
 

 

 

 

 

SYSML BASED CUBESAT MODEL DESIGN AND INTEGRATION WITH THE 

HORIZON SIMULATION FRAMEWORK 

 

 

 

 

 

A Thesis  

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Aerospace Engineering 

 

 

by 

Shaun Terrence Luther 

June 2016 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016 

Shaun Terrence Luther 

ALL RIGHTS RESERVED  



iii 

 

COMMITTEE MEMBERSHIP 

 

TITLE: SysML based CubeSat Model Design and Integration with the 

Horizon Simulation Framework 

 

AUTHOR: Shaun Terrence Luther 

 

DATE SUBMITTED: June 2016 

 

 

 

 

COMMITTEE CHAIR:  Dr. Eric Mehiel, Ph.D. 

 Professor of Aerospace Engineering 

 

COMMITTEE MEMBER: Dr. Jordi Puig-Suari, Ph.D. 

 Professor of Aerospace Engineering 

 

COMMITTEE MEMBER: Dr. Kira Abercromby, Ph.D. 

 Associate Professor of Aerospace Engineering 

 

COMMITTEE MEMBER: Dr. Kurt Colvin, Ph.D. 

 Professor of Industrial and Manufacturing Engineering 

  



iv 

 

ABSTRACT 

 

SysML based CubeSat Model Design and Integration with the Horizon Simulation Framework 

Shaun Terrence Luther 

 

This thesis examines the feasibility of substituting the system input script of Cal Poly’s 

Horizon Simulation Framework (HSF) with a Model Based Systems Engineering (MBSE) model 

designed with the Systems Modeling Language (SysML). A concurrent student project, SysML 

Output Interface Creation for the Horizon Simulation Framework, focused on design of the HSF 

Translator Plugin which converts SysML models to an HSF specific XML format. A SysML 

model of the HSF test case, Aeolus, was designed. The original Aeolus HSF input script and the 

translated SysML input script retained the format and dependency structure required by HSF. 

Both input scripts returned identical results and thus validated the feasibility of linking SysML 

with HSF through the HSF Translator Plugin. A second SysML model of the Cal Poly CubeSat 

mission, ExoCube, was also designed and converted into an HSF input script. The ExoCube input 

script also retained the format and dependency structure required by HSF. This demonstrated that 

future SysML models can be used in conjunction with the HSF Translator Plugin to create a 

functional HSF system input script.  

 

 

 

 

 

 

 

 

 

  



v 

 

ACKNOWLEDGMENTS 

 

 This thesis is dedicated to my parents, Terry and Cindy Luther. You taught me that I can 

do anything that I set my mind to. I’ve always followed that advice and it has led me to 

accomplish great things. I couldn’t have asked for more supportive or more loving people to 

guide my life and show me the right path.  

  



vi 

 

TABLE OF CONTENTS 

 

Page 

 

LIST OF TABLES ................................................................................................................. ix 

LIST OF FIGURES ................................................................................................................. x 

ACRONYMS ....................................................................................................................... xiii 

CHAPTER 

1 INTRODUCTION ................................................................................................................... 1 

1.1 Problem Statement and Proposition ................................................................................. 1 

1.2 Objective and Deliverables .............................................................................................. 2 

1.3 Novelty ............................................................................................................................. 4 

1.4 Summary of Sections ....................................................................................................... 5 

2 BACKGROUND AND RELATED WORK ........................................................................... 7 

2.1 Systems Engineering ........................................................................................................ 7 

2.2 Model Based Systems Engineering.................................................................................. 8 

2.3 Systems Modeling Language ......................................................................................... 10 

2.4 Horizon Simulation Framework..................................................................................... 13 

2.5 CubeSat .......................................................................................................................... 14 

2.6 Related Work ................................................................................................................. 16 

2.6.1 Applying MBSE to a Standard CubeSat ................................................................ 17 

2.6.2 MBSE Applied to RAX CubeSat Mission Operational Scenarios ......................... 21 

2.6.3 Integrated MBSE Applied to the Simulation of a CubeSat Mission ...................... 25 



vii 

 

3 MODEL DESIGN PROCESS ............................................................................................... 31 

3.1 SysML Software ............................................................................................................ 31 

3.1.1 SysML Software Client .......................................................................................... 31 

3.1.2 Model Quality ........................................................................................................ 32 

3.2 Aeolus ............................................................................................................................ 34 

3.2.1 Rationalization ....................................................................................................... 34 

3.2.2 Mission Overview .................................................................................................. 34 

3.2.3 SysML Model Overview ........................................................................................ 35 

3.3 ExoCube ......................................................................................................................... 39 

3.3.1 Rationalization ....................................................................................................... 39 

3.3.2 Mission Overview .................................................................................................. 40 

3.3.3 SysML Model Overview ........................................................................................ 41 

4 INTEGRATION WITH HSF ................................................................................................ 54 

4.1 HSF Input Scripts ........................................................................................................... 54 

4.2 HSF Scheduling Algorithm Framework ........................................................................ 56 

4.3 HSF Translator Plugin ................................................................................................... 57 

5 RESULTS AND CONCLUSION ......................................................................................... 59 

5.1 Aeolus Model Results .................................................................................................... 59 

5.1.1 HSF Translator Plugin Output ............................................................................... 59 

5.1.2 Initial Aeolus Results ............................................................................................. 60 

5.1.3 Extended Aeolus Results ....................................................................................... 63 

5.2 ExoCube Model Results ................................................................................................ 66 



viii 

 

5.2.1 HSF Translator Plugin Output ............................................................................... 66 

5.2.2 HSF .h and .cpp Scripts .......................................................................................... 68 

5.3 Conclusion ..................................................................................................................... 69 

5.3.1 Strengths and Weaknesses ..................................................................................... 71 

5.3.2 Lessons Learned ..................................................................................................... 72 

5.3.3 Future Work ........................................................................................................... 73 

BIBLIOGRAPHY .......................................................................................................................... 75 

APPENDICES 

A: ExoCube SysML Diagrams .................................................................................................. 78 

B: ExoCube Operational Mode Diagrams ................................................................................. 81 

  



ix 

 

LIST OF TABLES 

 

Table                Page 

 

Table 1: Thesis Deliverables ............................................................................................................ 3 

Table 2: SysML and HSF Specific Tasks ........................................................................................ 3 

Table 3: SysML Diagram Types .................................................................................................... 12 

Table 4: Active use of SysML in large scale industry ................................................................... 17 

Table 5: Model Quality .................................................................................................................. 33 

  



x 

 

LIST OF FIGURES 

 

Figure                Page 

 

Figure 1: MBSE across the System Life Cycle [3] .......................................................................... 8 

Figure 2: INCOSE MBSE Roadmap [3] ........................................................................................ 10 

Figure 3: SysML Diagram Types [2] ............................................................................................. 11 

Figure 4: PolySat team member holds CP-6 mission [9] ............................................................... 15 

Figure 5: CubeSat Mission Environment [13] ............................................................................... 19 

Figure 6: RAX Block Definition Diagram [15] ............................................................................. 22 

Figure 7: RAX Internal Block Diagram [15] ................................................................................. 23 

Figure 8: Simulation and Analysis Tool Integration with PHX ModelCenter [15] ....................... 24 

Figure 9: RAX Team Past and Future Phases [16] ........................................................................ 26 

Figure 10: Updated RAX Vehicle BDD [16] ................................................................................. 27 

Figure 11: Requirement Verification BDD [16] ............................................................................ 28 

Figure 12: (Left) Energy storage and generation vs. time; (Right); Data downlink vs time [16] .. 29 

Figure 13: The 6C Model Quality Goals [18] ................................................................................ 32 

Figure 14: Aeolus Mission Concept [19] ....................................................................................... 35 

Figure 15: Aeolus System BDD .................................................................................................... 36 

Figure 16: Aeolus Subsystem IBD ................................................................................................ 38 

Figure 17: Aeolus Optics Subsystem BDD.................................................................................... 38 

Figure 18: Aeolus Power Subsystem BDD .................................................................................... 39 

Figure 19: ExoCube Mission Profile and Assembled Satellite [20] .............................................. 41 

Figure 20: ExoCube System BDD ................................................................................................. 43 

Figure 21: ExoCube Subsystem IBD ............................................................................................. 43 

Figure 22: ExoCube Power Subsystem IBD .................................................................................. 45 



xi 

 

Figure 23: ExoCube Power Subsystem BDD ................................................................................ 46 

Figure 24: ExoCube Comms Subsystem IBD................................................................................ 47 

Figure 25: ExoCube Comms Subsystem BDD .............................................................................. 48 

Figure 26: Expanded ExoCube Allocation Matrix ........................................................................ 49 

Figure 27: ExoCube Operational Campaign Mode ........................................................................ 50 

Figure 28: ExoCube Requirements Satisfaction Table .................................................................. 51 

Figure 29: ExoCube Requirements Satisfaction BDD ................................................................... 52 

Figure 30: ExoCube Requirements Satisfaction Matrix ................................................................ 53 

Figure 31: Original HSF Input Script for Aeolus .......................................................................... 55 

Figure 32: HSF Input Script Dependency Block Diagram ............................................................ 56 

Figure 33: Aeolus Input Script Derived from Aeolus SysML Model ............................................ 60 

Figure 34: Aeolus Comm & SSDR State Data – 480 Second Simulation ..................................... 61 

Figure 35: Aeolus Power State Data – 480 Second Simulation ..................................................... 62 

Figure 36: Aeolus Target State Data – 480 Second Simulation..................................................... 62 

Figure 37: Aeolus Target Location Data – 480 Second Simulation .............................................. 63 

Figure 38: Aeolus Comm and SSDR State Data – 3500 Second Simulation ................................ 64 

Figure 39: Aeolus Power State Data – 3500 Second Simulation ................................................... 64 

Figure 40: Aeolus Target State Data – 3500 Second Simulation ................................................... 65 

Figure 41: Aeolus Target Location Data – 3500 Second Simulation ............................................ 66 

Figure 42: ExoCube Input Script Derived from ExoCube SysML Model ..................................... 67 

Figure 43: ExoCube Input Script Dependency Block Diagram ..................................................... 68 

Figure 44: power.cpp Function Script............................................................................................ 69 

Figure 45: ExoCube ADC Subsystem IBD.................................................................................... 78 

Figure 46: ExoCube ADC subsystem BDD ................................................................................... 78 

Figure 47: ExoCube C&DH subsystem IBD ................................................................................. 79 

Figure 48: ExoCube C&DH subsystem BDD................................................................................ 79 



xii 

 

Figure 49: ExoCube Payload subsystem IBD ................................................................................ 80 

Figure 50: ExoCube Payload subsystem BDD .............................................................................. 80 

Figure 51: ExoCube Operational Patrol Mode .............................................................................. 81 

Figure 52: ExoCube Operational Attitude Correction Mode ......................................................... 81 

Figure 53: ExoCube Operational Data Transmission Mode .......................................................... 82 

 

  



xiii 

 

ACRONYMS 

 

ADCS:  Attitude Determination and Control System 

BCDU:  Battery Charge Discharge Unit 

BDD:  Block Definition Diagram 

C&DH:  Command and Data Handling 

Cal Poly: California Polytechnic State University, San Luis Obispo 

COMM: Communications 

COTS:  Civilian off the Shelf 

DOD:  Department of Defense 

HSF:  Horizon Simulation Framework 

IBD:  Internal Block Diagram 

INCOSE: International Council of Systems Engineers 

MBSE:  Model Based Systems Engineering 

MDA:  Model Driven Architecture 

NASA:  North American Space Agency 

OMG:   Object Management Group 

PDU:  Power Distribution Unit 

PPOD:  Poly-PicoSatellite Orbital Deployer 

RAX:  Radio Aurora Explorer 

SNR:  Signal to Noise Ratio 

SSDR:  Solid State Data Recorder 

STK:  System Tool Kit 

SysML:  Systems Modeling Language 

UML:  Unified Modeling Language  

 



1 

 

1 INTRODUCTION 

1.1 Problem Statement and Proposition 

Models are often used to quantify aspects of a system for analysis within the discipline of 

systems engineering. There are numerous modeling tools and corresponding languages to 

accommodate the highly variable nature of modeling complex systems. Some models are 

designed to perform a single task such as a MATLAB script which mathematically calculates the 

fuel required to change the orbit of a satellite. Other models are entirely visual and describe the 

flow of data so as to better optimize processing. No matter which style or type, models have 

proven to be useful for systems engineers in the past, and will continue to be useful in the future. 

This thesis focuses on a modeling language known as the Systems Modeling Language 

(SysML). SysML is a graphic modeling language based off of a software design language called 

the Unified Modeling Language (UML). SysML can be described as a documentation tool which 

generates models that can encompass most aspects of a complex system. SysML is primarily used 

for systems engineering tasks including analysis, specification, design, verification, and 

validation. These tasks are traditionally the responsibilities of the systems engineer and are 

commonly required in the design of most complex systems. Although powerful on its own, it has 

been shown that users greatly benefit from the ability to use SysML in conjunction with a 

simulation platform. Collaborative efforts have been made between large software companies to 

bring better simulation functionality to the language. Unfortunately, these large companies often 

create expensive and unpractical software clients for educational purposes. This thesis will 

investigate an alternative approach to merge SysML with a simulation platform.  

Previous theses at Cal Poly produced the Horizon Simulation Framework (HSF). HSF is 

a modeling and simulation tool which performs system level trade analysis and can act as a cost 

function based optimal scheduling tool. The user must create input scripts and a scheduling 



2 

 

algorithm to run each unique simulation. The design of these scripts requires a specialist with a 

detailed understanding of HSF. Scripts are modular and can be reused with some editing, but they 

are often created for a single standalone simulation. If the scripts could instead be extracted from 

a previously constructed model of the system, it would facilitate many benefits including faster 

simulation turnaround times and increased confidence in the simulation. This concept was the 

basis for the problem statement of this thesis: 

“Is it possible to design a SysML model which will interface with the Horizon Simulation 

Framework to streamline the simulation design process, while simultaneously providing the 

traditional benefits of model based systems engineering?” 

The primary focus of this thesis is to link the two tools so that a SysML model can 

directly replace the system script that is required for each HSF simulation. HSF will essentially 

act as the simulation engine and a SysML model will provide the system data to be evaluated. 

Although this work only investigates the possibility of replacing the HSF system script, it should 

also be beneficial to replace the other input scripts with the same SysML model.  

1.2 Objective and Deliverables 

A set of deliverables must be successfully realized to accomplish the overarching goal of this 

thesis; to bridge the gap between SysML and HSF. First, the concept must be tested and its 

viability must be validated. Second, the concept must prove its practicality by producing results. 

This led to a straight forward set of deliverables which acted as a path forward for the thesis. The 

deliverables are listed in Table 1. 

  



3 

 

Table 1: Thesis Deliverables 

Deliverable Rationale  

An HSF plugin that will convert SysML 

models into HSF system scripts. 

This plugin will act as the interface between the 

two tools and allow the benefits of both to be more 

readily utilized. 

A SysML model of the HSF test case, 

Aeolus. 

This model will be translated to an HSF input 

script and compared to the original Aeolus input 

script to verify that format and structure remain as 

required for an HSF simulation 

HSF simulation results created with the 

translated SysML input script 

These results will validate that a SysML model is a 

viable substitute for the HSF system test scenario 

input script. 

A SysML model of a complex system 

(ExoCube) which includes subsystems, 

components, their interfaces, and their 

constraints. 

This model of a real world example will also be 

translated to an HSF input script so that format and 

structure of the translated script may be compared 

to the required HSF input script format. 
 

After the deliverables of this concept were realized, the depth of work required to 

accomplish this goal was investigated. An obvious split between work pertaining to SysML 

modeling, and work pertaining to the SysML to HSF Translator Plugin became apparent. It was 

deemed that this would be better accomplished by two people. My colleague, Viren Patel, 

dedicated his thesis to creating a conversion tool which translates a SysML model into an HSF 

script and I dedicated my thesis to learning and designing the required SysML models. Although 

the overall project was ultimately the undertaking of two theses, the work was highly interwoven 

and was eventually realized through continual collaboration between myself and Viren. The 

primary tasks related to SysML and HSF that were required for completion this thesis can be 

found in Table 2 

Table 2: SysML and HSF Specific Tasks 

SysML Related Tasks HSF/ Plugin Related Tasks 

Conduct extensive research and train in SysML so as to 

be capable of creating fully representative system 

models  

Conduct extensive research and train in 

HSF so as to be capable of executing 

test scenarios 

Design a fully representative model of the HSF test 

system script, Aeolus. 

Design a plugin which will convert 

SysML outputs into HSF input scripts  

Design a fully representative model of a complex 

system (ExoCube) to serve as the system script for a 

new, real world, HSF simulation. 

Convert the Aeolus SysML model into 

an HSF input script and run an HSF 

simulation with the new input script  

Analyze the simulation results of both models and come 

to a conclusion regarding the success of the thesis.  

Convert the ExoCube SysML model 

into an HSF input script for analysis 



4 

 

1.3 Novelty 

The feasibility of using SysML as an input for HSF is the fundamental and original 

innovation of this thesis. The successful realization of this thesis supports the design of a system 

by adding the functionality of SysML to HSF, and vice versa. Unlike other simulations, which are 

created for a single purpose, the joining of these two tools allows for a smooth data flow between 

SysML and HSF. This will enable users to create a single model containing a database of system 

knowledge and use the same model for simulation purposes. As a result, there will not be a 

requirement to create a new description of the system for each new and successive simulation. 

The enhancement to HSF also allows the framework to continue to grow and be implemented as 

both an educational tool and a tool for real world design.  

If SysML is also adopted into any Cal Poly core design process, the concept behind this 

thesis will support future design work by providing a standard design methodology and a base for 

SysML CubeSat modeling. Adopting SysML will reduce systems engineering overhead, 

development costs, and development time. The ExoCube model will also be an excellent SysML 

modeling example and may be useful to design future CubeSat models. 

This thesis will support the Cal Poly engineering department by continuing to expose 

SysML to the faculty and students. Model Based Systems Engineering (MBSE) is quickly 

growing and beginning to become more common in industries that design complex systems. For 

example, the United States Department of Defense has required the use of SysML in some 

defense contractor programs creating a mandatory growth of the language. JPL has also begun 

implementing SysML in a large number of their programs.  

The increased use of SysML in large government entities was a factor in selecting this 

thesis topic. As SysML gains a larger presence in the aerospace industry, it should also merge 

with private industry and educational organizations. As one of the top aerospace engineering 



5 

 

schools in the nation, Cal Poly should endeavor to keep up with current trends in industry. This 

thesis will facilitate an opportunity to investigate SysML as a future curriculum.  

MBSE is fairly new when compared to the long history of classical systems engineering. 

SysML is newer yet to MBSE. An in-depth study or original work related to SysML is beneficial 

to the growth of the discipline. Because of this, the growth of MBSE and SysML is also an 

indirect benefactor of this thesis. 

A farther reaching novelty of this thesis can be described as “A single model for design, 

test, and flight.” This concept would create design benefits including a single body of knowledge, 

a dynamic model developing with the design, model data which is always current, higher 

confidence the model, and automated verification of requirements. Further benefits from a 

simulation platform include a means for system testing, generation of mission schedules, trade 

analysis, verification of requirements and constraints, prediction of design problems, and 

visualization.  

A single model would also allow for parameters and schedules to be verified prior to 

flight. It would be possible to create revisions to the concept of operations during flight and 

update the flight plan in near real-time with operational performance feedback from verified 

situation results. This capability could be vital when seeking solutions for operation changes, 

unplanned anomalies, or unforeseen failures. Ultimately, models such as this may be used by 

mission systems engineers to evaluate planning, scheduling, and operations when considering all 

spacecraft data including position, attitude, on-board energy, data, thermal states, etc. 

1.4 Summary of Sections 

This paper will go on to explain the basic background information necessary to understand 

systems engineering, MBSE, HSF, SysML, and CubeSats. Related work will then be covered 

including what has been conducted in industry and similar academic work. The Model Design 



6 

 

Process section describes the SysML software client used for this thesis and the quality goals in 

model design. The rationalization and mission overview of the Aeolus and ExoCube missions is 

then discussed, followed by a detailed description of the individual models and their comprising 

diagrams. These are followed by additional HSF process descriptions and integration of the 

SysML models via the HSF Translator Plugin. Lastly, results of the Aeolus and ExoCube SysML 

script translation are discussed. The conclusion provides an overall summary of the thesis, lessons 

learned, strengths, weaknesses, and possible future work. 

  



7 

 

2 BACKGROUND AND RELATED WORK 

2.1 Systems Engineering 

Systems engineering is a multidisciplinary approach to enable the realization of successful 

systems. It focuses on defining customer needs and required system functionality early in the 

development cycle, documenting requirements, and then proceeding with design synthesis and 

system validation while considering all parts of the design process including testing, 

manufacturing, and operations. [1] 

This process is accomplished by the following activities. 

 Analyzing stakeholder needs to understand the problem, goals, and measures of 

effectiveness of those goals 

 Specifying system functionality, interfaces, characteristics, and other qualities which 

enable the system to meet its goals 

 Synthesizing alternative solutions by splitting the system into subsystems and 

components which satisfy specific requirements 

 Performing trade analysis to evaluate the effectiveness of alternate solutions and to 

ultimately provide a balance to achieve overall effectiveness measures 

 Maintaining traceability to ensure that requirements and stakeholder needs are addressed 

Systems engineering integrates all the disciplines and specialty groups into a team effort 

forming a structured development process that proceeds from concept to production to operations. 

Systems engineering considers both the business and the technical needs of all customers with the 

goal of providing a quality system that meets the user needs. [2] 



8 

 

2.2 Model Based Systems Engineering    

Model-based systems engineering, or MBSE, is the formalized application of modeling to 

support tasks of a systems engineer including activities related to requirements, design, analysis, 

validation, and verification. This work begins in the conceptual design phase and continues on 

throughout development and later life cycle phases. [3] Figure 1 shows the phases of a typical 

design and the tasks which MBSE often aids in.  

 

Figure 1: MBSE across the System Life Cycle [3] 

MBSE is a term that describes an approach to Systems Engineering that emphasizes a 

system architecture model as the primary work artifact throughout the system development life 

cycle. A model is an approximation, representation, or idealization of selected aspects of the 

structure, behavior, or operation of a real world process, concept, or system. [4] A model usually 

offers different views in order to serve different purposes. A view is a representation of a system 

from the perspective of related concerns or issues.  

 MBSE combines traditional systems engineering best practices with rigorous visual 

modeling techniques. Systems Engineers must interface with various other engineering specialties 



9 

 

including software, electrical, mechanical, aerospace, etc., and modeling has become a common 

way to create this interface. [5] To understand how their needs and goals are being addressed, 

stakeholders may also need to understand MBSE, such as visual requirement analysis and 

verification, the concept of operations, functional analysis and allocations, performance analysis, 

trade studies, and system architectures.  

MBSE offers a variety of advantages over traditional document centric systems 

engineering approaches. It is possible to model requirements in order to ensure that the 

requirements are an integral part of the model and all other parts of the model can be traced back 

to those requirements. This allows for the validation that you are building the right system. Model 

analysis and design provides a precise architectural blueprint organization by the views that are 

meaningful to all system stakeholders. This verifies that you are building the system right. Model 

simulation automates the system verification and validation, thus reducing errors and costs early 

in the lifecycle. [3] 

MBSE may also enhances the ability to capture, analyze, share, and manage the 

information associated with the complete specification of a product, resulting in the following 

benefits: [6] 

 Improved communications between the customer, program management, systems 

engineers, hardware and software developers, testers, and specialty engineering 

disciplines. 

 Increased ability to manage system complexity by enabling a system model to be viewed 

from multiple perspectives. 

 Improved product quality by providing a precise model of the system that can be 

evaluated for consistency, correctness, and completeness. 

 Enhanced knowledge capture, simplified knowledge capture, and built in abstraction 

mechanisms can result in reduced cycle time and lower costs.  



10 

 

The International Council of Systems Engineers (INCOSE) has predicted that the 

capability and the usage of MBSE in both large and small scale production will greatly increase 

in the next 10-15 years. Additional resources will be dedicated toward research and development 

within MBSE as standards are established and languages, such as SysML, become more common 

in industry. Figure 2 shows INCOSE’s proposed path forward for MBSE. 

 
Figure 2: INCOSE MBSE Roadmap [3] 

MBSE is eventually expected to replace the document centric approach that has been 

practiced by systems engineers in the past. In time it will also influence the future practice of 

systems engineering by being fully integrated into the definition of systems engineering 

processes. [3] 

2.3 Systems Modeling Language 

SysML is a general purpose graphical modeling language that supports the implementation 

of MBSE, including activities related to analysis, specification, design, validation, and 

verification of complex systems. These systems may include hardware, software, data, personnel, 

procedures, facilities, and other elements of any system. The language is intended to help specify 



11 

 

and architect systems and specify its components that can then be designed using other domain-

specific languages such as UML for software design and VHSIC Hardware Description Language 

for hardware design.  

SysML can represent systems, components, and other entities as follows:  

 Structural composition, interconnection, and classification  

 Function-based, message-based, and state-based behavior  

 Constraints on the physical and performance properties  

 Allocations between behavior, structure, and constraints  

 Requirements and their relationship to other requirements, design elements, and test cases 

SysML is made up of nine sub topics as shown in the diagram taxonomy in Figure 3. A 

short description can also be seen in Table 3. 

 

Figure 3: SysML Diagram Types [2]  



12 

 

Table 3: SysML Diagram Types 

Diagram Type Description 

Requirement 

Diagram 

Represents text-based requirements and their relationship with other 

requirements, design elements, and test cases to support requirements 

traceability 

Activity 

Diagram 

Represents behavior in terms of the ordering of actions based on the 

availability of inputs, outputs, and control, and how the actions transform the 

inputs to outputs 

Sequence 

Diagram 

Represents behavior in terms of a sequence of messages exchanged between 

parts 

State Machine 

Diagram 

Represents behavior of an entity in terms of its transitions between states 

triggered by events 

Use Case 

Diagram 

Represents functionality in terms of how a system or other entity is used by 

external entities to accomplish a set of goals 

Block 

Definition 

Diagram 

(BDD) 

Represents structural elements called blocks, and their composition and 

classification 

Internal Block 

Diagram (IBD) 

Represents interconnection and interfaces between the parts of a block 

Parametric 

Diagram 

Represents constraints on property values, such as F = m*a, and are used to 

support engineering analysis 

Package 

Diagram 

Represents the organization of a model in terms of packages that contain model 

elements 
 

SysML provides a means to capture the system modeling information as part of an MBSE 

approach without imposing a specific method on how this is performed. The selected method 

determines which activities are performed, the ordering of the activities, and which modeling 

artifacts are created to represent the system. For example, traditional structured analysis methods 

can be used to decompose the functions and allocate the functions to components. Alternatively, 

one can apply a use case driven approach that derives functionality based on scenario analysis 

and associated interactions among parts. The two methods may produce different combinations of 

diagrams in different ways to represent the system specification and design. [2] 

SysML is used to model all aspects of a system either directly or through an interface 

with other models. It enables Systems Engineers to create and evolve models in an integrated, 

collaborative, and scalable environment. It enables building models that can be used in early 

design stages and that can support specification and design updates. Using models to define, 



13 

 

develop, and ultimately operate a system accomplishes the goal of developing a single model for 

design, test and fly.  

2.4 Horizon Simulation Framework  

The Horizon Simulation Framework is a modeling and simulation tool with applications 

in the verification and validation of system-level requirements. It can perform system level trade 

analysis and act as a cost-function based optimal scheduling tool. [7] HSF accomplishes these 

system level trades by harnessing the ability to simulation multiple scenarios with varying system 

parameters, and comparing the results of those scenarios to determine how the resulting schedule 

and system performance react. The capability to perform system level based analysis is an 

invaluable tool for designers which can support subsystem optimization, increase confidence in 

the system and can expedite the overall design process. 

Previous thesis work has endeavored to design HSF on the principles of modularity, 

flexibility, and utility. HSF is considered to be modular due to the ability to replace individual 

input scripts or parts of the scheduling algorithm. These HSF components are separate and 

interact through a strictly defined interface. This separation ideally allows the input scripts or 

scheduling algorithm to be changed without the need to modify the other. [7] This exclusive 

separation between input scripts and scheduling algorithm was a key element to the successful 

realization of this thesis. After understanding this separation, it was possible to focus all attention 

on the design of a new SysML system model and conversion of that model into a form that HSF 

could recognize as its system input script.  

Input to HSF is performed with specially formatted XML scripts which define the initial 

simulation parameters, timing parameters, target properties, and system properties. SysML 

models can be directly exported to XML format, but are not configured in the unique XML 

format required by HSF. A conversion tool was required to bridge the gap between the standard 



14 

 

XML output of the SysML model and the unique XML formant required by HSF. Viren Patel’s 

thesis, SysML Output Interface Creation for the Horizon Simulation Framework, focuses on the 

creation, design, and implementation of this tool, called the HSF Translator Plugin. 

Output from HSF is presented to the user in the form of standard text files. Output text 

files contain the state variables set by subsystems within the simulation as well as the positions of 

all assets and targets during the simulation. [7] Result files include data for the ADCS, Comm, 

Payload, Power, and Data Storage subsystems. Result files also include system position, system 

velocity, and target data. Result file data can then be converted into graphical form to provide a 

logical way to view data.  

2.5 CubeSat 

The CubeSat movement began as a collaborative effort between Professor Jordi Puig-

Suari at Cal Poly, San Luis Obispo, and Professor Bob Twiggs at Stanford University. A one unit 

(1U) CubeSat is described as a spacecraft with dimensions of a 10 centimeter cube and a mass of 

up to 1.33 kilograms. [8] CubeSats can be made in many sizes including 0.5U, 1U, 1.5U, 2U, 3U, 

6U, etc. depending on the functionality that designer requires.  

The purpose of CubeSat is to provide a standard for design of pico-satellites which 

reduces cost and development time, increases accessibility to space, and sustains frequent 

launches. The CubeSat movement is an international collaboration of hundreds of universities, 

high schools, and private firms developing pico-satellites containing scientific, private and 

government payloads where developers greatly benefit from the sharing of information within the 

community. The majority of development has historically come from academia, but other parties 

including and amateur radio enthusiasts and small start-up companies are beginning to design and 

build CubeSats as well. 



15 

 

 
Figure 4: PolySat team member holds CP-6 mission [9] 

CubeSat missions can cost anywhere from fifty thousand dollars for a low-end satellite 

with limited functionality, up to multi-million dollars for a high-end satellite with multiple 

mission goals and associated instruments. The lower end of the spectrum is far below all other 

satellite design costs and has made the CubeSat a viable option for schools and universities across 

the world. Because of this, a large number of universities and some companies and government 

organizations around the world are developing CubeSats.  

A common design approach for CubeSat mission planning is to learn from previous 

design team knowledge and use intuition based trade studies for mission design. This can be 

dangerous if key personnel are unavailable, or operational parameters are neglected in the early 

stages of design. This often leads to cost and scheduling overruns, intolerable for a low budget 

CubeSat mission. However, these risks can be mitigated if standardized design practices, such as 

SysML, and standardized trade templates, such as HSF, are in place.  

Cal Poly’s CubeSat design program is aptly named PolySat. Since their establishment, 

they have launch 7 missions, CP1 - CP6, and CP8. Cal Poly also designs the common deployment 

system called the Poly-PicoSatellite Orbital Deployer (P-POD). [10] P-POD’s are capable of 

deploying three 1U CubeSats, a 1U and a 2U CubeSat, or a single 3U CubeSat. [11] Most 



16 

 

CubeSats carry one or two scientific instruments as their primary mission payload allowing for a 

cost-effective independent means of getting a payload into orbit. [12] As Cal Poly’s CubeSat 

program matures, they have begun to design missions with more complex and expensive 

scientific instruments, often supplied by outside sources.  

Implementation of MBSE via SysML may be of great benefit to PolySat and other 

university CubeSat programs. It is likely that universities will not be able to dedicate a large 

portion of the design budget to systems engineering due to the low cost nature of academic based 

CubeSat missions. Ideally, MBSE would reduce the systems engineering overhead while 

simultaneously enabling students to gain valuable real world systems engineering skills.  

It was decided that a CubeSat would be the subject of this thesis’ analysis due to the 

reasons listed above and additional reasons listed in section 3.3.1. PolySat was in the design 

process of the CubeSat mission, ExoCube, during the primary effort of this thesis. Cal Poly’s 

dedicated CubeSat program and documented flight history allowed on sight interactions with the 

design team of ExoCube and aided in the design of a CubeSat SysML model. 

2.6 Related Work 

The use of SysML in systems engineering is a relatively new activity, much of which is 

being expedited by government financed defense contractors and other government related 

entities including NASA and the military. Because of the private nature this sector, it can be 

difficult for the general public to find the most current work. As an example, a CubeSat meta-

model was created and is owned by NASA JPL but it was not possible to acquire a copy or 

examine the model because of internal JPL restrictions. This does, however, confirm that similar 

work is being conducted within industry. The Object Management Group (OMG) also provides 

some insight into how SysML is being used in these difficult to reach sectors.  



17 

 

The OMG is an international computer industry standards consortium founded in 1989. 

The standards they impact are driven by vendors, users, academic institutions, and government 

agencies. The OMG’s modeling standards encompass Model Driven Architecture (MDA) and 

UML, which enable visual design, execution and maintenance of processes. The OMG also 

controls standards regarding SysML as a portion of it is composed of UML.  

A survey was conducted by the Object Management Group querying some of the largest 

aerospace, defense, and automotive companies on their active usage of SysML. This survey 

revealed that all fields had some usage of SysML and that space systems had the highest 

concentrated use of the language. Although the percentages in Table 4 are not particularly high, it 

should be noted that SysML is still relatively new and its popularity is growing each year. 

Table 4: Active use of SysML in large scale industry 

Industry % of Active Use of 

SysML 

Space 23% 

Aircraft 20% 

Defense 20% 

Automotive 7% 
 

The following three sections consist of three papers with an end goal that is similar to this 

thesis. The case study outlined in these papers intended to apply MBSE to a CubeSat mission via 

SysML and is the result of a continuing team effort to implement a full MBSE design strategy to 

CubeSat design. The team includes University of Michigan graduate students, department 

professors, and engineers from JPL, InterCAX, and other MBSE related tools. For simplicity, the 

papers are referenced throughout the section as P1, P2, and P3. 

2.6.1 Applying MBSE to a Standard CubeSat 

Applying MBSE to a Standard CubeSat is a case study which intends to leverage a 

previously modeled SysML example satellite to design a CubeSat Modeling Framework. The 

original concept inception rose from an INCOSE presentation outlining the SysML model of the 



18 

 

fictional satellite, FireSat. The Space Mission Analysis and Design (SMAD) textbook example, 

FireSat, is a fictional satellite for monitoring and reporting forest fires.  

The goal of this CubeSat Framework can be summarized by the following quote, “The 

Framework illuminates a path to an integrated model based engineering environment, including 

interoperability with system models, mission analysis, and 3D visualization capabilities provided 

by Analytical Graphics, Inc. (AGI) Systems Tool Kit (STK).” [13] The objectives of the study 

were to model and codify a CubeSat and to explore the possibility of enabling data transfer 

between the SysML and commercial programs such as STK and InterCAX. 

The SysML team chose the Radio Aurora Explorer-2 (RAX-2) mission as a basis for their 

CubeSat framework. The primary objective of the RAX mission was to study the formation of 

magnetic Field-Aligned Plasma Irregularities (FAI) in the lower polar ionosphere (80-300 km). 

[14] The study goes on to further describe the RAX-2 mission and begins their initial definition of 

the CubeSat Modeling Framework, listed below. 

 Part - a component of the spacecraft 

 State - the value of a variable that describes a condition of the system for a given period 

of time  

 Function (input, output) - a behavior of a Part that modifies the state of the Part based on 

the Function’s input and output states  

- Input: values used to affect the state of the Part  

- Output: values used to report on the result of the Function's effect on the state of 

the Part  

 Subsystem - have functions which operate on states  

 Interface - an area of consideration on a Part for which interaction is an engineering 

concern. It usually requires coordination or standardization to function properly.  



19 

 

 Scenario - a sequence of functions to accomplish a Mission Objective. 

These definitions act as a set of guidelines for the modeling framework. P1 then defines 

the types of SysML diagrams that are associated with each term. These definitions are a standard 

practice in the modeling of complex system within SysML.  

The team separates the CubeSat scenario into separate blocks including the CubeSat 

Mission Element, the Space Environment, Stakeholders, and a set of Mission Objectives. The 

CubeSat Mission Element is then further subdivided into a CubeSat Ground System and a 

CubeSat Flight System. The Mission BDD can be seen below, in Figure 5. 

 

Figure 5: CubeSat Mission Environment [13] 

The specific details of the space environment, mission element, ground system, and flight 

system frameworks are briefly described for the RAX-2 mission. These sections give an overview 

of each part of the model and how the CubeSat framework is separated into flight system and 

ground system. The Flight System includes functions such as power generation, thermal control, 

attitude control, and orbital control. The team states that describing the CubeSat system in this 

manner provides a far more explicit and precise description of functionality.  

P1 then goes on to describe the segment of RAX-2 mission operations that the team 

focused on. The objective operation begins with the collection of FAI data from target points of 



20 

 

interest. The Data Handling subsystem is then responsible for processing the collected data, and 

the Communication subsystem is responsible for downlinking the data. SysML sequence 

diagrams were used to describe the interaction of data collection, processing, and downlink. 

Package diagrams were used as a library for hardware and software component information.  

In the conclusion, P1 discusses an event at an INCOSE demonstration in which a SysML 

model was interfaced with STK and was used to execute a scenario. The paper concludes with 

stating that the model has reached is first milestone which was to establish a basic structure for a 

CubeSat Framework. Future steps are intended to expand this basic model with the eventual goal 

of interfacing the SysML model with STK.  

The goal of P1 was very similar to the preliminary work performed for this thesis. In P1, 

and this thesis, a set of similar initial terms were defined. This is a common practice in SysML 

modeling and can be traced back to the basics in A Practical Guide to SysML by Sanford 

Friedenthal [2]. A mission Block Definition Diagram was also defined in both scenarios. P1 split 

the Mission into a CubeSat Mission Element and a Space Environment. The CubeSat Mission 

element was then subdivided into a CubeSat Flight System and a CubeSat Ground System. The 

models created for this thesis split the mission domain into three categories including a Ground 

System, a Spacecraft System, and an Environment. 

The Systems in both scenarios were also similar in that the satellites were required to 

target specific areas of interest then collect, process, and downlink data related to that area. As in 

most satellite systems, the subsystems responsible for these actions were similar. The end result 

of P1 is a relatively simple Framework that the team plans to use to build future CubeSat SysML 

models, essentially laying the groundwork for future development. This was similar to the initial 

research and modeling that was conducted for this thesis.  



21 

 

2.6.2 MBSE Applied to RAX CubeSat Mission Operational Scenarios 

MBSE Applied to RAX CubeSat Mission Operational Scenarios extends the work of the 

original RAX-2 SysML modeling case study presented in P1. The work conducted in P2 is the 

product of an INCOSE MBSE challenge project aimed at promoting MBSE and advancing the 

state of the practice. P2 focused on extending the initial SysML RAX model and providing the 

CubeSat community with a model that can automate the flow of data. They expected this to allow 

users to evaluate design configurations and reconfigure the model for different mission scenarios.  

 P2 begins by describing MBSE, SysML, the field of CubeSats, and the specific CubeSat 

Framework described in P1. The extensive tool suit that the team used for this new study is 

below. 

 MagicDraw: SysML modeling tool that enables analysis and design of systems databases 

 Cameo Simulation Toolkit: MagicDraw plugin, enables different MBSE models such as 

State Machines and Activity Diagrams within MagicDraw 

 STK: Supports high fidelity simulations and visualizations of satellite behavior 

 MATLAB: Provides numerical computing for evaluating equations, functions, and 

algorithms. 

 ParaMagic: MagicDraw plugin, used to import mathematical models from 

MATLABN/Simulink into SysML model and execute constraint relationships 

 PHX ModelCenter: allows users to create and execute simulation workflows by 

integrating various simulation models i.e. Excel spreadsheets, STK scenarios, and 

MATLAB scripts 

The rationale behind using this suite of tools was to demonstrate how a diverse tool set 

could be integrated into a common framework, to use appropriate simulators and mathematical 



22 

 

engines for respective simulation, and to test and determine which tools worked well for different 

applications. 

The paper then goes on to describe the RAX mission and the RAX SysML Model, 

created from the CubeSat Framework described in the P1. The RAX SysML model was 

redesigned for the purpose of simulating specific scenarios and can be seen below, in Figure 6. It 

includes the launch system, the environment, and the mission, which is subdivided into the Ops 

system, the flight system, and the ground system.  

 

Figure 6: RAX Block Definition Diagram [15] 

The team also shows the RAX mission IBD, seen below in Figure 7, including 

subsystems and their corresponding power and data rate relations between subsystems. 

Subsystems include Power Collection and Control, Mission Data Handling, Attitude 

Determination and Control, Thermal Determination and Control, Comm, and Payload.  



23 

 

 

Figure 7: RAX Internal Block Diagram [15] 

P2 utilized the ParaMagic plugin to design parametric models, where each model 

represents a specific design alternative, configuration, or scenario. The team describes their 

attempt to capture realistic power scenarios, “We have developed a simulation that consists of 

PHX ModelCenter as the glue that ties together simulations and analysis components from STK, 

SysML, and MATLAB. We model the dynamics of opportunities to collect energy and download 

data and how this impacts the time history of the satellite states, including the on-board energy 

and data, and the amount of downloaded data.” [15] They are then able to analyze a RAX specific 

scenario by combing the parametric model from MagicDraw with an orbital scenario from STK 

and an analytical script from MATLAB using PHX ModelCenter as shown below, in Figure 8. 



24 

 

 

Figure 8: Simulation and Analysis Tool Integration with PHX ModelCenter [15] 

MagicDraw enabled the team to describe their satellite in SysML, STK enabled them to 

calculate orbital data and visualize the outcome, MATLAB enabled them to calculate analytical 

data, and PHX ModelCenter enabled them to interface the different simulation tools together. 

Finally, the team describes its use of CAMEO Simulation Toolkit to build activity/state machine 

diagrams. The team states that these diagrams can be used to compare expected satellite behavior 

against what the model predicts to occur. If real flight data is available, that can also be compared 

to the state machine diagrams. 

The paper concludes with a description of each SysML diagram, and how that diagram 

has been utilized for the study. BDD and IBD diagram structures of SysML are the starting point, 

establishing the fundamental relationships and interfaces between the components of our system. 

[15] Parametric diagrams are used to enable analysis such as comm link margins, power 

constraints, etc. State Machine diagrams are used to define the time evolution of the system. The 

team infers that these three diagrams, which describe their system, comprise the required 

framework for integrating the design model with analytical models. They also note, beginners 



25 

 

found the learning curve reasonable, as they were building off the work of the experts and thus 

learning as they contributed.  

The goal of P2 was to establish a full SysML model of the RAX CubeSat from the 

Framework created in P1, and to run simulations within the extensive tool suite described above. 

This was accomplished, but not to the full extent that the team initially intended. The final results 

of P2 used the SysML defined relation between power and data flow, to calculate time 

independent scenario outcomes. Although the analysis lacked the ability to simulate scenarios 

with reference to the time, the team was able to address this in P3. 

P2 had the same general concept as this thesis, but instead utilized a suite of plugins and 

software tools external to SysML to analyze a CubeSat mission. In both case of P2 and this thesis, 

the mission and CubeSat vehicle was initially defined within a SysML model. The model was 

then used at the basis of knowledge for other analysis tools. This thesis utilizes MagicDraw to 

model a system, a custom plugin to link SysML and the simulation tool, and the single analysis 

tool, HSF, to perform all simulation operations. P2 utilized MagicDraw and the ParaMagic Plugin 

to model a CubeSat system, and a suite of tools including STK to simulate orbit, MATLAB to 

calculate analytical data, and PHX ModelCenter to integrate the unique software clients.  

2.6.3 Integrated MBSE Applied to the Simulation of a CubeSat Mission 

Integrated MBSE Applied to the Simulation of a CubeSat Mission is the final installment 

of the RAX case study. The work was the product of the INCOSE MBSE Initiative’s Systems 

Engineer Vision 2020. P3 begins with a general project overview, including the initial inspiration 

for the project and the INCOSE FireSat SysML example. This is followed by an overview of 

SysML and the team’s previous SysML modeling of RAX. 

Current and future plans for the RAX case study is described in three phases. Phase one, 

outlined in P1, consisted of developing a SysML reference model of a CubeSat, then applying the 



26 

 

parameters of the RAX mission to it. Phase two, outlined in the P2, focused on expanding the 

RAX CubeSat model to include behaviors [15] including comm downlink, data rate, power, and 

signal to noise calculations. Phase two was successful, but the capabilities developed lacked the 

ability to time-step through a behavioral model and determine whether requirements are satisfied 

through the entire RAX mission. Phase three, outlined in P3, comprised of two activities 

including the development of a CubeSat enterprise model to capture cost and product lifecycle 

aspects, and capturing additional RAX design and operational characteristics.  

 

Figure 9: RAX Team Past and Future Phases [16] 

Technical accomplishments of P3 begin with the development of a new RAX model 

based on the CubeSat reference model described in the P2. The new model was developed so as 

to demonstrate how trade studies can be performed within a systems modeling development 

environment. P3 utilizes the same suite of modeling and simulation tools including MagicDraw, 

STK, MATLAB, PHX ModelCenter, and Cameo Simulation Toolkit.  

The redesigned SysML model of the RAX CubeSat can be seen below, in Figure 10. A 

standard set of subsystems was included in the model but more detailed modeling was 

implemented for the Power and Comm subsystems, which were the focus of the P3 simulations. 



27 

 

The team limited the simulation to find minimum and maximum battery capacity, maximum data 

buffer capacity, and minimum download data quantity. 

 

Figure 10: Updated RAX Vehicle BDD [16] 

SysML Satisfy relationships were used to relate requirements to system properties which 

were calculated via mission simulation. Figure 11 shows the mapping of requirements to value 

properties of the Vehicle block.  



28 

 

 

Figure 11: Requirement Verification BDD [16] 

Parametric diagrams, activity diagrams, and state machine diagrams were used to create a 

starting point for the simulation tool suite. State diagrams modeled possible events that the 

vehicle could encounter and appropriate vehicle behavior. Activity diagrams defined what actions 

could be performed during an event, along with the flow of input and output data. SysML 

Parametric diagrams and PHX ModelCenter were then used to create a link between the SysML 

model and the analytical simulation clients, STK, and MATLAB. These external tools enabled 

the team to estimate RAX performance. STK was used to model the spacecraft orbit and calculate 

data collection opportunities and data downlink opportunities. The STK orbital data was then 

ported to MATLAB scripts in order to compute power collection. Finally, ModelCenter 

integrated the MagicDraw SysML model, the STK orbital scenario, and the analytical MATLAB 

scripts.  

The team stresses that time history of the vehicle state was an important factor to data 

collection. The left plot in Figure 12 depicts the time history energy state of the power system. 

The blue line indicates the energy, in joules, stored in the vehicles power system. The red line 



29 

 

indicates the sun energy generated by the vehicle panels, and is dependent on the vehicles 

position in orbit. The right plot in Figure 12 depicts the data downlink state of the vehicle. The 

downlink is correlated to the dip in energy generation in the power state plot.  

  

Figure 12: (Left) Energy storage and generation vs. time; (Right); Data downlink vs time [16] 

P3 then goes on to described various trade studies related to the power and comm system 

dynamic. These studies were conducted to show how different solar panel areas, max battery 

capacities, orbital attitudes, and ground station networks effect the power and data time state. The 

ability to perform analytical trade studies is an extremely useful asset that can be used to 

understand the behavior of the system and interaction of components within subsystems. It can 

also be used to verify that the model has been designed correctly. P3 concludes with future plans 

of making the RAX CubeSat model available to the academic community. They hope that it will 

be used as a starting point for a CubeSat team to develop their own model and perform trade 

studies. 

The goal of P3 was to establish a SysML based time dependent simulation tool suite that 

was capable of conducting full mission trade studies. A new, more complex, SysML model of the 

RAX CubeSat was created to enable this capability. This updated SysML model was also 

equipped with requirements related to their applicable components within the spacecraft. 

Simulations were again executed with the tool suite described above but this time were 

successfully correlated to the time domain.  



30 

 

P3 was the final realization of the initial goal of the original case study presented in P1. 

The summation of these three papers, and the case study as a whole, endeavored to accomplish 

the same goal as this thesis. The goal was focused on designing a simulation system that would be 

capable of verifying the impact of design decisions in real time using MBSE. In the case study 

and this thesis, the overall mission and CubeSat vehicle were initially defined within a SysML 

model. The model was then used as a basis of knowledge for other analysis tools.  

The case study utilized MagicDraw and the ParaMagic Plugin to model a CubeSat 

system, and a suite of tools including STK to simulate orbit, MATLAB to calculate analytical 

data, and PHX ModelCenter to integrate the unique software clients. This thesis utilizes 

MagicDraw to model a system, a custom designed plugin to translate the SysML model to the 

simulation tool, and a single analysis tool, HSF, to perform all simulation operations.  

The RAX case study and this thesis had similar, successful, outcomes. The final results of 

P3 produced trade studies relating solar panel area, battery sizing, orbit, and ground systems. The 

final results of this thesis produced trade studies relating solar panel power generated, battery 

sizing, targets captured, data generated, and data downlinked. Both projects also show that there 

is a community wide desire for fully integrated simulation tools which are able to perform trade 

studies and mission analysis. Although the analysis tools differed between the RAX case study 

and this thesis, both projects agree that SysML is an ideal platform to describe a full mission 

system, and that MBSE is an emerging and promising solution for satellite mission simulations.  



31 

 

3 MODEL DESIGN PROCESS 

Two SysML models were created for this thesis and will be outlined in this section. The 

first model, Aeolus, was created to describe the system script used in the HSF test scenario. The 

second model, ExoCube, was created to describe a Cal Poly CubeSat mission. The primary goal 

of designing the Aeolus model was to validate the concept that a SysML model could be 

translated into an HSF system script for use in HSF. The primary goal of designing the ExoCube 

model was to verify that a real world example could be modeled in SysML and a correctly 

structured input script could be created for future use in an HSF simulation. 

3.1 SysML Software  

3.1.1 SysML Software Client 

A MBSE software client capable of exporting SysML models into a suitable format for 

the HSF Translator Plugin was required prior to the SysML model design. The primary software 

clients that were evaluated include Sparx Systems’ Enterprise Architect, No Magic’s 

MagicDraw, The Modelio SysML Designer, Papyrus for SysML, and InterCAX. Each client was 

evaluated based on a variety of factors including functionality, source (open or commercial), 

stage of development, technical support, cost, etc. When possible, trials of each software were 

also evaluated. Ultimately, analysis and trade studies showed that MagicDraw paired with its 

corresponding SysML Plugin was the ideal choice.  

MagicDraw is one of the leading commercial MBSE tools available to consumers and is 

designed and distributed by No Magic. It supports UML 2 metamodels, the latest XMI standard 

for data storage and the most popular programming languages for implementation. MagicDraw 

also requires a SysML plugin to support the OMG SysML™ 1.4 for standards based system 

engineering.  



32 

 

The MagicDraw SysML plugin retains all capabilities of the MagicDraw architecture 

modeling environment with a System Engineer perspective. It includes SysML specific menus, 

toolbars, diagrams, specifications, user interface, dependency matrices, validation suites, etc. [17] 

The SysML plugin supports all SysML diagrams, including Requirements, Block Definition, 

Internal Blocks, Parametric and others. With this plugin, MagicDraw adds support for additional 

specification, analysis, design, and validation of a broad range of systems. 

3.1.2 Model Quality  

Maintaining design consistency is a critical issue when concerning the complex nature of 

aerospace systems. Projects which lack consistency often end up suffering from cost and 

scheduling overruns. One solution to help mitigate these overruns is to use a standard for 

measuring the quality of a model. While there are multiple standards available, this work has 

been guided by and uses the “6 C’s of MBSE.” Figure 13 illustrates the 6C’s and their relations to 

other possible elements which may be encountered while modeling. 

 
Figure 13: The 6C Model Quality Goals [18] 

The quality of models, whether being used for software development with UML or for 

satellite development with SysML, is often ascertained by following a set of six goals commonly 

referred to as the “6 C’s of Model Based Systems Engineering.” The elements of the 6 C’s of 

MBSE are completeness, consistency, comprehensibility, confinement, and changeability. [18] 



33 

 

These six quality goals were addressed during the creation of the Aeolus and ExoCube models. A 

definition of each goal and an explanation of in what manner they were addressed can be found in 

Table 5.  

Table 5: Model Quality 

Correctness Correctness was assured by two methods. The first consisted of 

research and training in SysML including the creation of example 

models from A Practical Guide to SysML, and the design of personal 

test models to solidify correct technique. The second method used to 

verify correctness of the model was the warning system available in 

MagicDraw. This feature declares when a construct of the model is in 

violation of any syntax or relationship violations. This feature was a 

key element of correctness in both learning SysML and in designing 

the Aeolus and ExoCube models. 

Adhering to language 

syntax, including right 

elements and correct 

relations between them, 

style, rules, or naming 

guidelines 

Completeness Completeness was verified through inspection. Both models were 

created using data from external sources. Data for the Aeolus model 

was transcribed from the test scenario and data for the ExoCube model 

was collected from members of the PolySat team. ExoCube Data was 

directly transcribed from ExoCube database spreadsheets in which all 

system and subsystem data was maintained. The source data was 

physically confirmed to be identical to the corresponding SysML 

model aspects by inspection. 

Having all the necessary 

information that is 

relevant, enough detail 

to support the purpose 

of the model 

Consistency Consistency was again addressed by the warning system available in 

MagicDraw. The warning system informs the user of any relationship 

contradictions that would otherwise appear as an internal relationship 

violation. 

No contradictions 

within the model 

Comprehensibility Comprehensibility was addressed by a top-to-bottom design approach. 

SysML has demonstrated the capability for this top-to-bottom design 

refinement which is utilized in the design of the Aeolus and ExoCube 

models. The design process provides a solution which satisfies top 

level requirements via verification within the model.  

Understandable to other 

users or tools which will 

interact with the model 

Confinement Confinement was addressed by including all appropriate data in the 

models. The Aeolus system script from HSF acted as the database for 

the Aeolus SysML model. All data within the script was considered 

relevant and was included in the SysML model. The ExoCube data 

was provided by the PolySat team in the form of a detailed excel 

spreadsheet. To capture every aspect of ExoCube, the SysML model 

also contains all data that was previously documented within the 

database spreadsheet. 

Including relevant 

diagrams and 

maintaining the correct 

level of abstraction 

Changeability SysML is an inherently dynamic data storage tool. Changeability was 

accounted for in the model design process by including component 

blocks that do not directly affect the system script or HSF simulation, 

but allow for future growth. These idle blocks essentially act as place 

holders until the system develops further and includes data to populate 

them.  

Able to support changes 

to allow continuous 

improvement and 

evolution 



34 

 

3.2 Aeolus 

3.2.1 Rationalization 

The HSF test scenario, Aeolus, was modeled in SysML to validate the feasibility of this 

thesis. Feasibility was dependent on the SysML models ability to be translated into an HSF input 

script, the format and structure of the original and translated script being identical, the ability to 

run the translated input script in an HSF scenario, and HSF returning the same output schedule as 

the original Aeolus test scenario.  

The Aeolus model was designed prior to the ExoCube model due to the simplistic nature 

of the system and to expedite the thesis schedule. The Aeolus SysML model was less complex 

which allowed a smooth redesign when aspects of the model required alteration. Designing the 

Aeolus model was an enabling factor to learn and improve SysML and MagicDraw related skills. 

The design of Aeolus also aided to increase overall experience with numerous model 

development methods. By first focusing all attention on the Aeolus model, a timely first draft of 

the SysML model was constructed and exported to the XML format required for the HSF 

Translator Plugin. This supported Viren’s work and enabled the project as a whole to develop 

faster than if both models were designed simultaneously. 

3.2.2 Mission Overview 

Aeolus is an Extreme-weather imaging satellite in a circular, 1000km, 35 degree inclined 

orbit. The satellite’s simulated orbit begins on August 1st 2008. [19] The satellite is tasked to 

capture images of terrestrial targets, as can be seen as red circles in Figure 14. The simulation 

generates thousands schedules in order to enhance certain aspects of the mission i.e. image 

capture, power storage, data downlink, etc.  

 



35 

 

 

Figure 14: Aeolus Mission Concept [19] 

The original HSF Aeolus scenario consists of six subsystems including Access, Attitude 

Determination and Control (ADCS), Communications (COMM), Electro-Optical Sensor 

(EOSensor), Solid State Data Recorder (SSDR), and Power. These subsystems are defined within 

the HSF base code via .h header scripts, and .cpp function scripts. Each subsystem header script 

creates the subsystem with HSF, and returns whether the subsystem can perform its required 

operations for a given task. The function script contains specific numerical data describing the 

subsystem and algorithms which calculate tasks related to the subsystem. The test case consists of 

a baseline configuration, subsystem models, orbit initial conditions, orbital propagators, initial 

state data conditions, and dependencies. [7]  

3.2.3 SysML Model Overview 

The Aeolus SysML model is best understood by examining the system block definition 

diagram (BDD), as seen in Figure 15. The mission domain contains the three system blocks 

 

 

 180 W  150 W  120 W   90 W   60 W   30 W    0     30 E   60 E   90 E  120 E  150 E  180 E 

 75 S 

 60 S 

 45 S 

 30 S 

 15 S 

  0   

 15 N 

 30 N 

 45 N 

 60 N 

 75 N 

Asset Start Pos. Asset End Pos. Ground Station Imaging Target



36 

 

including the ground system, the environmental system, and the spacecraft system. When broken 

down, these system blocks contain subsystem blocks which describe and define them. The 

environment system is comprised of the sun vector block which contains numerical values 

describing the initial location of the sun relative to the spacecraft. Similar to the original HSF 

Aeolus scenario, the spacecraft system is comprised of six subsystem blocks including Access, 

ADCS, Optics, SSDR, Communications, and Power. The spacecraft subsystem blocks also 

contain numerical values describing critical aspects of each subsystem. The ground system does 

not contain any blocks because this thesis was focused on the HSF system input script. 

 

Figure 15: Aeolus System BDD 

The internal block diagram (IBD) of the system is shown in Figure 16 and contains the 

six spacecraft subsystems. Each subsystem corresponds to a function of the previous Aeolus HSF 

system script.  

The Access subsystem calculates geometric access to a location on the Earth based on 

direct line of sight. It cannot perform a task if this line of sight does not exist.  



37 

 

The ADCS subsystem determines if there is enough time to slew the spacecraft to align 

itself with the target on the ground. For this simple scenario, slew calculations are completed by 

evaluating the time available before the scheduled start of the task. If there is insufficient time, 

the ADCS subsystem cannot perform the task. This subsystem also calculates the pointing vector 

to the target and stores it as a state variable.  

The COMM subsystem state variables represent the downlink data rate to ground 

stations. It only functions during tasks that are designated as communication tasks. The COMM 

subsystem calculates this rate by calling a dependency function called “getDataRateProfile.” The 

downlink data rate is set to a constant value over the remaining duration of the task.  

The EOSensor subsystem calculates the quantity of data required to image a target based 

upon its priority, which is given by the target of the imaging task. It calculates and sets the 

incidence angle to the target as well as the sizes of images that are taken.  

The SSDR subsystem calculates and stores the quantity of data that has been created by 

other subsystems. The buffer calculation is done by calling a dependency function that calculates 

the amount of data to be stored based upon the image data set by the EOSensor. Similarly, it 

calculates the amount of data sent by the COMM subsystem and reduces the amount stored on the 

data buffer accordingly. 

The Power subsystem calculates and stores the time history of the battery depth of 

discharge. It also calculates the amount of power generated from solar panels by using the current 

position and a model of the sun. This allows the subsystem to determine the times intervals in 

which the solar panels are lit and generating power. The Power subsystem calls a dependency 

function to determine the time history of power usage of other subsystems. The subsystem uses 

the power usage history and the size of the batteries to determine the time history of the battery 

depth of discharge and stores the result as state variables.  



38 

 

 

Figure 16: Aeolus Subsystem IBD 

Each subsystem in the IBD has a corresponding BDD, as seen in Figure 17 and Figure 

18. Figure 17 shows the BDD of the optics subsystem. In the Aeolus SysML model, the optics 

subsystem consists only of the EO sensor, represented by the EOS block. The EOS block contains 

numerical values describing critical aspects of the component.  

 

Figure 17: Aeolus Optics Subsystem BDD 



39 

 

Figure 18 shows the BDD of the power subsystem. The power subsystem has four 

component blocks allocated to it, however it should be noted that only two of the four blocks 

contain numerical values. The BCDU and PDU blocks were created to show the potential for 

added functionality and to show the opportunity for changeability within the model. The inclusion 

of these extra component blocks does not yield any negative effects to the HSF simulation but 

easily allows for additional data to be included as the design and the model become more 

complex. 

 

Figure 18: Aeolus Power Subsystem BDD 

All initial condition values contained in system, subsystem, and component blocks will 

be translated into an input script via the HSF Translator Plugin. If the data is consistent with the 

old HSF input, the HSF output of this Aeolus test case will produce identical input scripts and 

resulting schedules. This will validate that the script created from a SysML model and translated 

via HSF Translator Plugin is a viable system script input for HSF.  

3.3 ExoCube 

3.3.1 Rationalization 

The ExoCube mission was chosen due to the rationale outlined in section 2.5 and due to 

the ease of access to system information. PolySat was in the design process for ExoCube during 



40 

 

the primary effort of this thesis which enhanced collaboration and transfer of ExoCube system 

data. All required data to model the ExoCube satellite was obtained from personal 

communication with the design team leads, and from the satellite budget spreadsheets used to 

design, calculate, and track subsystem figures. The ExoCube design team leads were able to 

provide the following spreadsheets; UHF uplink budget, data downlink budgets, mass budget, 

power consumption, power analysis, and operational modes. Fabrication of the ExoCube 

engineering development unit was also underway which enabled direct observation of the 

CubeSat power subsystem.  

A secondary reason for choosing the ExoCube mission was due to its similarity to the 

original Aeolus test scenario. Both systems are earth orbiting satellites with similar operational 

concepts including orbital parameters, earth observation payloads, solar based power generation, 

data downlink to specified ground stations, etc. Originally, the CubeSat platform was also thought 

to be a relatively simple system to model in SysML and simulate in HSF. Although it turned out 

to be a much more complex system than Aeolus, it was undeniably more straightforward than 

other options, i.e. a large geostationary satellite. 

The purpose of simulating the ExoCube SysML model was to apply the concept of this 

thesis to a real world design scenario. To accomplish this, the ExoCube model is required to 

contain all relevant subsystem data which was collected from the satellite budget spreadsheets 

and design team personnel. The SysML model is required to be exported to a XML output and 

converted into an HSF specific XML input script via the HSF Translator Plugin. The structure of 

the new ExoCube HSF input script must then be evaluated against the original Aeolus input script 

to verify that the script would function in an HSF scenario designed for the ExoCube mission. 

3.3.2 Mission Overview 

ExoCube is a space weather satellite sponsored by the National Science Foundation. Its 

primary mission is to directly measure the density of Hydrogen, Oxygen, Helium and Nitrogen in 



41 

 

the upper atmosphere. Cal Poly is designing the core satellite bus, while the scientific payload is 

supplied by NASA Goddard Space Flight Center (GSFC). The University of Wisconsin, Madison 

and Scientific Solutions, Inc. (SSI) are developing the scientific objectives and providing 

guidance for instrument development. The ExoCube scientific payload includes a scientific 

instrument that is developed by NASA GSFC, in collaboration with University of Wisconsin, 

Madison, Scientific Solutions, Inc., and Cal Poly. ExoCube will characterize [O], [H], [He], [N2], 

[O+], [H+], [He+], [NO+], and total ion density by taking in-situ measurements within the 

exosphere, while taking particular interest in orbital locations above various radio observatories. 

ExoCube uses an active control system to point itself in the desired direction for measurements, 

and uses passive control to maintain this orientation. [20] Details of the mission and the 

assembled CubeSat can be seen in Figure 19. 

 
Figure 19: ExoCube Mission Profile and Assembled Satellite [20] 

3.3.3 SysML Model Overview  

Design work began on the ExoCube SysML model after the Aeolus model had been 

completed. The SysML XML output of the Aeolus model was provided to Viren and work on the 

HSF Translator Plugin was able to commence. A more intuitive design was implemented in the 



42 

 

ExoCube SysML model due to the increased freedom of ExoCube, recently acquired knowledge 

of SysML, and hands on experience with modeling in SysML. 

The ExoCube model block definition diagram can be seen in Figure 20. It is similar to the 

Aeolus model but includes more detail. The mission domain, again, contains three system blocks 

including the Environmental, Spacecraft Systems, and Ground Systems. These system blocks are 

made up of subsystem blocks which describe and define them. The Environment system contains 

blocks for the spacecraft orbit, and its initial sun vector. The Spacecraft System is again 

comprised of six subsystems including Access, ADCS, Payload, C&DH, Comms, and Power. 

These subsystem blocks also contain numerical values describing critical aspects of each 

subsystem.  

The ground system contains blocks with ground station data, and target data. In this 

model, there is not domain for timing related inputs. For the purposes of this thesis, the original 

HSF target and timing input scripts are used instead of translating these from the SysML model. 

The concept of translating all input scripts from the SysML model is discussed in more detail in 

section 5.3.3. 



43 

 

 

Figure 20: ExoCube System BDD 

Similar to the Aeolus model, the ExoCube model also has an IBD of all subsystems. The 

IBD, shown in Figure 21, is color coded to aid in differentiating subsystems and their 

components. This can be helpful when viewing large diagrams containing more than one 

subsystem. Each subsystem block contains its specific Subsystem Identification (Sub ID) number 

which identifies said subsystem and its corresponding components in HSF.  

 

Figure 21: ExoCube Subsystem IBD 



44 

 

Figure 22 is an example of the power subsystems IBD. The purpose of this diagram is to 

provide the SysML user with the data required to understand the inner workings of the subsystem 

and the relationships between subsystem components. This diagram was not included in the 

Aeolus model because its complexity did not deem one necessary.  

The IBD shows the flow of power throughout the power subsystem and how each 

component interfaces with other components. As mentioned above, the different colored blocks 

represent different subsystems with power represented as blue, ADCS as red, C&DH as gold, 

Payload as light blue, and Communication (Comm) as yellow. Numerical values can be seen as 

green boxes within the battery block and the solar cell block. These numerical values describe 

critical aspects of the component. Components that lack numerical values are placeholders for 

additions to the model. Again, these were created to show the potential for added functionality 

and to show the opportunity for changeability within the model. The inclusion of these extra 

component blocks does not yield any negative effects to the HSF simulation but enables 

additional data to be included as aspects of the design are defined and as the system become more 

complex. 



45 

 

 

Figure 22: ExoCube Power Subsystem IBD 

Figure 23 shows the BDD of the power subsystem. It is similar to the Aeolus model’s 

BDD of the power system but is much more detailed. It contains all data related the power 

subsystem that is necessary to run an HSF simulation.  

The power subsystem block, seen in the top left corner, contains a corresponding Sub ID 

and all power subsystem components including solar cells, auxiliary control unit, Power 

Distribution Unit (PDU), battery charge regulator, batteries, and heaters. An allocation 

relationship can be seen between each of these component blocks and the power subsystem block.  

Only the solar cells, batteries, and battery charge regulator contain numerical values. 

The solar cells block contains values pertaining to power absorption when the satellite is in the 

sunlit portion of its orbit. The batteries block contains values pertaining to power storage, used 

primarily when the satellite is in the shadowed segment of its orbit. The battery charge regulator 

contains numerical values pertaining to peak voltage, wattage, and amperage in and out of the 

batteries. Battery charge regulator terms were not used in the simplified HSF simulation but 

would be useful for design as a database of system information. 



46 

 

 

Figure 23: ExoCube Power Subsystem BDD 

  Figure 24 is the IBD of the comm subsystem which, similar to the power IBD, shows the 

flow of power and data throughout the subsystem. Numerical values are not shown but are 

included within the green boxes in the transmitter, receiver, and antenna blocks. These numerical 

values describe critical aspects of each component and are used for the HSF simulation. 

Components that lack numerical values are placeholders for additions to the model. 

 



47 

 

 

Figure 24: ExoCube Comms Subsystem IBD 

Figure 25 shows the BDD of the Comm subsystem. It contains all data related the Comm 

subsystem that is necessary to run an HSF simulation. 

 The Comm subsystem block, seen in the top left corner, contains its Sub ID, and all 

Comm subsystem components including amplifier, transmitter, receiver, antenna, beacon, and 

transponder. An allocation relationship can be seen between each of these component blocks and 

the comm subsystem block.  

In this subsystem, the receiver, transmitter, beacon, and antenna all contain numerical 

values. The receiver, transmitter, and beacon all contain power requirements that are flowed to 

and accounted for in the power subsystem. This flow can be seen in Figure 22, between the 

Comm subsystem and the power control card. The transmitter also contains a data-down term 

which may be used in the data downlink maneuver within HSF simulations. All additional 

numerical terms would be useful for design as a database of system information. 

The remaining subsystem BDDs and IBDs including ADCS, C&DH, and Payload can be 

seen in appendix 0: A: ExoCube SysML Diagrams. 



48 

 

 

Figure 25: ExoCube Comms Subsystem BDD 

Figure 26 is a partially expanded SysML allocation matrix. The matrix is a database for 

all system knowledge pertaining to allocation of diagrams, subsystems, and components within 

the spacecraft domain. The purpose of this matrix is to provide a user with traceability on each 

individual component within the complex space system. This diagram is also useful in verifying 

that all components are allocated their correct subsystem.  

In the left column, each subsystem is composed of its component blocks. Certain 

component blocks, such as Core Avionics, PCI backplane, and PDU, are composed of additional 

component blocks, but for the purposes of this screen capture, have been compressed. The top 

row contains every diagram, subsystem, and component within the spacecraft domain. The 

corresponding matrix, in Figure 26, shows allocations previously discussed in system and 

subsystem diagrams. Relationships between subsystems and their owners are represented as 

arrows when a row is uncompressed, and as number when a row is compressed. The number 

represents how many components are allocated to the parent block.  



49 

 

 

Figure 26: Expanded ExoCube Allocation Matrix 

Figure 27 is an example of the how the spacecraft’s operational modes are described 

within the SysML model. This state machine diagram describes the percentage of time each 

component is drawing current, collecting data, transmitting data, or any other function that might 

be described by the components block within its subsystem’s BDD.  

During campaign mode, the avionics system, reaction wheel, GPS, Exos instrument, and 

communications components are in operation during 100% of the mode duration. The receiver 

and beacon components are within a concurrent subdivision and thus will only be operational 

during their specific percentages of the mode duration. Other modes of the ExoCube model can 

be seen in appendix 0: B: ExoCube Operational Mode Diagrams. 



50 

 

 

Figure 27: ExoCube Operational Campaign Mode 

Figure 28 depicts the ExoCube mission Requirements Satisfaction table. In this table, 

requirements are numbered, given an Id based on sub-requirement dependencies, named, and 

described. Similar to the allocation matrix, the Requirements Satisfaction table provides a user 

with traceability on individual requirements. This table can be useful to verifying that all 

requirements have been fully satisfied and for traceability regarding how each requirement has 

been satisfied. This table differs from the allocation matrix because it not only spans the 

spacecraft domain but also the entire mission domain. 

The far right column, Satisfied By, shows which system, subsystem, component, or 

numerical value satisfies the requirement. Some general requirements are satisfied by an entire 

component, such as Id: 2: “The spacecraft shall take “in-situ” measurements of total ion density 

in Earth’s atmosphere,” which is satisfied by the EXOS instrument. A more specific requirement, 

such as Id: 4.1: “The spacecraft shall maintain an altitude between 425 and 650 kilometers. (Best 

case: 475 km),” is satisfied by a numerical value, Semi-major Axis: km, contained in within the 

orbit block in the environmental domain. Finally, a relatively complex requirement such as Id 7: 

“The spacecraft shall use less than 2 watts of power,” may need to be satisfied by more than one 



51 

 

item. In the case of Id. 7, it is satisfied by the Battery Charge Regulator block numerical value, 

Watts out: W and the Battery block numerical value, Max Output Power: W. 

 

Figure 28: ExoCube Requirements Satisfaction Table 

Figure 29 depicts the requirements satisfaction BDD. It is essentially an expanded 

version of the ExoCube System BDD, in Figure 20, but focuses on specific aspects of the mission 

which satisfy a requirement. The requirements satisfaction BDD is where the Satisfied By 

relationship, in the requirements satisfaction table, is established. It is a suitable visual 

representation of all requirements and their relationship with the satisfying item. This diagram 

depicts which subsystems satisfy the most requirements and thus can be used as a simple way to 

visually determine mission critical and high risk subsystems or components.  



52 

 

 

Figure 29: ExoCube Requirements Satisfaction BDD 

Finally, Figure 30 is a partially expanded requirement satisfaction matrix. The matrix is a 

database for all system knowledge pertaining to requirements within the mission domain. This 

matrix provides the user with the graphical functionality as described for the allocation matrix, 

but is generally less useful due to the availability of the requirements table.  

In the left column, each domain is composed of its systems, and those systems are 

composed of their corresponding subsystems. The top row contains all requirements. The 

corresponding matrix in Figure 30 shows which subsystem, component, or numerical value 

satisfies each requirement. Relationships between subsystems and their owners are represented as 



53 

 

arrows when a row is uncompressed, and as number when a row is compressed. As previously 

discussed, some requirements may be satisfied by more than one component or value.  

 

Figure 30: ExoCube Requirements Satisfaction Matrix 

  



54 

 

4 INTEGRATION WITH HSF 

4.1 HSF Input Scripts 

As described in section 2.4, HSF is considered to be modular due to the discrete 

separation between the input scripts and the scheduling algorithm. HSF requires 3 input scripts to 

execute a simulation.  

The first script dictates the start and end times of the simulation. This script also contains 

the starting Julian date as well as the time step and maximum number of desired schedules. It is 

possible that a simulation will not generate enough feasible schedules to reach the maximum 

number, but if it does, HSF will limit the schedules to that set amount.  

The second input script dictates the simulation targets including ground stations and 

image capture locations. It acts as a database for all desired targets and target data. It includes 

each target name, target priority value, target type (ground station or image location), task type 

(image capture or data transfer), max time to capture target, and target coordinate location.  

The third input script dictates relationships within the satellite or CubeSat system. This 

input script is the focus of this thesis and, contains the spacecraft initial conditions, subsystem 

parameters, dependencies, and constraints.  

The original HSF input script for the Aeolus test scenario is shown below, in Figure 31. 

Red arrows point to the Sub ID numbers, green arrows point to subsystem dependencies, and 

yellow arrows point to subsystem constraints. Dependencies and constraints within the input 

script provide the HSF base code and scheduling algorithm with a relationship between 

subsystems. This dictates how individual subsystem data interact other subsystem data within the 

scheduling algorithm.  



55 

 

 

Figure 31: Original HSF Input Script for Aeolus 

The dependency structure of the Aeolus test scenario is shown in block diagram form 

below, in Figure 32. It is imperative that the format and structure created from these dependencies 

and constraints is correctly described in the SysML model and is correctly translated into the HSF 

system input script. The Aeolus and ExoCube translated scripts both require this structure to be 

considered a viable replacement for the original manually written input script. 



56 

 

 

Figure 32: HSF Input Script Dependency Block Diagram 

4.2 HSF Scheduling Algorithm Framework 

HSF scheduling algorithm framework interprets the input script parameters, 

dependencies, and constraints described in the three input scripts and executes a simulation 

scenario to create a series of schedules. The algorithm generates a schedule by creating a 

chronological list of tasks performed by the system. Before the algorithm can add a new task to a 

schedule it must perform three checks. First, the previous task must first have already been 

completed. The scheduler then checks to see if the same task can be performed again. Lastly, the 

scheduler confirms that the task can be physically performed by the system. If all checks are 

satisfied, then the schedule is copied and the new task is added to the end. As the algorithm 

progresses through tasks, some generated schedules will not be capable of performing any 

additional tasks and are discarded. This process is repeated until the simulation end parameters 

are met, or there are no longer any feasible schedules. If a convergent schedule is found, HSF will 

output standard text result files. 

The goal of each HSF simulation is to converge on a result schedule which will satisfy all 

requirements without violating any mission, system, or subsystem. Tasks ultimately enable the 

system to capture targets and downlink target data. Targets with the highest priority are ground 

stations (value = -1) because data uplinks and downlinks are considered mission critical. The 

algorithm does not create and select optimal schedules. Instead, it simply makes a list of feasible 



57 

 

schedules that fulfill the simulation parameters. Because of this, multiple simulation results may 

be required to perform system parameter trades and find a satisfactory solution.  

4.3 HSF Translator Plugin 

To accomplish the goal of this thesis, a SysML model is must be converted into the same 

specialized XML format as the previous HSF system input script. MagicDraw is capable of 

exporting SysML models to standard XML format, but the standard XML output is not 

compatible with HSF. The HSF Translator Plugin was designed to convert these standard XML 

files into the custom XML format used by HSF.  

Each Subsystem within the SysML generated XML output file has its own specific tag 

due to the design standards which the original SysML model follows. The plugin searches for 

these specific tag types and extracts them as it reads through the SysML generated XML file. The 

plugin utilizes the C# command function library to enable direct manipulation of the XML files, 

as opposed to a brute force method of using text editing commands. With this function library, the 

plugin searches for tags rather than specific strings of text, saving time and processing power.  

Subsystem tags also have subtags contained within them, calling out specific parameter 

labels. These subtags have another level of subtags which contain parameter values. When the 

plugin fetches a subsystem tag, the subtag labeling system allows it to efficiently fetch all 

subsequent subsystem components, parameters, and parameter values. When fetching is 

completed, the plugin formats the subsystem tags and subtags by removing any irrelevant data. 

The plugin then organizes the subsystem tags into the custom XML format of the HSF input 

script.  

The final output of the HSF Translation Plugin is a specially formatted XML system 

input script that has a format identical to the original HSF system input script. The organization 

style of the SysML model allowed for its subsequently exported XML script to be easily 



58 

 

searched, reformatted, and converted into the specialized XML script for HSF. The similarity 

between the exported XML script and the HSF XML script was also a key driver behind the 

functionality of the plugin. 

  



59 

 

5 RESULTS AND CONCLUSION 

5.1 Aeolus Model Results 

Validation of this thesis was performed by comparing the format and structure of the 

translated SysML Aeolus input script to the original Aeolus input script. This section will show 

that the original script and the translated script are identical. This validates the SysML model and 

modeling technique, proves that the plugin is functioning correctly by translating the SysML 

model into the correctly formatted XML system input script, and demonstrates a functional HSF 

simulation.  

5.1.1 HSF Translator Plugin Output 

The HSF Translator Plugin was used to convert the Aeolus SysML model into the HSF 

input script which can be seen below, in Figure 33. For the translated input script to allow HSF to 

run a simulation, dependencies and constraints relationships within the input script must retain the 

sane structure, and all numerical data must remain unchanged. Figure 33 depicts the translated 

SysML Aeolus input script. Again, red arrows point to the Sub ID numbers, green arrows point to 

subsystem dependencies, and yellow arrows point to subsystem constraints.  

The HSF Translator Plugin created the new Aeolus input script in a more compact form, 

but all essential data remains. Correct Sub ID numbers are assigned to their corresponding 

subsystems, correct dependencies are assigned to their corresponding subsystems, correct 

constraints are assigned to their corresponding subsystems, and all initial condition numerical 

data was transcribed from the SysML model. Additionally, the structure created from the 

dependency and constraint relationships remained identical, as seen in Figure 32, thus allowing 

individual subsystem data interact other subsystem data within the scheduling algorithm. 

 



60 

 

 

Figure 33: Aeolus Input Script Derived from Aeolus SysML Model 

5.1.2 Initial Aeolus Results 

A 480 second trial run of the Aeolus test scenario with original scripted inputs was 

initially executed. A 480 second trial run of the Aeolus test scenario with the SysML input was 

subsequently executed. The results were identical, as expected.  

For the purposes of this thesis, each simulation is described as a graphical representation 

of select data from the simulation output text files by four plots. The four plots represent 

subsystems on the theoretical Aeolus satellite including communication, data storage, power 

storage, power absorption, satellite incidence angle, and general target data. 

As can be seen in Figure 34, the satellite solid state data recording (SSDR) system 

accumulates data as the mission progresses. Unfortunately, this first verification run of the Aeolus 

test scenario was too short to allow the satellite enough time to perform a downlink maneuver. 

This will be available in simulations with longer runtimes. 



61 

 

 

Figure 34: Aeolus Comm & SSDR State Data – 480 Second Simulation 

The state of the Aeolus battery and solar panel systems can be seen in Figure 35. The 

simulation begins with Aeolus in shadow, but the satellite quickly passes through the Earth’s 

penumbra and into full sunlight. Solar power generation is represented by the orange line of the 

SolarPanelPowerIn term. As expected, the blue line representing the Aeolus battery 

DepthofDischarge term increases during the shadowed segment of the orbit. It should be noted 

that during the 150 seconds of shadow, the depth of discharge only reaches 1.4%. Both the 

scripted Aeolus simulation and the SysML fed simulation reported this result. Once the satellite is 

in full sunlight, the depth of discharge rapidly decreases until it reaches zero. The Aeolus 

simulation was set to have a solar power generation capability of 150 watts.  



62 

 

 

Figure 35: Aeolus Power State Data – 480 Second Simulation 

The mission objective of the Aeolus satellite is to image previously specified targets 

across the globe. The following two plots show data relating to this objective. In Figure 36, the 

number of targets acquired and the incidence angle at which they were acquired are shown. 

During the 8-minute simulation, a total of 16 target captures took place.  

 

Figure 36: Aeolus Target State Data – 480 Second Simulation 

The location of those target captures can be seen in Figure 37. The simulation only output 

4 unique locations.  



63 

 

 

Figure 37: Aeolus Target Location Data – 480 Second Simulation 

5.1.3 Extended Aeolus Results 

The initial 480 second simulation provided strong evidence that the original scripted 

inputs and the new SysML input provided the same results. This was a favorable outcome, but the 

concept was tested again in an extended, 3500 second, simulation. Again, both the original HSF 

script, and the SysML converged and produced identical results.  

In the original 480 second simulation, the satellite did not perform a data downlink 

maneuver due to inadequate simulation time. The 3500 second, or 58 minute, scenario was 

executed to provide additional verification of the SysML input method, and to show that the 

Aeolus subsystems were all functioning nominally. As can be seen in Figure 38, The SSDR 

percentage climbs at the same rate of the previous scenario until it reaches 18%. At this point, 

HSF finds the conditions favorable to schedule a communication downlink task. Five successive 

downlink tasks are performed until the SSDR has downlinked all data. At this point, no additional 

data is stored. 



64 

 

 

Figure 38: Aeolus Comm and SSDR State Data – 3500 Second Simulation 

The beginning of the power state data plot is identical to the previous 480 second 

simulation results. For the majority of this simulation, the satellite is in the sun, the solar panels 

are generating 150 watts, and the battery is not being discharged. The battery remains at 0% depth 

of discharge until the 2700 second mark, where a spike in power usage occurs. This spike directly 

corresponds to the communication downlink tasks. 

 

Figure 39: Aeolus Power State Data – 3500 Second Simulation 



65 

 

Again, the number of targets acquired and the corresponding incidence angle are shown 

in Figure 40. This extended simulation shows that the rate at which the satellite captured targets 

remained constant until the communication downlink tasks. At that point, the satellite continued 

to acquired targets, but at a reduced rate. This is likely due to a reallocation of power to the 

communication subsystem and the targeting priority of pointing the satellite to the downlink 

station. The satellite was able to capture 100 targets by the end of the 3500 second simulation. 

 

Figure 40: Aeolus Target State Data – 3500 Second Simulation 

The extended Aeolus simulation produced a much greater variety of target capture 

locations. The simulation now output 13 unique locations and it was, again, found that multiple 

target captures took place on an individual location.  



66 

 

 

Figure 41: Aeolus Target Location Data – 3500 Second Simulation 

5.2 ExoCube Model Results 

Further validation of the SysML modeling technique and the HSF Translator Plugin was 

accomplished by comparing the structure of the HSF input script, translated from the ExoCube 

SysML model, with the structure of the original Aeolus input script.  

5.2.1 HSF Translator Plugin Output 

The HSF Translator Plugin was used to convert the ExoCube SysML model into an input 

script which can be seen below, in Figure 42. It was again necessary for the translated input script 

to contain the same dependency and constraint structure as the original input script. This structure 

satisfies the input parameter requirements of the HSF base code and scheduling algorithm. Red 

arrows point to the Sub ID numbers, green arrows point to subsystem dependencies, and yellow 

arrows point to subsystem constraints.  

The HSF Translator Plugin was able to generate an ExoCube input script that was similar 

to the Aeolus input script. Sub ID numbers, dependencies, and constraints are identical to the 

Aeolus scenario. The primary difference between the Aeolus and ExoCube input scripts is the 



67 

 

numerical initial condition data, specifically relating to the power subsystem. This data was 

translated from the power subsystem of the ExoCube SysML model.  

 

Figure 42: ExoCube Input Script Derived from ExoCube SysML Model 

The translated ExoCube script retained the original structure created by the dependency 

and constraint relationships. The ability to consecutively transcribe the structure shown Figure 43, 

again shows two things. The first is that the SysML model contains all necessary data required by 

HSF and is correctly designed to interface with the HSF Translator Plugin. The second is that the 

HSF Translator Plugin is correctly recognizing all system and subsystem aspects within the 

SysML model and correctly transcribing them into the correct XML format required by the HSF 

scheduling algorithm framework.  



68 

 

 

Figure 43: ExoCube Input Script Dependency Block Diagram 

5.2.2 HSF .h and .cpp Scripts 

It was not possible to use the translated ExoCube input script in an HSF simulation. In 

order to run an ExoCube simulation, the scheduling algorithm would need to have been updated 

to reflect additional subsystem values specific to ExoCube. The .cpp function scripts within the 

framework primarily describe all aspects of the spacecraft’s subsystems. These, as well as many 

other aspects of the scheduling algorithm framework, would have required a detailed overhaul in 

order to reflect the much smaller subsystem parameters of the ExoCube Cubesat.  

Parameters specific to each spacecraft subsystem are embedded in these .cpp scripts. The 

power.cpp script can be seen below, in Figure 44. For example, red arrows point to two key 

variables which describe the power consumption of the spacecraft. The powerSubPowerOut and 

powerOut[te] values of 10 and 65 watts, respectively, correspond to the Aeolus vehicle power 

consumption. Conversely, ExoCube power requirements are in the single digits.  



69 

 

 

Figure 44: power.cpp Function Script 

We were unable to change the framework due to our limited experience with the 

scheduling algorithm aspects of HSF. These power values, as well as many other .cpp script 

values and additional functionality within the framework made it unrealistic to create a scenario 

specific to ExoCube within the scope of this thesis.  

5.3 Conclusion 

 The overarching goal of this thesis was to link a SysML model and HSF through the HSF 

Translator Plugin. This was examined due to the fact that a user would have to acquire highly 

specialized knowledge of HSF and its extensive framework in order to execute a simulation. If 

the user could instead employ a more common modeling tool, SysML, as the input to HSF, then 

the ability to construct and run a simulation would be available to a larger user base. The user 

would then have the ability to use HSF to execute day in the life simulations and while also 

utilizing the benefits of MBSE from the SysML model. This concept led to the question, “Is it 

possible to design a SysML model which will interface with the Horizon Simulation Framework 



70 

 

to streamline the simulation design process, while simultaneously providing the traditional 

benefits of model based systems engineering?” 

Deliverables necessary for investigation of this topic included the HSF Translator Plugin, 

A SysML model of the HSF test scenario Aeolus, a SysML model of the real-world ExoCube 

CubeSat, and Aeolus simulation scenario results created from the translated input script. All 

deliverables were completed and the final outcome produced favorable results. 

All results from the Aeolus effort of this thesis were highly favorable including the 

SysML model, translated input script, and the scenario simulation results. The original, manually 

written, system input script and the script converted from the Aeolus SysML model were 

structurally identical. HSF produced identical scheduling results after executing simulations with 

both input scripts, thus validating that the SysML model was capable of acting as a system input 

script for HSF simulations. The success of the Aeolus SysML script satisfied the initial goal of 

this thesis.  

Results from the ExoCube simulations were also highly favorable including the SysML 

model, and the translated input script. The converted ExoCube SysML script retained the required 

HSF dependency and constraint structure. The HSF Translator Plugin was also able to recognize 

new initial condition data from the ExoCube SysML model and include in the translated input 

script. This demonstrates that future SysML models can be used in conjunction with the HSF 

Translator Plugin to create an HSF system input script. The Aeolus and ExoCube SysML models 

may also serve as a starting point and base of knowledge for future SysML satellite models. 

Design teams will be able to refine and reuse the models in order to learn and improve SysML 

modeling skills.  

The successful realization of this thesis intended to incorporate the benefits of MBSE and 

SysML with the simulation capability of HSF. The work completed in this thesis has begun to 



71 

 

extend the functionality of HSF by incorporating the benefits of SysML into the model design 

process. If continued efforts are made to improve HSF, future design teams will be able to use 

this integrated modeling and simulation tool to aid in future spacecraft design activities. HSF may 

eventually lead to the realization the single body of knowledge concept which will aid in all 

phases of a satellite mission. 

5.3.1 Strengths and Weaknesses 

The greatest strength of this thesis was that the SysML input and the original input of the 

Aeolus simulation produced structurally identical results. HSF produced identical schedule results 

after replacing the original input script with the translated input script. This successful translation 

was then able to be compared to the translated ExoCube input script and it was possible to draw 

confident and optimistic conclusions regarding the future development of the concept.  

The greatest weaknesses of this thesis was the lack of insight into the internal mechanics 

of the HSF scheduling algorithm framework and subsystem scripts. Initial research was 

conducted into the functionality and dependencies of the modular HSF input scripts and the 

discrete scheduling algorithm. It was originally concluded that the input scripts described all 

aspects of the vehicle, environment, target, and time related values, and the scheduling algorithm 

was solely responsible for creating and maintaining algorithms and schedules. Our confidence 

that all HSF inputs were controlled by these three scripts allowed attention to be solely focused 

on translating the system input script. Although originally seen as a strength, this was ultimately a 

weakness because the HSF Translator Plugin did not include the functionality required to include 

all system and subsystem parameters within a HSF simulation.  

Viren and I were able to stay within close collaboration during the entirety of the thesis. 

Despite this good collaboration, another weakness was that of scheduling setbacks and slow 

progress due to the interwoven deliverables of the thesis. Work for this thesis began with myself 

researching SysML and SysML clients, obtaining a software license, and eventually designing 



72 

 

SysML models. There were setbacks in obtaining the MagicDraw license but this was not 

originally problematic. I was able to quickly begin modeling the Aeolus system after I had 

acquired an understanding of the language. It was necessary that the Aeolus model was complete 

prior to the start of Viren’s work because he required access to a full SysML based XML output 

template. The project time allowed Viren a few short months before our graduate year was 

complete and we were no longer attending classes at Cal Poly. Soon after, Viren and I found 

employment opportunities and were unable to dedicate much time to the progress of the thesis. 

This led to a massive extension of the original thesis completion timeline.  

5.3.2 Lessons Learned 

The Aeolus SysML model input was able to produce the exact results as the original HSF 

input scripts for multiple simulation executions over a variety of time frames. This validation of 

interchangeable input scripts satisfied the initial goal of this thesis in that SysML was interfaced 

with HSF to provide the benefits of both platforms. However, this change alone did not 

streamline the entire simulation design process.  

The HSF framework contains subsystem .h header scripts and .cpp function scripts. 

Parameters and algorithms maintained in these function scripts are independently and manually 

written, and were subsequently inaccessible to the input script. Unfortunately, it was found to be 

unavoidably necessary to heavily edit or redesign the subsystem function scripts, as well as many 

aspects of the framework for each new simulation. A complete knowledge of the HSF scheduling 

algorithm framework would have been required for modification or creation of a new ExoCube 

scenario.  

The focus of this thesis was limited to implementing the HSF system script from a 

SysML model and therefore, the subsystem values and functions could not be manipulated with 

the knowledge and tools available. Further work regarding the modularization of the HSF header 



73 

 

and function scripts, as well as additional capability to the HSF Translator Plugin will be required 

to create a fully automated link between SysML and HSF. 

5.3.3 Future Work 

The primary problems encountered were related to the implementation of ExoCube into 

HSF. These issues are currently being addressed by switching the HSF scripting language from 

XML to Python. Ultimately, the HSF Translator plugin can be altered or redesign to translate the 

SysML model into Python, the user will be able to incorporate the translated SysML based 

Python Scripts into HSF.  

Future work may then expand to a SysML based translation of the remaining input scripts 

into the new Python input scripts. As seen in Figure 20, the SysML model has a domain dedicated 

to Ground Systems, including ground stations and targets. All aspects of the ground systems that 

are currently described in the HSF input script can be easily modeled in SysML, translated into 

HSF required format, and used as an HSF input. Ground stations could then be easily added, 

edited, or removed as mission design progressed and understanding of ground station availability 

became better defined. Targets would also be easily added, edited, or removed as mission design 

progressed and requirements related to data collection became more defined. To model all HSF 

input scripts in SysML, a timing domain must also be added to the SysML model. The timing 

domain would include the simulation start and end times, the starting Julian date, the simulation 

time step, and the maximum number of desired schedules. 

Although the system input scripts and the HSF scheduling algorithm were designed to be 

modular, it was found that additional functionality within the framework was less than 

interchangeable. The system input script was not able to incorporate all aspects of the ExoCube 

subsystems into a new simulation. The input script created from the SysML model would have 

provided a more desirable outcome if all system requirements were established solely from the 

system input script.  



74 

 

A more autonomous transition between SysML and HSF may be possible by enabling the 

HSF Translator Plugin to create aspects of the frame work, specifically the .h and .cpp scripts. 

This new plugin functionality must recognize subsystem values described in the SysML and 

convert that data into a format accepted by HSF. This would specifically address subsystem 

parameters described in the framework including, ADCS, Comm, EOSensor, Power, and SSDR.  

This path may not be practical and it may, instead, be preferable to edit or replace 

specific subsystem values within HSF. A possible solution to this scenario involves a revision of 

HSF so that all subsystem specific values are defined within the input scripts. The completion of 

the continued modularization of HSF and the added functionality of the HSF Translator Plugin 

would allow all aspects of an HSF simulation to be fully described from the translated input script 

created from a single SysML model.  

  



75 

 

BIBLIOGRAPHY 

 

[1]  C. Carson, M. Firzgerald and S. Hallen, "Model Driven Development with SysML," IMB, 

INCOSE Symposium, 2009. 

[2]  S. Friedenthal, A. Moore and R. Steiner, A Practical Guide to SysML: The Systems 

Modeling Language, Burlington, MA: Morgan Kaufmann Publishers, 2008.  

[3]  J. Murray, "Model Based Systems Engineering (MBSE) Media Study," Portland State 

University, Department of Systems Engineering, 2012. 

[4]  IEEE, "IEEE Standard Glossary of Software Engineering Terms," IEEE Std 610.12-1990, 

vol. 610, no. 12, p. 84, 1990.  

[5]  "SysML Forum," PivotPoint Tech Corp, 2015. [Online]. Available: 

http://sysmlforum.com/sysml-faq/. 

[6]  J. Wolfrom, "Model-Based Systems Engineering (MBSE) Overview," Applied Physics Lab. 

[7]  B. Butler, "Dynamic Model Creation and Scripting Support in the Horizon Simulation 

Framework," California Polytechnic State University, San Luis Obispo, 2012. 

[8]  R. Munakata, "CubeSat Design Specification," California Polytechnic State University, San 

Luis Obispo, 2009. 

[9]  Cal Poly Aerospace Department, "Winter News Letter," Cal Poly, 2009. [Online]. Available: 

https://aero.calpoly.edu/newsletters/winter-2009/cp-6-ready-fly/. 

[10]  D. o. L. Vega Programme Office, "Educational Payload on the Vega Maiden Flight - Call for 

CubeSat Proposals," European Space Agency, 2008. 



76 

 

[11]  M. Crook, "NPS CubeSat Launcher Design, Process and Requirements," Naval Postgraduate 

School, Monterey, 2009. 

[12]  D. Leonard, "Space.com," 8 September 2004. [Online]. Available: 

http://www.space.com/308-cubesats-tiny-spacecraft-huge-payoffs.html. 

[13]  S. Spangelo and et-al, "Applying Model Based Systems Engineering to a Standard CubeSat," 

IEEE, Vols. 978-1-4577-0557-1/12, 2012.  

[14]  e. a. J. Cutler, "Initial Flight Assessment of the Radio Aurora Explorer"," in Proceedings of 

the 25th Small Satellite Conference, Logan, Utah, August 2011.  

[15]  S. Spangelo and et-al, "Model Based Systems Engineering (MBSE) Applied to Radio Aurora 

Explorer (RAX) CubeSat Mission Operational Scenarios," Institute of Electrical and 

Electronics Engineers, no. IEEE AC Paper #2170, p. 18, 2013.  

[16]  e. a. David Kaslow, "Integrated Model-Based Systems Engineering (MBSE) Applied to the 

Simulation of a CubeSat Mission," Institute of Electrical and Electronics Engineers, no. 

IEEEAC Paper #2289, p. 14, 1/22/2014.  

[17]  N. Magic, "NoMagic.com," No Magic Inc., 2015. [Online]. Available: 

http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html. 

[18]  V. D. T. N. PARASTOO MOHAGHEGH, "Definitions and Approaches to Model Quality in 

ModelBased," Sintef research co., Trondheim, Norway, 2009. 

[19]  E. Mehiel, "Model Based Systems Engineering," Cal Poly, San Luis Obispo, 2012. 

[20]  PolySat, "CP-10 (ExoCube)," California Polytechnic State University, 2015. [Online]. 

Available: http://polysat.calpoly.edu/launched-missions/cp10-exocube/. 



77 

 

[21]  C. Paredis, "Mode-Based Systems Engineering: A Roadmap for Academic Research," 

Geogria Tech, Model-Based Systems Engineering Center, 2011. 

[22]  R. Cloutier, "SysML RFI Analysis Results," Object Management Group, Long Beach, CA, 

2004. 

[23]  V. Dehlen, P. Mohagheghi and T. Neple, "Definitions and Approaches to Model Quality in 

Model Based Software Development – A Review of Literature," Object Management Group, 

2008. 

[24]  C. Delp, "Viewpoint Modeling and Model Based Media Generation for Systems Engineers: 

Document Generation and Scalable Model Based Engineering," Jet Propulsion Laboratories, 

Pasadena, 2011. 

[25]  S. Friedenthal, R. Griego and M. Sampson, "INCOSE Model Based Systems," INCOSE, San 

Diego, 2007. 

[26]  H. Graves and Y. Bijan, Using Formal Methods with SysML in Aerospace Design and 

Engineering, Springer Science, 2011.  

[27]  R. Griego and M. Dee, "INCOSE MBSE Challange Teams," INCOSE, 20 January 2011. 

[Online]. Available: http://mbse.gfse.de/. 

[28]  C. Paredis, "System Analysis using SysML Parametrics: Model-Based Systems Engineering 

Center," Gorgia Tech, Model-Based Systems Engineering Center, 2011. 

[29]  D. Kaslow and et-al, "Integrated Model-Based Systems Engineering (MBSE) Applied to the 

Simulation of a CubeSat Mission," IEEE, Vols. 978-1-4799-1622-1/14, no. 2289. Version 5, 

2014.  

 



78 

 

APPENDICES 

A: ExoCube SysML Diagrams 

 

Figure 45: ExoCube ADC Subsystem IBD 

 

Figure 46: ExoCube ADC subsystem BDD 



79 

 

 

Figure 47: ExoCube C&DH subsystem IBD 

 

Figure 48: ExoCube C&DH subsystem BDD 



80 

 

 

 

 

Figure 49: ExoCube Payload subsystem IBD 

 

Figure 50: ExoCube Payload subsystem BDD 



81 

 

B: ExoCube Operational Mode Diagrams 

 

Figure 51: ExoCube Operational Patrol Mode 

 

Figure 52: ExoCube Operational Attitude Correction Mode 



82 

 

 

Figure 53: ExoCube Operational Data Transmission Mode 


