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ABSTRACT 

 

Rearing temperature affects the expression of proteins in the adhesive of the striped acorn 

barnacle, Balanus amphitrite 

 

Melissa J. Daugherty 

 

Barnacles are dominant hard–fouling organisms in marine waters. They attach to 

substrates by secreting a complex proteinaceous adhesive. Understanding the chemical 

composition of this multi–protein underwater adhesive and how it is affected by environmental 

variables, such as oceanic temperatures, is critical for developing nontoxic solutions to control 

biofouling. Previous experiments in our lab revealed an inverse relationship between critical 

removal stress (CRS) and temperatures at which barnacles were reared. Further investigations 

showed that this correlation is not attributed to differences in physical properties such as 

barnacle size or short–term changes in the viscosity of adhesive. Therefore, the observed 

effects may be influenced by a physiological response to temperature during initial growth and 

development. We hypothesized that rearing temperature affects the expression of proteins 

found in the adhesive matrix. To elucidate the underlying mechanisms responsible for the 

temperature effect, we analyzed uncured barnacle adhesive using two-dimensional gel 

electrophoresis (2DGE) and matrix-assisted laser desorption/ionization-tandem time-of-flight 

(MALDI-TOF/TOF) mass spectrometry (MS). In our analysis, we 1) detected differences in 

protein expression at two experimental temperatures (15°C and 25°C) and 2) identified several 

proteins that may serve functional roles in the process of adhesion.  Our data are also 

consistent with a model that the curing process of barnacle adhesive may be analogous to the 

process of wound healing in animals. 

 

Keywords: Biofouling, antifouling, fouling-release, critical removal stress, proteomics, Balanus  
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I. INTRODUCTION 
 

Biofouling is the colonization of submerged structures by marine organisms, which can be 

a two-fold problem with both economical and ecological implications.  First, biofouling on the hulls 

of ships creates drag, lowers fuel economy, and increases greenhouse gas emissions. In 

addition, it causes corrosive damage, which compromises the structural integrity of ships, often 

leading to costly repairs (Townsin, 2003; Schultz, 2007; Schultz et al., 2011).  This mixed and 

dynamic community is comprised of a succession of organisms including soft-fouling (marine 

slimes, bacteria, diatoms, hydroids, algae, etc.) and hard-fouling (barnacles, mussels, 

tubeworms, bryozoans, etc.) members.  Based on calculations from US Naval ships (Schultz et 

al., 2011), the cost of removal and maintenance related to biofouling can be upwards of billions of 

dollars annually for the shipping industry alone (extrapolated to both Navy vessels and 

commercial fleets).  Second, historical records show that biofouling on ships is a vector for the 

global transportation and introduction of non-indigenous and invasive marine organisms (Bax et 

al., 2003; Davidson et al., 2009).  These alien species may adversely impact the biodiversity of 

local marine communities (Bax et al., 2003).  For example, San Francisco Bay, California suffers 

from having virtually every coastal habitat dominated by one or more non-indigenous species 

(Bax et al., 2003).  The worldwide combination of financial and environmental burdens imposed 

by fouling species in marine systems has encouraged a series of scientific inquiries on the topic 

of biofouling remediation (for review see Callow & Callow, 2011; Cao et al., 2011).  

Historically, the mitigation strategies mainly consisted of antifouling bottom paints and 

coatings.  Although many of these coatings reduced biofouling, the addition of toxic compounds 

used to make them can be detrimental to non-target marine organisms (Bellas, 2006, 2007).  In 

fact, the ecotoxicological problems associated with leaching of these highly toxic compounds 

resulted in legislation (IMO Resolution A. 895 21, 25/11/1999) banning the application of 

organotin-based (carbon and tin) coatings on ships (Bellas, 2006, 2007).  In response to this 

legislation, there is an increased effort to develop environmentally benign and fouling-release 

coatings as a nontoxic alternative (Bellas, 2006, 2007; Wendt et al., 2006).  The goals of these 
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coatings are to assure continued efficient operation of ships while protecting the environment 

(Holm et al., 2006).  The advancement of biofouling research is producing improved antifouling 

and fouling-release materials.  However, information about the interactions between coating 

performance and adhesive abilities of fouling organisms under various environmental parameters 

is limited. 

Barnacles are common marine fouling organisms and thus serve as good study 

organisms for research investigating biofouling on submerged structures.  The striped acorn 

barnacle, Balanus amphitrite (Darwin, 1854) is a common species of barnacle utilized in 

laboratory assays in part because it is easy to culture, fast growing, and has a circumglobal 

distribution (Callow et al., 2007).  Barnacles attach to substrates by secreting a proteinaceous 

cement compound (Kamino, 1996, 2001, 2006, 2008; Khandeparker & Anil, 2007; Nakano et al., 

2007; Naldrett & Kaplan, 1997; Urshida et al., 2007; Walker, 1971).  Understanding the 

composition and biochemical properties of this underwater adhesive is relevant to biofouling 

research and will aid in developing nontoxic coatings. 

Despite the importance of this topic, the molecular mechanisms and specific molecules 

responsible for attachment have not been fully elucidated (Thyiyagarjan & Qian, 2008; Aldred et 

al., 2013).  Moreover, the environmental variables and oceanic conditions influencing the 

adhesive properties of these substances are poorly understood.  Once permanently attached, 

barnacles and other fouling organisms are exposed to a broad range of environmental conditions, 

including variable sea surface temperatures, as the ships they are attached to move through 

drastically different oceanic zones (eg polar regions to tropical oceans).  For example, a ship 

traveling along the temperate coast of California (from the port of San Diego to Humboldt Bay) will 

experience an average sea surface temperature change of 10°C (www.ndbc.noaa.gov) over the 

course of approximately 645 nautical miles and 2.7 days (www.sea-distances.org).  This example 

illustrates the need for determining the effects of temperature fluctuations on adhesive properties 

of these animals.  Moreover, this information would be extremely useful in informing biofouling 

research on the performance of environmentally benign fouling-release coatings.  
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Experiments investigating the influence of environmental conditions on the critical 

removal stress (CRS-the amount of force normalized to area required to dislodge a barnacle from 

a substrate) for barnacles reared at different temperatures, and on different coatings, have 

demonstrated a notable trend.  Barnacles grown at a lower temperature required a greater 

removal force compared to those grown at higher temperatures (Johnston, 2010).  To ensure 

these observations were not attributed to barnacle size (animals grown at colder temperatures 

are typically smaller than those grown in warmer temperatures), CRS was plotted against basal 

plate diameter.  These data showed no significant correlative effect of removal force due to size 

(Johnston, 2010).  This suggests the adhesive properties of barnacle cement itself can be 

affected by temperature changes.  These observations could be attributed to: 1) physical 

mechanisms: for example, changes in viscosity of the adhesive, or, 2) biological mechanisms: for 

example, organismal regulation of adhesive quality. 

Follow-up studies investigated the potential physical changes in viscosity of the adhesive 

due to removal temperature (colder temperature potentially having more viscous adhesive 

compared to warmer temperature).  Two groups of barnacles were reared at 15°C and 25°C 

respectively for approximately three months to reach an appropriate experimental size (~5mm 

base plate diameter).  At that time, half of the barnacles from the 15°C reared group were 

switched into 25°C, and half of the barnacles from the 25°C reared group were switched 

into15°C.  Both groups were allowed to acclimate to the new temperatures over a few hours, prior 

to taking removal force measurements.  Results from this temperature swap experiment showed 

no correlation between CRS and removal temperature; however, there was a significant effect of 

rearing temperature (Fig. 1, Wendt, unpublished).  
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This experiment showed a consistent inverse relationship between CRS and rearing 

temperature previously demonstrated by Johnston (2010) where the 15°C reared group 

experienced significantly higher CRS at both removal temperatures compared to the 25°C reared 

group (Fig. 1, Wendt, unpublished).  These results suggest that rearing temperature and not 

removal temperature is an important underlying factor.  Additionally, there appears to be a long-

term, physiological component that influences the tenacity or mechanism of adhesion that cannot 

simply be explained by acute changes in ambient water temperatures.  One way to address this 

physiological aspect is to use a two-dimensional proteomic analysis to test for variations in 

composition of the proteinaceous adhesive when barnacles are reared at different temperatures.  

An investigative experiment following Johnston’s original study provided preliminary evidence that 
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these types of changes in barnacle adhesive proteins can be detected using this approach 

(Johnston, 2010). 

Proteomics identifies and characterizes the global protein expression within a biological 

sample.  It is a tool used to infer function based on the identification of individual proteins and to 

catalog proteomes (Wilkins et al., 1996).  Most importantly, it is a method used to monitor 

changes in the overall protein expression in various environmental or experimental conditions 

(Görg et al., 2004; Thiyagarajan & Qian, 2008).  Although sequenced genomic information for 

barnacle species is incomplete, the potential application of a proteomic study to investigate B. 

amphitrite adhesive proteins is promising. (For reviews of proteomic studies using non-model 

organisms, see Tomanek 2006, 2014).  Adhesive proteins termed “cement proteins” have been 

identified in a number of barnacle species, including B. amphitrite (see Kamino, 2008, 2010, and 

2012 for review) and additional studies have also generated expressed sequence tags (EST) 

libraries (Bacchetti De Gregoris et al., 2009; Bacchetti De Gregoris et al., 2011) that can be used 

for comparison.  Interestingly, other studies have proposed a model of barnacle biomolecular 

adhesion based on the evolutionary concepts of wound healing and have described some 

proteins that could be homologous to those involved in blood clotting activities (Dickinson et al., 

2009).  These previously characterized proteins and libraries will provide the basis for a targeted 

approach to identify additional proteins of interest in B. amphitrite adhesive.  

My study focused on the collection of uncured adhesive and utilized a proteomic strategy 

to identify and characterize barnacle adhesive proteins.  I expected to: 1) detect changes in 

protein expression due to rearing temperature, and 2) identify proteins and infer their potential 

involvement in adhesion.  This proteomic approach sought to elucidate the effects of temperature 

on adhesive composition and functional abilities of this ubiquitous fouling species.  Results from 

this study would be instrumental in increasing our understanding of underwater attachment of 

marine fouling species, and will provide knowledge of an unique adhesive system that could 

improve antifouling/fouling–release technologies aimed at alleviating the impacts of biofouling. 
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II. MATERIALS AND METHODS 
 
Animal Collection and Maintenance  

Balanus amphitrite cyprid larvae were allowed to settle on fouling–release coatings (Dow 

Corning Silastic® T2 PDMS elastomer) for easy removal.  A drop assay (placing drops of 

seawater containing 20–40 larvae onto the face of a slide) was utilized for settlement (Callow et 

al., 2007).  The larvae were allowed to settle for 72 hours in covered petri dishes at 25°C.  Slides 

containing newly metamorphosed juveniles were placed into individual petri dishes and filled with 

a mixed phytoplankton culture (15mL each of Dunaliella sp. and Skeletonema costatum).  The 

dishes where then haphazardly divided and transferred to assigned temperature incubators (15°C 

and 25°C respectively) set on 12h light/dark cycle.  Barnacles from each treatment were fed 

identical diets (consisting of fresh cultures of the mixture described above) three days a week.  

During feedings, old culture was removed, and slides were observed for overcrowding and gently 

wiped clean of any algal growth.  This feeding and cleaning schedule continued for approximately 

one month before barnacles were switched to zooplankton diets consisting of 1ml concentrated 

Artemia spp. nauplii larvae suspended in 40ml sterile filtered seawater (see Wendt et al., 2006 for 

review of methods).  Barnacles were again fed identical diets three times a week (with fresh 

Artemia spp. cultural), and slides were maintained clean of any residual algal growth until they 

reached a sufficient experimental size of at least 5mm baseplate diameter (approximately three 

months). 

Experimental Design 

Methods utilized for collecting uncured barnacle adhesive were adapted from Dickinson 

et al., 2009.  Adult barnacles were removed from slides, wiped clean with kimwipes and sterile 

deionized water, and subjected to mechanical probing (using a sterile dissection needle) at the 

basal plate/lateral plate interface to initiate secretion of uncured, liquid adhesive (Dickinson et al., 

2009).  The adhesive droplets were collected using a micropipette and stored in a sterile 

epenndorf tube containing sample buffer. 
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Uncured adhesive samples were randomly collected from multiple individuals and 

suspended in rehydration buffer [7M urea, 2M thiourea, 2% cholamidopropyl–dimehtylammonio–

propanesulfonic acid (CHAPS), 2% nonyl–phenosylpolyethoxylethanol–40 (NP–40), 0.002% 

bromophenol blue, 0.5% ampholyte and 100mM dithioerythreitol (DTE)] at a ratio of 1µl of 

adhesive to 20µl buffer.  These pooled protein samples were vortexed to ensure complete mixing 

and then stored at –80°C.  Protein concentrations of each sample were later quantified using the 

2D Quant Kit (GE Healthcare) according to the manufacturer’s instructions. 

Two–Dimensional Gel Electrophoresis (2DGE) 

For each pooled adhesive sample, a total of 100μg protein was added to 11cm, pH 3-10 

non-linear immobilized pH gradient gel strips (ReadyStrip IPG strips - BioRad, Hercules, CA, 

USA) and allowed to passively rehydrate for up to 12 hours.  The rehydrated gel strips were then 

run on an IPGphor 3 (GE Healthcare) isoelectric focusing system with the following parameters: 

500 V (rapid increase, 0:15 hr). 8000 V (gradient, 1:00 hr), 8000 V (steady, 3:45 hr) and 500 V 

(hold).  Gel strips were stored frozen at -80°C.  

  Gel strips were placed in equilibration buffer (375mM tris–base, 6M urea, 30% glycerol, 

2% sodium dodecylsulfate (SDS), 0.002% bromophenol blue) mixed with 10mg ml-1 DTT and 

incubated on an orbital shaker for 15 minutes.  Next, gel strips were incubated with equilibration 

buffer mixed with 135mM iodoacetamide and placed on an orbital shaker for an additional 15 

minutes.  The gel strips were then seated on top of 12% SDS–polyacrylamide gels and bound in 

place with 0.8% agarose solution containing Laemmli SDS electrophoresis running buffer (25mM 

tris–base, 192mM glycine, 0.1% SDS).   

Gels were placed in a Criterion Dodeca electrophoresis unit (BioRad) with a recirculating 

water bath at 12°C and run at 200 V for 55 minutes.  Gels were incubated twice in a fixing 

solution (10% methanol, 7% glacial acetic acid) for 30 minutes each.  Gels were rinsed in MiliQ 

and stained overnight with SYPRO Ruby florescent stain (BioRad) in the dark following 

manufacture recommendations (BioRad).  The following day, gels were destained using the same 

protocols for the fixing solutions (incubated twice in 10% methanol, 7% glacial acetic acid for 30 
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minutes each).  Gel images were captured via scans completed by a typhoon Trio+ Flourescent 

imager (GE Healthcare). 

Gel Image Analysis 

 Scanned gel images were analyzed using the software package Delta2D (version 3.6; 

Decodon, Greifswald, Germany).  The digital gel images were manually edited and merged 

together using the match vector approach in the program’s group warping strategy.  This function 

creates a fused composite image, or proteome map, of all the gel images representing the 

average spot volumes of each detected spot.  This composite image was further edited to 

determine spot boundaries that were then transferred back onto each respective gel image via 

the linked match vectors.  Background “noise” was then deleted from the image as a clean up 

step before normalizing the protein spot volume against the total spot volume of all the proteins 

within a gel image. 

Statistical Analysis 

 Delta 2D was used to analyze normalized spot volume with a Student’s T test to detect 

differences between the two temperature treatments (15°C and 25°C, respectively).  A null 

distribution was generated using 1,000 permutations to account for unequal variance and non–

normal distributions of the protein spots, setting a stringent alpha level of 0.02 to be more 

conservative and to reduce the likelihood of false positives.  Hierarchical protein clusters were 

generated in Delta2D using average linking with Pearson’s correlation metric. 

Mass Spectrometry– 2DGE MALDI-TOF/TOF 

 Proteins that changed in abundance due to temperature treatment, and those that fell 

within the molecular ranges of previously identified barnacle adhesive proteins, were excised from 

gels using a BioRad ProteomeWorks automated spot picker (in fluorescent mode).  Destaining 

buffer (25mM ammonium bicarbonate in 50% acetonitrile) was added twice (30 minute incubation 

each on a rotating shaker) to remove SYPRO stain from the gel plugs.  Plugs were then 

dehydrated using 100% acentonitrile, and proteins were digested overnight in 11ng μl–1 trypsin 
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solution (Promega, Madison, WI, USA) at 37°C.  Digested peptides were eluted twice from the gel 

plugs using an extraction buffer (0.1% trifluoroacetic acid (TFA)/acetonitrile; 2:1), and the 

resulting samples were centrifuged until they were completely dehydrated using a SpeedVac 

(Thermo Fisher Scientific, Waltham, MA, USA).  The concentrated peptides were rehydrated by 

adding 1μl of extraction buffer and then mixed with 5μl matrix solution (0.2mg ml–1 α–

hydroxycyano cinnamic acid in acetonitrile) and spot plated onto a metal Anchorchip™ target 

(Bruker Daltonics Inc., Billerica, MA, USA).  The peptide spots were washed with a 0.1% TFA 

solution followed by a recrystallization step using an acetone/ethanol/0.1% TFA (6:3:1) solution. 

 Mass spectrometry was performed using a Matrix Assisted Laser Desorption/Ionization 

Tandem Time of Flight Mass Spectrometer (MALDI-TOF/TOF MS, Ultraflex II, Bruker Daltonics 

Inc.).  Peptide mass fingerprints (PMF) were generated for each sample spot, and tandem mass 

spectrometry (MS/MS) was carried out on the 12 most intense peaks obtained from the original 

mass spectrum (MS) for each sample.  These spectra were processed and analyzed using 

flexAnalysis (version 3.0; Bruker Daltonics Inc.) with the TopHat algorithm for baseline 

subtraction, the Savitzky–Golay analysis for smoothing (0.2 m/z; number of cycles=1), and the 

SNAP algorithm for peak detection (signal–to–noise ratio: 6 for MS and 1.5 for MS/MS). The 

assumed peptide charge state was +1, and porcine trypsin was used for internal mass calibration. 

 Protein identification searches were performed using Mascot software (version 3.1; Matrix 

Science Inc., Boston, MA, USA) with PMFs and tandem mass spectra combined to search 

against multiple in-house maintained databases [downloaded from the National Center for 

Biotechnology Information (NCBI) website and updated various times] including several 

taxonomic classification levels including: Genus = Balanus, Subphylum = Crustecea, Phylum  = 

Arthropoda, as well as other invertebrate libraries (eg Petrolisthes, Mytilus, and Daphnia).  

Additional fasta files for B. amphitrite EST libraries were obtained from the Sequence Analysis 

and Management System SAMS-2.0 for project SAMS_MGE_amphitrite_2010 (Bacchetti De 

Gregoris et al., 2011).  Variable modifications within the search included oxidation of methionine, 

carbamidomethylation of cysteine and acetylation of lysine.  Minimum criteria were set to accept 
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one missed trypsin digestion cleavage, a mass peptide tolerance of 0.25 Da and MS/MS 

tolerance of 0.6 Da.  Searches were conducted using the molecular weight search (MOWSE) 

method where the protein identification was deemed significant if the MOWSE score was higher 

than a certain threshold value (database dependent) at the p <0.05 level.  
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III. RESULTS 
 
Significantly Differently Expressed Proteins Between Temperature Treatments 

 Using a proteome map generated from all gels in the experiment, a total of 291 spots 

were detected.  Of these, 20% (57 spots) were determined to show significant changes in protein 

abundance across the treatment groups (Student’s T test, p<0.02. Fig. 2).  

 

  

Figure 2. A composite gel image, or proteome map of uncured Balanus amphitrite adhesive. 
Two hundred ninety-one (291) individual protein spots were detected. The proteome map 
represents the average normalized pixel volumes for each protein spot across 20 sample 
gels. Each sample gel was generated from separately pooled adhesive samples collected 
from multiple individuals from each treatment group (15°C and 25°C, respectively). 
Numbered spots indicate those that showed significant changes in abundance between the 
two temperature treatments (Student’s T test, p<0.02). Red circled proteins were more 
abundant at 25°C, and blue circled proteins were more abundant at 15°C. 
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Hierarchical Clustering of Significant Proteins Between Temperature Treatments 

Hierarchical clustering grouped the 57 significantly different protein spots into two clusters 

containing proteins that display similar patterns of protein expression both within and between the 

two experimental temperature groups.  The first cluster contains 27 protein spots that showed 

significantly greater expression at 15°C, where the second cluster contains 30 protein spots that 

showed significantly higher expression at 25°C (Fig. 3).  

25°C 15°C Spot # 

  

  
More 
Abundant 
15°C 

More 
Abundant 
25°C 

SIPC 

SIPC 

Bcs-2 

Neuronal acetylcholine receptor 

Serine protease 

Annexin 
Annexin 
Annexin 

Figure 3. Hierarchical clustering of differentially expressed Balanus amphitrite adhesive 
proteins in response to temperature by Pearson’s correlation. Color scale across the top 
represents proteins ranging from lower than average standardized spot volume in blue, to 
greater than average standardized spot volume in orange. Temperature treatments are on the 
horizontal axis (10 columns on left are 25°C, 10 columns on the right are 15°C). Numbers to 
the right side of the figure are arbitrarily assigned to each protein spot during the initial 
analysis. Each square represents a single unique protein spot on a single gel. Each column 
represents all the significant proteins from within a single gel, whereas each row represents a 
single significant protein among each of the gels. The clustering shown along the left vertical 
axis shows two major groups of proteins with similar patterns of abundance. 
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Identification of Significant Proteins Between Temperature Treatments  

Protein identification relied heavily on comparing peptide sequence information generated 

from the various mass spectrometry results, to match against published databases to determine 

homology or similarity to known proteins.  Five proteins (represented by eight spots, or 

approximately 14% of the total significant spots) of the 57 protein spots that were expressed 

significantly differently between the two temperature groups were positively identified using 

MALDI-TOF/TOF MS analysis (Fig. 4, Table 1).  

 

 

Figure 4. Identified significant protein spots in uncured Balanus amphitrite adhesive. Five 
unique proteins were identified by MALDI-TOF/TOF MS analysis. Three of the identified 
proteins were more abundant in the 15°C treatment group (blue), while the remaining two 
were more abundant in the 25°C treatment group (red).  
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Table 1. Adhesive protein identifications (using MS/MS) of spots significantly changing abundance due to rearing temperature of 
Balanus amphitrite. Sequence Analysis and Management System (SAMs) Identifier represents EST sequence assembly categories 
derived from the SAMS-2.0 summary for project SAMS_MGE_amphitrite_2010 (Bacchetti De Gregoris et al., 2011). Mascot Score and 
Sequence Coverage are reflective of these EST sequences. Protein identifications are based on NCBI BLAST results of these 
translated sequences. Theoretical pI and MM derived from ExPASy Bioinformatics Resource Portal. 

Spot 
ID SAMs Identifier Protein ID 

(NCBI Blast) 
pI 

Theoretical 

MM 
Theoretical 

(kDa) 
GenBank ID Mascot 

Score 

Sequence 
Coverage 

(%) 
Proposed Functions 

89 Adult_Isotig_isotig01507 (predicted) 
Annexin 6.02 55.0 GI:242003608 98 13 calcium-dependent phospholipid 

binding, calcium ion binding   

90 Adult_Isotig_isotig01507 (predicted) 
Annexin 6.02 55.0 GI:242003608 52 7 calcium-dependent phospholipid 

binding, calcium ion binding   

91 Adult_Isotig_isotig01507 (predicted) 
Annexin 6.02 55.0 GI:242003608 163 14 calcium-dependent phospholipid 

binding, calcium ion binding   

54 NA - matched NCBI 
Database for Metazoa Bcs-2 4.22 27.7 GI:9186886 78 16 putative heme-binding proteins  

128 Cyprids_Isotig_isotig05664 

(predicted) 
Neuronal 
Acetylcholine 
Receptor 

6.66 47.9 GI:321458305 66 29 

transport, membrane, extracellular 
ligand gated ion channel activity, 
neurotransmitter-gated ion-channel 
ligand binding domain 

142 BAMP_Isotig_isotig_01024 
(predicted) 
Serine 
Protease 

5.22 39.8 GI:157130423 161 25 

Secreted trypsin-like serine 
protease [posttranslational 
modification, protein turnover, 
chaperones] 

45 Cyprids_Isotig_istotig00848 

Settlement 
Inducing 
Protein 
Complex 

4.95 170.7 GI:71361896 52 5 
endopeptidase inhibitor activity, 
extracellular space, alpha-2 
macroglobulin 

160 Cyprids_Isotig_istotig00848 

Settlement 
Inducing 
Protein 
Complex 

4.95 170.7 GI:71361896 236 7 
endopeptidase inhibitor activity, 
extracellular space, alpha-2 
macroglobulin 
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Relative Abundance of Proteins Expressed Significantly Higher at 15°C  

The three proteins that were determined to be more abundant in the 15°C treatment 

group include a barnacle cyprid specific protein (Bcs-2), a settlement inducing protein complex 

(SIPC), and a serine protease (Fig. 5). 

 

 
Bcs-2 (spot no. 54) showed over two times the increased level of protein expression at 

15°C compared to 25°C (Fig. 5, A).  SIPC showed approximately one and a half times increased 

level of protein expression (spot no. 160), and over two times the increased level of protein 

expression (spot no. 45) at 15°C compared 25°C (Fig. 5, B & C).  Serine protease (spot no. 142) 

showed nearly three times the increased level of protein expression at 15°C compared to 25°C 

(Fig. 5, D).  

Figure 5. Bar graphs showing the relative abundance of proteins expressed significantly 
higher at 15°C. (A) Barnacle cyprid specific protein 2 (Bcs-2 - spot no. 54), (B, C) Settlement 
Inducing Protein Complex (SIPC – spot nos. 160 & 45), and (D) Serine protease (spot no. 
142). Spot volumes were obtained by normalizing against the volume of all proteins, and 
means ± 1 s.e.m. are shown (N=10 for all groups). Letters above bars indicate significant 
differences in protein abundance level between the two temperature treatments).  
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Relative Abundance of Proteins Expressed Significantly Higher at 25°C  

The two proteins that were determined to be more abundant in the 25°C treatment group 

include a class of neurotransmitter receptors (acetylcholine receptor protein) and a member of the 

functionally diverse annexin protein family (Fig. 6).  

 
 

  
Neuronal acetylcholine receptor protein (spot no. 128) showed nearly one and a half 

times the increased level of protein expression at 25°C compared to 15°C (Fig. 6, A).  Annexin 

(spot nos. 89, 91, & 90) showed approximately one and a half times the increased level of protein 

expression at 25°C compared 15°C (Fig. 6, B-D).  

 

  

Figure 6. Bar graphs showing the relative abundance of proteins expressed significantly 
higher at 25°C. (A) Neuronal acetylcholine receptor (spot no. 128), (B-D) Annexin (spot nos. 
89, 91, & 90). Spot volumes were obtained by normalizing against the volume of all proteins, 
and means ± 1 s.e.m. are shown (N=10 for all groups). Letters above bars indicate significant 
differences in protein abundance level between the two temperature treatments. 
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IV. DISCUSSION 
 

The cosmopolitan distribution of Balanus barnacles, in addition to the ability to grow them 

in the lab and the legacy of cement research, makes them a relevant model organism for 

biofouling research.  To date there have been many studies aimed specifically at identifying the 

adhesives produced by this common fouling species and in understanding how these adhesives 

function to adhere the organisms to substrates (Kamino, 2013).  Though there has been a great 

deal of progress in the research with respect to the attachment mechanism, there is still much to 

learn about the biochemical and physiological components and processes of adhesion.  

 Our study was conducted to explore the physiological mechanisms responsible for the 

observed inverse relationship in adhesion strength between barnacles reared at two biologically 

relevant temperatures (15°C and 25°C) (Johnston, 2010).  Knowing that barnacle adhesive is 

highly proteinaceous with a number of known barnacle ‘cement proteins’ (Kamino, 2013), and 

that changes in protein abundance in uncured barnacle adhesive could be detected (Johnston, 

2010), our study examined differences in the expression of these (and other) proteins that could 

be responsible for the effect of temperature on removal force.  We determined that the protein 

composition (type and abundance) of uncured B. amphitrite adhesive varied for barnacles raised 

under two different temperature treatments by detecting a significant change in the abundance of 

57 of 291 protein spots between the two groups (15°C and 25°C, respectively).  These results 

provide supporting evidence that changes in protein composition could contribute to observed 

differences in adhesive tenacity previously described (Johnston, 2010).  

Proteins Expressed in Higher Abundance in the 15°C Treatment Group 

Bcs-2 – This gene was first described as one of six cDNAs thought to be expressed specifically 

during the barnacle cypris stage (bcs) of larval barnacle development (Okazaki et al., 2000).  The 

study showed mRNA expression of this particular gene to be between 0 and 7 hours with 

decreased mRNA activity toward the progression of attachment and metamorphosis; thus, bcs-2 

was designated as an early stage cyprid gene (Okazaki et al., 2000).  The full-length nucleotide 

sequence of bcs-2 (1259bp, NCBI Accession No. AB021903) corresponded to a polypeptide of 
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246aa (~26.7kDa, pI 4.06) that showed no significant nucleotide or amino acid sequence 

similarities with other databases (Okazaki et al., 2000).  Another study investigating the 

expression level of these genes during cyprid attachment and metamorphosis found the same 

trend in decreased expression levels of bcs-2 during metamorphosis (Li et al., 2010).  The 

authors of this study also reported sequence homology related to a putative heme-binding 

protein, though provided no discussion about functional significance (Li et al., 2010).  

While some bcs genes appear to be uniquely expressed during the cyprid stage (notably, 

bcs-1, -3 and -4), bcs-2 transcripts have been detected in both naupliar and cyprid ESTs, 

suggesting that Bcs-2 is not necessarily specific to one stage of development (Bacchetti De 

Gregoris et al., 2011).  Though genes expressed in each developmental stage are likely to be 

highly diverse, cyprid- and naupliar-specific genes appear to be more similar to each other than to 

the adult gene assemblies (Bacchetti De Gregoris et al., 2011).  Bcs-2 has been detected in the 

same abundance throughout cyprid development (suggesting that it may not be expressed solely 

as an ‘early’ cyprid gene as proposed by Okazaki et al., 2000); however, it was not detected in 

juveniles, which again implies a specific role for Bcs-2 in cyprids (Chen et al., 2014).  Different 

expression profiles observed throughout a number of developmental stages may suggest different 

functional importance of the various bcs genes and their protein products; however, no specific 

activities or roles have been assigned (Chen et al., 2011).  Therefore, it is difficult to speculate 

about the significance of this protein being detected in greater abundance in the colder 

temperature group (Fig. 5), or whether it is likely to be involved in increasing adhesive strength.  

Though perplexing, detecting a ‘cyprid specific’ protein in the adult adhesive may imply greater 

complexity for this protein, and further investigations should be considered.  

 

SIPC – Settlement inducing protein complex (SIPC) was the term coined to describe a larval 

protein complex that was implicated in the gregarious nature of barnacle settlement (Matsumura 

et al., 1998a; Matsumura et al., 1998b; Clare & Matsumura, 2000).  These types of chemical cues 

were the focus of extensive research for their critical role in settlement behavior since they were 
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first proposed in the early 1950s (Knight-Jones & Crisp, 1953).  This protein shares common 

sequence homology with a family of α2-macroglobulins (family of protease inhibitors) and in fact is 

not a larval specific protein complex; it is found expressed in all stages of barnacle development 

and also in multiple tissues (Dreanno et al., 2006a). 

This protein complex serves an important role in species recognition, acting as a contact 

pheromone that is detected by conspecific cyprid larvae as they explore potential surfaces for 

permanent attachment (Clare & Matsumura, 2000; Matsumura et al., 2000; Dreanno et al., 2007; 

Clare, 2011).  This ubiquitous protein occurs in many tissues including: the cuticular tissues of 

both larval stages (nauplius and cypris) and adults (Dreanno et al., 2006b), the shell itself 

(Matsumura et al., 1998b; Dreanno et al., 2006b; Zhang et al., 2015), as well as in the temporary 

adhesive secretions or ‘footprints’ left by cyprids as they ‘walk’ across substrata (Dreanno et al., 

2006c; Clare, 2011) suggesting its strong role in settlement, attachment, metamorphosis, and 

overall ecological assemblages. 

Interestingly, more recent evidence suggests this protein may serve a dual role, both as a 

signaling molecule/settlement-inducer, as well as a putative adhesive (Petrone et al., 2015).  

Preliminary investigations of the adhesive properties of SIPC examined its involvement in 

temporary adhesion and found that although the protein shares significant sequence homology 

with a family of proteins that includes the α2-macroglobulins (which are blood complement 

protease inhibitors, functioning to inactivate proteolytic enzymes in immune responses), it was in 

actuality more comparable to fibrinogen (clotting factor I), which shares no sequence homology 

(Petrone et al., 2015).  Surface plasmon resonance (SPR) was used to measure protein 

adsorption behavior of SIPC on self-assembled monolayers (SAMs) compared to both α2-

macroglobulin and fibrinogen and found that SIPC behaved more similarly to fibrinogen (Petrone 

et al., 2015).  Thus, the authors determined that SIPC appears to behave as a ‘sticky’ type 

protein, which supports its role as a proposed temporary adhesive of barnacle larvae (Petrone et 

al., 2015).  Since SIPC is also expressed during later developmental stages, it seems probably 

that these sticky characteristics may also serve an additional adhesive role in more mature 
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barnacles.  Detecting this protein in greater abundance in the colder treatment group in our study 

(Fig. 5) suggests it may contribute to stronger attachment and higher removal forces. 

 

Serine Protease – This is a multifunctional classification of proteolytic enzymes that constitute 

over 50 clans and 184 families designated by the MEROPS database of known proteolytic 

enzymes (MEROPS release 7.90, cited by Page & Cera, 2008).  With so many members, it is no 

surprise that the functional diversity, and also specificity, of this group of enzymes should be 

substantial.  Emphasis placed on one family in particular (S1) describes trypsin type serine 

proteases involvement in a number of vital processes including blood coagulation, fibrinolysis, 

apopotosis, and immunity to highlight a few (Page & Cera, 2008).  This is interesting with respect 

to a proposed model which suggested that barnacle cement polymerization is a specialized form 

of wound healing, biochemically similar to the enzymatic processes involved in blood clotting 

cascades in vertebrates and invertebrates alike (Dickinson et al., 2009).  

Dickinson et al. (2009) summarized that blood coagulation in invertebrates involves 

similar enzymatic cascades of trypsin-like serine proteases, transglutaminase–mediated cross-

linking, and proteolytic activation as found in vertebrates.  Drawing on a thoroughly characterized 

invertebrate coagulation system involving hemolymph in horseshoe crabs (Kanost, 1999), 

Dickinson et al. (2009) hypothesized that barnacle hemolymph may exhibit similar serine 

proteinase-induced coagulation mechanisms, and further, that the coagulation of hemolymph in 

barnacles is linked to specialized adhesive properties.  The authors concluded barnacle cement 

polymerization and blood clotting occur by similar mechanisms.  These conclusions were 

evidenced through detecting the presence of biochemically similar proteins, specifically trypsin-

like serine proteases and transglutaminase activity in unpolymerized adhesive (Dickinson et al., 

2009). 

Serine proteases have been reported in more recent studies where three different 

proteins containing trypsin-like serine protease domains were detected in barnacle shells using 

gel-based proteomics (Zhang et al., 2015).  It was suggested that these particular trypsin-like 
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serine proteases might function to digest extracelluar matrix proteins for shell resorption, act as 

co-factors in the proteolytic activation of prophenoloxidase (which is implicated in wound healing 

and protein cross-linking), play a protective role, or perhaps be involved in the hardening process 

of the barnacle shell (Zhang et al., 2015).  Detecting trypsin-like serine protease proteins in our 

study provides additional support of the coagulation cascade model of polymerization proposed 

by Dickinson et al. (2009), and it’s increased abundance at 15°C (Fig. 5) also offers potential 

evidence for the increased adhesive strength of barnacles reared in colder temperatures. 

 

Proteins Expressed in Higher Abundance in the 25°C Treatment Group 

Neuronal Acetylcholine Receptor – Nicotinic acetylcholine receptors (AChRs) are ligand-gated 

cation channels that are present throughout the nervous system (Vernino, 2008).  A study 

investigating the presence and involvement of cholinergic molecules in B. amphirtirite settlement 

and adhesion found acetylcholinesterase (AChE) activity detected in thoracic muscles, the gut 

wall, and cement gland of cyprids (Faimali et al., 2003).  Additional detection of choline 

acetyltransferase-like molecules in the neuropile of the central nervous system suggested the 

involvement of acetylcholine in muscular contraction and cement gland exocytosis (Faimali et al., 

2003).  Furthermore, elevated levels of acetylcholine lead to higher settlement rates and 

supported the hypothesis that acetylcholine has a neurotransmitter/neuromodulator role that is 

important for settlement and adhesion of barnacle cyprids (Faimali et al., 2003). 

Another study found AChE activity to be significantly upregulated in cyprids and also 

detected the presence of a neurotransmitter receptor (ie, acetylcholine receptor) with high 

expression levels in cyprids (Chen et al., 2014).  This type of receptor binds to the 

neurotransmitter acetylcholine which, based on biochemical, histochemical and 

immunohistochemical assays, was shown to be involved in muscular contraction and cement 

gland exocytosis (Faimali et al., 2003).  The increased expression of this receptor in cyprids 

provides additional evidence that acetylcholine plays a pivotal role in barnacle larval settlement 

(Chen et al., 2014).  This protein was detected in greater abundance in the 25°C treatment group 
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(Fig. 6), and though it has been proposed to serve an important function for settlement and 

possibly involved in muscular contractions of the cyprid cement gland, its role in reduced 

adhesion strength at warmer temperatures in adult barnacles is unclear. 

 

Annexin – Annexins are a multigene superfamily of proteins with diverse functions (Gerke & 

Moss, 2002; Moss & Morgan, 2004; Rescher & Gerke, 2004; Gerke et al., 2005).  In fact, this 

superfamily comprises more than 500 different gene products across multiple phyla and species 

(reviewed by Morgan & Fernandez, 1997; cited by Reschner & Gerke, 2004).  Though annexins 

have been traditionally described as calcium-dependent phospholipid-binding proteins, more 

recent studies suggest increasingly complex sets of functions (Moss & Morgan, 2004).  Annexins 

consist of a conserved core domain (thought to be the calcium regulated membrane binding 

module) and a secondary principal domain (NH2-terminal which proceeds the core) that is thought 

to be unique between members of the family and likely responsible for individual annexin 

functions (Gerke & Moss, 2002).  A great body of work has contributed to the general description 

of the biochemical and structural aspects of this protein family (Gerke & Moss, 2002). However, 

assigning physiological functions to the numerous members (as they are likely to differ) would 

provide additional insight to the potential functional diversity of the family as a whole.  

The challenge resides in understanding structural differences of unique members of this 

large protein family, and how those differences translate to functional specificity (Moss & Morgan, 

2004).  Annexins have been linked to a variety of intra- and extracellular processes including (but 

not limited to) membrane trafficking, membrane-cyctoskeleton anchorage, ion channel activity 

and regulation, as well as anti-inflammatory and anticoagulant activities (reviewed by Lizarbe et 

al., 2013).  Annexin’s role as an anticoagulant has been proposed for a small number of 

extracellular annexins (Lizarbe et al., 2013; Gerke & Moss, 2002; Gerke et al., 2005).  A short 

description for this gene states that members of this calcium-dependent phospholipid binding 

family play roles as a regulator of cellular growth and signal transduction pathways, as an 

inhibitor of phospholipase A2, and may also play a role in anti-coagulation (summary provided by 
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RefSeq, Jul 2008; http://www.ncbi.nlm.nih.gov/gene/306).  Intriguingly, annexins have also been 

detected in other barnacle studies (Chandramouli et al., 2015; Chen et al., 2014).  Chen et al. 

(2014) showed the differential expression of one annexin protein during distinct developmental 

stages, where peak expression was measured nearly five times higher in the juvenile stage 

compared to cyprid stage. 

It was hypothsized that this particular annexin might be involved in tissue degeneration 

and reorganization during barnacle larval development and metamorphosis (Chen et al., 2014).  

The annexin detected in our study shares homology with Annexin 3, which, based on early 

research, was identified as a type of lipocortin (inhibitor of phospholipase A2) (Tait et al., 1991), 

suggesting its function in anti-coagulation type activities.  This “anti-coagulant” type protein 

perhaps provides additional support of the ‘wound healing’ model of adhesion proposed by 

Dickinson et al. (2009).  Furthermore, this protein was found in greater abundance in the 25°C 

treatment (Fig. 6), which may explain why these animals attached with lower adhesion strengths 

compared to the colder reared animals in Johnston’s study (2010). 

 

Known Cement Proteins 

Though it seemed likely that a change in abundance of cement specific proteins could be 

responsible for the observed differences in adhesive strength reported by Johnston (2010), none 

of these previously published ‘cement proteins’ were detected in our analysis.  However, a 

number of recent studies provided insight related to the temporal and mechanistic ways that 

adhesion occurs.  Additionally, these studies discuss how some standard research methods 

utilized to study this complex process may lack the ability to capture some of those particular 

proteins. 

A study investigating the process of attachment in adult barnacles demonstrated a two-

step mechanism for adhesion by utilizing in situ optical microscopies (Burden et al., 2012).  Time-

lapsed microscopy showed that barnacles emit at least two optically distinct barnacle cement 

secretions (BCS1 and BCS2) after dislodgment and reattachment to a transparent substrate 
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(Burden et al., 2012).  BCS2 (not to be confused with the barnacle cyprid specific gene, bcs-2, 

discussed earlier) is unique in that it demonstrated autofluorescent properties (characteristic of 

proteins) and was correlated with increased adhesion tenacity (Burden et al., 2012).  Another key 

finding demonstrated a temporal component to BCS2 secretion that occurs over a short time 

frame (hours) compared to the total time required to lay down an entire new ‘growth ring’, which 

typically takes place over a number of days (Burden et al., 2012).   

Additional experiments confirmed that barnacles utilize multiple means of delivering 

proteinaceous material to the interface (both through cuticular membranes and via capillary ducts) 

at different times during the growth cycle (Burden et al., 2014).  Based on these findings, perhaps 

the appropriate window to collect a representative sample of this highly proteinaceous BCS2 

secretion during our initial collection of uncured adhesive was missed.  Since BCS2 was 

demonstrated to increase adhesive strength, conceivably this could be the main component of the 

uncured adhesive complex that contains a high or higher concentration of the previously 

described barnacle cement proteins (when compared to the first secretion, BCS1).  This could 

explain why we did not identify these specific types of proteins during our analysis, as they may 

have been diluted to a level too low to be detected.  Another explanation for why these proteins 

eluded detection could be an artifact of the collection method, and analytical techniques 

themselves. 

Another study attempted to investigate a molt-related transcriptomic response of barnacle 

cement proteins in different tissues by employing a variety of collection methods and analytical 

techniques (Wang et al., 2015).  Similar to the mass spectrometry (MS) analysis performed in our 

study, they too had difficulty detecting and identifying cement proteins in their MS analysis.  One 

proposed explanation was that the cement specific proteins were masked by the presence of 

more abundant household and scaffold proteins and that the inability to detect the putative 

adhesive proteins from the uncured material does not necessarily mean that they were not 

present (Wang et al., 2015).  In addition to lacking a standard method to collect the liquid 

adhesive, they suggested that the limited amount of material that can be collected during a short 
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time period, and the unknown possibility of cross-linking prior to enzymatic digestion for MS 

analysis (plus the absence of a fully annotated genome), may all contribute to the challenges for 

the detection of cement proteins in various barnacle secretions (Wang et al., 2015).  These 

rationalizations illustrate the difficulties in detecting cement proteins and provide insight about the 

overall complexity of this unique and interesting material.  

 

Complex Protein Matrix 

A handful of proteins have been identified as functional components of the barnacle 

adhesive interface; however, the precise composition of these secretions relative to the entire 

composition of the adhering interface is still not known; thus, researchers are investigating the 

possibility of multiple components in the permanent adhesive processes of barnacles at different 

developmental stages (Burden et al., 2014).  The onset of permanent attachment during the 

barnacle cyprid stage is in fact more complex than originally thought, involving at least two 

separate secretions of varying compositions of both lipids and proteins (Aldred et al., 2013; 

Gohad et al., 2014).  Despite what is known about the functionality of a small subset of adhesive 

proteins, there is still much to learn, including: whether these secretions are the only source of 

adhesion in the interface, the exact locations of specific functional proteins, the order of their 

appearance and in what composition, how these compounds interact with other components in 

the interface, and what their overall relationship is to adhesion (Burden et al., 2014).  These 

questions are all important aspects of the barnacle secretory mechanisms and adhesion 

processes that deserve further examination (Burden et al., 2014). 

 

Summary of Findings 

We detected a significant difference in protein expression between temperature groups 

(Fig. 2) and positively identified a subset of proteins (Fig. 4) that have the potential to play unique 

and unexpected roles in adhesive function.  One hypothesis considered during this analysis was 

that perhaps the ‘cement proteins’ described in previous studies would be changing expression 



 

26 

due to temperature and that we could explain the differences in removal force (Johnston, 2010) 

by detecting a greater abundance of these very specific proteins in the adhesive of the colder 

temperature reared barnacles compared to the warmer temperature reared barnacles.  Though 

we did not find these particular proteins, our study has detected and identified a number of 

proteins that are interesting in regards to their differential expression based on rearing 

temperature, and also in regards to their proposed involvement in adhesive function and tenacity. 

In the 15°C treatment (higher removal force/stronger adhesive attachment), we have 

identified a protein that may act as a coagulation factor (trypsin-like serine protease) and another 

protein that may function as a putative adhesive (SIPC).  Though not specific ‘cement proteins,’ 

the increased abundance of these proteins may contribute to the increased adhesion strength of 

barnacles attached to substrates in colder water temperatures.  In the 25°C treatment (lower 

removal force/weaker adhesive attachment), we have identified a protein that may function as an 

anti-coagulant (annexin).  It is feasible that the increased abundance of this protein could 

contribute to the weaker adhesion strength of barnacles attached to substrates in warmer water 

temperatures.  Taken together, our findings are especially interesting in the context of the model 

proposed by Dickinson et al. (2009) that barnacle attachment and adhesive mechanisms are 

evolutionarily similar to the biochemical processes involved in ‘wound healing’ responses in 

animals.  Furthermore, the differential expression of these non-cement proteins in response to 

temperature provide evidence that perhaps some other compounds in this complex protein matrix 

may also be responsible for the adhesive tenacity of this unique biofouler.  
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