyze. In a recent study of over 23K+ Java

projects it has been found that only 10% of the messages are descriptive and over

66% of those messages contained fewer than 20 words [23]. There is research in auto-

matically generating Git commit messages [25] which could prove useful in providing

more descriptive commits for our system to analyze.

There is also room for further research in the area of natural language processing.

One idea is to create and train a specialized tokenizer and tagger specific to the

di↵erent domains of emails, calendar events, commit messages, descriptions of work,

and etcetera. This would be extremely helpful in the data extraction and analysis

phase of the UNBIASED application.

60

BIBLIOGRAPHY

[1] Advanced Search . https://support.google.com/mail/answer/7190?hl=en.

[2] Awesome Graphs for Bitbucket . https:

//blog.bitbucket.org/2015/08/05/awesome-graphs-for-bitbucket-

visualized-statistics-for-git-and-mercurial-repositories/.

[3] Bitbucket — The Git solution for professional teams .

https://bitbucket.org/.

[4] Get up to speed with Pulse .

https://github.com/blog/1476-get-up-to-speed-with-pulse.

[5] Git Commit Log Analysis Made Easy .

https://eazybi.com/integrations/git.

[6] GitHub Features . https://github.com/features.

[7] GitInspector . https://github.com/ejwa/gitinspector.

[8] Gmail . https://www.google.com/intl/en/mail/help/about.html.

[9] Gmail Meter . https://gmail.googleblog.com/2012/04/know-your-gmail-

stats-using-gmail-meter.html.

[10] Google App Engine . https://cloud.google.com/appengine/docs.

[11] Google Calendar . https://apps.google.com/products/calendar/.

[12] Google Cloud Datastore Documentation .

https://cloud.google.com/datastore/docs/.

61

https://support.google.com/mail/answer/7190?hl=en
https://blog.bitbucket.org/2015/08/05/awesome-graphs-for-bitbucket-visualized-statistics-for-git-and-mercurial-repositories/
https://blog.bitbucket.org/2015/08/05/awesome-graphs-for-bitbucket-visualized-statistics-for-git-and-mercurial-repositories/
https://blog.bitbucket.org/2015/08/05/awesome-graphs-for-bitbucket-visualized-statistics-for-git-and-mercurial-repositories/
https://bitbucket.org/
https://github.com/blog/1476-get-up-to-speed-with-pulse
https://eazybi.com/integrations/git
https://github.com/features
https://github.com/ejwa/gitinspector
https://www.google.com/intl/en/mail/help/about.html
https://gmail.googleblog.com/2012/04/know-your-gmail-stats-using-gmail-meter.html
https://gmail.googleblog.com/2012/04/know-your-gmail-stats-using-gmail-meter.html
https://cloud.google.com/appengine/docs
https://apps.google.com/products/calendar/
https://cloud.google.com/datastore/docs/

[13] Google Material Design . https://www.google.com/design/spec/material-

design/introduction.html.

[14] GTime Report . https://www.gtimereport.com/.

[15] JIRA Software - Issue & Project Management .

https://www.atlassian.com/software/jira.

[16] Natural Language Toolkit . http://www.nltk.org/.

[17] NLTK for App Engine . https://github.com/rutherford/nltk-gae.

[18] OAuth 2.0 . http://oauth.net/2/.

[19] Poylmer - 1.0 . https://www.polymer-project.org/1.0/.

[20] Python NDB Client Library Overview .

https://cloud.google.com/appengine/docs/python/ndb/.

[21] Welcome to Jinja2 . http://jinja.pocoo.org/docs/dev/.

[22] N. Clark. Evaluating student teams developing unique industry projects. In

Proceedings of the 7th Australasian Conference on Computing Education -

Volume 42, ACE ’05, pages 21–30, Darlinghurst, Australia, Australia, 2005.

Australian Computer Society, Inc.

[23] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk. On

automatically generating commit messages via summarization of source code

changes. In Proceedings of the 2014 IEEE 14th International Working

Conference on Source Code Analysis and Manipulation, SCAM ’14, pages

275–284, Washington, DC, USA, 2014. IEEE Computer Society.

[24] N. Herbert. Quantitative peer assessment: Can students be objective? In

Proceedings of the Ninth Australasian Conference on Computing Education -

62

https://www.google.com/design/spec/material-design/introduction.html
https://www.google.com/design/spec/material-design/introduction.html
https://www.gtimereport.com/
https://www.atlassian.com/software/jira
http://www.nltk.org/
https://github.com/rutherford/nltk-gae
http://oauth.net/2/
https://www.polymer-project.org/1.0/
https://cloud.google.com/appengine/docs/python/ndb/
http://jinja.pocoo.org/docs/dev/

Volume 66, ACE ’07, pages 63–71, Darlinghurst, Australia, Australia, 2007.

Australian Computer Society, Inc.

[25] W. Maalej and H. J. Happel. Can development work describe itself? In 2010

7th IEEE Working Conference on Mining Software Repositories (MSR 2010),

pages 191–200, May 2010.

63

APPENDICES

Appendix A

PRE-EVALUATION SURVEY

(see following pages)

64

PreEvaluation Survey
This survey is to be completed before completing the 2016 Spring Self/Peer Evaluation. It will
have no effect on your grade, but will be useful as we evaluate the self/peer evaluation process
used in Capstone.

1. What is your name?

2. What team are you on?
Mark only one oval.

 Android CRU

 iCrew

 JHM

 Mystery Crew

 WCFF

 Scrubs

 No Scrubs

 Specific Atomics

 Radar

 Rocket

3. How much time do you think you spent on your self/peer evaluation in Winter 2016?
Mark only one oval.

 less than 10 minutes

 1020 minutes

 2030 minutes

 3045 minutes

 4560 minutes

 over one hour

65

Powered by

4. Which of the following did you search/review while completing your self/peer
evaluation in Winter 2016?
Check all that apply.

 JIRA

 Bitbucket or Github

 Gmail

 Google Calendar

 Cal Poly Email

 Slack

 Facebook

 Other:

5. How difficult was it to write your self evaluation in Winter 2016?
Mark only one oval.

1 2 3 4 5

Easy Difficult

6. How accurate (i.e. evaluation matched actual accomplishments) do you think was your
self evaluation in Winter 2016?
Mark only one oval.

1 2 3 4 5

Not very accurate Very accurate

66

Appendix B

POST-EVALUATION SURVEY FOR CONTROL GROUP

(see following pages)

67

Post-Evaluation Survey GA
This survey is to be completed after completing the 2016 Spring Self/Peer Evaluation. It will
have no effect on your grade, but will be useful as we evaluate the self/peer evaluation process
used in Capstone.

less than 10 minutes

10-20 minutes

20-30 minutes

30-45 minutes

45-60 minutes

over one hour

What is your name?

Your answer

What team are you on?
Choose

How much time do you think you spent on your self/peer
evaluation in Spring 2016 (406)?

Which of the following did you search/review while
completing your self/peer evaluation in Spring 2016 (406)?

68

JIRA

Bitbucket or Github

Gmail

Google Calendar

Cal Poly Email

Slack

Facebook

Other:

Easy

1 2 3 4 5

Difficult

Not very
accurate

1 2 3 4 5

Very accurate

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

How difficult was it to write your self evaluation in Spring
2016 (406)?

How accurate (i.e. evaluation matched actual
accomplishments) do you think was your self evaluation in
Spring 2016 (406)?

Never submit passwords through Google Forms.

SUBMIT

69

Appendix C

POST-EVALUATION SURVEY FOR TESTING GROUP

(see following pages)

70

Post-Evaluation Survey CRU
This survey is to be completed after completing the 2016 Spring Self/Peer Evaluation. It will
have no effect on your grade, but will be useful as we evaluate the self/peer evaluation process
used in Capstone.

less than 10 minutes

10-20 minutes

20-30 minutes

30-45 minutes

45-60 minutes

over one hour

REQUEST EDIT ACCESS

What is your name?

Your answer

What team are you on?
Choose

How much time do you think you spent on your self/peer
evaluation in Spring 2016 (406)?

Which of the following did you search/review within the

UNBIASED Self Evaluation System while completing your
self/peer evaluation in Spring 2016 (406)?

71

JIRA

Bitbucket or Github

Gmail

Google Calendar

Other:

JIRA

Bitbucket or Github

Gmail

Google Calendar

Cal Poly Email

Slack

Facebook

Other:

Easy

1 2 3 4 5

Difficult

self/peer evaluation in Spring 2016 (406)?

Outside of using the UNBIASED Self Evaluation System, which
of the following did you search/review while completing your
self/peer evaluation in Spring 2016 (406)?

How difficult was it to write your self evaluation in Spring
2016 (406)?

How accurate (i.e. evaluation matched actual
accomplishments) do you think was your self evaluation in

72

Not very
accurate

1 2 3 4 5

Very accurate

This eval was better than the past

This eval was about the same quality as the past

This eval was worse than the past

Not likely

1 2 3 4 5

Very likely

accomplishments) do you think was your self evaluation in
Spring 2016 (406)?

Do you think you wrote a better, same, or worse self
evaluation because you used the UNBIASED Self Evaluation
System in completing your self evaluation in Spring 2016
(406)?

If you had to complete another self evaluation in the future,
how likely would you want to use the UNBIASED Self
Evaluation System again?

Tell us what you think about the UNBIASED Self Evaluation
System. What did you like? What did you not like?

Your answer

Never submit passwords through Google Forms.

SUBMIT

73

Appendix D

SURVEY RESULTS

(see following pages)

74

ID How much time do you think you spent
on your self/peer evaluation in Winter
2016?

Which of the following did you
search/review while completing your
self/peer evaluation in Winter 2016?

How difficult was it to write
your self evaluation in
Winter 2016?

How accurate do
you think was your
self evaluation in
Winter 2016?

1 30-45 minutes 4 5

2 20-30 minutes Slack 2 4

3 20-30 minutes Bitbucket or Github, Slack 3 4

4 10-20 minutes JIRA, Bitbucket or Github, Gmail 1 5

5 10-20 minutes I didn't need to check anything 1 4

6 20-30 minutes 3 4

7 10-20 minutes JIRA, Bitbucket or Github, Slack 1 5

8 over one hour Slack, I know what everyone's been
doing.

2 3

9 10-20 minutes JIRA 3 4

10 20-30 minutes Bitbucket or Github, Slack 2 4

11 30-45 minutes JIRA, Slack 5 4

12 45-60 minutes JIRA, Bitbucket or Github 4 5

13 over one hour JIRA, Bitbucket or Github, Slack 2 5

15 20-30 minutes None 2 5

16 30-45 minutes 3 3

17 10-20 minutes 4 3

18 10-20 minutes Bitbucket or Github, Slack 4 4

19 20-30 minutes 3 3

20 10-20 minutes JIRA, Bitbucket or Github 1 4

21 20-30 minutes JIRA, Bitbucket or Github 2 3

22 10-20 minutes Bitbucket or Github 2 4

23 10-20 minutes 1 4

24 20-30 minutes 2 4

25 10-20 minutes JIRA, Bitbucket or Github, Slack 2 4

26 10-20 minutes JIRA, Bitbucket or Github, Slack 2 4

27 10-20 minutes JIRA, Bitbucket or Github 2 4

All Pre-Eval Survey

75

ID How much time do you think you spent
on your self/peer evaluation in Winter
2016?

Which of the following did you
search/review while completing your
self/peer evaluation in Winter 2016?

How difficult was it to write
your self evaluation in
Winter 2016?

How accurate do
you think was your
self evaluation in
Winter 2016?

28 10-20 minutes Group Me 1 5

50 10-20 minutes JIRA, Bitbucket or Github 3 4

51 10-20 minutes JIRA, Slack 1 5

52 10-20 minutes JIRA, Bitbucket or Github 4 3

53 20-30 minutes JIRA, Bitbucket or Github 3 3

54 20-30 minutes 3 3

55 10-20 minutes JIRA, Bitbucket or Github 1 4

56 30-45 minutes JIRA, Bitbucket or Github, GroupMe 4 5

57 45-60 minutes JIRA, Bitbucket or Github, Google
Calendar, Slack

3 4

58 20-30 minutes JIRA, Slack 4 4

59 10-20 minutes JIRA, Bitbucket or Github 4 3

60 10-20 minutes 2 5

61 10-20 minutes JIRA 3 5

62 30-45 minutes JIRA, Bitbucket or Github, Slack 3 5

63 10-20 minutes 1 4

64 20-30 minutes JIRA, Bitbucket or Github 4 3

65 10-20 minutes 4 1

66 10-20 minutes JIRA, Bitbucket or Github, Slack 4 3

67 20-30 minutes JIRA, Bitbucket or Github, GroupMe 3 3

68 20-30 minutes JIRA, Bitbucket or Github 3 4

69 10-20 minutes 2 2

70 10-20 minutes JIRA, Bitbucket or Github, Slack 3 4

71 30-45 minutes JIRA, Bitbucket or Github, Slack 4 4

72 10-20 minutes JIRA, Bitbucket or Github 1 4

73 20-30 minutes JIRA, Bitbucket or Github, Slack 2 5

74 20-30 minutes JIRA 3 3

All Pre-Eval Survey

76

ID How much time do you think you spent
on your self/peer evaluation in Winter
2016?

Which of the following did you
search/review while completing your
self/peer evaluation in Winter 2016?

How difficult was it to write
your self evaluation in
Winter 2016?

How accurate do
you think was your
self evaluation in
Winter 2016?

75 45-60 minutes JIRA, Bitbucket or Github, Slack 4 5

76 10-20 minutes JIRA, Slack 2 4

77 10-20 minutes JIRA, Bitbucket or Github 3 4

All Pre-Eval Survey

77

ID How much time do you think you
spent on your self/peer evaluation
in Spring 2016 (406)?

Which of the following did you
search/review while completing your
self/peer evaluation in Spring 2016
(406)?

How difficult was it to write
your self evaluation in
Spring 2016 (406)?

How accurate do you think
was your self evaluation in
Spring 2016 (406)?

1 20-30 minutes 5 4

2 10-20 minutes JIRA, Slack 1 4

3 20-30 minutes JIRA 2 4

4 10-20 minutes JIRA, Bitbucket or Github, Gmail, Slack 1 3

6 30-45 minutes 4 4

7 20-30 minutes 1 5

8 over one hour Nothing 2 3

9 10-20 minutes JIRA 1 4

10 45-60 minutes JIRA 5 4

11 20-30 minutes JIRA, Bitbucket or Github 4 4

13 45-60 minutes JIRA, Bitbucket or Github, Slack 3 5

14 45-60 minutes JIRA, Bitbucket or Github, Gmail, Google
Calendar, Slack

2 4

18 30-45 minutes JIRA, Bitbucket or Github, Slack 4 3

19 10-20 minutes 1 5

20 20-30 minutes Status Updates 2 5

21 30-45 minutes JIRA, Bitbucket or Github, Gmail 3 4

22 10-20 minutes Slack 2 4

23 10-20 minutes JIRA 2 4

24 10-20 minutes 2 4

25 10-20 minutes JIRA, Bitbucket or Github, Slack 4 2

26 10-20 minutes JIRA 4 3

27 10-20 minutes JIRA, Bitbucket or Github 2 4

Control Group Post-Eval Survey

78

ID How much time
do you think you
spent on your
self/peer
evaluation in
Spring 2016
(406)?

Which of the
following did
you
search/review
within the
UNBIASED Self
Evaluation
System while
completing your
self/peer
evaluation in
Spring 2016
(406)?

Outside of using
the UNBIASED
Self Evaluation
System, which
of the following
did you
search/review
while
completing your
self/peer
evaluation in
Spring 2016
(406)?

How difficult
was it to write
your self
evaluation in
Spring 2016
(406)?

How accurate
do you think
was your self
evaluation in
Spring 2016
(406)?

Do you think
you wrote a
better, same, or
worse self
evaluation
because you
used the
UNBIASED Self
Evaluation
System in
completing your
self evaluation
in Spring 2016
(406)?

If you had to
complete
another self
evaluation in the
future, how
likely would you
want to use the
UNBIASED Self
Evaluation
System again?

50 20-30 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github, Slack

3 4 This eval was
better than the
past

4

51 10-20 minutes JIRA, Bitbucket
or Github

3 3 This eval was
about the same
quality as the
past

1

52 10-20 minutes JIRA, Bitbucket
or Github

3 3 This eval was
about the same
quality as the
past

1

54 30-45 minutes 4 3 This eval was
about the same
quality as the
past

1

56 10-20 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github,
Groupme

1 2 This eval was
about the same
quality as the
past

4

58 less than 10
minutes

JIRA, Bitbucket
or Github

2 4 This eval was
better than the
past

5

60 10-20 minutes JIRA, Bitbucket
or Github

JIRA 3 1 This eval was
about the same
quality as the
past

1

62 30-45 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github

3 5 This eval was
about the same
quality as the
past

2

Testing Group Post-Eval Survey

79

ID How much time
do you think you
spent on your
self/peer
evaluation in
Spring 2016
(406)?

Which of the
following did
you
search/review
within the
UNBIASED Self
Evaluation
System while
completing your
self/peer
evaluation in
Spring 2016
(406)?

Outside of using
the UNBIASED
Self Evaluation
System, which
of the following
did you
search/review
while
completing your
self/peer
evaluation in
Spring 2016
(406)?

How difficult
was it to write
your self
evaluation in
Spring 2016
(406)?

How accurate
do you think
was your self
evaluation in
Spring 2016
(406)?

Do you think
you wrote a
better, same, or
worse self
evaluation
because you
used the
UNBIASED Self
Evaluation
System in
completing your
self evaluation
in Spring 2016
(406)?

If you had to
complete
another self
evaluation in the
future, how
likely would you
want to use the
UNBIASED Self
Evaluation
System again?

63 20-30 minutes Bitbucket or
Github

3 5 This eval was
about the same
quality as the
past

1

65 10-20 minutes Bitbucket or
Github

Bitbucket or
Github

4 3 This eval was
about the same
quality as the
past

1

66 30-45 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github

4 4 This eval was
better than the
past

1

67 20-30 minutes JIRA, Bitbucket
or Github,
GroupMe

JIRA, Bitbucket
or Github

3 3 This eval was
about the same
quality as the
past

3

68 30-45 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github, Slack

2 4 This eval was
about the same
quality as the
past

5

69 10-20 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github

1 4 This eval was
about the same
quality as the
past

3

71 20-30 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github

1 4 This eval was
about the same
quality as the
past

4

Testing Group Post-Eval Survey

80

ID How much time
do you think you
spent on your
self/peer
evaluation in
Spring 2016
(406)?

Which of the
following did
you
search/review
within the
UNBIASED Self
Evaluation
System while
completing your
self/peer
evaluation in
Spring 2016
(406)?

Outside of using
the UNBIASED
Self Evaluation
System, which
of the following
did you
search/review
while
completing your
self/peer
evaluation in
Spring 2016
(406)?

How difficult
was it to write
your self
evaluation in
Spring 2016
(406)?

How accurate
do you think
was your self
evaluation in
Spring 2016
(406)?

Do you think
you wrote a
better, same, or
worse self
evaluation
because you
used the
UNBIASED Self
Evaluation
System in
completing your
self evaluation
in Spring 2016
(406)?

If you had to
complete
another self
evaluation in the
future, how
likely would you
want to use the
UNBIASED Self
Evaluation
System again?

72 10-20 minutes 1 4 This eval was
about the same
quality as the
past

2

73 20-30 minutes JIRA, Bitbucket
or Github

JIRA, Slack 1 5 This eval was
about the same
quality as the
past

4

74 less than 10
minutes

JIRA 3 4 This eval was
about the same
quality as the
past

3

76 10-20 minutes JIRA, Bitbucket
or Github

JIRA 3 4 This eval was
about the same
quality as the
past

2

77 20-30 minutes JIRA, Bitbucket
or Github

JIRA, Bitbucket
or Github

4 3 This eval was
about the same
quality as the
past

2

Testing Group Post-Eval Survey

81

Tell us what you think about the UNBIASED Self Evaluation
System. What did you like? What did you not like?
I like the idea of it but it was a little confusing and took more
time to finish the review.
Doesn't connect well with Jira or Bitbucket, added no
meaningful content, requires permissions to my accounts that
make me uncomfortable. Would not use again.

I'm not 100% sure that hooking it up to bitbucket worked. Then
I lost all my progress when I tried to hook it up with gmail and
got some weird error. I'm not even completely sure that my
eval got submitted.
I like the simplicity it has in compiling individual contributions
that were up on the remote repository. My biggest qualm is
that it does not and cannot, from what I know, see the local
development that may not have been completed or sent up. All
in all I really like it though due to the simplification.
I really liked the convenience of it and how it made my self
evaluation objective rather than subjective. I think the only
reason why it may lack accuracy is because I did not
document all my accomplishments throughout the quarter
since I did not know I'd be using this. I would definitely use
this in the future, but I would just make sure to optimize JIRA
and github.
I didn't really like it just because it only entered one line for me
and it wasn't exactly anything relevant.
I would rather enter information in the fields manually

It was unstable. GitHub looked at which PRs we merged
instead of which ones we created.
Google account log in gives 404 error.
JIRA doesn't work at all.
Seems like GitHub was the only part that worked for me.

I like the concept, although systems like JIRA and Bitbucket
already provide ways for me to isolate my contributions in a
way that allows me to easily remember what I've done this
quarter. However, centralizing those sources could potentially
be useful. Neither tool worked for me, UNBIASED could only
find two of my commits and could not connect to JIRA, so my
experience was the same as in previous quarters. It is a good
effort, however, and I appreciate the idea of streamlining the
process and how that may contribute to more accurate
analyses.

Testing Group Post-Eval Survey

82

Tell us what you think about the UNBIASED Self Evaluation
System. What did you like? What did you not like?
I liked it but for GitHub it just kept loading and wouldn't end.
And I wasn't sure when the form was complete and I could
leave from the page. Other than that it was pretty nice.
The auto generation was really nice and was pretty accurate in
displaying contributions. However, there are some intricacies
that aren't addressed such as if two people pair program a task
in Jira, but only one gets to complete it so it doesn't appear on
the other's tasks (same with Git commits)
I like the idea of the system. In my case the generated self
evaluation showed PRs I had merged, not created, so it was
exclusively the work of other people. I had to go to github to
see which PRs I had actually created.
It was cool how it aggregated the data for me. I did not like that
it had some problems with JIRA / JIRA not working in general.
However, I believe tools like this will be more prevalent in the
coming years especially with so much data being passed
around. :0
It just doesn't feel necessary. I have a pretty good idea of how
my team does without needing to look at Jira or not. The tool
seems fine if it was used to evaluate people's grades for
someone not on the group (ie Dr Janzen) but from within it just
is an annoyance to took it up with Jira, Bitbucket, etc.
I like it, I think it is a helpful resource that can be used a great
starting point in writing self reflections.

It was too buggy. It's also nice to get a recap of what I've done,
but I mostly remember what I've done for the past two months.
I don't like that I have to give it access to my entire bitbucket
account. Also, the bitbucket search didn't work for me. I tried
adding a username alias, but no luck. Also, there doesn't
appear to be any way to un-link my account.

For jira there are several issues that I forgot to log hours on,
but still resolved- you should display "issues resolved" by a
particular user.

Testing Group Post-Eval Survey

83

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Contribution

	BACKGROUND
	Self Evaluations
	Self Evaluation Questions
	Challenges
	In Capstone Courses

	Email
	Calendar
	Source Code Repositories
	Software Management Tools

	UNBIASED FEATURES
	Solving Self Evaluation Challenges
	Accessing User Data on Third Party APIs
	Gmail
	Google Calendar
	GitHub
	Bitbucket
	JIRA

	Third Party Data Analysis
	Gmail
	Google Calendar
	Bitbucket
	GitHub
	JIRA

	Automatic Self Evaluation Generation

	UNBIASED SOFTWARE DESIGN
	Overview
	Technologies Used
	Google App Engine
	Google Polymer
	OAuth 2.0
	Natural Language Toolkit
	urlfetch
	apiclient.http

	VALIDATION
	Validation Framework
	2016 Capstone Pre-Evaluation Survey
	2016 Capstone Post-Evaluation Surveys
	2016 Capstone Post-Evaluation Survey for Control Group
	2016 Capstone Post-Evaluation Survey for Testing Group

	Results
	Analysis
	Does using UNBIASED save software engineers time?
	Does using UNBIASED help software engineers perform more accurate self-evaluations?
	Does using UNBIASED increase the number of sources software engineers use when performing a self evaluation?
	Does using UNBIASED make it easier for software engineers to write their self evaluations?
	Does using UNBIASED increase the quality of the self evaluation?
	Do software engineers like using UNBIASED?

	RELATED WORK
	Bitbucket Analysis Tools
	Awesome Graphs for Bitbucket

	Gmail Analysis Tools
	Gmail Meter

	Calendar Analysis Tools
	GTimeReport

	GitHub Analysis Tools
	GitHub Pulse
	Git Commit Log Analysis Made Easy
	Git Inspector

	JIRA Analysis Tools
	JIRA Reports

	Discussion

	CONCLUSIONS
	Discussion

	FUTURE WORK
	BIBLIOGRAPHY
	Pre-Evaluation Survey
	Post-Evaluation Survey for Control Group
	Post-Evaluation Survey for Testing Group
	Survey Results

