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ABSTRACT 

A Simulation Model for Decision Support in Business Continuity Planning  

Marissa Mosunich 

Enterprises with a global supply network are at risk of lost revenue as a result of 

disruptive disasters at supplier locations. Various strategies exist for addressing this risk, and a 

variety of types of research has been done regarding the identification, assessment and response to 

the risk of disruption in a supply chain network. 

This thesis establishes a decision model to support Business Continuity Planning at the 

first-tier supplier level. The decision model incorporates discrete-event simulation of supply chain 

networks (through Simio software), Monte Carlo simulation, and risk index optimization. After 

modeling disruption vulnerability in a supply chain network, costs of implementing all 

combinations of Business Continuity Plans are ranked and then tested in discrete-event simulation 

for further insight into inventory levels, unmet customer demand, production loss and related 

costs. 

A case study demonstrates the implementation of the decision support process and tests a 

historical set of data from a large manufacturing company. Discrete-event simulation modeling of 

loss is confirmed to be accurate. The relevance of the model concept is upheld and 

recommendations for future work are made. 

 

Keywords: Business Continuity Plan (BCP), discrete-event simulation, Monte Carlo simulation, 

risk index, risk management 
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Chapter 1 - INTRODUCTION 

 Great loss in revenue can occur as a result of disruptive events in global supply chains 

(Sheffi, 2005, p. 13). Over the past two decades, as a result of this growing circumstance, 

companies and researchers have increased their focus on the potentiality of disruptive events, 

such as hurricanes, earthquakes and strikes, to disrupt a supply chain and response methods to 

such significant events (Samaddar, 2010, p. 88). Corporations, as well as various professional 

societies including the International Symposium on Logistics, have advancing interest in this 

issue. Whether manmade or natural, disruptive events threaten to disturb the flow of goods in 

supply chains, halting production, sales and the loyalty of customers and investors. There is a new 

need for methods to tackle this issue. 

The term “Business Continuity Plan,” or “BCP,” is increasingly used for the defining of a 

set of strategies developed by companies to maintain operations in the event of disruption to 

business flow, often specifically to supply chain operations (Ojha and Gokhale, 2009, p. 243). 

While the term ‘BCP’ has been defined in a variety of ways, it will be assumed here to include 

both mitigation plans (preventative actions) and contingency plans, when action is planned for 

before the event of a disruption. Business Continuity Planning refers to the development of an 

entire strategic process to address disruption risk; this paper will address a specific method that 

supports the process of BCP.  

There is a need for established managerial solutions to supply chain disruptions, and while 

language for standard practices in Business Continuity Planning are still underdeveloped, an 

expanse of work has been begun to develop around this topic. Researchers, including Yossi Sheffi 

of MIT and others, have done considerable studies around the topic of BCP. 
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After learning about a variety of methods and models and speaking with the Supply Chain 

Risk Management (SCRM) team at a major technology company in California, contribution to the 

body of knowledge about use of simulation in supporting BCP was sought by the author. 

While some previous work addresses discrete-event simulation for managing supply chain 

disruption risk, few publications propose ways to integrate simulation into the BCP planning 

process. Therefore, the following question is proposed: 

Can the use of risk index optimization add value to discrete-event simulation for decision 

support in Business Continuity Planning? How might this be done? 

General Approach 

This thesis will address the afore-stated question by proposing and testing a model that 

uses both discrete-event simulation and risk index assessment to address disruption risk in a 

supply chain network. Testing and results of case studies that implement the method developed 

will provide insight into the feasibility of such method, providing the modeling to do so.  

Predicted savings according to the risk assessment method and the discrete-event 

simulation will be compared and differences in method results will be explained in detail to 

further assess the advantages and shortcomings of each method. Monte Carlo simulation will be 

employed to generate parameters for probabilistic distributions for risk frequency and impact. 

These distributions will then be input to a discrete-event simulation model developed in Simio 

software. 

A combinatorial optimization model will be used to choose the best combination of 

responses, acting as a ‘pre-screening’ prior to testing in Simio (discrete-event simulation). A large 

number of combinations of responses to risk at various locations in the supply chain will be 
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assessed according to how they compare to the others by losses mitigated and the cost of 

implementing that response combination. While the decision support model will provide optimal 

solutions from risk index and cost parameters, the simulation in Simio will provide a clearer 

understanding of the savings and cost changes under various response scenarios. Such a setup will 

model the presence of multiple suppliers and inventory levels because of the incorporation of 

stochasticity of disruption and production, providing the strongest prediction of the effectiveness 

of response plans. 

In addition to literature on disruption simulation and testing of response plans, general 

supply chain risk management literature will play a role in the development of this model. 

Tummala and Schoenherr (2011, p. 220), discuss the need for a, “structured and systematic 

approach to enumerate supply chain risks,” to assess their severity and likelihood and to look at 

the costs involved in “preventative actions.” Similarly, the model developed in this thesis will 

consist of a method for risk assessment, being summarized as follows: 

1. Enumeration of the disruption risks at each node (supplier site) and the formation 

of multi hazard risk distributions using Monte Carlo simulation. 

2. Discrete-event simulation modeling of the supply chain network with accurate 

demand/production rates and inventory levels. 

3. Enumeration of possible mitigation or contingency plans at each node and the 

listing of the change to probability of occurrence and impact at each site a response 

has been implemented; listing of cost parameters associated with implementing 

each type of response. 
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4. Use of the BCP Choice Model and obtaining Net Savings under each possible 

combination of responses. 

5. Input of the top response combinations from the BCP Choice Model to the Simio 

model for a more accurate and detailed assessment of the effectiveness of the 

response choice. 

Issues and Assumptions 

This thesis focuses specifically on addressing corporate losses due to unmet demand, that 

is, profit that would have been achieved if the disruptive event had not happened. Additional 

types of losses including damage to company property, loss in market share (Wai & 

Wongsurawat, 2013), and loss in customer confidence will not be modeled here. 

Disruption risks that will be taken into account will be limited to natural disasters, or those 

which occur as a result of a supplier’s geographical location, excluding man-made disasters such 

as bankruptcy, strike, and political crisis. Thus, the estimation of risk in this model will be more 

optimistic than if it were to include man-made disasters. The model can, however, incorporate 

these types of risks if information on their likelihood and impact were available and analyzed.  

Costs of implementing plans will also be based on best estimates for specific parameters, 

including holding cost per unit of inventory per day, cost of negotiations associated with sourcing, 

and the value of losing an established supplier relationship. Thus, some characteristics of a 

change in policy as well as the details relating to its cost will be rough informed estimates. For 

most effective use of this model, data input must come from thorough and accurate interviews 

with multiple members of the corporation in question. 
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Chapter 2 – LITERATURE REVIEW 

 Companies who understand that financial loss is imminent develop methods of response to 

disruption, or Business Continuity Plans, to address risk in advanced and in the event of 

disruption. With the growing need for Business Continuity Planning in industry, there has been a 

growing trend in academic research in the past twenty years about this topic, continuing into the 

present. 

 This thesis looks specifically at the use of discrete-event simulation for decision support in 

Supply Chain BCP, an area where further research is needed. As pointed out by Manuj (2009), 

while mathematical modeling and simulation are widely used in Supply Chain Management, 

“research… does not satisfactorily address and/or report the efforts taken to maintain the rigor of 

simulation studies” (p. 173). A variety of work, described below, has been done, but user-friendly 

methods of implementing discrete-event simulation to support BCP need to be established. This 

chapter attempts to describe and evaluate the most influential research pertaining to the topic of 

established and approachable methods of discrete-event simulation to support BCP. Further, it 

explains the impact and motivation of said research to create the model that was established by 

the author here. 
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Figure 2.1: Relevant Literature, Arranged in Order of Contribution by Topic as Follows: Business 

Continuity Planning (General) - Orange, Discrete-Event Simulation - Purple, Risk-Oriented 

Decision Support - Red, Risk Measurement- Green. 

 

 Figure 2.1 depicts a color-coded map of various approaches to Supply Chain Risk 

Management and Business Continuity Planning. In particular, each of these most influential 

articles provided motivation for the development of the supply chain decision support simulation 

model.  

Business Continuity Planning (General)  

“Assessing and Managing Risks using the SCRMP,” a paper by Tummala (2011) had a 

major impact on this thesis’ methodology. It lists useful actions such as to, “enumerate supply 

chain risks and to assess their severity and likelihood,” by providing a way to accurately model 

the enumerated risks’ impact on the network and to determine the best set of responses while 

keeping financial implications in mind (2011, p. 475). Describing risk planning, it states that, 

“Since it is not feasible and practical to develop mitigation and prevention strategies for every risk 
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identified, risk-planning begins with the examination of the costs required to implement each 

preventative action…” (2011, p. 482). The SCRMP (Supply Chain Risk Management Process) 

suggested in the paper provides a guide for evaluating and responding to disruption risk in Supply 

Chain. However, while various types of simulation methods are mentioned (p. 480), none are 

specifically demonstrated in the study, a vacancy for further work of useful risk planning methods 

combined with simulation methods in supply chain management. 

Other fundamental SCRM concepts are found in Brian Tomlin’s “On the Value of 

Mitigation and Contingency Strategies for Managing SC Risks” (2006). Tomlin proposes a 

comprehensive set of, “strategies for managing supply chain risks… inventory, reliable supplier, 

acceptance, mixed, contingent rerouting, demand management and business interruption 

insurance,” (p. 639) from which the author’s own set of response strategies were drawn. Tomlin 

proposes a mathematical model with which to analyze the above-stated response strategies (p. 

642). This mathematical leg-work and response evaluation-centered approach is valuable for BCP 

simulation, and the work lends itself to the use of simulation models that can implement the 

evaluation methods established by Tomlin. 

Risk-Oriented Decision Support 

The analysis of response strategies to supply chain disruption risk, as carried out by Brian 

Tomlin provides a decision-support approach to BCP. In fact, a variety of recent literature focuses 

specifically on what is referred to as “Risk-oriented Decision Support” for BCP.  

“Risk Decision Support in Sensitive Logistics Nodes,” (2013)by Breuer, et al., along with 

Samaddar’s “Analyzing Supply Chain Disruption Risk: A Decision Analysis Framework” (2010) 

were influential regarding decision support methods. Breuer, Castine, Siestrup, and Haasis (2013) 
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provided a framework which in fact involves the use of both a discrete-event simulation model 

and decision trees for decision support. While the article by Breuer, et al. (2013) portrayed a 

paramount idea by combining these methods, the model focuses on disruption risks on a reactive 

case-by-case basis by, “building the base for testing the impacts of damaging events and for 

evaluating possible action strategies” (p. 218). Implementation of their proposed strategy is not 

included in their paper and would heighten its validity. Additionally, the methodology proposed 

by Breuer, et al. provides what is referred to as, “reactive risk management” (p. 218), whereas this 

thesis will evaluate multiple hazard risk response strategies as they are established prior to the 

event disruption, a proactive decision support model. 

Samaddar and Nargundkar (2010) also suggest a, “Framework for strategic response to 

different levels of uncertainty,” which involves the use of decision trees (p. 89). Again, while 

their approach is especially useful for decision support at the moment of supply chain disruption, 

the case-by-case planning method does not provide all that is needed for decision support in 

business continuity planning.  

Discrete-Event Simulation 

In addition to research into the combined approaches mentioned, research was done 

regarding methods of using discrete-event simulation for handling disruption risk in a supply 

chain. A survey of such efforts by Terzi and Cavalieri (2003) reviewed more than eighty papers, 

taking stock of the various published uses simulation for supply chain decision support arguing 

that among qualitative methods. “Simulation is undoubtedly one of the most powerful techniques 

to apply, as a decision support system, within a supply chain environment” (Terzi and Cavalieri, 

p. 4). Of the papers surveyed by Terzi and Cavalieri, a fourth of the single-processor supply chain 
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simulations were performed using Arena software; however, none were documented as using 

Simio, which will be used here.  

The authors note that the surveyed uses of simulation can be sorted into two types of 

paradigms- parallel integrated models or single models. They argue that parallel integrated 

models (with multiple processors) are more effective than single simulation models incorporating 

all location nodes in one model (Terzi and Cavalieri, 2003). This thesis tests only a single 

processor model to aid in supply chain decision support, due to its less complicated, more usable 

setup. However, future work which involves a multi-processor discrete-event simulation in 

combination with risk planning for BCP is suggested.  

The discrete-event simulation portion of the project was inspired by a 2009 paper by 

Amanda Schmitt and Mahender Singh, published out of MIT, “Quantifying Supply Chain 

Disruption Risk Using Monte Carlo and Discrete-Event Simulation.” Schmitt and Singh use 

Arena for discrete-event simulations and @Risk for Monte Carlo simulations as a, “means to 

quantify” risk, model flexibility to variation, and test mitigation procedures, proving that, “risk is 

dynamic,” and that a model must account for this (Schmitt and Singh, 2009, p. 1248).  

This thesis builds on Schmitt and Singh’s work by employing various technical solutions 

they used for modeling disruption risk and using these in discrete-event simulation as a part of a 

risk management process. At the same time not all techniques of Schmitt and Singh were used in 

order to create a convenient model that is less in-depth. 

In further advancement, the functionality of Simio software is tested here, and various 

modifications and ideas for model setup are implemented because of the differences in software 

choice.  
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Methods motivated by Schmitt and Singh’s model include: 

● Use of Monte Carlo simulation to generate ‘multi hazard’ risk disruption 

distributions modeled at supply chain nodes (supplier sites). 

● Use of ‘demand’ object entities. 

● Use of ‘product’ object entities. 

As with Schmitt and Singh, further motivation was drawn from work by Jain & Leong 

(2005) and Deleris & Erhun (2005). Jain and Leong, who like others used Arena software to 

model disruptions in a supply chain, reiterate that, “Simulation provides the capability to evaluate 

performance of a system operating under current or proposed configurations, policies or 

procedures,” (2005, p. 1650). What makes their model unique is that it is done from the position 

of Small and Medium Enterprises (SMEs), and the use of simulation modeling to reduce an 

Original Equipment Manufacturer’s (OEM) perceived risk of sourcing from an SME” (p. 1650). 

While that perspective is useful for SMEs, this thesis looks to assist OEMs in running their own 

simulations. 

“Risk Management in Supply Chain Networks Using Monte Carlo Simulation” (2005) by 

Deleris and Erhun as well as “Stress Testing a Supply Chain Using Simulation” (2005) by Jain 

and Leong provide multiple useful insights regarding the use of simulation in business continuity 

planning. Arena is used to model supply chain network flow as it behaves under demand surges. 

Similarly, the discrete-event simulation model developed in this thesis tests the behavior of the 

supply chain system under production shortages. 
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Risk Measurement 

  Douglas Hubbard’s “How to Measure Anything,” (2010) provided confirmation that the 

technique of Monte Carlo simulation warranted application. Hubbard mentions in his chapter on 

Monte Carlo simulation that NASA uses, “soft risk score and more sophisticated Monte Carlo 

simulation to assess the risk of cost and schedule overruns and mission failures. The cost and 

schedule estimates from Monte Carlo, on average, have less than half the error of traditional 

accounting estimates” (p. 96). Hubbard reminds us that, “Using ranges to represent your 

uncertainty instead of unrealistically precise point values clearly has advantages,” and that Monte 

Carlo simulation is, “a practical, proven solution (to adding, subtracting… in a spreadsheet when 

we have no exact values)” (p. 81). Additionally, Hubbard confirms the value of using simulation 

in risk mitigation, stating that, “If a risk is high enough,…an elaborate simulation could easily be 

justified to support our decision” (p. 99). 

Other Sources of Information 

 Alongside methods for simulation and decision support drawn from various literature, 

sources of data regarding disruption risk were required. While a single global source for such data 

was not found, depending on geographical location, certain sources proved to be useful and more 

trustworthy than others, proving a need for a certain kind of publically available database 

regarding global disaster risks. In particular, the percent likelihood of an event (based on number 

of occurrences over a certain number of years) and its average financial impact, listed directly and 

sorted according to the most impactful potential event, would be the most useful type of 

information for use in this simulation. The best source of information for global disruption risk 

data found came from PreventionWeb, an online database providing lists of top disasters by 
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country, according to frequency, mortality, and “Hazard Contribution to AAL (Average Annual 

Loss).” PreventionWeb, “a project of the United Nations International Strategy for Disaster 

Reduction Secretariat,” although collaborative, is a strong source of information 

(“PreventionWeb.net FAQ,” 2014); however, disaster risk maps are not up to date for all country 

profiles, and thus, it is hard to find up to date information for specific cities and regions within a 

given country. (Japan Hazard Map, 2007).   

 In summary, the literature reviewed reveals that a number of methods and resources for 

decision support in response to supply chain disruption risk exist. Among those methods, discrete-

event simulation is used to observe disruption scenarios, response to the disruption, and the 

overall impact on the performance of the system. Studies which incorporate combinations of 

discrete-event simulation with other decision support methods do so a case-by-case manner, 

through the use of tools that are effective reactively. However, none of the literature reviewed 

looks specifically at the combined use of risk decision support and discrete-event simulation in 

choosing the best set of response strategies to multiple risks prior to an event. Literature which 

includes the use of discrete-event simulation does not employ Simio software, and this is an area 

in itself worth exploration. This thesis seeks to provide a method for BCP decision support that 

integrates discrete-event simulation in Simio into a disruption risk planning process.   
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Chapter 3 - SYSTEM DESIGN 

 In order to assist companies in planning for the best responses to multiple risks of 

disruption, a decision support method that integrates discrete-event simulation was developed. 

The process starts with a simulation of a supply chain network and its vulnerabilities, or 

“Vulnerability Simulation” (Figure 3.1) followed by Monte Carlo simulation which develops 

combined node risk parameters. These parameters, along with other information about the supply 

chain are put into the discrete-event simulation model in Simio. Response options are tested 

(Figure 3.1) by running an optimization in Microsoft Excel, a knapsack problem, that, using Risk 

Index (probability of disruption x cost of disruption) under various scenarios as a coefficient, 

chooses response combinations that result in the greatest monetary savings. After potential 

optimal response choices are pinpointed, discrete-event simulation in Simio is used for a detailed 

analysis of expense reduction under pre-response and post-response scenarios. Results reported 

from the simulation scenarios, including unmet demand and average inventory held, provide a 

graphical comparison that can be used for executive decision support. 
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Figure 3.1: Model Flow 

In short, the process to be described can be summarized as follows: 

Part 1: Vulnerability Simulation 

1. Enumeration of the disruption risks at each node, or supplier site, and the 

formation of multi hazard risk distributions using Monte Carlo simulation. 

2. Discrete-event simulation modeling the supply chain network with accurate 

demand/production rates and inventory levels. 

Part 2: Response Testing 

3. Enumeration of potential mitigation or contingency plans at each node (supplier 

site) and the listing of the change to probability of occurrence and impact at each 

site a response has been implemented; listing of the cost parameters associated 

with each type of response.  

4. Use of the BCP Choice Model and obtaining Net Savings under each possible 

response combination. 
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5. Input of the top response combinations from the BCP Choice model to the Simio 

model for an accurate and detailed assessment of the effectiveness of the response 

choice. 

It is the author’s intention that the setup of this process, in addition to its implementation 

and testing (Chapters 4 and 5), will provide a concept that is both well-informed by previous 

methods and models and still approachable for any researcher or executive responsible for 

managing disruption risks in a global supply chain network. 

Node Risk Profiles and Monte Carlo Simulation 

In order to respond to risks in a supply chain, we must understand the nature of the risk. 

Thus, the initial simulation, modeling the supply chain’s vulnerability, takes into account the 

likelihood of a disruptive event and its magnitude. Use of these important factors can be found 

throughout risk management literature.  

Multiple events must be taken into consideration, and thus measuring such risk becomes 

more complex. Use of Monte Carlo simulation, therefore, was prescribed, in line with Schmitt 

and Singh (2009) to generate probabilistic distributions to represent the risks of any disruptive 

event (p. 1243). These distributions are useful for input to a discrete-event simulation because the 

servers in the simulation will read single probabilistic distributions for the interarrival time of 

disruptive events (i.e. failures) and number of days down.  

The Monte Carlo simulation can create an intersecting probabilistic distribution, that is, a 

distribution which combines multiple elements which themselves have an estimated likelihood. 

Monte Carlo also provides a way to express uncertain knowledge more accurately. “Most of us 

are systematically overconfident and will tend to underestimate risks unless we avail ourselves of 
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the training that can offset such effects.” “Monte Carlo uses a brute-force approach to randomly 

pick a bunch of exact values … according to the ranges we prescribe...the probabilities of 

different results can be estimated” (Hubbard, p. 80-84). 

Monte Carlo simulation was run in Excel to develop Node Risk Profiles and beginning 

with an enumeration of the most likely and/or impactful disruptive events at a given site. (Table 

3.1) Based on historical data, each type of disruptive event can then be assigned an estimated 

probability of occurrence, which then is converted to a probabilistic, exponential expression of 

interarrival time between disruptions.  

Schmitt and Singh (2009) assert that the exponential and triangular distributions best 

represent the interarrival time of disruptive events to a plant and the days a plant will be down, 

respectively. Thus, both exponential and triangular distributions are employed in this study, both 

for individual types of disruptions and for the multi hazard risk distributions (p. 1243). 

 

Table 3.1: Example Risk Profile for Monte Carlo Simulation 

 Using the exponential distributions for each potential event, the Monte Carlo simulation 

creates a combination of these distributions, a single probabilistic distribution. This distribution is 
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generated through the use of the RAND(x) function in Excel for the value of x, the numbered 

event, in the inverse exponential distribution for each event type (Table 3.2). Ten thousand 

scenarios are then generated and the resulting sum of probabilities are tallied, forming a 

distribution of outcomes, shown by the bar graph (Figure 3.2). 

 

Table 3.2: Example Monte Carlo simulation scenarios (3 of 1000)  

  

Figure 3.2: Example Multi Hazard Risk Frequency Distribution 

 The Monte Carlo simulation procedure described above is also employed to generate a 

distribution for the average number of days a supplier will not be able to run due to any given 
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disruption. As mentioned, the triangular distribution lends itself well to estimating the number of 

days a plant will be down due to the ability a supply chain professional to state the minimum, 

maximum, and estimated median number of days a plant will not be in operation if a certain type 

of disruption were to occur (Schmitt & Singh, 2009, p. 1243). Just as with the Monte Carlo 

simulation for generating a distribution for disruption interarrival times, ten thousand replications 

of a set of three randomly generated outcomes of specific triangular distributions create a single 

distribution for the minimum, mode and maximum number of days a site will be down if a 

disruption of any of the listed types occurs.  

Discrete-Event Simulation: System Design 

 After being generated through Monte Carlo simulation, probabilistic distributions for 

disruption interarrival times and days down are then be used in the discrete-event simulation 

model. As opposed to creating generated disruption ‘entities’ (as in Schmitt and Singh, 2009), this 

model uses the functionality in Simio of server Reliability Logic. The Reliability Logic, 

traditionally used to represent machine failures on a manufacturing floor, specifies “Uptime 

between failures” and “Time to repair.” Although in this model servers are used to represent 

nodes (supplier sites) in a supply chain, the functionality can still be adopted to represent supply 

chain disruptions because Uptime between failures is used in the same way as time between 

failures. While future work could be done to compensate for variation due to this difference in 

this logic, this paper assumes that any differences are small, and the Reliability Logic in Simio is 

used as is. 
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 Simio allows for the modeling of a set of multiple nodes (supplier sites) with various risk 

profiles, and distributions are specified in a window for the respective server (Table 3.3). Setup of 

reliability logic for servers will go on to impact the results of the simulation model. 

 

Table 3.3: Example Server Reliability Logic Settings, Simio Interface 

Continuing the discrete-event simulation model setup, “Order,” or demand entities, and 

product entities are defined and depicted as green triangles in the system. The model goes on to 

depict virtual supply chain nodes (supplier sites) with respective sources of material through 

source objects. Lines between sources, servers, combiners, and sinks are Connectors rather than 

Paths, resulting in instantaneous travel between nodes, as this simulation does not take travel time 

into account.  

A final Combiner object (Figure 3.3) is an import piece of the model setup, matching 

Product entities with Order demand entities in a 1:1 ratio. Ultimately, the output of the combiner, 

a single object, is fed to the “Sales” sink, modeling a fulfilled customer order.  Unmet Demand is 

measured when Order entities go into the sink Unmet Demand sink, which occurs when no 

product is waiting at the Parent Input Buffer, or inventory, at “Combiner1.”  
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Figure 3.3: Example Project Facility Model, Simio Interface 
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Status Labels are included at various points in the model in order inform the user the 

behavior of the simulation model in test runs. (Figure 3.3) Add-on processes were created (Figure 

3.4 & Table 3.4) to direct item entities to not accumulate at the supplier when it is down. This was 

done to more realistically model what might happen if a disruption were to occur. Third-tier 

suppliers of material would not have infinite inventory capacity and the second-tier suppliers 

would not have the capacity to purchase the backed-up surge in materials after the disruption 

ends. Thus, accuracy is maintained in the model. 

 
 

 

Figure 3.4: Add-On Process Logic, Simio Interface 
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Table 3.4: Process Settings, Simio Interface 

 The model was set to run over the course of 365 simulated days plus the amount of days 

inventory in policy to be held at the OEM server. For instance a simulation run over the course of 

a year may be programmed at 341 days, to account for a delay in the production of demand 

entities by five days in order to build an inventory at the OEM server of five days production. 

Once the model is created as described above, the testing ultimately provides insights into the 

expected performance of such a supply chain setup. 

Part 2 Response Testing: BCP Choice Model- Combinatorial Risk Optimization 

The BCP Choice Model for decision support for response choices involves the following.  

● Optimization of all possible responses through risk index method. 

● Input of ‘best’ BCPs found in Step 1 to the Simio Vulnerability Model. 

● Comparison of projected savings to projected cost. 

 The initial combinatorial optimization enumerates and compares all possible BCPs, a 

brute force to ensure that no combination of responses is overlooked. This initial optimization 

alone, however, does not provide the same amount of precision in estimating the risk associated 

with a given BCP. Thus, the discrete-event simulation goes on to more accurately predict the 

losses associated with initial, less precise ‘gleaned’ plans. 
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 A cost analysis is required, done with an Excel spreadsheet that allows for the input of 

various cost parameters. This cost calculator is flexible to change in its parameters and equations. 

Accurate modeling of costs associated with responses is crucial for the successful evaluation of 

BCPs in any real application. 

 The combinatorial risk index optimization model specifically operates by first listing all 

response/node combinations, through input of changed risk probabilities and days down for each 

node/response combination and input of parameters into cost model to project costs of BCPs 

through each node/response combination. Finally, calculation of net savings under all response 

combinations is performed. 

 

Table 3.5: Decision Matrix, BCP Choice Model 

The spreadsheet for calculating the values which we desire to optimize is shown above. A 

matrix (Table 3.5) on the spreadsheet indicates the combination of “Yes” and “No” to indicate 

whether or not a plan would implemented at a given node. 

Below the decision matrix, the BCP Choice Model spreadsheet (Table 3.6) includes 

columns for the following: Node, Risk, and Risk Index (PxC) for each node prior to response; 

then, response chosen (as indicated in the Decision Matrix), corresponding risk parameters and 

indices, most optimal risk parameters of the ones indicated for inclusion, multi hazard risk 

parameters and indices at each node after response implementation (generated through Monte 
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Carlo sheets), savings at the node (difference between Pre and Post-response risk indices), total 

savings and cost (pulled from the cost sheet).  

The optimization model, which includes changes in risk parameters under the input of 

each response combination, chooses the lowest (risk x impact) combination (risk index) 

associated with each response or nonresponse. The lowest probability of occurrence in the 

probabilities listed for a given event at a node is pulled, as well as the smallest number of days 

down. This is based on the assumption that the most effective response results will define the new 

frequency of disruption and days down for an event at a given supplier site.  

If the parameters pulled are generated by the response choice to second-source, the 

‘frequency’ and ‘days down’ associated with the response that has the lowest risk index is chosen 

to represent the ‘new’ parameters under the given BCP, or response combination, in tandem. 

Finally, these changes in Risk Indices are summed to come up with a value for the overall change 

(ideally, reduction) of risk at all nodes in the supply network, expressed as a dollar value for 

savings (Table 3.6). 
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Table 3.6: Example BCP Choice Model 
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Table 3.7: BCP Response Impact, Example User Input 

The optimization of BCP response combinations is achieved by pulling the values for 

‘Savings’ and ‘Cost’ generated in the BCP Choice Model spreadsheet for each Yes/No 

combination into a spreadsheet listing all possible response combinations. ‘Post-response’ values 

mentioned in the BCP Choice Model spreadsheet (Table 3.6) were pulled from a ‘Response 

Sensitivity’ worksheet (Table 3.7), in which the user inputs percentage and/or integer values into 

the yellow highlighted columns. The cost of implementing the given BCP response combination 

is pulled from the ‘Costing’ spreadsheet. User input, highlighted in yellow in the cost worksheet 

(Table 3.8), are for parameters relating to costs of response plans. The formulas generating the 

costs related to implementing a given response at a supplier node are described in this table. Note 
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that the user, if he/she wishes, can manually input a total cost for a supplier/response combination 

if the formulas do not generate the desired value.  

Table 3.8: Response Cost Parameters, Example User Input  

Finally, the rows of this sheet are sorted according to the highest net savings (savings – 

cost) under each response combination. (Table 3.9) 

 

Table 3.9: Example Top Choices, Sorted Decision List in BCP Choice Model 

Response Testing in Simio 

 As mentioned previously, the BCP Choice Model described above provides a rough cut of 

the theoretically most cost-effective BCP response combinations. However, as research shows, 

discrete-event simulation provides the most accurate portrayal of the performance of a complex 

supply chain. Therefore, the next step in the process is to test the response choices in the Simio 

model developed in Part 1.   

 In order to prepare the model for testing of different cases, Experiments are created in 

Simio. The Experiment table in Simio (Table 3.10) was employed as follows. Rows in the 
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Experiment table, each corresponding to a Scenario, were labeled for each BCP response case. To 

the right of the indicated scenarios is information about Replications. In this model, ten 

replications were specified, corresponding to ten different runs under the same scenario. Desired 

Responses, or measured outputs, were chosen to show the desired key performance indicators 

(KPIs), Production Loss, Unmet Demand, Average Inventory, and Sales. Unmet Demand and 

Production Loss indicated are the most important measurements for evaluation of Business 

Continuity Plans.  

 

Table 3.10: Example Response Scenarios, Simio Interface 

Ten replications were run for each scenario in the experiment in order to come up with the 

most accurate results. Each scenario involves changing the risk parameters programmed in the 

servers and changes to the size of the inventory buffers at servers, if the BCP indicated such a 

change. Alternatively to experimental runs, the virtual model of the supply chain network and its 

Status Labels serve as a means for the user to test the behavior of the simulation under a variety of 

model configurations and also to test that the model is functioning as desired.  

Part 2 Simulation Result Analysis 

Management is best served by several options that can be compared to one another.  
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From the experimental scenario runs, the desired KPI outputs, unmet demand, average inventory, 

sales, and production loss recorded are analyzed and interpreted. Conversion of experiment 

results to dollar values are as follows. Net savings (Figure 3.5) was calculated using the changes 

in unmet demand (profit gain or loss), changes in average inventory held (savings or additional 

cost) and the cost of implementing the plan (amount from BCP Choice Model used). This is put 

into practice by subtracting simulation results of simulation configurations reflecting the BCP in 

question from the results from the case of no response reconfiguration (expressed as ‘BCP 128’). 

Net Savings = 

[(Unmet Demand BCP 128) - (Unmet Demand BCP Y)] * $2.40 profit/unit   

+ [(BCP 128 Ave.OEM Inventory) - (BCP Y Ave.OEM Inventory)] * $2.00(.4) holding/unit  

- BCP Y Cost of Implementation 

Figure 3.5: Post Discrete-Event Simulation Cost Analysis 

 Examples of a table with units measured converted to dollar savings under each BCP are 

shown (Tables 3.11 and 3.12). 
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Table 3.11: Example Cost Analysis of Discrete-Event Simulation Results 

 BCP results are then compared by the Net amount of dollars saved and color-coded in 

rank to show which is the most monetarily preferable BCP, in terms of profit loss and 

implementation cost. The example plot graph (Figure 3.6) provides further visual support to those 

who are analyzing the best responses to the risk in their supply chain network by indicating (by 

the red line) the point at which cost and savings are equal, and whether the savings of a plan falls 

above the cost and by how much. 
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Table 3.12: Choice Model, Example Choice Cost vs. Benefit Comparison 

 

Figure 3.6: Choice Model, Example Scatter Plot Representation of Choices 
 

The setup of this model is feasible across many supply chain situations. Various response 

choices are listed and tested, according to the change in disruption frequency and impact that they 

cause. A rough cut of optimal response combinations is done using the BCP Choice Model, a 
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knapsack optimization problem which narrows down the choices of response that will cause the 

most savings. A discrete-event simulation model uses the same risk probability distributions, 

according to the characteristics of the supply network being analyzed. This simulation is used to 

test both the outcomes of the supply network’s vulnerability to disruption and the monetary 

outcome of implementing a set of response strategies. The discrete-event simulation model 

ultimately serves to provide the most accurate prediction of the reduction in losses due to 

disruption after a response has been implemented.   
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 Chapter 4 - SYSTEM IMPLEMENTATION 

 This chapter describes the variety of details required for configuring, running, and 

reconfiguring the simulation and cost-analysis decision support models and explains a real supply 

chain scenario that was used to do so. In order to run the simulation, a survey was required for 

obtaining data. Data collection for this experiment consisted of an emailed survey to a 

representative from Company XYZ, a large manufacturing company. Responses to questions 

regarding supply chain configuration, risk, and response plans were requested in order to model 

the case and are shown below (Supply Chain Professional, personal communication, 2015). 

Supply Chain Disruption Risk Management Survey and Case 1 Input 

1. Is this a required component for all products or a product with its own independent demand 

from customers? 

<< It’s a required component for all products. 

2. Please share, if possible, the rate of production and the inventory holding policies for this item. 

<< The inventory is 40 days of production 

3. Corresponding suppliers and/or locations for afore mentioned components 

<<Three suppliers, all located in Japan. 

4. Average demand (daily, weekly, or monthly) for the final product? 

<<50 million units/quarter 

5. Profit margin per item? 

<< Cost is $4 per unit, margin is 60%. (That is, profit/$4=.6 or profit is $2.40 per unit.) 

6. Disruption/disaster occurrence(s)- date and number of days supplier(s) down 

<<Tsunami in 2011; one week. 

7. Recorded loss (unit or $ sales, market share, physical loss) due to afore-mentioned disruption 

<<5% Production loss. 

8. Mitigation plans in place prior to disruption including second sourcing, inventory and sourcing 

choices? 

<<Qualify contingent suppliers. 
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9. Was inventory holding for the purpose of disruption planning considered as well? What kind of 

risk assessment was already in place? Where are the contingent suppliers located? 

<< Yes. The contingent suppliers are in Taiwan and Korea. 

10. What are the extra costs are associated with sourcing to contingent suppliers in the event of 

disruption? 

<< 20 headcount work for 1 year, total estimate ~$3M. 

11. Actions taken after the disruption occurrence(s)? 

<< Understand the severity of the impact. 

12. What actions were taken immediately after the event in order to recover? Were contingent 

suppliers used? Did the company help rebuild disrupted facilities? 

<< No immediate action in place. Contingent suppliers take 1 year to qualify. No help from the 

company to rebuild the facilities. 

To summarize, the results of the survey were as follows: 

● Supply Network: Three suppliers (2nd tier) in Fukushima and Sendai area of Japan. 

Company factory in Japan. 

● Rate of Production: to match demand 

● Inventory level: 40 days of production  

● Average demand: 50 million units/quarter; Demand arrival at 50 million units per quarter, 

or 548,000/day (going off of 365 day business year). 

● Number of days suppliers were down: 7 

● Production loss: <5% of production 

● Contingency plan: Second sourcing to suppliers in Taiwan and Korea 

● Extra cost of continuity plan: $3 million  

● All quantities reduced to 1/1000 for purpose of not overworking model. 
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● Failure rates and time down distribution (reliability logic) set according to estimates of 

disruptive risk in region.  

● Each source (since all delivering same material) set to have initial arrival rate of 760 units 

per hr (random.exponential(1hr)). 

● Experimentation should show unmet demand, sales, average inventory of finished goods 

and percent production loss. 

The following actions were required for the model configuration:  

● Set up suppliers, sources, OEM factory, combiner, sales sink, demand source, unmet 

demand sink.  

● Create status labels for count of entries into sales, unmet demand sinks and combiner 

buffer contents. 

● Create an entity for unit(s) and an entity for Demand. 

● Set reliability logic to ‘Calendar Based’ for each server that may be disrupted. 

● Program reliability distributions into each of these servers. 

● Create three different source entities directed to the three respective supplier locations. 

● Set the component arrival rate for all sources to 27 arrivals per day. 

● Set inventory to 250 units at the combiner (input buffer capacity). 

● Program that any other unit of product must waits at the assembly output buffer (infinite 

capacity). 

● Offset demand generation by fifteen days to allow for buildup of inventory, then set the 

rate of arrival to 25 entries per day. 
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Data Configuration 

 A variety of actions were required in order to translate the data received from the company 

into a usable format for the discrete-event simulation and choice models. 

The supply chain configuration for Case 1 was simulated according to the flow of supply 

and demand taken from the previously mentioned survey and disruption risk vulnerability. The 

model simulates losses under these configurations and compares them to the actual historical data, 

providing a proof of the accuracy of the vulnerability model in Simio.   

Risk Data Collection 

 It was necessary that the author research information regarding disruption risks in the 

regions specified by Company XYZ. The most complete and reliable source of publically 

available information regarding disasters across the globe proved to be the, “Global Risk Data 

Platform,” a map found on PreventionWeb.com. The “Basic Country Statistics and Indicators” 

(2014) found on PreventionWeb.com indicated the top risks present in Japan, and these top risks 

(flooding, volcanic eruptions, landslides, storm surge/tsunami) were then searched for on the 

Global Risk Data Platform map (Basic Country Statistics and Indicators, 2014). 

 In order to translate the available data on Preventionweb.com maps into programmable 

form, the following actions were taken. According to the maps included (Appendix A), 

information regarding natural disaster risk was collected. Part of coming up with risk probability 

and severity information was understanding the many different ways that this information is 

expressed publically (dollar loss, mortality, etc. on the dynamic map). 
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For the Fukushima node risk profile, probabilistic distributions were generated using the 

information shown in the table below, where the common disaster, information source, deduced 

interarrival/probability of disruption, and average days down predicted are listed (Tables 4.1-4.3). 

 
Disruption Type Source of Information/ Data 

Found 

Ave. Interarrival 

Time  

Ave. Days 

Down  

Earthquake and 

Tsunami 

Earthquake intensity zones 

indicate where there is a 20% 

probability that degrees of 

intensity shown on the map will 

be exceeded in 50 years. Or 

100% chance a considerable 

intensity will be reached in 50 

years 
60 people/year affected; 1000 

people affected in order to 

merit an event at plant 

18,248 days 

between events, or 

0.00547945% 
chance of 

occurrence. 

3 weeks 

(historical) 

Flooding (river 

and flash) 

Dynamic PreventionWeb Map 1000/60 = 16 

years or 
5840 days 

between events; 
.01712329% 

chance of 

occurrence 

1 week (1000 

people 

affected) 

Estimated 

(lower) in 

comparison to 

Earthquake 

average 
Landslides Appendix A, Map 3; 1000 

people affected per year  

365 days between 

events, or .274% 

chance of 

occurrence 
 

5 days 

Volcanic 

Eruption 

Appendix A, Map 2;  

Nearby active volcanoes: 2, 

Mount Adatara (3/100 yrs) and 

Mount (5/100 yrs) 
From past events; 

http://volcano.si.edu/region.cfm

?rn=8 

4562.5 days 

between 

occurrences, or 

.02191% chance 

of occurrence. 

5 days 

Table 4.1: Fukushima Risk Profile 
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 Likewise, the risk information gathered and deduced for two locations in Sendai, Japan 

(the first more inland than the second) are shown (Tables 4.2 and 4.3). 

 

Disruption Type Source of Information/ Data 

Found 

Ave. Interarrival 

Time  

Ave. Days 

Down  

Earthquake and 

Tsunami 

Earthquake intensity zones 

indicate where there is a 20% 

probability that degrees of 

intensity shown on the map 

will be exceeded in 50 years. 

Or 100% chance a 

considerable intensity will be 

reached in 50 years 
 

18,248 days 

between events, or 

0.00547945% 
chance of 

occurrence; est. 

same as in 

Fukushima. 

3 weeks 

Storm Surge 

(due to Typhoon 

or cyclone) 

Appendix A 

100 people affected per year 

by cyclone 
 

3650 days between 

events, or .0274% 

chance of 

occurrence 

3 weeks 

Landslide 1000 people affected per year 365 days between 

events, or .274% 

chance of 

occurrence; est. 

same as in 

Fukushima. 

5 days 

Table 4.2: Sendai Risk Profile 
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Disruption Type Source of Information/ Data 

Found 

Ave. Interarrival 

Time  

Ave. Days 

Down  

Earthquake and 

Tsunami 

Earthquake intensity zones 

indicate where there is a 20% 

probability that degrees of 

intensity shown on the map 

will be exceeded in 50 years. 

Or 100% chance a 

considerable intensity will be 

reached in 50 years 

0.00548% chance 

in the year or 

18,250 days 

between 

occurrences; est. 

same as in 

Fukushima. 

3 weeks 

Storm Surge (due 

to Typhoon or 

cyclone) 1 surge per 10 years plus 

cyclone 100-1000 ppl/yr 

0.19178% chance 

in the year or 

521.4 days 

between 

occurrences 

3 weeks 

Flooding 
"Floods.Pop.Exp:: “Dynamic” 

PreventionWeb map 

0% chance; 

interarrival time 

not applicable 

NA 

Table 4.3: Sendai Location 2 Risk Profile 

 After the risk data was collected and translated into average days, the Monte Carlo 

simulation was run to generate exponential and triangular distributions for all events considered at 

each site. The base (pre-response) risk profile distributions per site, summarized in Table 4.4, 

were then programmed into the reliability logic of the Simio model. 

 

Table 4.4: Case 1 Pre-Response Node Risk Parameters 

Part 2 Implementation of Response Testing 

 Two types of responses at each of the three supplier locations and one possible response at 
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the OEM site were considered for Case 1, resulting in 2^7, or 128, combinations of yes/no 

responses to check. 

The individual responses tested an increase of inventory at the supplier site by three days 

worth of production and to send production to a second source, at each of the three supplier sites, 

resulting in six ‘yes or no’ choices. Additionally, a seventh choice was tested, to decrease the 

amount of inventory held at the OEM by three days of production. It should be noted that the 

model is capable of analyzing more than three types of responses through the use of optimization 

programming to analyze, for instance, 4,096 different response enumerations.  

Response Impact Configuration  

 Response impact was modeled by inputting percent changes in the days between 

disruption occurrences and percent changes in the days down at each site (Table 4.3). Some of 

this information was estimated in the implementation of this particular case. Namely, estimates 

were made regarding the change to risk data under a response choice as well as the amount that 

such responses would cost. Specific information provided by Company XYZ that was used 

includes that the responses in place in 2011 were second sourcing and an OME inventory policy. 

Subsequently, the cost of both of these response choices as specified by Company XYZ were 

implemented 
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Table 4.5: Case 1, Response Choice Model, Sensitivity Input 

 For ‘Response Sensitivity’ configuration, user input, highlighted in yellow in Table 4.5, 

generated new ‘post-response’ values. Logical assumptions for results of Company XYZ’s 

responses were made. For instance, for the response strategy of holding extra inventory, the 

probability of disruption risk stayed the same because holding inventory does not affect the 

disruptive event itself. However, days down under the response of holding inventory showed a -3 

day change due to the choice of inventory quantity being set at 3 days-worth of production, which 

directly reduces the days the supplier is down. ‘Second Sourcing to Supplier B’ involved an 

assessment of risk frequency and days down at a completely new supplier site, which, as indicated 

by Company XYZ, is located in Taiwan. Risk research for Taipei showed no risk of Volcanic 

Eruption. Thus, the Volcanic Eruption risk change cell was set at 0%, along with other percentage 

changes for frequency and days down for the other listed risks. It should be noted that this model 

only considers the risks that exist at the original supplier location. Risks that exist in Taipei but 
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not in Fukushima are not added to the model. Adding this functionality to the model illustrates an 

area for future work and for a more thorough BCP analysis when involving second sourcing. 

 

Table 4.6: Case 1, Response Choice Model Cost Input 

Parameters were entered for calculating the cost of each response at each node (Table 4.6). 

For instance, Company XYZ said that extra costs associated with second-sourcing were a 20-

person headcount for one year of work estimated at $3 million. The inventory cost of 40% of the 

value of the inventory was used for the calculation of cost per unit of inventory specified at each 

site. The model could easily take into account any potential disruption risks at the OEM site itself 

by adding lines to the spreadsheet (Table 4.6) for each of the risks and adding it to the overall 

Risk Index Comparison. A limitation of the model that can be amended is the ability to program 

in a variety of inventory policy choices, both at the OEM and supplier levels. This model only 

considers one policy at a time; however, multiple policies could be compared by providing input 

into the costing and risk comparison model just as the yes or no choices already present in the 

model are considered. Accordingly, the number of enumerations required to optimize the set of 

BCP decisions increases exponentially with each additional choice, and an area of future work 

could be to select ideal inventory levels prior to testing in the BCP Choice Model. 

Simio Testing of Best Response Plans 

The following response configurations (Table 4.7) found from the optimization model 

were tested in the Simio simulation model. According to the methodology, these BCPs’ (Y/N 

combinations) corresponding parameters (Table 4.7) were then plugged into the Simio model for 
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further testing. The first two responses included the holding of extra inventory at the OEM site, 

whereas the following six are the response plans that do not include a change in OEM inventory 

policy and exhibited the highest net savings. 

 The resulting multi hazard risks were checked for accuracy by ensuring that they were, 

for instance, consistent when a response was or wasn’t modeled. These sets of reliability/risk 

parameters were then used in separate scenario runs in Simio to achieve results.  

 
Table 4.7: Case 1 Post-BCP Risk Parameters 
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Cases 1A, 1B and 2 Implementation 

 In addition to the implementation of the simulation model for Case 1, described above, 

three other theoretical cases, 1A, 1B, and 2, were implemented for testing and will be described 

briefly in more detail in chapter 5.  

Case 1: Company XYZ, historical data 

Case 1A: An adjustment to Case 1 with different response scenario data 

Case 1B: An adjustment to Case 1 inventory set-up for proof of concept 

Case 2: A test of a variety of inventory policies 

 Case 1A was created through a reconfiguration of Case 1. All discrete-event simulation 

model setups remained the same and only a few changes were made to the BCP Choice Model. 

Namely, cost parameters in the BCP Choice model were altered to by eliminating the dollar 

savings at the OEM completely and reducing the cost of having any supplier hold additional 

inventory to ten percent of what the original Case 1 model specified ($66,000 as opposed to 

$660,000 per site per year). 

 For Case 1B, the discrete-event simulation implementation remained the same as in Case 

1; however, the BCP Choice Model involved a change to implementation. OEM inventory level 

was set to fourteen days of production, as opposed to 40 days production, and the ‘OEM 

inventory change’ response choice was eliminated, resulting in 64 response combinations, as 

opposed to 128 to be tested. Finally, the cost parameter for more inventory held at a supplier was 

decreased to five percent of the cost implementation in the original Case 1 choice model, to 

assume that the cost of having a supplier hold more inventory would be a small fraction of the 

actual cost to the supplier of holding more inventory. 



45 

 

Lastly, Case 2 required all the same parameters from Case 1, including production and 

demand rates, supplier inventory level and supply network configuration and the baseline (pre-

response) risk parameters at servers. However, risk parameters were not altered for Case 2 

scenarios in order to isolate the testing of changed inventory policy at the OEM.   

To summarize, after the successful implementation of a historical case study, multiple 

variations on that case were implemented. Details regarding the results of the scenarios 

summarized will be discussed in the following chapter.  
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Chapter 5 - TESTING AND EVALUATION 

 The following four cases, one involving real data from a company that experienced a 

supply chain disruption, a case which is a variation on Case 1, and two cases testing theoretical 

changes to this data, serve as proofs of the concept and analysis. Conclusions from input and 

output data will be made here, as will insights into the configuration and effectiveness of the 

models. The cases mentioned in Chapter 4 were developed in the process of analyzing initial test 

results and this process will be described further here. An outline of the cases is as follows: 

Case 1: Company XYZ, historical data 

Case 1A: An adjustment to Case 1 with different response scenario data 

Case 1B: An adjustment to Case 1 inventory set-up for proof of concept 

Case 2: A test of a variety of inventory policies 

Case 1 Testing 

 Case 1 was as an initial system implementation using real historical data from a large 

manufacturing company, which will be called Company XYZ. For Part 1, a simulation model 

mirroring the setup of the real supply chain was created and checked for accuracy and showed 

affirmative results. Namely, Company XYZ reported a production loss of less than 5%, and this 

was the recorded output.   

Prior to verifying the accuracy of loss in the simulation model, various adjustments were 

made to the configuration of the model, based on the results of running the simulation. Namely, 

production and demand rates were adjusted. 
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Table 5.1: Case 1, Scenarios 1-4 results, Simio interface 

The above scenarios (Table 5.1) were initially run under a simulation configuration of 

10,000 product arrivals per hour per source, or 30,000 product arrivals per hour. At the same time, 

demand was set as specified by Company XYZ to approximately 23,000 per hour. This initial 

imbalance in supply and demand was chosen in order to ensure that the desired inventory policy 

was achieved. Results in Tables 5.1-5.5 show average unmet demand, average inventory, and 

total sales for their corresponding scenarios.  

While the 23,000 to 30,000 demand/supply ratio did keep inventory levels at desired 

policy levels, reconfiguration of the supply to demand ratio was chosen due to the fact that the 

risk scenario in which no inventory was held and disruption risk existed resulted in zero unmet 

demand. This does not reflect what would theoretically be true. 

Instead of supplying 30 units per hour and demanding 23 units per hour (ratio of 30:23), 

supply and demand were both set at 24 units per hour (24:24). (Each server supplying 6 units per 

hour). The results were as follows (Table 5.2). 

 

Table 5.2: Case 1, Scenario 6 results, Simio interface 
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With this supply/demand configuration, the, “no risk, inventory,” scenarios were run again 

with the following results (Table 5.3). 

 

Table 5.3: Case 1, Scenario 7 results, Simio interface 

 This adjustment provided a more accurate result- supply was greater than demand. 

Further, it more accurately reflects the likelihood of supply and demand being matched even if it 

means that the desired inventory policy not being achieved in the model.  

The average inventory held was 3443.1 units for these scenarios, when the policy called 

for it to have been 23,040 units. Using the Simio model interface, investigation was done into 

whether the inventory was filled before delayed demand started. Indeed, it was; however, 

throughout the duration of the simulation, the desired amount of inventory was not maintained.  

 Due to the amount of unmet demand under no risk and the fact that average inventory was 

almost 1/10th of the policy desired, supply was increased again, but this time to a smaller 

supply/demand ratio.  

The newly gaged model had a ratio of 25:23 (Inventory policy back to 22,080). 

 Results were as follows (Table 5.4). 

 

Table 5.4: Case 1, Scenario 9 results, Simio interface 

Since no unmet demand was an accurate result of no risk, the configuration was run under 

risk parameters, with the following results (Table 5.5). 

 

Table 5.5: Case 1, Scenario 10 results, Simio interface 
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Further investigation into the simulation results depicted in the Simio pivot table 

demonstrated that the supplier servers failed on average 2.2, 1.2 and 1.1 times per year for 

average total times down of 327, 614, and 203 hours, respectively, or 13.6, 25.6, and 8.5 

simulated days. Thus, the failure rate was not unlike that of company XYZ’s year 2011. After 

testing under various configurations and extremes, this set-up should provide the most accurate 

results for the impact of the risk programmed into the system. 

System Verification 

 An unmet demand of zero was modeled in this simulation, but production loss results 

showed did occur. Production loss was measured in the simulation model by the quantities of raw 

material not sold to the disrupted supplier(s) or the percentage of units that were discarded into 

the respective source sinks during server failures due to halted flow and filled capacity at the 

server buffers.  

In the Case 1 model configuration runs, the Simio pivot chart reported a total of 16,239 

units of production loss (to sinks) out of 222,109 units produced, or an average of 7.31% 

production loss. While this percentage does not meet the criteria of the real data (under 5%), 

production loss was in the ‘no risk’ simulation scenario must be considered. The question arose of 

whether there was a certain amount of ‘lost product’ from the sources due simply to the inventory 

limits of the servers. In fact, in the model in which no failures were programed but all other 

parameters were set, production loss was 13,759 out of 222,556 units, or 6.18%. Thus, it can be 

inferred that the disruptions in the ‘Risk’ model resulted in a 1.13% increase in production loss 

and that Company XYZ’s, “Less than 5% production loss,” was indeed accurately simulated, 



50 

 

accurately portraying the year 2011 for company XYZ in terms of its losses (<5% production) 

and occurring with models in which the historic inventory policy (40 day’s demand) are kept. 

 

Figure 5.1: Testing for Model Accuracy 

  The fact that production loss was 6.18% with no risk indicates that the arrival rate of 

supply for production was faster than production itself, thus resulting in product loss at source 

sinks.  A test was done to confirm this by running the ‘No risk’ simulation with a lower supply 

rate, 24:23. The method with which to measure production loss, comparing the amount of units 

not used from the original sources to the final amount of units sent to the combiner to meet 

demand, shows higher values for reasons not related to supplier disruption.  

Part 2 Testing 

 Since no historical data regarding the effectiveness of response strategies was available for 

Company XYZ, Part 2 of Case 1 employed theoretical response choices, logic,  and parameters to 

prove the effectiveness of this decision support model. From the theoretical response parameters, 
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the results below were found from the choice model and listed in order according to the highest 

net savings (Table 5.6). 

In the scenarios shown in Table 5.6, the greatest net savings are the BCPs in which a 

decrease in inventory was made at the OEM site. This result was due to the fact that the cost 

calculation in these cases came out as negative, as savings instead of extra costs because of a 

reduction in the inventory holding expenses. Therefore the most optimal choice, according to net 

savings, was that in which turned out to be a decreased inventory. Even though the top response 

combination includes a negative quantity in the ‘Savings’ column, the extent of cost reduction due 

to holding inventory still outweighs any savings from other response plans. 

Due to the fact that most of these top choices were response combinations that included 

the decision to decrease the amount of inventory held at the OEM, the response combinations 

(ranking 63-68) where the greatest net savings were indicated but had no change in inventory held 

at the OEM were also considered, as shown in Table 5.7. Consideration of choices that don’t 

include the OEM inventory change is important in the case that the results of that choice are not 

as extreme in the simulation testing as in the choice model.

 

Table 5.6: Case 1 Choice Model Results 
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Table 5.7:  Case 1, Top Non-OEM Inventory Change Choices 

This case demonstrates a reduction in the list of most cost-effective response choices prior 

to testing in the discrete-event simulation model. 

Cost-Benefit Ratio versus Net Savings 

Initially, results had been sorted according to the lowest cost-benefit ratio, or cost of 

implementation divided by resultant savings. However, net savings, the difference between the 

resultant amount saved and the cost of implementing the responses, demonstrated the greatest 

variability and provided the most tangible understanding of best choices. 

Case 1 Assessment in Simio 

According to the methodology, BCPs 127, 125, 128, 95, 126, and 93 and their 

corresponding risk parameters (Table 5.8) were tested in separate scenario runs in the Simio 

simulation model.  
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Table 5.8: Case 1 Post-BCP Risk Parameters 

Simulation Results and Cost Analysis 

The results measured by the simulation: unmet demand, average inventory held at the 

OEM, sales and production loss, were used to assess the best BCP according to a cost analysis of 

these results. The Net Savings (Figure 5.2) according to the simulation model results (Table 5.9) 

were initially calculated by comparing the changes in cost of holding inventory (according to 

quantity held) and in sales (profit change). Change in unmet demand was not considered in this 

case because all results showed a value of zero for this measurement. The results of BCP 128 

were used as a comparisons for the other BCP results because it involved no response choice 

implementations. 
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Net Savings 2 = 

[(Unmet Demand BCP 64) - (Unmet Demand BCP Y)] * $2.40 profit/unit   

+ [(BCP 64 Ave.OEM Inventory) - (BCP Y Ave.OEM Inventory)] * $2.00(.4) holding/unit  

+[(BCP 128 Sales) – (BCP Y Sales)]*$2.40 

Figure 5.2: Formula for Net Savings 2 

 

Table 5.9: Case 1 Optimal BCP Choices, According to Discrete-Event Simulation Results 

After additional testing, data surfaced depicting the ‘Sales’ results varying in direct 

correlation with the amount of demand that happened to be randomly generated and not 

necessarily in correlation to the type of response plans implemented, and this measure was 
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eliminated from analysis. The findings demonstrated a need to include the cost of implementation 

in the calculation and exclude any figures corresponding to change in sales. Cost of 

implementation was calculated according to the average inventory that was recorded during the 

simulation runs. ‘Net Savings’ were then recalculated (Figure 5.3). For further decision support, a 

graphical comparison of the costs according to simulation results was created (Figure 5.4). 

Net Savings 2 =  

[(Unmet Demand BCP 128) - (Unmet Demand BCP Y)] * $2.40 profit/unit   

+ [(BCP 128 Ave.OEM Inventory) - (BCP Y Ave.OEM Inventory)] * $2.00(.4) holding/unit  

- BCP Y Cost of Implementation 

Figure 5.3: Formula for Net Savings 2 (Revised) 
 

  

Figure 5.4: Case 1 Graphical Comparison of Optimal BCP net savings 
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Case 1A 

 Case 1A, a revision of Case 1 was performed in order to assess the results of different cost 

parameters when running the BCP Choice Model. Results from Case 1 showed a strong 

preference for all choices that included a change in the OEM inventory policy, due to the high 

dollar savings the cost formulation gave. Further, in Case 1 a preference to not change the 

inventory policy at supplier sites was apparent due to the high cost parameters associated with 

choosing this action.  

 Therefore, a readjustment of these costs was made eliminating the dollar savings at the 

OEM completely and reducing the cost of having a supplier hold additional inventory to ten 

percent of what the original Case 1 model specified ($66,000 as opposed to $660,000 per site per 

year). Holding three days extra inventory at a supplier site costs the OEM $230,400 per year, a 

value that assumes that the suppliers’ costs of holding inventory will transfer directly to the OEM.  

 The changes to cost parameters yielded the following changes to optimal BCP choices 

(Table 5.10) as compared to the top choices from original testing (Table 5.11). Worth noting is 

that while BCP 127 remained in the top six choices (only changing inventory at the OEM site and 

no other response), it was not the first choice. Also the remaining choices in Case 1A were 

different than in the original Case 1 results. Thus variability due to cost parameter accuracy was 

proved. 
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Table 5.10: Case 1A Choice Model Results 

 

Table 5.11: Case 1 Choice Model Results 

Case 1B 

The results of the Case 1 discrete-event simulations runs did not show any unmet demand 

(demand entities emptied into the unmet demand sink) due to the fact that the inventory level 

policy provided a large enough buffer to prevent lost sales. However, unmet demand is one of the 

most important KPIs in this model. Therefore, a theoretical case was required to show the 

effectiveness of the simulation model in assessing responses if unmet demand were to have 

occurred in the base model.  

Case 1B had the same setup as Case 1 with a few differences. The OEM inventory level 

was set to fourteen days of production, as opposed to 40 days production, and the ‘OEM 

inventory change’ response choice was eliminated, resulting in 64 response combinations, as 

opposed to 128 to be tested. Finally, the cost parameter for more inventory held at a supplier was 
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decreased to five percent of the cost implementation in the original Case 1 BCP Choice Model 

because doing so seemed to reflect reality more, to assume that the cost of having a supplier hold 

more inventory would be a small fraction of the actual cost to the supplier of holding more 

inventory. 

Case 1B Results 

According to the specified change in risk parameters corresponding to each response, and 

under the lower cost parameters for inventory, the choice model yielded the following top results 

(Table 5.12). As expected, response combinations which included holding one day more 

inventory at any given supplier were at the top of the list due to the fact that the cost parameters 

for doing so was decreased. Further, no savings or cost parameters were taken into account for 

changing the amount of inventory held at the OEM and thus the top choices were not influenced 

by this category. 

 

Table 5.12: Case 1B Choice Model Results 

Analysis in Simio under the above-stated fourteen-day OEM inventory policy showed the 

following results (Table 5.13), and cost analysis of these results was performed (Table 5.14). 

Crafting the simulation to model only a fourteen-day inventory policy at the OEM produced the 

results of existent unmet demand. (Note that the quantities shown in Table 5.13 are in thousands 
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of units). Thus, it was possible to take profit loss due to unmet demand into account when 

simulating the savings that each BCP combination would cause.  

 

Table 5.13: Case 1B Simulation Results, Simio 

Results of the cost analysis (Table 5.14) of the discrete-event simulation of BCPs 31, 24, 

22, 23, 29, and 21 were calculated according to the difference in average inventory held and the 

amount of unmet demand avoided, using the average levels of inventory and unmet demand of 

BCP 64 (Figure 5.5), a response combination of all ‘No’s, as a comparison. Additionally, the cost 

of implementation calculated in the Part 1 choice model was subtracted from calculated savings.  

Under this formula, the cost analysis showed the optimal BCP for the Case 1B experiment 

to be BCP 29, with an estimated Net Savings of $1,330,080 (Table 5.14), and the second most 

optimal to be BCP 22, withan estimated Net Savings of $964,960. BCP 23, on the other hand, 

showed an estimated Net Cost of $1,616,911, due to considerable increase in average inventory at 

a given time at the OEM site and a only a small resulting reduction of unmet demand simulated.  
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Table 5.14: Case 1B Simulation Results Cost Analysis 

Net Savings 3 = 

[(Unmet Demand BCP 64) - (Unmet Demand BCP Y)] * $2.40 profit/unit   

+ [(BCP 64 Ave.OEM Inventory) - (BCP Y Ave.OEM Inventory)] * $2.00(.4) holding/unit  

- BCP Y Cost of Implementation 

Figure 5.5: Formula for Net Savings 3 
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 Thus, as a proof of concept, Case 1B, which modeled a fourteen-day inventory policy, 

verified that measuring unmet demand in the discrete-event simulation model serves to show 

savings achieved by implementing various response scenarios. 

Case 2: Inventory Level Sensitivity 

The last theoretical case, Case 2, was designed to assess the results of various OEM 

inventory level policies as modeled in the simulation. In particular, it demonstrated at what 

inventory level the model shows that no demand goes unmet. Case 2 also explored whether 

increased inventory and decreased unmet demand  are directly correlated. Lastly, Case 2 explored 

how closely the average inventory level, measured during the simulation, matched the inventory 

policy, or desired level. Case 2 used parameters from Case 1, including production and demand 

rates, supplier inventory level and supply network configuration and the baseline (pre-response) 

risk parameters at servers. 

 Risk parameters were not altered for Case 2 scenarios in order to isolate the testing of 

changed inventory policy at the OEM. The simulation model yielded the following results (Table 

5.15). 
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Table 5.15: Case 2, OEM Inventory Policy Scenario Results, Simio 

Results (Table 5.15) showed that as expected, increased inventory policy, modeled by a 

larger inventory buffer limit in the model and greater ramp-up time, caused for lower amounts of 

unmet demand. However, unmet demand and inventory level were not directly proportional. 

Further, the average amount of inventory held at the OEM in the simulation is an average of 11.68 

days-worth of inventory lower than the initial inventory policy set-up. This is worth noting 

because while the policy might have been to hold 24 days of inventory at the OEM, an average of 

about 13 days of inventory were held in simulation.  

The cost of holding inventory was calculated using the average simulated inventory as 

opposed to the amount specified by the policy. An analysis of the ten to thirty days production 

inventory policies is shown (Table 5.16), indicating the optimal inventory level for the network. 
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The highest net savings occurred in the case of the 21-day inventory policy, which simulated runs 

that had an average of 8.64 days inventory at any given time. The 21-day inventory policy was 

one of several policies of which the result of simulation was zero unmet demand; however, it was 

estimated to cause the greatest net savings because in it, the lowest amount of inventory was held, 

reducing costs. 

 

Table 5.16: Comparison of Net Savings under Various Inventory Policies 

Case 2 proved the value of testing a variety of inventory policy scenarios and showed that 

inventory policy and ability to meet demand do not have a completely linear relationship, another 

case for the need to test setups in discrete-event simulation. Because both Cases 1B and 2 showed 
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noteworthy results, the author asserts that an ideal model would have the functionality of testing 

multiple response solutions at once, including an analysis in the trend of inventory policy change.  

Comparison of BCP Choice Model Results and Simulation Results 

Important to observe are the differences between the savings estimated by the ‘rough cut’ 

BCP Choice Model and the results of the Simio simulation model. For Case 1A, a side-by-side 

comparison of these outputs (Table 5.17) must be observed. 

  

Table 5.17: Comparison of Risk Assessment and Simulation Results, Case 1B 
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It can be seen that while the BCP Choice Model almost showed the same rankings as the 

Simio model, in terms of Net Savings, the results from the discrete-event simulation were more 

extreme than those predicted by the BCP Choice Model algorithm. The various differences in 

calculated net savings have various reasons for occurring. For BCP 127, the savings due to the 

change in inventory policy was overestimated in the BCP Choice Model. In the case of BCP 125, 

the savings due to the change in inventory policy was underestimated in the BCP Choice Model, 

and no savings occurred due to sales loss change in the discrete-event simulation as predicted by 

the BCP Choice Model. For BCP 128, estimated net savings were the most similar because no 

responses were tested; the only differences were due to variability of Monte Carlo generated 

parameters. As for BCP 95, inventory held at the OEM was higher than with no policy because 

risk was reduced, and more inventory costs more. In BCP 126, the inventory held in the discrete-

event simulation was lower than the policy, making for the difference in net savings calculated. 

Finally, in the case of BCP 93, the inventory held at the OEM was higher than with no policy 

because risk was reduced, and this ended up costing more. 

Ultimately, a comparison of the results of the BCP Choice Model and discrete-event 

simulation shows that the discrete-event simulation, as hypothesized, takes more factors into 

consideration and provides more trustworthy results. At the same time, it was determined that the 

amount in Net Savings estimated by the BCP Choice Model are close, by trend, to the simulation 

results and are indeed of use for providing, as modeled, a ‘rough cut’ of a large number of 

possible response combinations. In the next chapter, ideas for future work will be suggested in 

through which the accuracy and complexity of the BCP Choice Model can be increased. 
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Chapter 6 – CLOSING DISCUSSION 

Enterprises with global supply networks are at risk of lost revenue as a result of disruptive 

disasters at supplier locations. Business Continuity Planning (BCP) to identify, assess and 

respond to such risk are necessary tasks in the modern supply chain. While this paper specifically 

looked at the use of discrete-event simulation for managing supply chain disruption risk, an 

assortment of literature regarding methods to mitigate loss in the event of disruption exists. 

Breuer, et al. (2013) proposed a combined approach of discrete-event simulation and decision 

trees, for, “reactive risk management.” Schmitt and Singh (2009) created a simulation model that 

assesses the impact of a supply chain’s vulnerability to disruption on customer service. Various 

parts of Schmitt and Singh (2009) are adopted in the construction of this paper’s model.  

A framework to support Business Continuity Planning (BCP), both mitigation and 

contingency, prior to the event of a given disruption was proposed by this paper. A unique 

methodology was created that incorporates the use of a combinatorial risk index algorithm and a 

discrete-event simulation model in Simio. Information regarding disaster probabilities was 

generated from the Global Data Risk Platform tool of the United Nations Office for Disaster Risk 

Reduction website. As favored by Schmitt and Singh, Monte Carlo simulation was used to 

generate multi hazard risk distributions, and Simio software modeled the supply chain network 

vulnerability to disruption and the impact of response strategies. Cost of implementation, average 

inventory level, unmet customer demand, and production loss were used for the assessment.  

The Risk Index (probability x impact) was used to evaluate and strategize responses to 

risks through the BCP Choice Model, a combinatorial optimization tool which ranked responses 
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in order of cost effectiveness. Successive analysis in discrete-event simulation of ‘best’ BCP 

scenarios then provided rigorous analysis for use by supply chain management (Figure 3.1).  

 

Figure 3.1: Model Flow 

Research and testing revealed that discrete-event simulation provides a large variety of 

useful metrics for assessing the effects of increased risk and/or changes in a supply network 

configuration (to predict production loss, unmet demand, sales, and average inventory). The 

testing portion of this study provided a detailed look into the functionality of the methodology 

proposed in this thesis and confirmed its accuracy. 

Findings 

Case 1, modeling a real historic supply chain scenario, proved that the discrete-event 

simulation model was fit for use and provided a foundation from which a proof of concept was 

made for the response assessment portion of the methodology. Cases 1A, 1B and 2, theoretical 

variations on the Case 1 scenario, served to further confirm that the response assessment portion 

of the model worked under a variety of setups in response implementation cost and inventory 
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policies. Ultimately, it was shown that the incorporation of discrete-event simulation into 

Business Continuity Planning through Risk Index combinatorial optimization is feasible and 

contributes to the body of knowledge regarding Business Continuity Planning. 

 Research Limitations and Implications  

Ideally, future research would consider the accuracy of this model by testing multiple 

company scenarios. Corporate information regarding this topic is limited due to its classified and 

competitive nature. The decision model developed by this study was tested successfully with a 

historical business scenario received from a professional in the field. Additional implementation 

of the model and demonstration of its success will further suggest the strength of combining risk 

index assessment and discrete-event simulation for BCP decision support. 

Future Work 

 The author sees opportunity for the incorporation of various methods into the BCP Choice 

Model that were not developed in this thesis. In particular, a budget constraint could be included 

in the combinatorial optimization, allowing for further accuracy and functionality in 

implementation. Further, regarding the accuracy of risk data used, Bayesian analysis could be 

incorporated, as demonstrated by previous research (Eckle and Burgherr, 2013; Samaddar and 

Nargundkar, 2010). Finally, the BCP Choice Model could be made more efficient by checking the 

value of savings minus the cost of implementation for each node/response combination and 

eliminating all that are less than or equal to 0 dollars, prior to running the optimization. 

With regard to implementing BCP decision support, companies would benefit from the 

creation of a publicly available, updated and audited website which displays a comprehensive 

details regarding disruption likelihoods and severities around the globe. Such beneficial 
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information would be comparable to information found on PreventionWeb but more thorough and 

audited. Finally, the author suggests that ERP software companies consider integrating discrete-

event simulation as a part of supply chain risk management functionality as proposed in this 

study. 
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Map 1: From “Dynamic” PreventionWeb Map 
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Map 2: From Past Events: Volcanic Eruptions (PreventionWeb) 

 

(Information about these volcanoes gathered from http://volcano.si.edu/region.cfm?rn=8.) 

Map 3: Landslides 
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 Map 4: Tropical Cyclones 

  

Map 5: Storm Surge 
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Map 6: Tsunami 

 

 


