
CATEGORIZING BLOG SPAM

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Brandon Bevans

June 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/77511225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


© 2016

Brandon Bevans

ALL RIGHTS RESERVED

ii



COMMITTEE MEMBERSHIP

TITLE: Categorizing Blog Spam

AUTHOR: Brandon Bevans

DATE SUBMITTED: June 2016

COMMITTEE CHAIR: Foaad Khosmood, Ph.D.

Assistant Professor of Computer Science

COMMITTEE MEMBER: Alex Dekhtyar, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Bruce DeBruhl, Ph.D.

Assistant Professor of Computer Science

iii



ABSTRACT

Categorizing Blog Spam

Brandon Bevans

The internet has matured into the focal point of our era. Its ecosystem is vast,
complex, and in many regards unaccounted for. One of the most prevalent aspects
of the internet is spam. Similar to the rest of the internet, spam has evolved from
simply meaning ‘unwanted emails’ to a blanket term that encompasses any unsolicited
or illegitimate content that appears in the wide range of media that exists on the
internet.

Many forms of spam permeate the internet, and spam architects continue to develop
tools and methods to avoid detection. On the other side, cyber security engineers
continue to develop more sophisticated detection tools to curb the harmful effects
that come with spam. This virtual arms race has no end in sight. Most efforts
thus far have been toward accurately detecting spam from ham, and rightfully so
since initial detection is essential. However, research is lacking in understanding the
current ecosystem of spam, spam campaigns, and the behavior of the botnets that
drive the majority of spam traffic.

This thesis focuses on characterizing spam, particularly the spam that appears in
forums, where the spam is delivered by bots posing as legitimate users. Forum spam is
used primarily to push advertisements or to boost other websites’ perceived popularity
by including HTTP links in the content of the post. We conduct an experiment to
collect a sample of the blog posts and network activity of the spambots that exist in
the internet. We then present a corpora available to conduct analysis on and proceed
with our own analysis. We cluster associated groups of users and IP addresses into
entities, which we accept as a model of the underlying botnets that interact with
our honeypots. We use Natural Language Processing (NLP) and Machine Learning
(ML) to determine that creating semantic-based models of botnets are sufficient for
distinguishing them from one another. We also find that the syntactic structure of
posts has little variation from botnet to botnet. Finally we confirm that to a large
degree botnet behavior and content hold across different domains.

iv



ACKNOWLEDGMENTS

Thank you to my advisor Dr. Foaad Khosmood for the constant guidance and the
initial idea. This thesis introduced me to many new concepts in Computer Science
that I have grown a passion for, and for that I am very grateful.

Thank you to my family and friends for their unconditional love, support, and guid-
ance.

For George.

v



TABLE OF CONTENTS

Page
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
CHAPTER
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 What Is Spam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Blog Spam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Spam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 TOOLS & TECHNOLOGIES . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Drupal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 NLTK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Alchemy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Google Language Detection . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 SANS Internet Stormcast Center (ISC): Common Vulnerabilities and

Exposure (CVE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Stanford POS Tagger . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Geolocation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Megam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Porter Stemmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 EXPERIMENTAL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Corpora Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 ANALYSIS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.1 User Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.2 Access Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Content Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Feature Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1.1 Bag Of Words . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1.2 Alchemy Taxonomy . . . . . . . . . . . . . . . . . . 42
5.3.1.3 Link . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1.4 Vocab . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



5.3.1.5 PoS . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1.6 N-Grams . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Algorithmic Classification Analysis . . . . . . . . . . . . . . . 45
5.3.3 Maximum Entropy Classification . . . . . . . . . . . . . . . . 49
5.3.4 Naive Bayes Classification . . . . . . . . . . . . . . . . . . . . 57

5.4 Behavior Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1 Access Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Domain Agnostic Behavior . . . . . . . . . . . . . . . . . . . . 66

5.5 Special Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 Uncompiled Content . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.2 Top Meta Entity . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Classification Modularization . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Multilingual Classification . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 Target Link Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Contamination Identification . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 Naive Bayes Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 83

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



LIST OF TABLES

Table Page

5.1 General User Table Characteristics . . . . . . . . . . . . . . . . . . 28
5.2 Number of Access Requests per Honeypot . . . . . . . . . . . . . . 31
5.3 General Content Table Characteristics . . . . . . . . . . . . . . . . 34
5.4 General Entity Characteristics . . . . . . . . . . . . . . . . . . . . . 36
5.5 Entity User Characteristics . . . . . . . . . . . . . . . . . . . . . . 37
5.6 Entity IP Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 37
5.7 Entity Post Characteristics . . . . . . . . . . . . . . . . . . . . . . 38
5.8 An example of a Boolean modification of a feature set. . . . . . . . 46
5.9 An example of a normalization modification of a feature set. . . . . 46
5.10 Number of Honeypots Spanned by Meta Entities . . . . . . . . . . 67
5.11 The distribution of the top 10 taxonomies for example meta entity’s

ggjx posts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.12 The distribution of the top 10 taxonomies for example meta entity’s

gjams posts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.13 The distribution of the 10 taxonomies for example meta entity’s

npcagent posts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.14 Number of Entities in Top Meta Entity . . . . . . . . . . . . . . . . 78

viii



LIST OF FIGURES

Figure Page

2.1 The Main Steps Involved in a Spam Filter [11]. . . . . . . . . . . . 9

4.1 The ggjx honeypot as it appears to a human viewer. . . . . . . . . 23

5.1 User Distribution for top geographic locations. . . . . . . . . . . . . 29
5.2 Registrations Per Day. . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Access Requests Per Day. . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 ‘Action’ type distribution. . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Register requests per day for all three honeypots. . . . . . . . . . . 33
5.6 Examples of ‘OTHER’ requests received. . . . . . . . . . . . . . . . 34
5.7 Posts Per Day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 Post Frequency Distribution. . . . . . . . . . . . . . . . . . . . . . 38
5.9 Cumulative Post Distribution when only considering entities who

posted at least once. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.10 IP Frequency Distribution. . . . . . . . . . . . . . . . . . . . . . . . 40
5.11 Number of Documents per Group of Entities. . . . . . . . . . . . . 45
5.12 Prediction Accuracy With the Boolean feature set modification. . . 47
5.13 Prediction Accuracy With the normalization feature set modification. 48
5.14 Prediction Accuracy of the Maximum Entropy classifier with the two

feature set modifications. . . . . . . . . . . . . . . . . . . . . . . . . 49
5.15 Accuracy of Megam classifier with a varying top word Threshold. . 50
5.16 Accuracy of Entity Classification using Naive Bayes with a varying

top word threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.17 Accuracy of Megam classifier with the BoW feature set. . . . . . . 52
5.18 Accuracy of Megam classifier with the Alchemy Taxonomy feature set. 53
5.19 Accuracy of Megam classifier with the Link feature set. . . . . . . . 54
5.20 Accuracy of Megam classifier with the PoSBigram feature set. . . . 55
5.21 Accuracy of Megam classifier with the PoSTrigram feature set. . . . 56
5.22 Accuracy of Megam classifier with the Vocab feature set. . . . . . . 57
5.23 Accuracy of Megam classifier with the Taxonomy, BoW, and Link

feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.24 The Confusion Matrix of the top 10 posting entities. . . . . . . . . 59
5.25 Accuracy of Naive Bayes classifier with the BoW feature set. . . . . 60
5.26 Accuracy of Naive Bayes classifier with the Alchemy Taxonomy fea-

ture set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.27 Accuracy of Naive Bayes classifier with the Link feature set. . . . . 62
5.28 Accuracy of Entity Classification using Naive Bayes with the PoS

Bigram feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.29 Accuracy of Entity Classification using Naive Bayes with the PoS

Trigram feature set. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



5.30 Accuracy of Entity Classification using Naive Bayes with a combined
feature set of Taxonomy, Link, and BoW. . . . . . . . . . . . . . . 65

5.31 Access requests split into entity and non-entity. . . . . . . . . . . . 66
5.32 The ‘action’ category of access requests for entities. . . . . . . . . . 67
5.33 Number of entities vs. number of scouting IPs . . . . . . . . . . . . 68
5.34 Access Requests for Scout IPs . . . . . . . . . . . . . . . . . . . . . 69
5.35 The post frequency distribution for meta entities, stacked by honeypot. 70
5.36 The meta entities’ post distribution compared to IP address distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.37 The accuracy of feature types with a collective feature set. . . . . . 73
5.38 The accuracy of feature types with an isolated test set. . . . . . . . 74
5.39 The possible links from one of the uncompiled posts. . . . . . . . . 75
5.40 The possible word choices from one of the uncompiled posts. . . . . 76
5.41 The MySQL error received when trying to access any of the ‘uncom-

piled’ posts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

x



CHAPTER1

INTRODUCTION

1.1 What Is Spam

Spam has grown from simply meaning ‘email junk’ to a general term used to refer to

any unsolicited commercial communications. As the internet has evolved, spam has

become much more advanced in both its sophistication and breadth. There are many

reasons why spam is detrimental to the well being of the internet and its users. For

one, it consumes valuable bandwidth resources. In 2015, over half of all emails sent

were spam [24]. This costs precious processing time for email servers. It also costs

person hours to keep spam filters up to date, and for consumers to manually process

spam that makes it through the filters. Additionally, when spam isn’t detected by

spam filters or the victim, it can often lead to the download of malware and the

loss of sensitive information. Spam is even used to deliver harmful malware such as

ransomware, which holds the victim’s data captive until a fee is paid. Additionally,

spambots, the agents responsible for the delivery of spam, have much more capability

now. This includes automated forum registration, confirming email verifications, and

even passing tests that are specially designed to identify them. As a consequence,

detecting spam has become both more difficult and more important.

1



1.2 Blog Spam

Currently, a common use for spambots is to pose as a forum attendant, who con-

tributes new posts or responds to the posts of other users. This subcategory of spam

is referred to as ‘forum spam’ or ‘blog spam’. A spambot has two objectives when

posting blog spam. The first is advertisement. Because blog spam is posted in actively

browsed websites, other users will likely observe it, so the spam constitutes a channel

for which the spambot can advertise to users. The second objective of blog spam is

to boost the perceived popularity of a target website to search engines. The way the

blog spam accomplishes this is by including link spam in it’s content. Link spam is

any HTTP link that exists within the content of the spam. The link spam is observed

by a search engine’s crawlers, and then the link’s target receives a boost in perceived

popularity. This leads to an overrepresentation of how popular the target website is,

which degrades the service that the search engine provides. The goal of this thesis is

to gain a deeper understanding blog spam and where it comes from.

1.3 Our Contribution

In the past, the vast majority of efforts regarding spam have been toward prevention.

Email spam filters are generally effective, and there are reasonably effective safeguards

available to tell between a human and a robot when performing critical actions on a

website, such as posting content or registering an account. Very little research has

been done to characterize the spam on a macro level. In this thesis, we set up an

experiment to collect a sample of the forum spam present in the wild. To do this, we

set up three honeypots, or fake websites, that appear legitimate to spambots. Each

one is homogenous with the exception of the theme that the first contains, which

was purposely put there by us to see if it influences the content that the spambots

post. The observation period of the experiment is 42 days. We observe the data

2



left by the spambots. This includes the network activity, the actual content of the

spam posts, and the user information for all of the users that were registered by the

spambots.

After we conduct the experiment, our research commences. Our research results in

the following contributions:

• Corpus: From the data that we gathered in the experiment, we form a corpus

from which to conduct the rest of our analysis from. The corpus consists of

three tables for each honeypot. The corpus is made publicly available for other

researchers to conduct analysis on. The tables are described below:

User Table: The User table contains all of the log in information of the

users that the spam bots created. This includes the username, the number of

times they logged in, and all of the IP addresses and respective geolocations

that they logged in from.

Access Table: The Access table describes all of the network requests

logged from the honeypots. It contains raw data such as the request path,

the source IP address, and the request type, and also some lightly processed

data such as the desired ‘action’ of the request.

Content Table: The content table houses all of the blog posts and com-

ment posts that were made during our experiment. Contained in each entry is

the raw content of the post, the type of post, the time of the post publication,

the ID of the user who posted, and some other useful metrics such as the num-

ber of hits it received, a list of links that were in the post, and a taxonomy of

the posted content.

• Entities: We model the botnets that interact with our honeypots. We do this

in order to understand the underlying mechanisms that generate blog spam. For

3



each honeypot, we combine users who are directly or indirectly connected to

each other into collections called ‘entities’. A connection in this case is defined

as any user who shares an IP address with another user. The result is a model

of the botnets that interact with our website, which provide grounds for the

classification analysis that we perform next.

• Classification: Using the entities outlined above, we determine the most dis-

tinct features of each entity through the use of Natural Language Processing

(NLP) and Machine Learning (ML). We derive a number of feature sets that

express a particular attribute of the content posts, such as the Part Of Speech

(PoS), which represents the syntactical structure of a post, or the Bag Of Words

(BoW), which gives an idea of the semantic content of a post. We find that

among the attributes we consider, semantic modeling is the most effective way of

distinguishing one entity from another, both by using the actual words present

in the content of the spam, or more efficiently, a derived taxonomy of the con-

tent.

• Behavior: We then combine all of the honeypot-specific entities into ‘meta

entities’, a new class of entities that are distinct across all honeypots. We use

the same formation process as before, only this time with the entities instead

of each honeypot instead of the users. We find a number of the active entities

are present in each honeypot, and then perform a similar classification process

on the meta entities. We find that some of the semantic models, namely BoW,

have nearly the same classification accuracy in a domain-agnostic setting as it

does in a domain specific one. We take it a step further by dividing the feature

sets into domains, and then introducing a test set whose domain is completely

unknown to the classifier. The BoW classifier is slightly less accurate, yet

still adequate in determining which meta entity the posts come from, which

suggests that our classification system could be installed into a fresh website

4



and still gain accurate classification information. Additionally, in some meta

entities there were multiple entities from the same domain. This means the IP

addresses gained from the other honeypots effectively linked two entities within

the same honeypot that our model considered separate before. The combination

of these two findings suggest that a central database with many distributed data

collection points could potentially model the entire internet’s botnet ecosystem.

The rest of this paper is organized as follows:

5



Background: This section provides an overview of the technologies

and ideologies we use to design our experiment and an-

alyze our findings. It also covers related works that are

relevant to our cause. This includes a review of spam in

general, as well as honeypots, natural language process-

ing, and machine learning.

Tools & Technologies: This section describes the various 3rd party packages

that we use to aid us in our findings. We use various

programs, libraries, frameworks, and APIs to help with

our honeypot setup, NLP, and machine learning analy-

sis.

Experimental Design: This section goes into detail about how our experiment

is set up. It describes what Content Management Sys-

tem (CMS) and server configuration we use, the time

span we run the experiment for, and the data set we

collect. It also explains the reasoning behind our de-

sign decisions and the initial hypothesis in mind when

forming our experiment.

Results: This section describes: the corpus we formed from the

experiment, the methods used for analyzing our data,

and all of the findings that result from our analysis.

Conclusion: This section recaps the experimental process, the analy-

sis techniques we used to analyze the data we collected,

and the results that find.

Future Work: This section suggests future work that could be done

based on the findings of this experiment.

6



CHAPTER2

BACKGROUND

2.1 Spam

The definition of spam continues to evolve. Once simply meaning ‘email that is

not wanted’, a more broader definition is now required, such as ‘any unsolicited

commercial communication’. As the internet becomes increasingly complex, so does

spam. There are now many variations of spam that attackers use, including ‘blog’

spam. Blog spam, also known as ‘forum spam’ or ‘splogs’, is disingenuous content

posted to an otherwise legitimate forum, presumably made by a program rather than a

human user. Blog spam has become an increasingly popular avenue for spammers [25].

Blog spam is used for a variety of purposes. Many sources agree that the two main

motives of generating splogs are to create a source of profitable advertising and to

create a link farm that unjustifiably increases the PageRank of affiliated sites [13][25].

A site’s PageRank is a score assigned by Google in order to determine the importance

of a website. When a site’s PageRank increases illegitimately it causes search engines

to rank the page as more important than their legitimate PageRank warrants. In

addition to blog spam, comment spam is a popular channel for spammers. In 2007,

the spam classification service Akismet classified 95% of the submitted comments

it received as spam [25]. Although spam is a big problem, research shows that a

7



variety of detection methods are effective in detecting spam. This includes focusing

on certain metrics of spam that distinguish it from legitimate, normal content, often

times referred to as ‘ham’, . One study [9] found that training classifiers with a

specially added malicious feature set significantly improved the classifiers ability to

detect spam, even when the spam only accounted for 16.5% of the dataset.

Researchers have gone through great lengths to find out how the underlying mecha-

nisms of spam work. In one study [22], the researchers fully evaluated how one of the

most popular spam automation program works. The program, called XRumer, offers

a suite of tools that provide a huge amount of utility to the botmaster, or the party

responsible for deploying a spam campaign. XRumer includes means for target col-

lection, automated forum registration and posting, and detection avoidance. It also

has the utility to use proxies and integrate other popular spam tools to gain more

functionality. Among these other tools, Hrefer stands out as a crucial tool for the

target collection process. To find target forums, XRumer allows the user to scrape

Google, Yahoo, and a number of other search services. Hrefer is the tool that allows

the user to do this, and it comes free with the purchase of XRumer. Hrefer uses

the standard APIs that all of these services offer to get a comprehensive list for the

spambot to target. Hrefer does this in a sophisticated way, accessing the API in a

way that makes its detection difficult. Hrefer also makes searching easy for the user;

based off of a given keyword, it infers more keywords through the malevolent use of

Google AdWords Keyword Tool [10]. For the actual generation of spam, XRumer

allows the use of macros and macro variation, essentially allowing the user to produce

a lightweight grammar for post variation. Finally, XRumer incorporates the tool We-

balizer to incorporate what’s known as ‘Refspam’, which allows the spam to boost a

target URL’s PageRank through malicious HTTP header manipulation, even if the

spam itself is detected. There are other tools that mimic what XRumer is used for,

but it appears that XRumer is the most popular and effective. The authors also pro-

8



vided a graph that describes the basic process when determining if spam is legitimate

or not, as can be seen in Figure 2.1.

Figure 2.1: The Main Steps Involved in a Spam Filter [11].

Other research has focused more on how to detect and reverse the specific effect that

spam has on search engine ratings. In [2], a program called SpamRank is introduced

that successfully detects and mitigates the effect of PageRank boosting. Their success

depended on two key properties of the internet that allowed them to automatically

detect link spam abuse with success. The two properties they find are as follows:

• Portions of the web are self-similar. For any sufficiently large set of honest

supporter pages, a representative graph of it will look similar to any other

sufficiently large set, even if the sets in question are completely disjoint. Put

in a more specific way, the PageRank of distribution of the pages that link and

promote a given page will naturally follow a power law distribution, and this

trend follows for any given page of the web. Contrarily, if a page receives its

PageRank from only very low ranked pages, and a high volume of them, this is

regarded as suspicious because of the flat distribution; the supporter doesn’t fit

into power law.

• Link spammers have a limited budget; when boosting the PageRank of a target

9



page, ‘unimportant’ structures are not replicated (like the power law distribu-

tion).

This work was focused on how to improve PageRank algorithms to detect and penalize

a page whose rank has been inflated illegitimately. It would be applied to search

engine algorithms and other website scraping applications. Our work is peripheral to

this. Rather than detect if a page has been spam-boosted, we analyze and characterize

the very spam campaigns that are responsible for page boosting.

Another point of interest within the topic of spam is the underground ecosystem

built around it. One group of researchers [23] was able to infiltrate some inner circles

of botnet operators and gain knowledge about the ecosystem of spam campaigns.

Through undisclosed means they were able to gain enough trust to be allowed access

to protected forums and privileged information. From this, they were able to see what

was valuable to spammers, such as active email lists. As a whole, their infiltration

led to three major contributions, listed below:

• Deep analysis of the Cutwail spam operation (one of the biggest botnet pro-

grams known on the internet), based on information directly collected from the

botmaster’ s hosts. This includes a manual written for botmasters on how to

manage the botnet.

• The botmaster’s role in delivering and managing a spam campaign, including

the software architecture used and its role in the economy.

• The analysis of the ‘Spamdot.biz’ forum and the transactions of the spammers

to gain an understanding of the economics of spam campaigns.

Aside from their research contributions, they also gained access to 16 servers that

belonged to the botnet. In addition, through notification of the respective ISPs,

over 20 malicious servers were identified and shut down thanks to the efforts of the

10



researchers. Our work is similar to theirs in that we are trying to understand the spam

ecosystem. Their research was focused on the economy of spam campaigns, where we

are more focused on the distribution and classification of spam on the internet as a

whole. Additionally, we take a much less intrusive approach, analyzing only what the

spam mechanisms forcibly make available to us, and without any active intrusion on

our part.

The active landscape of spam is quickly evolving. As new technologies emerge to allow

us to interact and communicate with each other in different ways, spam will continue

to follow suit. According to the most recent Internet Security Threat Report by

Symantec [24], the rate of spam is actually going down, however the spam is becoming

more malicious. Instead of advertisements and promotions, spam is heading in a

darker direction, being more likely to contain malware than in previous years.

2.2 Honeypots

A honeypot is a decoy system whose purpose is to lure in fraudulent cyber activity.

They’re used by researchers to study the techniques and heuristics that adversaries

use to attack a system. They’re deployed in a controlled, isolated environment, and

they don’t present any useful data in the case that the honeypot is compromised. To

an attacker, a properly deployed honeypot is indistinguishable from a genuine system.

The honeypot may have additional logging or surveillance attached to it to gain more

fine-grained information about the attackers methods. Honeypots are used for a

number of reasons, from gathering clusters of malicious IP addresses for blacklists, to

detecting and analyzing new malware. There are two broad categories of honeypots,

high-interaction and low-interaction honeypots. High-interaction honeypots allow the

hacker to interact with the system as if it were any regular system. The advantage of

high-interaction honeypots is that it more accurately portrays a real environment, and

11



therefore has the potential to gain the most information on the hacker’s techniques

and activities. There are minimal restrictions on what the attacker can do once they

compromise the system. On the other hand, low-interaction honeypots only allow for

a limited subset of functionality that they would expect. Usually the honeypot server

will only support the services needed for the honeypot operators to identify that the

exploit is being attempted [18]. Honeypots have a number of advantages over other

security measures. This includes fewer false positives since no legitimate traffic will

go through the honeypot [18]. This is crucial to our analysis since we can assume

that very little to none of the traffic that come through our honeypots is legitimate

traffic, and therefore speculate with the assumption that all of our data is valid.

Although we didn’t require the use of an explicit honeypot framework, they could

be classified as mid-interaction. In [20], a virtual honeypot daemon called Honeyd

is introduced. Honeyd allows for the easy deployment of a virtual honeypot that

simulates computer systems on the network level. It has the ability to simulate

complex network topologies, which lets it fool network-fingerprinting tools such as

Nmap. This is crucial so that attackers can’t distinguish between a honeypot and a

legitimate system.

In [17], a honeyclient tool, PhoneyC, is introduced. Much like a honeypot allows

insight into server-side attacks, a honeyclient is a tool that provides insight into

client-side attacks. PhoneyC is designed to mimic the behavior of a user-driven

application like a web browser, and then be exploited by malicious content. From

there it can pinpoint attack vectors and use dynamic analysis to remove obfuscation

from malicious pages.

12



2.3 Natural Language Processing

The field of Natural Language Processing (NLP) has the goal of converting human

language into a formal, well defined representation that is easily read and processed

by computers [6]. Although remarkable progress has been made, it is a huge un-

dertaking; the uncertainty of language and the discrete nature of computers do not

mix well. Language in its natural format is full of exceptions to rules, interpretation,

ambiguity, and a myriad of other headaches that computers must overcome in order

to understand. The process of taking loosely formed language structures and extract-

ing discrete, concrete meaning structures from it is inherently difficult. There have,

however, been great strides to aid the process of digesting language. In [4], many

NLP fundamentals are outlined, such as part-of-speech tagging and other methods to

programmatically extract the meaning of linguistic structures.

There are also ways of determining how effective a given feature set of a language is. In

[3], the authors focus on the maximum entropy principle. By following the maximum

entropy principle, it allows one to select a model within a set of features that nets the

greatest entropy. They also discuss algorithms for constructing a maximum entropy

model. Outside of [4], there has been effort to create NLP frameworks to speed up

the process of converting human language into computer-workable data structures.

In [6], the authors outline a general task list that falls under NLP, listed below:

• Part-Of-Speech Tagging (POS): This step aims at tagging each individual word

with a tag that represents its syntactic role within the sentence, such a noun or

a verb.

• Chunking: A step up from POS, chunking is the process of labeling groups of

associated words, such as noun phrases or verb phrases.

• Named Entity Recognition (NER): This step labels proper entities within a

13



sentence into categories such as ’person’ or ’location’.

• Semantic Role Labeling (SRL): This step aims at giving semantic roles to syn-

tactic constituents within a sentence. This step aims to disambiguate a word

that could have multiple parts of speech.

• Language Models: A model is then built to estimate the probability of what

the next word will be within a sequence.

• Semantically Related Words: This is the process of predicting whether two

words are semantically related.

2.4 Machine Learning

The efforts of proper NLP often result in a structured set of data for which to perform

machine learning (ML) algorithms on. The objective of machine learning is to learn

from and make predictions on data. The most widely used form of machine learning

is classification. A classifier is a system that inputs a vector of feature values and

outputs a single value, the class [8]. In the context of textual data, NLP is used to

form these feature values, which can then be fed as input into a machine learning

system. There are multiple components to a machine learning system, such as the

learner. The learner takes as input a set of training examples in which the expected

answer is provided, and outputs a classifier.

We are not the first to apply ML algorithms in a spam context. In [11], the cur-

rent ML approach to spam filtering is reviewed. A few common ML algorithms are

explained, namely Naive Bayes classification, artificial neural networks, and logistic

regression. This paper discusses machine learning in the context of spam filtering,

which is where the vast majority classification efforts regarding spam have been fo-

cused. This is a peripheral topic to our research; in our context we already know that

14



the data we’re using is spam. We’re aiming for a more distinct classification. The

conclusion that although progress has undoubtedly been made, there is still work to

be done, particularly in the context of keeping filters updated in a cheap and accurate

fashion.

When [13] was published, there were no known machine learning approaches to de-

tecting blog spam. The techniques used at the time included much less effective tech-

niques such as URL patterns, URL and IP blacklists, and manual checking. They

introduce the first machine learning system to classify blogs. The advantages are a

substantial boost in blog spam detection, and the ability to easily be retrained as

the blog spam changes. Their results are a good sign for us; they indicate that ML

processing is effective with blog content.

In [21], automated text classification is a major research area within information sys-

tems. The author attributes its rise to such importance to many factors, namely:

• Given the rise of digital documents, the domains of application for text classifi-

cation are numerous and important, and are bound to increase in both number

and importance.

• Many times, the sheer number of the documents to be classified and short

response time required make the manual alternative implausible.

• It has reached effectiveness levels comparable to those of trained professionals.

The rate of automated text classification effectiveness of is growing, and though

they probably will not reach 100%, they are likely to plateau at a more effective

level than manual text classification effectiveness levels.

Anti-Spam filtering has been the main focus of spam-related research, so the asso-

ciated algorithms have been tested and evaluated many times through. In [1], the

authors investigate a Naive Bayesian classifier to be used to filter spam emails from

15



legitimate emails. They’re findings include that although the Naive Bayesian classifier

has high spam recall and precision, it isn’t viable when blocked messages are deleted,

and additional safety nets are needed to make it have a significant positive contribu-

tion. These strict aspects of classification systems are important to developing the

highest quality filters over time. In another paper [16], the authors recognize that

there are several forms of Naive Bayes to consider. They compare the positive and

negatives of 5 different versions of Naive Bayes. They find that when all things are

considered, the multinomial Naive Bayes with Boolean attributes is superior. This

version gave the best trade-off between ham and spam recall, and also had a lower

computational complexity. The multinomial Naive Bayes classifier treats each mes-

sage as a bag of tokens, eventually representing each message as a vector that reflects

the presence of words in the message. Machine learning is crucial in the process of

classifying spam, both in the traditional spam vs. anti-spam classification, and in the

more sophisticated classification objective of this paper.

16



CHAPTER3

TOOLS & TECHNOLOGIES

3.1 AWS

We host our honeypots on Amazon Web Services (AWS). This allows us to have a

consistent IP and maximize server ability.

3.2 Drupal

To set up our honeypot, we use the Drupal Content Management System (CMS) [5].

Drupal is quick to set up and provides a wide range of add-ons to allow for additional

logging that proved helpful in our data collection. Also, its configurability is fine

grained enough to maximize our availability to spam bots.

3.3 Python

Python is the only programming language we used for our data extraction and anal-

ysis. It has powerful libraries such as NLTK to assist in the type of analysis we are

17



interested in, and its file I/O is quick and easy to use. Additionally, its list comprehen-

sion capabilities proved to be essential in terms of readability and succinctness.

3.4 NLTK

One of the tools most relevant to our work is the Natural Language ToolKit (NLTK)

for Python [4]. NLTK is full of tools that do much of the heavy lifting for a developer

who wishes to use Natural Language Processing (NLP) on a set of textual data. NLTK

comes with a suite of tools flush full of language processing programs. NLTK also

includes a wide variety of corpora, spanning multiple languages. Some of these corpora

are pre-tagged, and can be used in machine learning to train a classifier. Some of

the corpora serve as useful content to practice using the language processing tools on.

The corpora come in many flavors, spanning from classical texts, to political speeches,

and even to internet chat room text. The corpora are extremely well organized and

serve many purposes. It comes with easy to use graphing and display capabilities,

which allows for a deep and unique understanding of language characteristics that a

given language set possess. NLTK also comes with ready-to-run clustering algorithms,

which are discussed later in this work. Along with NLTK, a free book is provided

that not only teaches the user how to navigate around NLTK within Python, but also

provides great insight into the basic principles and mechanisms of NLP as a whole.

The aid that NLTK provides made many of the results in this paper plausible, and

was essential in the understanding and processing of the data that we collected.

3.5 Alchemy

Alchemy is an API which takes a chunk of text and returns many useful features of

it, using its own behind the scenes analysis tools. These features includes but is not

18



limited to extracting keywords and concepts, the taxonomy of the text, and proper

nouns that otherwise would be difficult to extract. [14]

3.6 Google Language Detection

In order to programmatically detect what language a post was written in, we used

a ported version Google’s language detection. The API is also capable of detecting

multiple languages. Analyzing posts in languages other than English is outside the

scope of this paper, so we only considered posts in English for our data set and

analysis.

3.7 SANS Internet Stormcast Center (ISC): Common Vulnerabilities and

Exposure (CVE)

CVE is a system designed to provide structured data for information security vul-

nerabilities. Any security researcher can request a CVE number for a vulnerability

found in a piece of software or product. For our use we used a public API provided by

the Luxembourg CERT (CIRCL) which stores a publicly accessible CVE database.

[15]

3.8 Stanford POS Tagger

In order to obtain the most accurate POS assignment to our blog spam, we used

the Stanford Log-linear Part-Of-Speech Tagger. The tagger is a Java implementation

of the tagger described in [26]. At the time this paper was published, the tagger

resulted in a 97.24% accuracy on the Penn Treebank WSJ, 4.4% better than any

19



previous tagger of its class. This tagger achieved this accuracy based on the following

ideas:

• Using both preceding and following tag contexts via a dependency network

representation.

• Broad use of lexical features, including jointly conditioning on multiple consec-

utive words.

• Effective use of priors in conditional log-linear models.

• Fine-grained modeling of unknown word features.

3.9 Geolocation Tool

Cal Poly’s Information Technology Services (ITS) department allows us to send in

a list of IP addresses and in return get a list of the IP addresses paired with their

geolocation. This helps us categorize the corpora and entities.

3.10 Megam

NLTK’s built-in classifiers are highly functional, however they’re primarily academic

and not necessarily meant for heavy lifting. To get a higher performing classifier, we

implemented MEGA Model Optimization Package (Megam) [7] into NLTK. Megam’s

performance was both more accurate and much faster.

20



3.11 Porter Stemmer

‘Stemming’ is the act of reducing words to their stems. There are many algorithms

that stem words, and NLTK offers a few implementations. For our use, we use the

Porter stemmer. The Porter stemmer is a common stemmer used in the normalization

words within the NLP pipeline. [19]

21



CHAPTER4

EXPERIMENTAL DESIGN

The objective of our experiment is to gather a sample of blog, comment, and link spam

that is representative of the internet as a whole, create corpora from the collected

samples, and then analyze and draw conclusions from that corpora. One of our

hypotheses is that we can identify a set of botnets that dominate the bulk of spam

entries we receive, and then train a classifier that can accurately identify which botnet

the spam comes from.

We want to make our sites as easily accessible to the spam bots as possible, while

introducing controlled, calculated differences between the three of them. To do so, we

set up an Apache server on an Amazon Web Server (AWS) virtual machine. Within

the Apache server we enable virtual hosting, which allowed us to host the three

websites on one Apache instance. Each website deployment used the same Content

Management System (CMS), Drupal, with the same configuration, to give each site

the same accessibility options so that the bots had the same capabilities within each

site. In order to post content, a user has to be logged in. The bot has to go through

the registration process, which includes email verification, in order to post content.

Making the registration process slightly involved creates a sophistication threshold

for the spambots who can interact with our sites. We do this in the hope of reducing

22



noise, so that only well formed spambots can post content.

Figure 4.1: The ggjx honeypot as it appears to a human viewer.

The three honeypots we deploy are homogeneous. The only difference was the theme

of the first post and the domain name. Ggjx.org is fashion themed, npcagent.com

is sports themed, and gjams.com is pharmaceutical themed. Our motive behind the

themes is to see if the spambots posted content similar to the theme of the website,

or to detect any change in behavior from the spambots that we can attribute to

a specific theme. The only way we ’theme’ each website is by making the initial

blog post. The bots can post content to our site in two ways: new blog posts, and

comments on existing blog posts. Our content analysis is based solely on those two

sources of content.

23



4.1 Data Collection

Within the CMS we enable some extra logging to enhance our feature set, such as

IP tracking and number of logins. As can be seen in Figure 4.1, the layout of the

honeypots is extremely rudimentary. Although our honeypots are online for a long

period of time, the time period we consider in our data is restricted to nearly a month.

We do this for a number of reasons. We want to have a sufficient amount of data

to draw reliable conclusions from, however we want to limit the time period that we

consider so that the data we observe is more likely to be representative of a single

spam campaign per botnet. This way, when we isolate and analyze what we consider

a single botnet entity, we observe its behavior only for a single instance of its spam

lifecycle, as opposed to multiple campaigns that use the same botnet. Our intuition

is that it would be easier to draw meaningful conclusions from a single run of a botnet

rather than multiple runs. Our Apache server also logs all incoming network requests,

as is the default for Apache installations. Our dataset consists of a combination of

the MySQL entries and Apache logs.

4.2 Corpora Formation

To form our corpora we take the raw data from the MySQL database and Apache

server, and divide it into three tables. Each of our three honeypots has its own

set of tables, so the corpora consist of nine files. The three tables are defined as

follows:

• User: The user table lists all of the users that were logged in the CMS. Each

entry consists of the following attributes:

uid: The unique user ID for this user.

24



username: The username that was registered with this account.

date created: The date that the user registered at.

IPs: A list of IP / geolocation pairs that are associated with the account.

These IPs are collected by the ip tracker module in Drupal.

logins: The number of times the user logged in.

• Access: The Access table provides information about all of the HTTP requests

logged by our Apache server. Each entry consists of the following attributes:

uid: The unique identifier of the user who’s accessing, if one is logged in.

ip: The IP of the access request.

request path: The path specified in the HTTP request.

request type: The type of HTTP request, i.e. POST or GET.

node id: The Drupal node id requested in the HTTP request, if there is

one.

action: A keyword to describe what the access’s purpose was. The set of

keywords are described below:

RESET: Request to reset a password.

REGISTER: Request to register a new user.

VIEW NODE: Request to view a node, which node is filled into the

‘node id’ field.

ADD: Request to add content to the honeypot.

25



VIEW USER: Request to view a user’s profile, the user’s id recorded into

the ‘node id’ field.

LOGIN: Request to login as a user.

PASSWORD: Request for the user’s password, with request path ’user/-

password/’.

EDIT USER: Request to edit a user’s profile.

OTHER: Uncategorized, didn’t fall into any of the above keywords.

date: The date of the access.

• Content: The content table is where the blogs and comments from the Drupal

websites can be found. Each entry consists of the following attributes:

node id: The unique node ID reflecting the node of the blog that this post

was made on.

author id: An identifier corresponding to the ’uid’ of the user who posted

the content.

date publ: The date the post was made.

hits: How many times the post has been visited.

type: The type of post, i.e. a comment on an existing post or a new blog

post.

title: The title of the comment or blog post.

text: The text of the comment or blog post.

links: A list of link objects that are contained in the content of the post.

26



Each link object contains several attributes related to the link, explained below.

language: The language that the content of the post is in, extracted using

the Google Language Detection API.

alchemy: The taxonomy of the post as reported by the Alchemy API.

• Link Object: A link object is contained within the ’links’ attribute of each

entry within the content table, explained above. Each link object contains the

following attributes:

url: The full URL of the link.

surface text: The text that a user would click on to access the link.

domain: The base URL of the link.

path: The path following the base url, i.e. ’/user/4’.

parameters: The parameters passed in through the url. i.e. ‘?ref=spammer&id=5’

CVE: The ’Common Vulnerabilities & Exposure’ categorization of the URL,

if one exists, otherwise ‘N/A’.

27



CHAPTER5

ANALYSIS AND RESULTS

5.1 Corpora

The immediate result of our experiment is the derivation of the corpora structure

detailed in 4.2. The results contained in our corpora span from 16:00:00 November

25, 2015 to 15:02:31 January 5, 2016. The corpora are characterized in the following

subsections.

5.1.1 User Table

To create a user, the spambot fills out Drupal’s registration form and then activates

the account through a verification email. Past the email, no sophistication is needed

to create an account; no CAPTCHA or anti-spam measures are employed. We do this

in order to get an accurate sampling of the different kinds of botnets present on the

internet, including ones that are less mature. The general characteristics of the User

Table 5.1: General User Table Characteristics

Honeypot Quantity Average Logins Per User Multinational Users Number of Countries
ggjx 62992 1.066 0.443% 83

gjams 28230 1.102 0.488% 40
npcagent 34332 1.05 0.177% 53

28



Figure 5.1: User Distribution for top geographic locations.

table can be seen in Table 5.1. It can be seen that the ggjx honeypot was by far the

most popular honeypot in terms of user registration. It should be noted that gjams

has a disadvantage, it was set up later than the other honeypots, and although it still

had ample time to exist before the starting point of the experiment, its existence still

had less time to propagate through site crawlers.

Another observation to be made is a caveat with virtual hosting. Apache’s virtual

hosting allows more than one website to be hosted from a single IP. However, only

one website can be assigned to the IP, and so if a bot were to visit the IP directly it

is taken to ggjx. This is a likely explanation for ggjx’s popularity over the other two

honeypots. Bots more often than not use direct IP addresses to search for a website

rather than the domain name. The geographical distribution of our users is also a

point of interest. Our honeypots are accessed by a wide range of countries. Figure

29



Figure 5.2: Registrations Per Day.

5.1 show the three most highly visited countries for the three honeypots: Germany,

France, and the United States. Although there are visits from many countries, the

majority of them are small in number. The geographic distribution amongst the three

honeypots is similar.

Figure 5.2 shows the number of users that registered per day over the 42 days our

experiment is run. We can see that ggjx again has a flatter registration slope, and

near the end gjams and npcagent start spiking in registrations. It’s also important

to note the two dead zones shown in each of the registration figures. This is caused

by overflows in the honeypot, the high quantity of user registrations overloaded the

email daemon and it crashed, and therefore the spambots could not complete the

verification step of their registration.

30



Table 5.2: Number of Access Requests per Honeypot

Honeypot Quantity
ggjx 1100248

gjams 481138
npcagent 591238

5.1.2 Access Table

The Access table is based off of the Apache logs that were generated by the spambots

sending network requests to our honeypot. Before they were added to the table, they

were processed and some metadata was included to make it easier to characterize and

analyze. This includes adding a few columns to assist in characterizing each entry.

The general characteristics of the Access table can be seen in Table 5.2.

Figure 5.3: Access Requests Per Day.

31



The frequency of access requests for each honey pot is shown in Figure 5.3. Once

again, we can see when the honeypot crashed under the weight of all the activity of the

spambots. We can also see that the days leading to the crashes were traffic intensive,

which makes sense. There is an enormous amount of access requests compared to

the amount of posts and users. This means that a high percentage of the traffic our

honeypots see is more likely passive scanners rather than intelligent spambots.

Figure 5.4: ‘Action’ type distribution.

In Figure 5.4, we can see the spread of action requests for each honeypot. We observe

that most of the requests are trying to ‘REGISTER’ or ‘VIEW NODE’. A number

of the access requests had random parameters in the URL, likely searching for some

other common CMS such as Wordpress or Joomla, or searching for some specific

vulnerability. These are categorized into the ‘OTHER’ category. For context, some

32



Figure 5.5: Register requests per day for all three honeypots.

examples of ‘OTHER’ requests can be seen in Figure 5.6. Finally, Figure 5.5 shows

the combined ‘REGISTER’ requests from all three honeypots for the duration of the

experiment. We can see that before each crash, the register requests are at a local

maximum.

5.1.3 Content Table

The Content table contains all of the spam posts and spam comments that are made

in the honeypots. It also contains some useful metadata that’s pertinent to our

experiment, as well as means to link them to the other tables in the corpora. Gen-

eral characteristics of the Content table can be seen in Table 5.3. There are some

33



Figure 5.6: Examples of ‘OTHER’ requests received.

Table 5.3: General Content Table Characteristics

Honeypot Quantity Average Hits Average Links Blog Posts Comments English Posts Languages
ggjx 2279 28.237 2.356 1933 346 1962 13

gjams 2225 18.178 0.311 1686 519 2137 6
npcagent 1430 29.043 1.823 701 708 1409 6

interesting differences between the honeypots that we observe from Table 5.3. As

expected, ggjx has the most content. Although gjams has less users than npcagent,

it contains more content entries. This means that the users that interacted with the

gjams honeypot were more active than the npcagent users. Conversely, each post in

the npcagent honeypot was observed by other bots more than both gjams and ggjx.

The posts in ggjx had the most links on average, and although gjams had the most

active posters, only about 1/3 of them actually posted links in their spam posts.

Another unexpected observation is that npcagent actually has more comments than

posts.

34



Figure 5.7: Posts Per Day.

Figure 5.7 shows the number of posts made per day for the three honeypots. The

three honeypots don’t seem to follow a trend, which suggests that the mechanism that

controls when a bot will post is either complex or randomized. Again, we can see

where the honeypots were down because of server overload when there were zero posts

per day. When observing the characteristics of the Content tables, it’s hard to draw

correlations between the honeypots, unlike the User table where the three honeypots

had similar characteristics. Using a number of analytical procedures on our corpora,

we validate our hypothesis and gain additional insight into the mechanisms that drive

spam bots. All of the results in the following subsections were derived directly from

the corpora.

35



Table 5.4: General Entity Characteristics

Honeypot Number Of Entities % of Multinational Entities
ggjx 3332 4.862

gjams 1735 3.516
npcagent 1534 3.390

5.2 Entities

The use of spambots as the main delivery tool for spam content is widely accepted.

Additionally, the use of ‘botnets’, or collections of these spambots, distributed over

thousands and thousands of computers and managed by a central controller, is also

common knowledge in spam research. A crux of our hypothesis is that each spambot,

or ‘user’ in our context, who posted content in our honeypot is part of a larger botnet.

We define these supposed botnets as ‘entities’, and use the terms interchangeably

throughout this paper. One of the main ambitions of our analysis is to determine the

plausibility of classifying a blog post into an entity, and to further determine a set of

features that allow for that classification.

Each entity has the following attributes:

• id: A unique identifier for the entity.

• IPs: The set of IPs that are associated with the entity.

• usernames: The set of usernames that are associated with the entity.

• user ids: A list of user IDs that are associated with the entity.

We construct the entities from our corpora programmatically. Each honeypot has its

own respective set of entities. We form our entities with the assumption that botnets

are connected. This means that every agent in a botnet is connected to every other

agent in the botnet; if there is any direct or indirect connection between users we

consider them in the same botnet. To form the entities, we scan through the list of

36



Table 5.5: Entity User Characteristics

Honeypot Average Users per Entity Maximum Users Standard Deviation of User Quantity
ggjx 18.905 38001 682.704

gjams 16.271 14249 365.326
npcagent 22.381 23577 617.5

Table 5.6: Entity IP Characteristics

Honeypot Average IPs per Entity Maximum IPs Standard Deviation of IP Quantity
ggjx 1.628 126 4.648

gjams 1.812 172 6.364
npcagent 1.414 76 2.849

the honeypots users, assigning each one to the entity it belongs to, or creating a new

one if it doesn’t match with an existing entity. The rules for entity construction as

each user is scanned are as follows:

• If an entity exists that contains the username or the IP of the user being con-

sidered, the username, IP, and ID of the user is added to that entity.

• If more than one entity matches the above criteria, then all matching entities

are merged into a single entity.

• If no entity matches the above criteria, a new entity is created with the user-

name, IP, and id of the considered user as the initial data within the entity.

The results of our entity formation confirmed what is well known - the vast major-

ity of the users that were interacting with our honeypots were interrelated from a

network standpoint. It also suggests a significant finding: Each botnet has a shared

intelligence, that is, a users login information is shared among many of the botnet’s

endpoints. The characteristics of our entity set can be seen in Tables 5.4, 5.5, 5.6,

and 5.7.

The frequency distribution of posts per entity is a point of interest. The honeypot

with the least amount of posts and activity, npcagent, also contains the entity with

the most posts, by a significant margin. Also, the honeypot with the most activity,

37



Table 5.7: Entity Post Characteristics

Honeypot Average Posts Maximum Posts Standard Deviation of Posts % Of Entities Who Posted
ggjx 0.684 163 5.461 14.406

gjams 1.282 484 14.889 11.470
npcagent 0.926 664 17.449 12.712

Figure 5.8: Post Frequency Distribution.

ggjx, has the flattest post frequency distribution. Ggjx’s top poster contributed the

least of the three honeypots’ top posters. A small subset of entities is responsible

for the majority of the posts, as can be seen in Figure 5.9. The more popular our

honeypot is, the more evenly distributed the post volume is across entities, as can be

seen by observing Figure 5.8.

To further compare the different characteristics of the entities that interacted with our

site, we take the frequency distribution of the quantity of IP addresses associated with

each entity. For consistency, the entities are sorted by number of posts in descending

order, the same sorting used for Figure 5.8. Figure 5.10 shows the IP frequency

38



Figure 5.9: Cumulative Post Distribution when only considering entities who posted
at least once.

distribution for each of our honeypots. We postulate from the post and IP frequency

distribution graphs that each supposed botnet has its own unique characteristics.

Although they are correlated, an entities quantity of associated IPs does not determine

how active it is in posting content, and vice versa. Some entities were more active

with a low number of IPs, and some entities had a large IP pool but didn’t post much

content. Overall, the entities that interacted with our honeypots had various sizes

and some were clearly more developed than others. If our sample set is indicative of

the overall internet space, our entity distribution suggests that the vast majority of

spam posts come from a relatively small number of entities.

The entities we form from the corpora are paramount to the rest of the analysis we

perform. As explained in the following subsections, it allows us to form a model of

the distributed systems that interact with our honeypots during the time frame of

39



Figure 5.10: IP Frequency Distribution.

the experiment.

5.3 Content Analysis

The first leg of our analysis consists of using NLP to form feature sets from the

documents found in the Content table of our corpora, and then using ML algorithms

to gauge the significance of each attribute set. The main objective within the content

portion of our analysis is to identify the traits within a post that are the most unique

to its author.

40



5.3.1 Feature Sets

To accomplish our objective of finding the most distinguishing traits of spambots,

we must first create a number of feature sets to model the document based off a

particular trait. The different feature sets we derive are explained in the following

subsections.

5.3.1.1 Bag Of Words

The first feature set we examined is a classic within NLP: Bag Of Words (BoW).

BoW is a way to model the lexical content of a document. Put simply, each word in

a document is put into a ’bag’. The document’s ordering and syntactic structure is

shed, and what’s left is the set and count of words present in the document. BoW

is easily understood by example, if a sentence X is ‘The dog ran to the river to get

the ball.’ X’s BoW representation would be: ‘the’: 3, ‘dog’: 1, ‘ran’: 1, ‘to’: 2,

‘river’: 1, ‘get’: 1, ‘ball’: 1. This representation suffices to capture the lexical content

present in a document. In the context of the entities we analyze, the BoW model

we create is slightly more complex. We first put the text of each document through

what’s known in NLP as ‘preprocessing’. To start, not all words within a document

are useful. The word ‘is’ and ‘the’ do not denote any sort of significance to a given

text. In fact, if included in a BoW feature set, these small ‘helper’ words only clutter

up the feature set, and actually damage its usefulness. Put another way, these words,

known as ‘stopwords’, only add noise to the feature set, decreasing the BoW’s signal-

to-noise ratio. Deciding which words to exclude from a BoW is part of the art of

creating a feature set. For our purpose, we excluded any stopwords (according to

NLTK), any words less than 4 characters long, and any words that had any nonalpha

characters in it. Another concept that is useful for increasing the effectiveness of

the BoW feature set is stemming. Stemming takes a word and reduces it to its core

41



component. Put another way, stemming is a technique used to gain morphological

unification within a set of words. For example, the word ‘swimming’ and the word

‘swim’ would be represented as different entities in an unaltered BoW implementation.

This is harmful to the BoW’s purpose, we’re not concerned what form the root word

‘swim’ comes in, we just want to know that the word ‘swim’ is being used. When

passed through a stemmer, the word ‘swimming’ would return as ‘swim’, and the

BoW would be properly treat the two words as the same. Additionally, to normalize

a given document with all the documents that it’s being evaluated against, the ’bag’

within the BoW needs to be standardized. To accomplish this, the union of the words

in each document is taken to create a bag that contains every word present in the

collection of documents. The resulting bag is generally much larger than the content

of any one document, and so any given document’s bag of words will highly resemble

a sparse array.

5.3.1.2 Alchemy Taxonomy

Another group of attributes we used as a feature set is a result of IBM Watson’s

AlchemyAPI. IBM offers an API to submit text to, to which a set of relevant data

is returned. In particular, it offers a ‘taxonomy’ evaluation. We submit the text of

each document to the API, and it returns a list of taxonomies for the submitted text.

The returned list is a list of pairs, the first item being the label of the taxonomy,

and the second being Alchemy’s confidence of the label rated between 0 and 1. If the

confidence is low enough, it also includes a ‘confident’: ’no’ attribute. For the purpose

of our analysis, we discard any unconfident labels. We then strip the confidence value

of each taxonomy listing for the purpose of counting, so any ‘confident’ taxonomy

reported by Alchemy API is counted equally.

42



5.3.1.3 Link

A particularly interesting set of attributes that we used as a feature set was the link

content within each document. As discussed in 2, it’s widely accepted that one of

the main goals of the spam bots that we observe is to promote the value of other

websites as seen by search engines. To see how pertinent links are in distinguishing

between entities, we created a feature set that contains the links within the document.

To create the feature set, each document is parsed for any HTTP links. Each link

is stripped down to just its core domain name and then added to the feature set.

For example, ‘http://www.example.net/?ref=5&source=spam’ would be recognized,

stripped down to ‘example.net’ and added to the feature set.

5.3.1.4 Vocab

A simple metric we use is the normalized vocabulary size of a document. The equation

to get this is straightforward, the number of words in the set of words in a document

divided by the total number of words in the document. The feature set of only Vocab

only has one element in it; the aforementioned ratio. This metric is useless for Naive

Bayes, since we use the Boolean modification. Unless it’s an empty document, the

feature set would be the same for every document.

5.3.1.5 PoS

Another feature set we use is the PoS makeup of a document. To achieve this, we

first pass the text from each document into a PoS tagger, in our case the Stanford

PoS Tagger as mentioned in 3. the text of the document is converted into a list of

words and passed to the tagger, and the tagger returns a list of pairs. Each pair

consists of the originally passed in word and the PoS that the tagger identified for

43



that word. From there, the original text is discarded and the PoS of each word are

added to the feature set. The PoS feature set is useful because it abstracts away the

actual words used in the document, leaving the syntactic structure behind. This can

lead to correlations that otherwise would be difficult to draw. For example, the words

‘beautiful’ and ‘pretty’ are synonyms in most cases, however they would be viewed

as completely separate in a BoW feature set. When considering their PoS, however,

both would come back as ‘adjectives’ and therefore be considered the same.

5.3.1.6 N-Grams

The previously listed feature sets provide different ways of modeling a document in

order to isolate specific attributes of the document. ‘N-gram’ is not a standalone

model like the previously mentioned feature sets, but rather a way of modifying an

existing model to change how effective it is at whatever it’s trying to represent. An

‘n-gram’ is the contiguous sequence of n items in a given sequence. In our case,

it’s every n-length sequence of words that appear in a document. For example, the

bigrams of the sentence, ‘The dog ran to the river to get the ball.’ is: ‘The dog’, ‘dog

ran’, ‘ran to’, ‘to the’, ‘the river’, ‘river to’, ‘to get’, ‘get the’, ‘the ball’. For our use,

we consider bigrams (2-grams), and trigrams (3-grams). In some cases, such as the

Link feature set, applying an N-gram modification does not make sense, because the

links usually do not fall next to each other, and the order that the links appear in the

document doesn’t matter to us. In other cases, such as the PoS feature set, N-gram

modification makes much more sense. PoS by itself doesn’t portray the syntactical

structure of a sentence very well. But, with an N-gram modification, the PoS model

is much more representative of the actual syntactic structure of the document.

44



Figure 5.11: Number of Documents per Group of Entities.

5.3.2 Algorithmic Classification Analysis

In the following two subsections we test our feature sets with the Naive Bayes and

Maximum Entropy classification algorithms. We evaluate each algorithms effective-

ness at predicting the posting entity’s ID based on the provided feature set. Before

we do so, we observe the feature sets used in each classification instance. With each

feature set, we must divide it into a ‘training set’ and a ‘test set’. We use an 80/20

split, with 80% of the feature set assigned to the training set, and 20% of the feature

set assigned to the test set. The number of documents considered varies based on how

many entities we consider. We consider the entities in descending order of how many

documents they’ve posted. The number of documents considered based on entities

considered can be seen in Figure 5.11.

45



Table 5.8: An example of a Boolean modification of a feature set.

Before Boolean Modification After Boolean Modification
‘the’: 3, ‘dog’: 5, ‘plays’: 0 ‘the’: 1, ‘dog’: 1, ‘plays’: 0

Table 5.9: An example of a normalization modification of a feature set.

Before Normalization Modification After Normalization Modification
‘the’: 3, ‘dog’: 5, ‘plays’: 0 ‘the’: .375, ‘dog’: .625, ‘plays’: 0

Due to the differences between the Maximum Entropy and Naive Bayes classifier, it’s

logical to modify our feature sets to maximize efficiency for each algorithm. We create

two modifications for our feature sets: Boolean and normalization. Their descriptions

are as follows:

• Boolean: The Boolean modification simplifies the attributes within a feature

set to binary values. This results in the loss of multiplicity, and is a more simple

representation of the attributes within a feature set. An example of a Boolean

modification can be seen in Table 5.8.

• Normalization: The normalization modification normalizes the value of each

attribute within a feature set. This effectively makes each feature set indepen-

dent of the length of the document that it’s modeling, allowing longer documents

to be more easily compared to shorter documents. To perform this modifica-

tion, each attribute’s value within a feature set is divided by the total of all

of the attribute values within the feature set. An example of a normalization

modification can be seen in Table 5.9.

We compare the effectiveness of our two feature set modifications by using each mod-

ification with both algorithms using the BoW feature set. In Figure 5.12, we see the

results of using the Boolean modification. The two algorithms perform similarly in

this case, with Maximum Entropy slightly outperforming Naive Bayes. Figure 5.13

shows the two algorithms performances with the normalization modification. The

Maximum Entropy classifier performs similarly, while Naive Bayes performs dramat-

46



Figure 5.12: Prediction Accuracy With the Boolean feature set modification.

ically worse. This is expected, because Naive Bayes treats each value as a discrete

value with no relation to any other values, whereas Maximum Entropy doesn’t. Put

another way, Naive Bayes doesn’t take into account that ‘.8’ is very close to ‘.79’,

whereas Maximum Entropy does. It’s obvious that the Boolean modification is es-

sential for an effective Naive Bayes classifier. In this paper it’s assumed that any

analysis using a Naive Bayes classifier has the Boolean modification applied to its

feature set. We can also see that Maximum Entropy out performs Naive Bayes in

both cases.

When cross examining Figure 5.12 and 5.13, it’s unclear which modification scheme

is best for Maximum Entropy. To get a better idea of which modification is best for

Maximum Entropy, we use both modification schemes with the Maximum Entropy

classifier again, only this time we use a different feature set: Link. The results can be

47



Figure 5.13: Prediction Accuracy With the normalization feature set modification.

seen in Figure 5.14. We see that the normalization modification slightly out performs

the Boolean modification. Therefore, in this paper, it’s assumed that any analysis

using a Maximum Entropy classifier has the normalization modification applied to its

feature set.

In addition to feature set modifications, we also employ a word cutoff. When using

BoW, we only want to include the most common words. This limits the size of our

feature set which increases the classification speed, and cuts off lesser used words

which can end up harming performance. To find the optimal cut off point, we graph

the accuracy of our two algorithms with the BoW feature set and a varying top word

cutoff threshold. The resulting graphs can be seen in Figures 5.15 and 5.16. We

observe that the cutoff threshold doesn’t effect the accuracy very much. This goes to

show that the majority of information in BoW is gathered within the most common

48



Figure 5.14: Prediction Accuracy of the Maximum Entropy classifier with the two
feature set modifications.

words, and the least common words don’t add any effective data to the feature set.

For the rest of the paper, we use 30% as the top word cutoff threshold.

5.3.3 Maximum Entropy Classification

The first classification algorithm we use for NLP is the Maximum Entropy Classi-

fier. The Maximum Entropy classifier is a conditional classifier. This means that the

classifier can predict how likely a label is, but it must be provided an input set of

features. This limits the applications that the classifier can be used for. Although its

functionality is limited when compared to a generative classifier like Naive Bayes, the

tradeoff is that the Maximum Entropy classifier outperforms the Naive Bayes classi-

fier in some scenarios. Internally, the main difference between a Maximum Entropy

49



Figure 5.15: Accuracy of Megam classifier with a varying top word Threshold.

classifier and a Naive Bayes classifier is that the Naive Bayes classifier assumes all

features to be weighed equal. This leaves it vulnerable to the effects of commonly

occurring feature set patterns such as double counting. Maximum Entropy doesn’t

make this assumption, instead it iterates through the attributes within a feature set

and finds which ones give the most information gain, and then weighs those attributes

more heavily.

There are some additional slight differences we employ in feature sets between Maxi-

mum Entropy and Naive Bayes. For one, when using the BoW feature set, a smaller

universe of words are considered when creating the ‘bag’. To shrink the feature set

to more relative words, we only use words that occur in mostly all of the consid-

ered documents; a statistical quasi-intersection of the documents, as opposed to the

statistical union of the documents used in the BoW in Naive Bayes. This approach

50



Figure 5.16: Accuracy of Entity Classification using Naive Bayes with a varying top
word threshold.

wouldn’t work with Naive Bayes, because every word in the feature set would be

’True’. As mentioned in 5.3.1, the feature set when working with Maximum Entropy

is a set of normalized weights as opposed to the set of Boolean values used with Naive

Bayes.

The Maximum Entropy implementation we use is megam [7], which NLTK provides

an interface for. We create the feature sets described in 5.3.1, and then use it to train

a Maximum Entropy classifier. From there, we evaluate the accuracy of the classifier

and finally the effectiveness of our feature sets.

In figure 5.17, we use the classic BoW feature set. The results are conclusive. When

only considering the top five contributing entities, the classification accuracy for npca-

gent is 100%, and greater than 95% for the other two honeypots. This feature set

51



Figure 5.17: Accuracy of Megam classifier with the BoW feature set.

offers the highest prediction accuracy for our Maximum Entropy classifier, and it

shows that considering the particular words used within a document is the most

reliable way for a classifier to distinguish between entities.

In Figure 5.18, we train the Megam classifier with the Alchemy Taxonomy feature

set. The results are impressive, and are a testament to the accuracy of AlchemyAPI’s

ability to provide an accurate taxonomy of a text. Aside from that, it also provides

an interesting distinction. The accuracy that the Alchemy Taxonomy feature set

provides suggests that within a given entity the posts that the individual spambots

are posting have similar themes. Relating back to the tools discussed in 2.1, this

distinction suggests that the spambots are all running XRumer or some similar text

generation program, and that they select words from a similar pool of vocabulary

for their text generation. It also supports a recurring implication that the semantic

52



Figure 5.18: Accuracy of Megam classifier with the Alchemy Taxonomy feature set.

content of a post is the most reliable way to distinguish the post between spam bots.

Also, the Alchemy Taxonomy feature set size is much smaller than the BoW feature

set, and it still results in high classification accuracy. This suggests that the full

BoW feature set isn’t necessary for near perfect classification, and perhaps a proper

combination of a smaller BoW and taxonomy would suffice.

In Figure 5.19, we evaluate the Link feature set with the Megam classifier. The results

for each honeypot varied. The Link feature set proved to be a reliable feature set

for ggjx, but it was poor for gjams, and less effective with npcagent. These results

correlate with Table 5.3. As intuition suggests, the more scarce links are within

posts the less reliable they are for classification. We can still draw some conclusions,

namely that if links are present in many posts, they’re a reliable way to distinguish

between botnets. Also, it reinforces the claim that the individual components that

53



Figure 5.19: Accuracy of Megam classifier with the Link feature set.

make up a botnet share a central goal; they are using link spam to promote the same

targets.

Figures 5.20 and 5.21 show the results of using the PoS feature set with bigram and

trigram modification. We see that it is not a reliable way to distinguish entities from

one another. The low accuracy of these feature sets tells us that there isn’t a high

degree of variance in the syntactical structure of posts between botnets. Research

has shown that there is a distinct difference between the syntactic structure of human

posts and automated posts, but these results enforce the idea that there isn’t much

syntactic variance between bots.

In figure 5.22, we observe the classifier results when using the Vocab feature set. The

classifier doesn’t achieve a high accuracy with the Vocab feature set, however it does

have some degree of accuracy when only considering the top post contributors. It

54



Figure 5.20: Accuracy of Megam classifier with the PoSBigram feature set.

makes sense why this would be the case; when using the Vocab feature set, the length

of each set is exactly 1. One dimension doesn’t leave a lot of room for difference

between entities, and so it’s not surprising that the classifier is inaccurate.

When examining all of the Figures thus far in 5.3.3, it’s clear that the semantic-

orientated models are the most telling. We combine the top three performing feature

sets, BoW, Link, and Taxonomy, to create a hybrid feature set. We train a Maximum

Entropy classifier to observe their combined effectiveness. Figure 5.23 shows the re-

sulting classifier’s accuracy. We observe that the hybrid feature set performs most

similarly to Figure 5.18, which just uses the Alchemy Taxonomy feature set. It out-

performs the BoW and Link feature set, and seems to slightly underperform against

the Alchemy Taxonomy feature set. However, it’s reasonable to say that the com-

binational feature set is the most robust and therefore the most reliable. The three

55



Figure 5.21: Accuracy of Megam classifier with the PoSTrigram feature set.

honeypots had varying characteristics, and yet the performance of the Maximum

Entropy classifier with this hybrid feature set was still fairly uniform. As intuition

suggests, this implies that the hybrid feature set is less dependent on the specific

characteristics of the dataset it’s modeling.

To take a closer look at the mistakes our classifier makes, we observe the confusion

matrix of the top 10 posting entities for each honeypot, as seen in Figure 5.24. We use

the Taxonomy, BoW, and Link feature set with the Maximum Entropy classifier. This

gives us a more detailed look at what entities the classifier predicts incorrectly. To

interpret the confusion matrix, one must scan across the x-axis for a given entity, and

note the ID in the y-axis anytime a number is encountered. For example, if we want

to know what other entities the classifier predicts when observing a document from

entity 3427 in ggjx, we find 3427 in ggjx’s confusion matrix. We reference by row,

56



Figure 5.22: Accuracy of Megam classifier with the Vocab feature set.

then scan across the row horizontally to see what entities the classifier predicted when

the correct label was 3427. In this example, we see that the classifier predicted entity

3409 twice, entity 3426 once, and entity 3429 twice when it should have predicted

3427. The confusion matrix gives us a better idea of which entities are the most

similar to each other.

5.3.4 Naive Bayes Classification

The other classification algorithm we evaluated with our feature sets is the Naive

Bayes classifier. The Naive Bayes classifier is a generative classifier. This means that

it has more utility than just being able to predict the probability of a label given

an input. This utility includes answering how likely a given input value is with a

given label, and how likely a label is with an uncertain input. The tradeoff is that

57



Figure 5.23: Accuracy of Megam classifier with the Taxonomy, BoW, and Link feature
set.

creating an accurate generative classifier is more difficult than some other classifiers,

as discussed in the next section.

As mentioned in 5.3.2, the feature set format used when using Naive Bayes uses the

Boolify modification. We run the same set of feature sets with a Naive Bayes classifier

as we do in 5.3.3. By using a different classification scheme, we reinforce the results

from 5.3.3.

Figure 5.25 shows the classification accuracy of the Naive Bayes classifier when using

the BoW feature set. It has a similar distribution to Figure 5.17, with only a slightly

worse performance when considering fewer entities.

Figure 5.26 shows the results of our classifier when using the Alchemy Taxonomy

feature set. We can see that the accuracy is less than the same model run with a

58



Figure 5.24: The Confusion Matrix of the top 10 posting entities.
59



Figure 5.25: Accuracy of Naive Bayes classifier with the BoW feature set.

Maximum Entropy classifier, which is shown in 5.18. This shows how Maximum En-

tropy can do more with a smaller amount of data. Taxonomy and BoW reflect model

similar characteristics of a document. In terms of accuracy, the Naive Bayes and

Maximum Entropy algorithms performed similarly when using BoW. However, when

using the Taxonomy model, Naive Bayes is distinctly less accurate than Maximum

Entropy. The Taxonomy model has dramatically less attributes in each feature set

than BoW does. This shows how Maximum entropy can achieve high accuracy with

a smaller feature set, whereas Naive Bayes requires a larger or more sophisticated

feature set to be effective.

Figure 5.27 shows the Naive Bayes classifier’s performance when trained with the Link

feature set. Similarly to the Taxonomy model, it’s less accurate than the Maximum

Entropy version. This, again, is attributed to the small amount of attributes in the

60



Figure 5.26: Accuracy of Naive Bayes classifier with the Alchemy Taxonomy feature
set.

Link model when compared to the BoW model.

Observing Figures 5.28 and 5.29 show the results of using PoS with the Bigram and

Trigram modifications. As with its corresponding results in 5.3.3, the figures show

that PoS is not a reliable attribute to use when distinguishing between entities.

As a final comparison to the Maximum Entropy classifier, we use our top three per-

forming models with the Naive Bayes classifier. Figure 5.30 shows the resulting

performance. When compared to Maximum Entropy’s performance in Figure 5.23,

the classification accuracy is comparable. This follows the trend that we’ve seen so

far; when more data is available, the Naive Bayes’ performance is comparable to

Maximum Entropy’s.

In some cases, the Naive Bayes classifier was considerably less effective at accurately

61



Figure 5.27: Accuracy of Naive Bayes classifier with the Link feature set.

matching blog posts to their authors. This effect was directly correlated with the

size of the feature set; the smaller sized feature sets such as Link and Taxonomy

performed worse than its Maximum Entropy counterpart, however when enough data

was available, such as in BoW and the BoW, Taxonomy, and Link combination,

the Naive Bayes performance was comparable to Maximum Entropy’s. This is an

important distinction, because in addition to the benefits that using Naive Bayes has

over Maximum Entropy that were already mentioned, Naive Bayes is also faster. If

this classification scheme were scaled to an environment with a large data set, there’s

a good chance that Naive Bayes would be the preferred classification algorithm.

62



Figure 5.28: Accuracy of Entity Classification using Naive Bayes with the PoS Bigram
feature set.

5.4 Behavior Analysis

5.4.1 Access Behavior

Not surprisingly, our honeypots receive a large quantity of network requests. A fair

portion of the network traffic comes IP addresses that are unassociated with any

entity. However, an interesting finding is that the majority of the network traffic

seen by our honeypots is associated with an entity, as can be seen in Figure 5.31.

This leaves us with a large amount traffic that hasn’t been taken into account in

categorizing the entities. To get an understanding of what the spambots are doing

when they’re not posting, we observe the ‘action’ value of the access requests made

from IP’s who are associated with an entity. This can be seen in Figure 5.32. The

63



Figure 5.29: Accuracy of Entity Classification using Naive Bayes with the PoS Tri-
gram feature set.

majority of the requests that our experiment recognized were ‘registration’ requests.

This graph also matches the distribution of Figure 5.4. This begs the question: If the

entity is intelligent enough to confirm some of the validation emails, why wouldn’t

it confirm them all? The only other abundant action type is ‘VIEW NODE’, likely

with the intention of analyzing what other users are posting about.

We define a new term, a ’scout IP’. A scout IP is an IP address that is associated

with an entity who has posted content, but who hasn’t posted any content from that

IP. We can infer then that a scout IP’s purpose in the botnet is for other utility,

such as scouting out new pages or searching for vulnerabilities. In Figure 5.33, we

observe the frequency distribution of scout IPs amongst the three honeypots, while

only considering entities that have posted. We see that a lot of entities has exactly

one scout IP. This leads us to believe that the occurrence of Scout IP addresses is no

64



Figure 5.30: Accuracy of Entity Classification using Naive Bayes with a combined
feature set of Taxonomy, Link, and BoW.

accident; the botnet has the sophistication to designate specific IP addresses for other

utility than posting content. In order to observe the habits of scout IP addresses, we

observe Figure 5.34. Most of the activity is in ‘REGISTER’ or ‘VIEW USER’, with

a fair amount in ‘VIEW NODE’ . The scout IPs seem to take part in attempting

to register and also in exploring sites and users. However, the distribution of scout

IP action is similar to that of the overall action requests. Therefor, our hypothesis

that the scout IPs have a deliberate role in the botnet is inconclusive, as we find no

difference in the actions taken between scout IPs and regular IPs. This raises the

question as to why a large number of entities have one scout IP.

65



Figure 5.31: Access requests split into entity and non-entity.

5.4.2 Domain Agnostic Behavior

In this section, we observe the entities through a honeypot-agnostic lens. We clus-

ter the entities into one entity pool, and then evaluate common behavioral traits

that they exert in order to draw conclusions about how entities behave in a context

free environment. We also test if our semantic-based classification models hold in a

domain-agnostic setting. We define a new group of entities, ’meta entities’, whose

domain consists of all three honeypots. The way we form the meta entities is straight

forward: We consider all entities from all honeypots, and observe their IP addresses.

Any set of entities with a non-empty union of IP addresses gets formed into the same

meta entity, and their attributes are combined.

We find many meta entities that spread across honeypots. A small breakdown can be

66



Figure 5.32: The ‘action’ category of access requests for entities.

Table 5.10: Number of Honeypots Spanned by Meta Entities

Number Of Honeypots Number of Meta Entities
1 4194
2 571
3 112

seen in Table 5.10. We can see that 112 entities spanned all three honeypots.

The post frequency distribution of the meta entities can be seen in Figure 5.35. It’s

shown that there’s a fair amount of meta entities who have a high number of content

posts, but the top few posting meta entities post substantially more than the rest.

The top entity is investigated more in 5.5. Additionally, Figure 5.36 shows both the

number of posts and number of IP addresses for the top posting meta entities. From

Figure 5.36 we can determine that the larger botnets don’t necessarily post more,

and also that an actively posting botnet does not mean that it will contain a lot of IP

address. That being said, there is a slight correlation between number of IP addresses

67



Figure 5.33: Number of entities vs. number of scouting IPs

and number of posts.

To evaluate how well our semantic based classifier performs, we create new Maximum

Entropy classifiers for our meta entities. We use our best three feature sets: BoW,

Link, and Alchemy Taxonomy, and retrain a classifier except this time we use content

from all three honeypots, and label them with the associated meta entity. First,

we shuffle all of the content together, so that there’s no trace of which honeypot it

comes from. The results can be seen in Figure 5.37. We can see in Figure 5.37 that

BoW performs very well. What has changed from the classifiers we trained in 5.3.3

is the performance of the Alchemy Taxonomy modeled classifier. This difference can

be seen by comparing Figure 5.18 and Figure 5.37. In Figure 5.18, the Alchemy

Taxonomy-based classifier has great accuracy for posts within the same honeypot.

In Figure 5.37, when we consider meta entities that span across all three honeypots,

68



Figure 5.34: Access Requests for Scout IPs

it’s less accurate. It should be noted, however, that BoW still performs very well as

a classifying model. This means that the set of words that the bots use still differ

enough to distinguish each entity from each other with a high accuracy. Thus, the

universe of words that an entity creates its content from are still distinct from one

another.

To draw our results out further, we create a situation where a classifier encounters

content from a totally foreign domain. To do this, we create a training set from two of

the honeypots, and then create the testing set from the other honeypot. Separating

the domains in this way ensures that the classifier has never seen any content from

the domain that we derive our test set from. First, we trim down the meta entities

that we consider to just the ones that span across all three honeypots. Then we

create a training set from the feature sets derived from ggjx and npcagent. Finally

69



Figure 5.35: The post frequency distribution for meta entities, stacked by honeypot.

we test the trained classifier with the feature sets derived from gjams. The resulting

graph is shown in Figure 5.38. When comparing Figure 5.37 and 5.38, we see that

the isolated classifier performs only marginally worse than the mixed feature set

classifier. This supports our claim that with an adequately sized training set, a

semantic-based classifier is sufficient to classify posts to their respective botnets even

in an unexplored domain. The implications of this are bold. One could conceivably

install this classifier on a fresh website and be able to categorize the spam posts as

they come in. Additionally, we notice the accuracy of the Link feature type diminishes

as we go from domain, to domain-agnostic, to isolated feature sets. This could be

because the posts are posting different links on different sites, but it could also be

due to the small feature sets that the Link model provides; there may not be enough

information within the Link feature sets to distinguish between botnets.

70



Figure 5.36: The meta entities’ post distribution compared to IP address distribution.

To further investigate the difference in taxonomy classification accuracy, we take an

example meta entity who’s posts span across the three honeypots, and investigate

the taxonomy from its posts in each honeypot. To get the most data, we examine

the meta entity who’s posted the most of the meta entities that spanned all three

honeypots. We take this entity and examine the top 10 taxonomies present in the

posts from each honeypot, as shown in Tables 5.11, 5.12, and 5.13.

We can see that the taxonomy from the top posting meta entity is pretty similar

between the three honeypots. This contradicts the results from the Maximum Entropy

Classifier in Figures 5.37 and 5.38. We attribute this, then, to the Alchemy Taxonomy

feature set not providing enough data to properly distinguish posts as the posts for

each entity gets smaller. Observing the taxonomy’s of the top two posting meta

entities show that they have large variation. To investigate further, we train a classifier

71



Table 5.11: The distribution of the top 10 taxonomies for example meta entity’s ggjx
posts.

Taxonomy Count
/sports/surfing and bodyboarding .2

/art and entertainment/comics and animation/anime and manga .143
/education/graduate school/college .114

/art and entertainment/visual art and design/design .086
/technology and computing/internet technology/ecommerce .086

/society/dating .086
/shopping/resources/coupons .086

/society/sex .086
/art and entertainment/movies and tv/romantic comedies .057

/business and industrial/business operations/human resources .057

Table 5.12: The distribution of the top 10 taxonomies for example meta entity’s gjams
posts.

Taxonomy Count
/sports/surfing and bodyboarding .277

/technology and computing/internet technology/ecommerce .124
/art and entertainment/movies and tv/movies .114

/society/dating .089
/religion and spirituality .079

/technology and computing/internet technology/web search .069
/hobbies and interests/getting published/freelance writing .064

/business and industrial .064
/technology and computing/programming languages/javascript .064

/art and entertainment/books and literature .054

Table 5.13: The distribution of the 10 taxonomies for example meta entity’s npcagent
posts.

Taxonomy Count
/sports/surfing and bodyboarding .271

/technology and computing/internet technology/ecommerce .139
/society/dating .104

/technology and computing/programming languages/javascript .093
/art and entertainment/movies and tv/movies .082

/art and entertainment/music .079
/art and entertainment/comics and animation/anime and manga .071

/family and parenting/children .057
/art and entertainment/visual art and design/design .054

/society/sex .05

72



Figure 5.37: The accuracy of feature types with a collective feature set.

with only the top two meta entities included and the Alchemy Taxonomy feature

set. The resulting accuracy is 92%. This gives hope to the Taxonomy feature set,

suggesting that if more posts were collected per meta entity, enough variance would

be obtained for the taxonomy model to be reliable. This is important to keep in

mind if this project is ever scaled, since the taxonomy feature set is much smaller and

quicker to train and run a classifier on. Beyond the classifier, the comparison between

Tables 5.11, 5.12, and 5.13 illuminate an important point. The botnets don’t take

into account the currently existing content, or at least not to a great extent. We can

say this because the observed taxonomy of posts between honeypots within the same

meta entity don’t vary much, and each honeypot was themed differently. However,

this may also be due to a weak scheming theme. Our theming process only consisted

of posting a single post at the launch of the website, and the experiment time window

is well after the launch of the website. There is room for more research here, namely

73



Figure 5.38: The accuracy of feature types with an isolated test set.

to design an experiment with stronger themed websites to see if inter-meta entity

content changes based on the site it’s posting to.

The BoW feature set with the Maximum Entropy classifier is the clear-cut champion

of our modeling efforts. We can see with the various analysis in this section that the

behavior of the botnet is content-agnostic. Put more simply, the context from which

a botnet posts in does not have a strong effect on its output.

5.5 Special Items

In the process of analyzing we came across two prospects that warranted a further

observation. The first is a few posts that seem to have been poorly configured by the

bot, and as a result gave us a unique perspective on the posting process. The second

74



is the massive meta entity that can be seen in Figure 5.35.

5.5.1 Uncompiled Content

Figure 5.39: The possible links from one of the uncompiled posts.

In 2, we briefly evaluated some of the tools that spambots use to generate content.

The most prominent spam suite, XRumer, has a content generation tool that allows

75



Figure 5.40: The possible word choices from one of the uncompiled posts.

for different words to be used within the same template. While analyzing the Con-

tent table in our corpora, we encountered a handful of posts that seem to be the

unprocessed template. We speculate that this was an error or a bug in the spambots

configuration that caused it to improperly compile the template into a post. The

uncompiled posts are very long, so displaying an entire post is impractical, however

a fraction of one of the uncompiled posts can be seen in Figure 5.39 and Figure 5.40.

In Figure 5.39, we see a giant list of links, all separated with the | symbol. This has

76



massive potential to unveil the full intentions of a spambot. With a full list of possible

links, we can potentially see every site that a spambot would attempt to boost. This

could lead to the possibility of composing a list of spam campaign funding sources.

What’s peculiar, however, is observing even the links visible in Figure 5.39. We can

see many domains that certainly wouldn’t need to engage in illicit activity to boost

its PageRank, such as ’watoday.com’ and ’telegraph.co’. In Figure 5.40, we really see

the format of the template. Regular sentences, but with random patches of words

left in a {x | y | z} format. When the content tool is working properly is would

randomly choose x, y, or z, to replace the set of words with. This gives us further

insight into why the BoW feature set was so successful. The universe of words seems

to be pretty small for each template, and therefore with enough posts the classifier

can be exposed to nearly all of them through the training set, which would allow it

to create an accurate prediction model for the rest of the posts.

Figure 5.41: The MySQL error received when trying to access any of the ‘uncompiled’
posts.

Also, when trying to view the post through the honeypot, we get the same MySQL

77



Table 5.14: Number of Entities in Top Meta Entity

Honeypot Number of Entities
ggjx 5

gjams 20
npcagent 18

error for each post. The MySQL error is shown in Figure 5.41. We speculate that

the MySQL error comes from the post being too long.

5.5.2 Top Meta Entity

As shown in Figure 5.35, the top few posting meta entities out post the rest by a

significant margin. We decide to characterize the top meta entity in particular, since

it represents such a large botnet and a substantial amount of the interaction as a

whole with our honeypots. In Table 5.14, we observe its distribution within the three

honeypots. Table 5.14 also emphasizes a point that hasn’t been mentioned yet: Many

of the entities within a honeypot are actually the same entity, they just weren’t linked

by data within that honeypot. In the cases where there is more than one entity from

the same honeypot in a single meta entity, the IP additions from other honeypots are

necessary to link the two intra-honeypot entities, which is why they didn’t combine

into one entity when the original entities were formed. Almost certainly, our meta

entity list is incomplete because of the same effect; there likely exists distinct meta

entities that are actually the same meta entity, but there isn’t adequate access data

to link them together. This supports the idea that a central intelligence with many

deployed data collection points would be advantageous and effective; it allows for

associations that wouldn’t be possible in a decentralized setting.

This meta entity is the top posting meta entity in our set with a total of 698 posts,

averaging 17 posts a day. Its total associated IP addresses is a surprisingly low 47.

The meta entity with the most associated IP addresses has 263, while only posting 79

posts. This shows the diversity of our entities and the greater botnet ecosystem.

78



CHAPTER6

CONCLUSION

In this thesis, we set up an experiment to gather a sample set of data from the

wild. We create three ‘honeypot’ web sites and selected a 42 day period to extract

our data from. We did this in hopes of sampling a single ‘spam campaign’ from

the spambots that interacted with our honeypots. Through the course of those 42

days, we log the network activity and the content posts on our three honeypots.

From the experimental data, we form a corpus that consists of a user, content, and

access table for each honeypot. The subsequent analysis is performed entirely on the

corpora.

The intermediate step between the corpora and analysis was the formation of enti-

ties. We form entities as a way to model the botnets that were interacting with our

honeypots, and from there apply Natural Language Processing (NLP) and Machine

Learning (ML) to distinguish the most distinct set of attributes that each botnet

possesses. The method we used to form the entities was intuitive: combine any IP

addresses that use the same login name into one entity, and then recursively add in

any other login names and their IP addresses into the entity, until every user has been

accounted for and every entity’s IP address collection is disjoint from every other en-

tity. The result was a set of entities that we assume to be botnets, for each honeypot.

79



We then form a number of feature sets and train two different styles of classifiers with

each one to determine the most unique aspects of each botnet.

Beyond contributing the corpora, the results of this experiment show that a semantic-

classification model is sufficient in categorizing forum spam to their respective botnet.

If nothing else, it serves as a proof of concept and a starting point for a scaled and

distributed classification effort for botnets. We also discovered that some attributes

were not sufficient in distinguishing one botnet from another. For example, in a

domain-agnostic setting, a document’s taxonomy is not a reliable trait to train a

classifier on, despite being reliable within a single domain. Also, the syntactical

structure of a post, while generally efficient for classifying spam vs. ham, is poor at

classifying one botnet from another. We attribute the Bag of Words (BoW) attribute’s

success to the nature of the tools that spambots use to generate content with, and

because it provides a large amount of data within its feature set. Each endpoint

within a botnet is equipped with a template, provided by the botnet that is used to

generate content. The template allows for different words to be used, however the

word universe within a template is small. It follows that a sufficient sample size of

a botnet’s posts let a classifier to be exposed to its entire word set, which allows it

to build an accurate model for each botnet. We also show that the majority of the

network traffic that our honeypots receive comes from the same entities that post on

it.

80



CHAPTER7

FUTURE WORK

One of the most massive botnets, ZeroAccess, is estimated to have infected 2.2 million

machines [12]. When comparing to our top meta entity evaluated in 5.5.2, it’s clear

that this experiment only got exposed to a tiny subset of the botnet ecosystem in

the wild. This thesis executed an experiment and analysis on the plausibility of

characterizing forum spam into its underlying botnet. We find that the semantics

of the forum spam is the most distinguishing attribute for differentiating between

botnets. However, there is still a large amount of possible analysis to be done with

our corpora, and further verification of if our semantic model is effective outside of

our corpora.

7.1 Classification Modularization

One direction for a continuing experiment would be to modularize the semantic clas-

sifier so that it could be used on a live deployment of a web server. This would make

the spam identification process that all modern web frameworks come with more so-

phisticated; once content is classified as spam, it could be passed to the classifier to

see if it’s coming from a known botnet. This would also require the classifier to be

81



adaptive; it would need to be retrained periodically in order to stay consistent with

the changing characteristics of the spam ecosystem. Additionally, if the classifier lived

independently from the server, it could mature into a central intelligence for botnets.

If this were adopted by a wide range of servers and a central classifier was used, this

could lead to an accurate model of the most active botnets on the web at any given

time.

7.2 Multilingual Classification

Our classification process only considers posts that were made in English, however

our corpora has posts in many other languages as well as multilingual posts. By

extending the posts considered to include other popular languages, the usability of

our classifier would be greatly extended.

7.3 Target Link Analysis

Within any entity, a number of target links may be promoted. The results from 5.3.3

suggest that for any one entity’s spam posts, the links being posted are somewhat sim-

ilar. Further investigation into these links could be made to find any commonalities

between the links. This could lead to a source and likely suspect of the organiza-

tion that is employing or running a given spam campaign, which could lead to the

infiltration or prosecution of the botnet operators or their clients.

7.4 Contamination Identification

One thing that all of the endpoints of a botnet have in common is that they were all

infected by the same or similar malware. One way to identify the infection strategy of

82



a botnet would be to cross-examine known infected endpoints. In depth diagnostics

from a set of computers that are a part of the same botnet could show commonalities

that reveal the way the botnet infects its victims.

7.5 Naive Bayes Classifier

As discussed in 5.3.4, the Naive Bayes classifier is a generative classifier. More research

could be put in to training a more efficient Naive Bayes classifier, and then using

its utility to build a more sophisticated model of the botnets. This would provide

additional insight into their internal mechanisms.

83



BIBLIOGRAPHY

[1] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D. Spy-

ropoulos, “An evaluation of naive bayesian anti-spam filtering”, ArXiv preprint

cs/0006013, 2000.

[2] A. A. Benczur, K. Csalogany, T. Sarlos, and M. Uher, “Spamrank–fully auto-

matic link spam detection work in progress”, in Proceedings of the first inter-

national workshop on adversarial information retrieval on the web, 2005.

[3] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A maximum entropy ap-

proach to natural language processing”, Computational linguistics, vol. 22, no.

1, pp. 39–71, 1996.

[4] S. Bird, E. Klein, and E. Loper, Natural language processing with Python. ”

O’Reilly Media, Inc.”, 2009.

[5] D. Buytaert, Drupal content management system.

[6] R. Collobert and J. Weston, “A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning”, in Proceedings of the

25th international conference on Machine learning, ACM, 2008, pp. 160–167.

[7] H. Daume III, Mega model optimization package, 2007.

[8] P. Domingos, “A few useful things to know about machine learning”, Commu-

nications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[9] H. Faris, K. Jaradat, M. Al-Zewairi, O. Adwan, et al., “Improving knowledge

based spam detection methods: The effect of malicious related features in im-

balance data distribution”, International Journal of Communications, Network

and System Sciences, vol. 8, no. 5, p. 118, 2015.

[10] Google, “Google adwords keyword tool”, See https://adwords.google.com, 2016.

84



[11] T. S. Guzella and W. M. Caminhas, “A review of machine learning approaches

to spam filtering”, Expert Systems with Applications, vol. 36, no. 7, pp. 10 206–

10 222, 2009.

[12] J. Higgins, “Zeroaccess botnet surges”, Dark Reading, 2012.

[13] P. Kolari, A. Java, T. Finin, T. Oates, and A. Joshi, “Detecting spam blogs:

A machine learning approach”, in Proceedings of the National Conference on

Artificial Intelligence, Menlo Park, CA; Cambridge, MA; London; AAAI Press;

MIT Press; 1999, vol. 21, 2006, p. 1351.

[14] O. LLC, “Alchemyapi”, Available online http://www. alchemyapi. com/(accessed

December), 2009.

[15] X. Mertens, All cve details at your fingertips.

[16] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with naive

bayes-which naive bayes?”, in CEAS, 2006, pp. 27–28.

[17] J. Nazario, “Phoneyc: A virtual client honeypot.”, LEET, vol. 9, pp. 911–919,

2009.

[18] E. Peter and T. Schiller, “A practical guide to honeypots”, Washington Uni-

verity, 2011.

[19] M. Porter, “The porter stemming algorithm, 2005”, See http://www.tartarus.org/˜

martin/PorterStemmer,

[20] N. Provos, “Honeyd-a virtual honeypot daemon”, in 10th DFN-CERT Work-

shop, Hamburg, Germany, vol. 2, 2003, p. 4.

[21] F. Sebastiani, “Machine learning in automated text categorization”, ACM com-

puting surveys (CSUR), vol. 34, no. 1, pp. 1–47, 2002.

[22] Y. Shin, M. Gupta, and S. A. Myers, “The nuts and bolts of a forum spam

automator.”, in LEET, 2011.

85



[23] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna, “The underground econ-

omy of spam: A botmaster’s perspective of coordinating large-scale spam cam-

paigns.”, LEET, vol. 11, pp. 4–4, 2011.

[24] Symantec, “Internet security threat report”, vol. 21, 2016.

[25] A. Thomason, “Blog spam: A review.”, in CEAS, 2007.

[26] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich part-of-

speech tagging with a cyclic dependency network”, in Proceedings of the 2003

Conference of the North American Chapter of the Association for Computa-

tional Linguistics on Human Language Technology-Volume 1, Association for

Computational Linguistics, 2003, pp. 173–180.

86


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	What Is Spam
	Blog Spam
	Our Contribution

	BACKGROUND
	Spam
	Honeypots
	Natural Language Processing
	Machine Learning

	TOOLS & TECHNOLOGIES
	AWS
	Drupal
	Python
	NLTK
	Alchemy
	Google Language Detection
	SANS Internet Stormcast Center (ISC): Common Vulnerabilities and Exposure (CVE)
	Stanford POS Tagger
	Geolocation Tool
	Megam
	Porter Stemmer

	EXPERIMENTAL DESIGN
	Data Collection
	Corpora Formation

	ANALYSIS AND RESULTS
	Corpora
	User Table
	Access Table
	Content Table

	Entities
	Content Analysis
	Feature Sets
	Bag Of Words
	Alchemy Taxonomy
	Link
	Vocab
	PoS
	N-Grams

	Algorithmic Classification Analysis
	Maximum Entropy Classification
	Naive Bayes Classification

	Behavior Analysis
	Access Behavior
	Domain Agnostic Behavior

	Special Items
	Uncompiled Content
	Top Meta Entity


	CONCLUSION
	FUTURE WORK
	Classification Modularization
	Multilingual Classification
	Target Link Analysis
	Contamination Identification
	Naive Bayes Classifier

	BIBLIOGRAPHY

