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ABSTRACT 

Effect of Low Velocity Impact on the Vibrational Behavior of a Composite Wing 

 

Richard de Luna 

 

 Impact strength is one of the most important structural properties for a designer to consider, but it 

is often the most difficult to quantify or measure.  A major concern for composite structures in the field 

is the effect of foreign objects striking composites because the damage is often undetectable by visual 

inspection.  The objective for this study was to determine the effectiveness of using dynamic testing to 

identify the existence of damage in a small scale composite wing design.  Four different impact locations 

were tested with three specimens per location for a total of 12 wings manufactured. The different impact 

locations were over the skin, directly over the rib/spar intersection at the mid-span of the wing, directly 

over the middle rib, and directly over the leading edge spar.  The results will be compared to a control 

group of wings that sustain no damage.  The wing design was based on an existing model located in the 

Cal Poly Aerospace Composites/Structures lab.  The airfoil selected was a NACA 2412 airfoil profile 

with a chord length of 3 inches and a wingspan of just over 8 inches.  All parts cured for 7 hours at 

148°F and 70 psi.  The wings were each tested on a shaker-table in a cantilever position undergoing 1g 

(ft/s
2
) acceleration sinusoidal frequency sweep from 10-2000 Hz.  The 1

st
 bending mode was excited at 

190 Hz and the 2
nd

 bending mode was excited at 900 Hz.  After the pre-impact vibrational testing each 

wing was impacted, excluding the control group.  To verify the experimental results, a finite element 

model of the wing was created in ABAQUS.  The frequency and impact numerical results and the 

experimental results were in good agreement with a percent error for both the 1
st
 and 2

nd
 mode at around 

10%. 
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1. Introduction 

 In this chapter, the definition of composite materials and composite manufacturing methods will 

be explored.  First, a breakdown of what makes a material composite will be evaluated and then a few 

different types of composite materials are introduced.  Afterwards, some manufacturing techniques will 

be discussed.  Finally, this chapter will wrap up with a look at the effect of impact damage on composite 

structures, previous work done in this area and the objective and scope of this study. 

1.1. Overview of Composites 

 Composite materials are not a new discovery found in the last few decades, but have been around 

for thousands of years.  Some of the earliest uses for composite materials came from the manufacturing 

of mud bricks by the Israelites [32].  They combined clay and straw to create bricks that were able to 

reinforce buildings, better than traditional clay bricks.  Another example of early composite usage is the 

composite bow used by the Mongols in their conquest of Asia.  This bow was fashioned from a 

lamination of bone, wood, and glue and was able to generate more power than traditional bows.  

Throughout history, it can be shown that composites have been implemented to give someone an 

advantage over substitute items or systems.  More recently, this has been occurring in the aerospace 

industry with aircraft and spacecraft systems making the transition to designs that heavily implement 

composite materials. 

 What defines a composite for this thesis is two or more materials combined on a macro level to 

create a new material with improved properties.  The key distinction between composites and metal is 

that composites vary on a macro scale while metal alloys, which are also a combination of multiple 

materials, vary on a micro scale.  On a large scale, alloys are said to be homogenous and therefore cannot 

be considered a composite material.  One major benefit to composites is the user’s ability to tailor a 

composite to the type of situation it will be used in.  If a very stiff, rigid structure is desired, a mixture of 

resin and fibers can be created to adhere to that design.  If instead a flexible yet light structure is desired, 
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a different combination of resin and fiber can work.  Some of the different properties that can be 

specifically calibrated are: stiffness, strength, fatigue life, weight, corrosion resistance, thermal 

conductivity, and thermal insulation.  It is important to note that not all of these properties can be 

improved at once.  Each property has tradeoffs that must be made.  For example, if you want a very 

strong material, then the fatigue life of the material will be much shorter.  These types of tradeoffs are 

always considered when determining what material will be used in a design. 

 Across the board, composite materials are experiencing increased usage over traditional materials 

(e.g. aluminum, steel).  The reason for this growth is due to the uncommon customization that can be 

performed with composite materials and the general overall weight savings gained from using composite 

materials over metals. 

1.2.  Types of Composites 

 There are many different ways to classify composites today varying from the type of fiber 

reinforcement used to the type of resin mixed with the fibers.  The various types of reinforcements are 

particulate, fibrous, and laminated [1].  Each type of reinforcement can produce a material with very 

different characteristics so it is important to have an idea of how each material performs before making a 

selection in a design. 

 Particulate composites consist of one or more materials contained or suspended within a different 

matrix material.  This type of composite can be composed of both metallic and nonmetallic particles 

depending in the desired use.  One very common particulate composite used worldwide is concrete.  

Concrete is a mixture of rock and sand contained within a mixture of cement and water.  When the water 

and cement are mixed, a chemical reaction causes the material to harden while the sand and rock is used 

to strengthen the final material.  Concrete has exceptional compressive properties and can last an 

incredibly long time under appropriate conditions.  However, this type of composite is very susceptible 

to cracks and creep causing failures.  Another form of particulate composite is cermet.  Cermet is a 
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mixture of nonmetallic particles suspended in a metallic matrix [1].  Major uses of cermets are in 

resistors and capacitors.  This is because a cermet can operate in high temperature environments (e.g. 

resistors). 

 Fibrous or fiber-reinforced composite materials can be classified as a combination of very thin 

fibers embedded into a matrix, typically resin.   The purpose of the resin is to suspend the fibers in place 

and facilitate load transfer between them as well as protect the fibers from environmental damage and 

wear.  Figure 1.2.1 illustrates the typical fiber-reinforced composite material [25].  There are two 

classifications of fibrous composites; continuous and discontinuous.  Continuous fibers excel under 

loading conditions that involve linear forces applied along the fibers but tend to be susceptible to failures 

under shear loadings.  These types of materials are also likely to be brittle and have little to no plasticity 

before failure.  This type of fiber is typically made by aligning fibers in a specific direction and then 

embedding resin into the fibers to give some rigidity to the structure.  Discontinuous fiber composites are 

used more in secondary low stress structures 

due to the lower overall strength properties.  

This composite is created as continuous fiber 

composites except the orientation of fibers is 

not controlled.  This means that discontinuous 

fiber composites cost much less to 

manufacture.  Two of the most used fiber 

reinforcements are glass-fiber polymers 

(fiberglass) and carbon-reinforced polymers. 

 The final type of composite material is a laminate.  A laminate is a combination of at least two 

different materials bonded together to form a single material.  Laminates are used to combine the best 

aspects of multiple layers to result in a higher quality material such (e.g. low weight, high strength, or 

elevated attractiveness).  Laminates can be made of multiple fibrous composite layers at varying angles 

Figure 1.2.1: Unidirectional fiber orientation of a 

composite laminate 
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to improve certain traits.  For example, when building a tube out of composite materials carrying torque 

loads, orienting fibers at +45° and -45° allows the composite laminate to carry much higher torque loads 

when compared to a tube with fibers oriented at 0°.  However, if you require a part to have very high 

tensile strengths, then having a laminate with a majority of fibers oriented along the tensile load will 

perform better than a laminate of +45° and -45°.  This simple customization is the reason for the 

widespread use of fiber-reinforced composites today. 

 Another form of laminate is a sandwich panel.  This type of composite typically is made up of a 

low density core (e.g. foam, honeycomb) being “sandwiched” and bonded between two thin laminated 

face sheets.  This process dramatically increases structural stiffness with very little weight increase due 

to the low density core material used.  Attempting to mimic this stiffness with a laminate is not feasible 

because the number of layers required to produce the equivalent stiffness would be very cost inefficient.  

Typical face sheet materials include fiberglass, carbon fiber, and natural fibers (e.g. hemp).  A practical 

use for sandwich panels is floor and wall panels in aircraft because large area wall and floor panels can 

be created with very little added weight to the structure.   

1.3.  Manufacturing Techniques 

 The manufacturing process for composites varies widely depending on the cost and time 

available.  Each process has its own advantages and disadvantages and these characteristics is how 

manufacturers decide how to cure the composite materials used.   These processes include: hand lay-up, 

resin infusion, press molding and autoclaving.  There are common traits that each of these processes 

require.  The first is the addition of thermal energy to cure and solidify the matrix of the composite.  This 

can be done either by heating the part to a desired temperature or using a two-part matrix generating its 

own heat through a catalytic reaction.  The second common trait is pressure being applied during curing.  

Pressure needs to be applied to the part to squeeze out excess resin and to ensure no air bubbles in 

between the laminates.  Air bubbles between the laminates can severely degrade the structures overall 

strength and may cause premature failures. 
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 The most common method is the hand lay-up method.  This method involves impregnating dry 

fibers with resin by hand and then layer by layer, placing sheets over a mold and then curing at room 

temperature while under a vacuum.  This process can be sped up by artificially heating the part in an 

oven or on a heat table.  The resin typically used in this method is a low viscosity resin that flows easily 

and hardens over a long time period.  This is done specifically so that excess resin can be drawn from the 

part under vacuum.  A side effect of this manufacturing process is that the laminate quality is entirely 

dependent upon the operator’s skill and exhibits a higher variability from batch to batch.  This type of 

process would not be suitable for large scale or high performance designs.   

 Resin-infusion is a method mimicing the hand lay-up method but differentiates itself when the 

fiber is impregnated with resin.  For the hand lay-up, resin is applied by hand and then sealed in a 

vacuum whereas with resin-infusion, the vacuum is first pulled over the dry fibers and then the resin is 

drawn into the mold by the vacuum pump.  This method produces a higher quality part because the resin 

is more evenly distributed. 

There is an alternative to this method and it involves the use of pre-impregnated (pre-preg) fiber.  

There are two methods to manufacturing pre-preg, the first involves a two-step process by which resin is 

spread across one face of a sheet and spun into rolls [7].  The second step is to mix the fiber and resin 

into a single roll.  Done by drawing fiber through a series of rollers, a heating table, a cooling table, and 

a light table.  The purpose of the heat table is to liquefy the resin so that it flows around the fibers and 

creates a uniform ratio of fibers to resin.  The cooling table is then used to cause the resin to become 

more viscous and bind to the fibers while the light table is used to inspect the roll for defects or 

anomalies that can occur during manufacturing.  This first method is used to impregnate both 

unidirectional fibers as well as weaves (Figure 1.3.1)[ 7].  The second method of impregnating the fiber 

is to combine the first and second stages into a single step. This method is used only for woven fibers 

[7].  It begins with a roll of woven fiber being drawn into a resin bath.  The resin bath is then cooled to 

solidify the resin.  Using pre-preg is superior to a hand lay-up because of the consistency increase from 
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part to part.  It is also easier to lay-up due to the highly viscous nature of the resin used in pre-preg.  

Resin used for hand lay-ups tend to flow very easily while resin used in pre-pregs is very tacky and 

stable.  These resins are designed to begin flowing after certain temperatures are achieved.  However, 

lead to a major challenge for working with pre-laminates as they require bulky machinery to heat the 

resin for curing.   

One method of curing pre-preg laminates is to use a heat press (Figure 1.3.2) to squeeze excess 

resin and air out of the laminate while adding energy into the structure to solidify the resin.  This method 

requires a minimum of a two-piece mold that can withstand both the temperatures and compressive 

forces applied during curing.  The press pictured uses a piston to drive the bottom platen upward and 

compressing the substance between the upper and lower platens while also adding heat to cure the part.  

Heat presses are not restricted to this size.  Some presses produce wall sized panels for aircraft and have 

the capability of compressing the part under thousands of pounds of force.   

 

Figure 1.3.1: Method of impregnating fibers with resin 
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The last method of manufacturing is the 

use of an autoclave. This is the preferred 

method of curing for high quality and high 

consistency parts.  The process involves laying 

up the composite over a mold and then 

enclosing the part in a vacuum bag and 

debulking the part.  Debulking is the process of 

leaving a part under vacuum for a few minutes 

to draw as much air as possible out of the layers.  

After debulking, a part is taken to the autoclave 

which typically is a pressurized and heated 

cylinder.  Autoclaves produce such high quality 

parts due to the high pressure achieved during 

the curing cycle.  Autoclaves can cure parts at pressures upwards of 90 psi and temperatures from 250°F 

and above. 

1.4. Impact Behavior of Composites 

 A constant concern in composite structures is the effect of foreign object impacts on the structural 

integrity of any system using composite materials.  Impacts can vary from common low velocity strikes 

like a tool drop during maintenance to high velocity impacts like debris striking the aircraft.  The most 

dangerous and least common type of impact is a high velocity, high mass impact such as a bird strike.  

An example of this type of impact can be seen in Figure 1.4.1 [29].  Collisions such as these can not only 

severely damage the structure but also cause catastrophic events, like in flight emergencies.   However, 

low velocity impacts are just as dangerous because of how difficult this damage can be detected.  

Overall, low velocity impacts reduce the strength of composites and often cause considerable subsurface 

damage to a structure.  The most common impacts of this type that occur are hail, debris at takeoff, or 

Figure 1.3.2: Heat press used to cure composite 

materials in the Cal Poly aerospace composites lab 
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tools dropped during maintenance of the aircraft.  This type of damage is typically simulated with either 

a drop tower or air cannon. 

 Impact strength is a structure’s ability to resist high-rate loading.  This is one of the most 

important structural properties for a designer to consider, but is often the most difficult to quantify or 

measure.  A constant concern for composite structures out in the field is the effect that nonvisible 

damage will have on a system.  An impact into a composite structure can create interlaminar damage, 

often resulting in a severe 

reduction in strength and 

stability of the structure 

(e.g. Figure 1.4.2 )[30].  

In the Figure 1.4.2, the 

danger of impact damage 

is not just isolated to the 

immediate area 

surrounding an impact 

Figure 1.4.1: Aftermath of a bird strike to the nose of an aircraft 

Figure 1.4.2: Effect of impact damage on a composite laminate 
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location, but also spreads the damage outward between composite layers.  It is the subsurface damage 

like the interlaminar cracks that are very difficult to detect. 

1.5.  Previous Research on Impact behavior of Composites 

 There have been vast amounts of papers and studies done on the impact behavior of composites 

with a focus on low velocity impacts.  Perez et al., [9] examined detecting impact damage using 

vibrational testing of composite laminates.  The dynamic loading condition was each laminate hanging 

freely and then tapped with a roving hammer to produce the modal excitations of the laminate.  The 

testing showed that large changes to the dynamic characteristics of the laminates were key indicators a 

laminate had sustained impact damage.  The laminates were made of unidirectional carbon fiber plies 

with an orientation of [45°/0°/-45°/90°]5s for a total of 40 plies per laminate used.  The impact test 

followed ASTM D7136 with impact energies ranging from 6.6 to 70 J.  The dynamic characteristics of 

each sample were characterized using a mono-axial accelerometer.  The results of the testing showed 

impact-induced damages resulted in detectable changes in the vibration response of the test coupons.  It 

was also determined the mode shapes tended to show the largest changes. 

 A second effort into assessing the delamination of composite materials was done by Garcia et al. 

[10], in which a method for diagnosing damage in structures was tested.  The method tested was to 

measure the time domain structural vibration response of test specimen.  Delaminations were created in 

the test specimens by placing Teflon sheets to create a discontinuity between the laminate layers.  It was 

determined that this method of detection was measure small changes in the vibrational response of the 

composite laminates.  It was also shown that detection method was able to localize the delaminated areas 

based on looking at the nodal responses of each tested specimen. 

1.6.  Previous Research Efforts at Cal Poly 

 A previous research study that was done at Cal Poly by Kodi Rider [3] also used vibrational 

characteristic changes to assess how well damage arrestment devices (DADs) worked on keeping impact 



 

10 

 

damage localized to the epicenter of the impact strike.  The DADs were fiberglass beams imbedded into 

composite sandwiches with the DADs running along both the length and width.  The sandwiches were 

impacted using the Dynatup 8250 in the Cal Poly Aerospace Composites/Structures Lab and then placed 

on the Unholtz-Dickie shaker table system and loaded under a 1g sinusoidal acceleration from 10-2000 

Hz.  The results of this research was change in the first and second mode time response of specimen 

signaled an impact had occurred and damage was present in the structure.  The DADs proved to aid in 

keeping structural damage localized to the impact site.  It was also shown that varying the location of an 

accelerometer could effectively detect the presence of face-core delaminations, especially near impact 

sites.  The results if this research was the DADs would improve the damping characteristics of composite 

sandwiches under vibrational loading.  It was also shown that accelerometers can effectively detect 

damage of a structure. 

1.7.  Objective of the Study 

 Previous research has all focused on simple geometries while this study is meant to determine if 

this method can work on more complex structures.  The geometry was a small scale wing structure 

composed of a skin, spars, and ribs.  The objective of this study was to determine the effectiveness of 

using accelerometers to detect damage of a wing structure after being damaged by a low-velocity impact.  

The design of the wing was based off of an existing wing model that is used in the Aerospace 

Experimental Stress Analysis class with some slight changes to fit the constraints of the testing 

apparatus’ used in this study.  The two testing apparatus used were the Unholtz-Dickie electrodynamics 

shaker table system and the Dynatup 8250 vertical drop weight impact testing machine.  Dynamic testing 

was done with a 1g sinusoidal sweep from 10-2000 Hz with accelerometers being placed at various 

locations across the wing to measure dynamic characteristics.  The impact testing was done so various 

locations of the structure were impacted.  Because the wing geometry had ribs and spars, the internal 

geometry varied along the span.  Four different impact scenarios were tested: impacts over the skin, over 

the leading edge spar, over the middle rib, and over the middle rib/leading edge spar intersection.  There 
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was also a set of control wings that were not impacted to be used as a baseline for the testing.  Three 

wings were created for each scenario and assembled accordingly.  All parts of the structure were cured in 

an autoclave for 7 hours at 148°F and 70 psi.  To determine whether or not damage is detected by the 

accelerometers, the natural frequencies and damping ratios of each wing was analyzed and compared 

before and after testing to determine if a large change had occurred at specific locations or across the 

entire structure.  The structure was also modeled in Abaqus and analyzed to determine of the dynamic 

characteristics of the numerical model could match the experimental results of the wing structure. 

1.8.  Scope of the Study 

 The remainder of this study is organized in order of setting the ground work for testing, the 

creation of the testing specimen, and then the experimental and numerical results.  Chapter 2 introduces 

the method of testing for material properties as well as the impact and dynamic tests some important 

parameters of these tests.  This section also goes over any upgrades or changes done to testing apparatus 

such as the rewriting of the LabVIEW software used to operate the Dynatup 8250 impact machine.  The 

LabVIEW software was rewritten to improve the troubleshooting capabilities of the user as well as 

implement the used of strain gages during testing.  Chapter 3 goes over the design process for the wing 

structure and the decisions constraints involved in the design.  The design and creation of testing fixtures 

is also discussed in this section with various fixtures being required to effectively test the wing 

geometry.  Chapter 4 discusses the manufacturing and assembly process of the wing structure.  Topics in 

Chpter 4 include the manufacturing of the skin, spars, and ribs as well as the final assembly step of the 

structure and the specific method of vacuum bagging and machining are all explained here.  Chapter 5 

discusses the results of the pre- and post-impact dynamic testing and the results from the impact test 

itself.  For the impact test, the failure modes of the structures as well as the maximum force measured 

were analyzed to understand how the structure absorbed the impact at the various tested locations.  The 

vibrational testing was analyzed by first looking at the average value change of each wing to determine if 

major changes had occurred and then a point by point check was completed to see if any drastic changes 
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had occurred near the impact sites.  Chapter 6 discusses the creation of the finite element model used to 

model the wing design, the implementation of the frequency sweep check and the impact step, and the 

comparison of the experimental and numerical natural frequencies.  Chapter 7 gives an overview of the 

research results as well as conclusions drawn from the data.  Chapter 8 will provide direction for future 

works. 

  



 

13 

 

2. Testing Methodology and Analysis 

 This chapter will go over the various testing done and the approach taken for each test.  The first 

section evaluates the different testing methods used to determine the material properties of the 

LTM45EL carbon fiber weave used in the project as well as how the values are determined.  Tensile and 

compressive testing was done.  After that, anything and everything involved in the use of the Dynatup 

8250 impact testing machine including new LabVIEW software created to improve the troubleshooting 

and testing capabilities of the machine will be evaluated.  Also covered is the implementation of strain 

gage measurements using the LabVIEW software as well as the analysis used to determine the strain 

measurements.    This chapter will wrap up with the testing methodology for the dynamic test as well as 

how the damping ratio is calculated. 

2.1.  Material Property Testing 

 In order to compare testing results to finite element results, the material properties of the 

LTM45EL needed to be determined.  Due to testing limitations, only a few types of ASTM test methods 

can be performed because a lack of fixtures.  The test method performed 

was ASTM D3039 [22].  This test method requires a uniaxial testing 

machine to apply either a tensile or compression load.  The Instron 8801 

Servo hydraulic Fatigue Testing System located in the Cal Poly Aerospace 

Structures/Composites lab was used to perform the ASTM methods above.  

The fixtures used were heavy-duty hydraulic wedge grips that applied a 

shear force to the test coupons to facilitate loading.  The Instron 8801 is 

capable of tensile and compression loading up to 22,000 lbf.  Due to carbon 

fibers low crush resistance it was important to apply tabs to every tested 

specimen to ensure failure of the specimen occurred in the gage section 

rather than the grip regions.  Tabs used were made of AL 6061-T6 sheet 

metal that was 1/8
th
 inch thick.  The tabs were bonded to the specimens 

Figure 2.1.1: ASTM D3039 

Tensile Testing of Carbon 

Fiber Specimen 
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using Magnolia 56 A/B structural adhesive.  It is important that the tabs be as close to parallel as 

possible so no bending or torsional stress is induced during testing.  To ensure this, specimens were 

placed in the hydraulic press located in the Cal Poly Aerospace Structures/Composites lab just after the 

application of structural adhesive and placement of the tabs and compressed between two plates for 6 

hours under 100lbf.  The hydraulic press was used because the two plates used on the press were 

designed and maintained as close to parallel as possible.  To prevent dis-bonding of the tab and 

specimen, the tab face was scratched up to increase adhesion. 

 ASTM D3039 which describes the process used to determine tensile properties for polymer 

matrix composite materials.  This method requires long, thin strips to be pulled along the long axis of the 

coupon until failure while measuring load and extension for the material.  The test uses an extension rate 

to move the lower head down, stressing the coupon until failure.  The lower head moves at a rate of 0.05 

inches/minute as stated ASTM D3039.  Load, extension, stress, and strain are all recorded every 0.1 

seconds until failure.  The failure criterion for this test was a 40% drop in applied load occurred.  In 

order for the values to be considered correct, a set of 5 specimens needed to show similar failure 

strengths.  Test specimens were considered to be balanced and symmetric due to the symmetry of the 

LTM45EL weave.  Based on this assumption, the suggested dimensions were for each strip was 10 

inches long, 1 inch wide and 0.1 inches thick.  In order to achieve this thickness, 6 layers of LTM45EL 

weave were laminated together and cured in the autoclave for 7 hours at 158°F and 70 psi.  The laminate 

was cured at a dimension of 12 inches by 12 inches.  The oversizing of the laminate was to minimize 

edge effects to the laminate’s performance.  The test strips were cut to size using a water-cooled tile-saw 

and tabbed using the structural adhesive named above.  After tabbing was completed, the test strips were 

numbered and then tested in the Instron 8801.  Test specimen were individually loaded and tested, noting 

failure modes for each tested specimen.  All five tested specimen failed in the gage section which is 

desired, as well as having ultimate loads very close to each other.  Results for this experiment can be 

found in chapter 5.  A drawing of the tensile specimen can be seen in Figure 2.1.2. 
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 The only analysis required for this data is to determine the modulus of each specimen.  The 

modulus is determined by loading in the stress and strain data from the raw data files into MATLAB and 

then fitting a linear polynomial to that data.  Once the polynomial has been determined, two points are 

then manually selected from a plot using MATLAB’s ginput function and the slope between the two 

points is calculated.  Since a liner polynomial is applied to the data, selecting two points anywhere in the 

line will produce the same modulus. 

2.2.  Dynatup 8250 System and LabVIEW GUI 

 The impact testing followed ASTM D71 36 [24] and was performed on the Dynatup 8250 drop 

weight impact machine located in the Cal Poly Aerospace Structures/Composites lab.  The machine 

consists of a housing where test specimens are damaged by dropping a crosshead.  The crosshead 

consists of interchangeable weight plates ranging from 5 lbf to 75 lbf.  The energy from the drop is 

channeled into the impact tup.  The tup is a 0.625 inch diameter rod of hardened steel that drives into the 

test specimen to cause localized damage.  Mounted to the tup was a THD-3K-W through hold load cell 

from Transducer Techniques and a model 1011a piezoelectric accelerometer from VIP Sensors.  At the 

Figure 2.1.2: Drawing of ASTM D3039 Tensile test specimen 
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bottom of the testing section is a clamping fixture designed by 

Daniel Barath and Dr. Elghandour in 2013 [31].  The fixture is 

used to clamp a specimen in place during testing.  To the right 

and just above the clamping fixture is a LED light and a Si-

biased detector used to measure the instantaneous velocity at 

impact.  The two data acquisition systems used is a NI USB-

9162 DAQ[18] card and a NI SC-2345 Signal Conditioning 

box [19].  The software used to run a test is a LabVIEW 

software written by Kodi Rider in 2012 and updated by Jeffery 

Carter in 2014 [5].  After data is processed by the DAQs, the data is then saved to a LabVIEW data file 

and stored through LabVIEW.  Over the next few paragraphs will be a more detailed description of how 

the Dynatup 8250 system operates. 

 To measure the instantaneous velocity of the crosshead, LED light is pointed directly at the Si-

biased detector causing the detector to output a voltage [16].  When the LED light is obstructed, the 

voltage output of the detector drops close to zero.  A two-pronged flag attached to the crosshead passes 

between the LED light and detector, obstructing the light twice and creating two distinct data points in 

time.  By measuring the distance between the two flags as well as counting the time elapsed between the 

two low voltage points, the speed of the cross head can be calculated.  The LED light is powered using 

an NI SCC-AO10 isolated voltage output carrier and provides a voltage of 3 Vdc to power.  The voltage 

output from the detector is read into LabVIEW and stored for later analysis.  It is important to verify that 

the LED light and detector are in alignment before testing.  Equally important is to verify only the 

prongs of the flag cross the light beam, otherwise, the velocity data can be drastically effected. 

 In order to obtain the force versus time history and impact force of the test, a THD-3K-W load 

cell was used.  The load cell has a maximum loading of 3000 lbf with an accuracy of +/-1% of the 

measured force.  It is a thru-hole style cell that was mounted between the impact tup and crosshead 

Figure 2.2.1: Si Detector and laser used 

to measure impact velocity 
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assembly.  It was determined over the course of this thesis that this loading configuration was improper 

and did not measure the true impact force.  This , along with a solution, is explained in Section 3.4.2 

with the redesign of how the load cell is loaded.  The load cell is connected to a NI SCC-SG24 two-

channel load cell input module that supplies a 10 Vdc excitation voltage to the full bridge circuit inside of 

the load cell.  The output of the load cell ranges from 0-20 mV/V (millivolts per volt) which corresponds 

to a force range of 0-3000lbf. 

 The accelerometer is attached to the load cell using tacky wax and is used to measure the 

acceleration time history of the impact event.  The accelerometer is a single axis accelerometer that 

outputs a pC/g (picocoulombs per g) signal which is too small for the DAQ to measure.  The signal is 

passed through a VIP Sensors 5004-10 charge converter that converts the high impedance charge signals 

from the accelerometer to low impedance voltage signals.  The charge converter had a gain of 10 mV/pC 

(millivolts per picocoulombs).  After passing through the charge converter the signal is then read into a 

NI SCC-ACC01 single channel accelerometer input module. 

 The LabVIEW software created by Kodi Rider used two DAQ Assistant blocks corresponding to 

the two different DAQs described earlier.  Raw data was outputted from these two blocks and sent to 

three waveform graphs, which plotted live data from the accelerometer, 

load cell, and detector.  Raw data was also written and stored in a .lvm file 

to later be analyzed in MATLAB.  One drawback to the LabVIEW code 

written by Kodi was the waveform graphs were not updated until after a 

test was run.  This indicates if troubleshooting for the measurement devices 

was necessary to be completed, a new run was required to be performed 

anytime a change was made, which would increase the time it would take 

for troubleshooting to be completed.  Another flaw to the software was it 

was difficult to change the runtime of a test or the rate at which data was 
Figure 2.2.2: Original 

Fixturing of Load Cell 
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polled.  In order to do this, the DAQ Assistant boxes needed to be individually opened and altered as did 

the time of a run.  Additionally, instances when calibrating the machine where test runs were lost or 

incorrectly saved because live data readings from the various pieces of equipment were not available.  

One instance occurred when the LED light and detector were miss-aligned after replacing a specimen in 

the test section causing the velocity data from run to not be saved.  For these reasons, a new LabVIEW 

code was written with the assistance of Bradley Schab. 

 The new software implemented a real-time updating of the waveform graphs so that the steady-

states of each signal could be verified and that the devices were working properly.  Another 

improvement to existing GUI was the implementation of Time and Rate input boxes.  The boxes worked 

to determine how long the waveforms would update as well as how fast the data was polled.  For this 

thesis, the waveforms were updated every second and data was taken at a rate of 50 kHz.  A toggle 

switch was also implemented in the GUI so that storing of the data could be turned on or off at any time.  

Once the toggle switch isswitched on, all data taken from that point and in the future will be stored in a 

temporary array until either the toggle switch is switched off or the data is saved by clicking the save 

button in the GUI.  The save button will allow you to name and save a Microsoft Excel file to any 

location you would like.  After saving, toggling the store data switch will remove any stored data and the 

GUI will be ready to perform the next test without stopping.  This means the LabVIEW software can run 

continuously while able to save testing runs, reducing the amount of time required between each test.  In 

the excel file, data is stored in three columns with column A being load cell data, column B 

accelerometer data, and column C detector data.  The block diagram for the new LabVIEW GUI can be 

seen in Figure 2.2.3. 
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 It was also desired to upgrade the LabVIEW software to be able to record data from multiple 

strain gages as there are three NI SCC-SG01 two-channel modules not in use.  The modules read in 

voltage changes from strain gages with an excitation voltage of 2.5 Vdc.  For use with strain gages, a 

separate LabVIEW software file was created implementing up to 4 strain gages.  The ability to use more 

strain gages can be done in the future by simply adding new channels to the DAQ assistant mimicking 

the existing architecture.  Operating the GUI is the same as running the previous version with the strain 

gage data being added in columns after the initial three columns reserved for the load cell, accelerometer 

and detector data.  To verify that the strain gages were operating correctly, a metal strip was loaded into 

Figure 2.2.3: Block Diagram of new LabVIEW GUI 
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Instron and loaded to 5000 lbf while simultaneously recording strain data through the LabVIEW 

software.  Data was analyzed in MATLAB and the calculated modulus was compared to the ideal values 

for aluminum and was within 1%.  This test validated the NI SCC-SG01 modules were reading in data 

correctly.  The LabVIEW GUI with the strain gage implementation is shown in Figure 2.2.4. 

The analysis done for impacted specimen consists of a few sorting algorithms in MATLAB to 

find when free fall begins, when the initial contact between the tup and the test specimen occurs, when 

the detector voltage drops, and the max force applied during impact.  Data is loaded into MATLAB 

Figure 2.2.4: Block Diagram of new LabVIEW GUI with measurements of strain gages 
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using the csvread function and is then separated into arrays for load, acceleration, velocity, and 

individual strain gages.  The detector and accelerometer arrays are passed through a moving average 

filter to smooth out the data.  In order to obtain the velocity at impact, the detector data is inverted and 

the findpeaks function is used to locate the first two peaks in the data set.  The data is inverted because a 

steady state voltage is higher than when the prongs of the flag intersect the light beam, so inverting the 

data turns the valleys into peaks.  The reason the first two peaks are found is because for certain cases, 

the crosshead can bounce after impact and intersect the LED light again causing a new set of peaks in the 

data.  Once the peaks are located, the code uses the data rate to determine the time elapsed between 

peaks and the velocity is calculated by dividing the distance between the two peaks by the time elapsed.  

The maximum impact force is determined by simply searching the load cell array for the maximum value 

measured during testing.  To determine the strain applied during impact, the voltage data is read in and 

calculated using an equation found in the NI SCC module catalog.  The equation converts the voltage 

change into a strain measurement.  The equation can be seen below and were taken from the National 

Instruments SG module user manual [17].  Vmax and Vmin are the maximum and minimum voltages 

measured during impact and Vex is the voltage applied to the strain gage from the module.  The gage 

factor for all gages used is 2.14 from the products packaging.  Equation 2.2.1 describes how to calculate 

the remainder voltage which is then fed into equation 2.2.2 to determine the strain applied. 

    
         

   
     (2.2.1) 

              
     

           
              (2.2.2) 

2.3.  Unholtz-Dickie Shaker Table System 

 The Unholtz-Dickie Electrodynamics Shaker is located in the Cal Poly Aerospace 

Structures/Composites lab (Figure 2.3.1).  This system will be used to measure any changes to the 

frequency response of the wing specimens.  The system is ideally suited for testing heavy, oversized, or 

non-symmetrical loads on specimens where orientation with respect to gravity is necessary.  The table is 
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capable of oscillating a specimen either 

vertically or horizontally.  The software 

used to perform test profiles is VwinII and 

can range from sine sweeps, random 

vibrations, chirping, and white noise 

forcing functions with a frequency range 

up to 5000 Hz.  Testing performed for this 

thesis was completed with the shaker head 

in the vertical position.  The test profile will be a 1-gpk acceleration sine sweep ranging from 10-2000 Hz 

with a run tine of 1 minute.  The VwinII software has the capability of recording data from four different 

channels, where one channel is designated as the control channel.  There needs to be a control channel 

because the VwinII software uses a feedback loop from the control channel to ensure the proper 

acceleration is being applied to the specimen.  That leaves channels 2-4 to be used to record data.  The 

accelerometer used for the control channel was a PCB piezotronics single axis accelerometer with an 

axial sensitivity of 9.74 mV/g.  This accelerometer was placed on whatever mounting fixture was used to 

hold the specimen in place during testing.  For the other three channels, model 1011a piezoelectric 

accelerometers from VIP Sensors were used to measure frequency at various locations along the test 

specimens.  Each of the VIP accelerometers required a model 5004 charge converter to amplify the 

output signal.  These converters were identical to the converter used with the Dynatup 8250. 

For the prototype wing design, measurements were taken along the leading and trailing edge 

spars every inch from the wing root.  Once the wing design was finalized, the first wing manufactured 

was thoroughly tested with accelerometer measurements taken at every ½ inch along the span of the 

wing and at five different locations across the chord for a total of 80 data points.  Every subsequent wing 

test after this one needed to be completed with a much smaller sample size.  The shaker system was 

experiencing electrical problems in the amplifier.  To minimize the load placed on the system, 9 

Figure 2.3.1: Unholtz-Dickie Shaker Table System used for 

testing set to do horizontal excitation 
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locations were tested on each wing before and after impact testing.  The locations tested centered around 

the impacted region of the wing with two points towards the wing tip.  A diagram of the tested points 

below in Figure 2.3.2 and the dimensioned locations are labeled in Figure 2.3.3. 

After testing, the data is loaded into MATLAB for post-processing.  VwinII saves each run as a 

Microsoft Excel file so csvread is used to load the data into MATLAB.  After the data has been loaded 

into MATLAB, the resonant response, resonant frequency, damping ratio and time response for the first 

and second mode of each run is determined.  The resonant response and frequency are determined by 

Figure 2.3.2: Prototype wing just before initial dynamic testing 

Figure 2.3.3: Locations of acceleration measurements for thesis specimens 
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locating maximums of the response and the corresponding frequencies, known as natural frequencies 

(fn).  Next the damping ratio is determined by using the half-power bandwidth method.  This method 

works by using the natural frequency and the resonant amplitude to determine the natural damping the 

system has.  First, the resonant amplitude is divided by the square root of two, and the corresponding 

frequencies are determined, one to the left (fa) and one to the right (fb) of the natural frequency.  Now 

that half-power frequencies have been found, the damping ratio is determined using Equation 2.3.1, 

where n is the corresponding bending mode.  

         
     

    
     (2.3.1) 

 After determining the damping ratio is determined, the time domain response for the system can 

be solved.  To obtain the time response solution, the transfer function for a simple mass-spring-damper 

system was used and a harmonic forcing function was applied.  The transfer function can be seen in 

Equation 2.3.2: 

 
  

 

          
      (2.3.2) 

Figure 2.3.4: Dimensioned locations of accelerometer measurements for wing specimen testing 
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The half-power bandwidth method, also known as the 3dB method, works by obtaining the resonant 

response and finding the natural frequency at which the response occurs.   

The code written first converts the frequency response of each run into a piecewise polynomial 

to be then used with fminbnd, a minimization function, to determine the location of the desired resonance 

frequency and response acceleration.  Once the frequency of each mode is determined, the damping ratio 

is then calculated.  The damping ratios were calculated using the half-power bandwidth method.  The 

half-power bandwidth method is used for determining the damping ratios for transient responses of a 

system.  The method starts with first locating the resonant frequency and its concurrent response 

acceleration, which was performed using the fminbnd and pchip functions.  Once this has been done, the 

half-power frequencies are determined using the MATLAB fzero function and subtracting the resonant 

response divided by square root of 2.  The fzero function determines where a function equals zero and 

the corresponding input value so by subtracting the response value at fa and fb, and outputting the 

frequencies at which the function now equals zero.  These values are used to determine the damping 

ratio.  Once the natural frequency and damping ratio have been calculated, they are entered into the 

transfer function and the time response is determined using the MATLAB impulse function. 

Figure 2.3.5: Half-power bandwidth method used to determine 

damping ratios [33] 
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3. Specimen and Fixture Design 

This chapter investigates the methodology and process used to design the wing structure as well 

as any fixtures required for testing of the wing.  An explanation of the constraints for the wing design 

and then the design of the wing is fleshed out and brought to life.  Next, the three different fixtures 

designed and manufactured for the Dynatup 8250 impact tester will be shown.  These parts include a 

redesign of how the load cell was constrained to provide true force data, an improvement to the existing 

testing section to allow for larger parts to be tested, and finally a set of aluminum bars used to even 

distribute the compressive loading force applied to the wing during impact.  At the end of the chapter 

the design of the testing fixture used during the dynamic testing of the wing will be discussed.  This 

fixture is used to hold the wing in a cantilever position while the sine sweep is done. 

3.1.  Limitations to the Design of the Wing 

 Before a wing design could be created, the limitations to the wing needed to be set.  The 

limitations to the geometry were the autoclave, Unholtz-Dickie shaker table and Dynatup 8250.  The 

limitation for the autoclave was how big of a piece could be vacuum bagged and cured.  The internal size 

of the autoclave is 48 inches by 24 inches which did not end up constraining the design or manufacturing 

of the wing.  The next system, 

the Unholtz-Dickie shaker table, 

did not limit the final design 

because the weight of the 

specimen would not come close 

to weight limit of the shaker 

table which is close to 100 lbf.  

Size is also not a limiting 

constraint to the shaker table as 

no enclosure exists for the Figure 3.1.1: Solid model of original clamping fixture of Dynatup 8250 

[31] 
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testing section.  The major constraint to this design is the Dynatup 8250 testing section.  As discussed in 

Section 2.2, the Dynatup has a clamping fixture that is used to secure specimen in place during testing.  

A 3D model of the fixture is visible below in Figure 3.1.1.  The fixture works by clamping an upper plate 

with a 3 inch by 5 inch opening, as per ASTM D7136.  The plate is pulled down by 4 pneumatic pistons 

with a pressure of 60 psi.  Because of the piston rails, specimen width is limited to just under 4 inches, 

and if the length is greater than 7.5 inches, up to a maximum of 10 inches.  If the specimen length is less 

than 7.5 inches, then the width limit expands to 5.75 inches because the specimen will be located inside 

of the pistons.  It is also important to note that whatever wing design is implemented, sufficient room is 

required for the wing to move laterally in the clamping fixture so that various regions of the structure can 

be impacted, as previously mentioned in Chapter 1. 

3.2. Design of the Wing 

 The wing design was modeled after a simplified version of an aircraft wing used in AERO 433.  

The wing used is made out of AL 6061-T6 and is used to show how a wing structure reacts to a bending 

load.  The structure consists of two spars, 5 internal ribs with spacing ranging from 4 inches to 4.5 

inches, and an outer skin.  The airfoil profile is symmetric and generic, but does not conform to a 

standard NACA airfoil shape and instead has a much more discrete shape (Figure 3.2.1).  The 433 wing 

model has a span of 17 inches and a chord length of 5.8 inches which is too large for the design to mimic 

on a one to one scale so certain structural aspects of the wing were used in the design.  The features that 

mimicked were the use of two spars, a rib spacing of four inches, and the using steel screws to mount the 

inner rib for testing.   
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 The first defined aspect of the wing was what airfoil would be selected.  A generic and widely 

used airfoil, NACA 2412, was selected to be used for this design, because manufacturing of the complex 

shape would be simplified due to the small chamber of the airfoil.  A secondary reason for selecting a 

simple airfoil shape was because future theses done in the Cal Poly Aerospace Structures/Composites lab 

would be able to use molds and testing fixtures created for this thesis.  After defining what airfoil profile 

would be used, the chord length needed to be set.  The ratio of chord width to wing span of the AERO 

433 model is 2.9. The ratio of the wing design would to be in the range of this value.  Because a rib 

spacing of four inches was to be used, and the length of the specimen was limited to 10 inches based 

upon the Dynatup testing section, the span of the wing would be approximately 8 inches.  Taking a 9 

inch span, and applying the same chord width to span ratio as the AERO 433 design, the chord length of 

the thesis specimen would be 3.6 inches; however, this width would leave no room for the wing to be 

moved laterally, which as provided earlier, is not viable for the design.  Due to this reason, the chord 

length was shortened to 3 inches, which gives a span to chord ratio of 2.67, close to the ratio derived 

value of 2.9 from the AERO 433 wing design.  So far, the major dimensions of the wing have been 

defined with a chord of 3 inches, a span of eight inches, and a rib spacing of 4 inches as displayed in 

Figure 3.2.2.  Three ribs are present, spaced every 4 inches with a total span of 8 inches. 

Figure 3.2.1: AERO 433 wing used as basis for wing design 
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 Now that wing design has a general shape, more of the detailed design work can be done.  The 

cross-section of the spars was the next feature to be defined.  There were initially three options being 

considered: a c-channel, I-beam, and square beam.  Each cross-section had positives and negatives and 

all performed well under bending loads; however, due to the size of the parts that would be created, 

manufacturing drove the selection of this feature.  The square beam cross section would prove to be the 

most complex manufacturing process.  There are multiple ways to manufacture a composite square beam 

including bladder molding, post-cure adhesion of two halves, or a two-part mold that would require quite 

a lot of work to unstick the part from the mold.  Bladder molding would be the most efficient but 

because of the size of the part, it was deemed not feasible and a poor investment of the limited resources.  

Also, the square beam would be a very stiff spar which is not ideal for this design.  Due to the short 

length of the span, the design will need to be as flexible as possible so that the 1
st
 and 2

nd
 mode 

frequencies can be excited.  An I-beam or c-channel as the spar cross section was the best possible 

design.   

The I-beam is a very common cross-section used to carry bending loads and is most easily 

identified with use as structural supports for tall buildings.  An example of I-beams being used for 

structural support can be seen in Figure 3.2.3.  For this application, the layup would be quite 

complicated.  As an under-graduate, I participated in a composite I-beam competition for SAMPE and 

Figure 3.2.2: Isometric view of wing design with ribs shown in red 
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designed a 24 inch long carbon fiber I-beam.  The layup for this 

beam was quite complicated because it consisted of a center 

laminate for the web, two laminates, one for the top flange and 

one for the bottom flange, and two c-channels used to connect 

the web and flanges.  Below in Figure 3.2.4 is an example of the 

layup scheme that would be used.  The scheme requires a 

minimum of two pieces for the mold, one for each c-channel which is not ideal.  By far, the simplest 

cross-section option is the c-channel.  It requires a single part for the mold would require a simple layup.  

This is the most ideal cross-section because it has the lowest number of variables involved in the layup.  

For the I-beam, there can be many different defects that naturally occur from batch to batch including 

unevenness between the c-channels causing the flanges to no be parallel and voids occurring along the 

seams where the c-channels, web and flanges come into contact.  The single c-channel part would only 

require that the plies be held tightly against the male mold during vacuum bagging, which is very easy to 

ensure because the bag and plies can be adjusted even after a vacuum is pulled.  It is much more difficult 

to ensure that the c-channels in the I-beam design do not shift during bagging because there is no direct 

access to them.  A way around this problem would be to manufacture the I-beam as separate parts and 

then glue them together; however, this would add unnecessary 

weight and an additional manufacturing step, which is 

undesired.  For these reasons, the spars used for this wing 

design would end up being c-channels with flanges having 

lengths of 0.25 inches.  The length of the spars was chosen so 

that there would be sufficient surface area to glue the spars to 

the skin effectively.  At this point in the design, the internal 

structure had a basic shape with two sets of c-channel spars, 

three ribs spaced every 4 inches.  The wing skin envelopes the 

Figure 3.2.3: Use of I-beams in 

structural supports [26] 

Figure 3.2.4: Example of I-beam layup 

for manufacturing 
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internal structure.  Figure 3.2.5 is an isometric view of what the design looks like at this point.   

From this, it must be decided how the internal structure will be assembled.  One major question 

is how the rib and spar intersection is handled.  One idea was separating the middle rib into three 

sections with the spar remaining continuous along the span.  This requires some form of L-bracket to be 

used to attach the rib pieces in place during manufacturing.  However, this would greatly complicate the 

assembly of the specimens.  Trying to keep the various pieces of the ribs in-line can prove difficult and 

could introduce a high amount of variation across the specimens.  It would also be very difficult to 

precisely cut the ribs so the c-channel spars and the middle piece of the rib would fit flush with each 

other because of how thin the spars would end up.  An example of this structure is visible in Figure 

3.2.6.  The next idea was to use interlocking slits in both the rib and spar.  It would make assembly of the 

internal structure of the wing very simple and quick.  However, when testing out this method, it was 

discovered how difficult it is to line up the slits on the leading and trailing edge spars.  If the slits were 

not lined up, the rib would be skewed, causing variation from wing to wing.  This was shown in a 

prototype build of the wing where the spars had the slits cut and the rib was glued into place.  An 

example of how the rib and spar would interlock and the misalignment of the prototype is displayed in 

Figure 3.2.7.  The third configuration which was used in the final design was to keep the rib intact while 

Figure 3.2.5: Isometric view of wing design with implementation of c-channel spars 
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splitting the spar into two 4 inch pieces and using L-brackets to adhere the spar to the rib.  This design 

was used because it is easier to control the parallelism between the two halves of the leading and trailing 

edge spar.  This method did not suffer the same drawback as the first configuration with the ribs being 

separated into three pieces.  No super precise cutting would need to be done so the rib and spars fit 

together.  The 8 inch spars would be simply cut into 4 inch segments and then assembled afterwards, 

using straight edges and right triangles to maintain alignment.  The final internal configuration 

implemented into the 3D model is displayed in Figure 3.2.8.  As exhibited in Figure 3.2.8, L-brackets are 

shown to be used to connect the spars to ribs internally.  The next step in the design was to determine the 

thicknesses of each part of the design.   

In order to determine the appropriate thickness for each a few laminates were manufactured 

using varying thicknesses ranging from a single ply to six layers.  In order to provide as much flexibility 

to the structure as possible, the spars and skin need to be as thin as possible.  The ribs in contrast would 

need to be thicker because the inter-laminar thickness of the parts would become a factor when gluing 

the ribs to the skin.  After curing each 

plate and measuring the pliability of each 

sheet by feel, it was decided that a single 

layer of LTM45EL would be sufficient for 

the skin and spars while two layers would 

be used for the middle and wing tip rib.  

The root rib would be used to mount the 

Figure 3.2.6: Example of how rib would be need to cut into three pieces to accommodate a continuous spar 

Figure 3.2.7: Misalignment of rib using interlocking method from 

wing prototype 
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wing during dynamic testing.  It was decided that it needed to be the thickest piece and four layers of 

LTM45EL were used for the root rib.  The reason a single layer of LTM45EL was sufficient was 

because the LTM45EL roll used for this thesis was thicker than most other weaves in the lab.  Typical 

pre-preg weaves available in the structures lab have a pre-cured thickness of around 0.008 inches such as 

the MTM49 weave used by Cuauhtemoc Cuna for his thesis.  However, the LTM45EL roll had a pre-

cured thickness of 0.016 inches.  This meant a single layer of LTM45EL would have equal thickness 

compared to two layers of an MTM49 weave.  A drawback was that the overall length of the wing would 

increase because of the thickness of the ribs would be retained.  This decision was made because it 

would be easier to cut the spars into even 4 inch sections instead of attempting to cut 4 inches minus the 

thickness of the rib.  For this reason, the wing span grew from 8 inches to 8.128 inches.  The skin and 

spars would all have a post cured thickness of 0.016 inches, the 

middle and outer ribs would be 0.032 inches thick, and the root 

rib would be 0.064 inches thick. 

The next step in the design was to determine how the 

wing would be mounted for the vibrational testing.  Previous 

cantilever vibration testing done in the structures lab used two 

metal plates to sandwich one end of the beam and left the 

Figure 3.2.8: Isometric view of wing design with implementation of discontinuous spars and l-brackets 

Figure 3.2.9: Weld-nut used in wing 

design for mounting [27] 
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opposite end free.  This method cannot be replicated for this experiment due to the hollow internal 

structure of the wing.  There is not enough surface area to effectively fix the root end of the wing with a 

clamp.  So instead of clamping the wing, it was decided that the wing would be held in place using 

screws and nuts.  The best nut to use would be weld nuts because of the large flange at the base of the 

nut.  The flange would serve as a large surface area for gluing the nut to the inner face of the root rib.  

The screws used were 3 inch #6-32 machine screws.  For a prototype build of the wing design, two weld 

nuts were glued to the internal face the root rib and two holes were drilled into the root rib to allow 

machine screws to thread into the weld nuts.  Figure 3.2.10 displays the weld nuts glued to the mounting 

rib and the spars glued to the mounting rib using carbon L-brackets for the prototype build of the wing 

design.  Visible in Figure 3.2.10, the weld nut flanges had to be trimmed to match the airfoil profile of 

the rib.  Performing this does not reduce the effectiveness of the weld nuts.  During testing of the 

prototype wing, it was found that only using screws to hold the wing in place was not sufficient as the 

screws needed to be retightened after a few runs.  It was determined during vibrational testing; the 

machine screws were slowly loosening due the torsional load applied to the fixed end.  A wing does not 

have a symmetric cross-section, there is some torsional loading on the machine screws and over time this 

caused the screws to loosen.  To fix this, the wing skin was extended past the root rib by 0.25 inches, 

extending the skin length to 8.378 inches.  This change coincided with a change to the mount used to fix 

the wing during vibrational testing.  The design of the testing fixture will be elaborated on in Section 3.4.  

The overhang of the wing skin is used to 

clamp the skin and reduce the torsional 

load applied to the mounting screws.   

In summary, the design of this 

wing was driven by space requirements 

from the Dynatup 8250 impact testing 

machine as well as an emphasis on the 
Figure 3.2.10: Weld-nuts applied to mounting rib of 

prototype wing design 
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ability to manufacture and assemble the design.  For real world applications, designing to manufacturing 

is ideal to adhere to when designing a system and it extended to this design.  The final design features a 

NACA 2412 airfoil profile, an 8.128 inch wingspan, a 3 inch chord length, three ribs spaced four inches 

apart from each other with the innermost rib being twice as thick to support mounting of the specimen 

during testing, as well as two sets of 4 inch spars resting between each two ribs and being held in placed 

using carbon fiber L-brackets and Magnolia 56 A/B structural adhesive.  A 3D model of the final design 

can be seen in Figure 3.2.11.  Detailed drawings for each part and the assembly drawing are also in the 

Appendix. 

3.3.  Design of Various parts for Dynatup 8250 

 Three different parts were designed and manufactured for the impact tester, the first was a new 

clamp fixture designed to increase the allowable specimen width for testing, the second was a fixture 

designed to correctly constrain the current load cell, and finally, a fixture was designed to hold the wing 

specimen and evenly distribute the clamping force across the wing skin.  All fixtures were created from 

6061-T6 aluminum. 

 

Figure 3.2.11: Wing design with implementation of mounting rib and skin 

overhang 
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3.3.1. Dynatup 8250 Specimen Clamping Fixture 

 As stated in Chapter 2, Daniel Barath designed and created a fixture for his senior project.  The 

fixture was designed to mount into the Dynatup 8250’s existing mounting holes and incorporate a 

pneumatic clamping system to hold the specimen in place.  ASTM D7136 specifies the use of toe-clamps 

to hold specimen in place for testing, however, the switch to pneumatic clamping was desired by Dr. 

Elghandour, the advisor to this senior project.  The fixture was designed to withstand the largest possible 

impact force the Dynatup 8250 could generate (~31000 lbf).  The fixture featured a base plate which 

mounted to the base of the Dynatup 8250. Above this was the core support that provided a raised the 

platform where the specimen was placed and created a hole for debris to fall into.  Next was a table top 

where the specimen was placed.  Finally, a plate that was used to clamp the specimen into place was 

connected to the four pneumatic pistons.  The pistons apply a clamping pressure of 60 psi.  There was a 

3 inch by 5 inch opening cut into both upper plates and the core support which was completed to match 

the opening used in ASTM D7136. 

Figure 3.3.1: Old and new plates for Dynatup 8250 specimen clamping fixture 
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 The major reason this fixture was redesigned was to allow proper clearance for the wing to move 

so that the impact tup could be aligned over the appropriate strike point.  The previous fixture only 

allowed a specimen width of 4 inches which matches ASTM D7136.  In order to accommodate the 

testing parameters, the width needed to be opened up past 4.5 inches so the wing could properly align.  

The new fixture design closely resembles the older fixture and even reuses the core support part.  The 

clamp plate, table top plate, and mounting plate were all enlarged.  The width was increased from 5.75 

inches to 8 inches.    This change allowed the pneumatic cylinders to be moved outward by an inch each, 

increasing the allowable specimen width to 6 inches.  The larger width was determine based upon 

available room in the Dynatup 8250, as well as allowing future theses and projects to increase specimen 

sizes.  The three plates were machined by Kyle Rosenow using the aerospace departments CNC Endmill 

and were installed into the Dynatup 8250 upon completion.  Drawings for the machined plates are 

located in the Appendix.  The original plates and new plates can be seen in Figure 3.3.1 

3.3.2. Redesign of Load Cell Mounting 

 The load cell that is currently used with the Dynatup 8250 is a THD-3K-W load cell.  The load 

cell is used to obtain a force versus time plot of the impact.  The load cell has a maximum force rating of 

3000 lbs with an accuracy of +/-1% of the measured force.  The load cell is a thru-hole donut load cell 

consisting of a connected inner and outer cylinder and incorporates a full bridge circuit and uses strain 

gages in the region connecting the inner and outer cylinders to measure the force applied.  This means 

that a load is measured by the differential displacement of the inner cylinder to the outer cylinder.  

However, previously, the load cell was loaded only using the thru-hole, leaving the outer cylinder 

unconstrained (Figure 3.3.2).  From Figure 3.2.2, the inner outer cylinder has no bracing and so cannot 

effectively measure any impact force.  Because the load cell was not constrained properly, any force 

measurement was inaccurate and did not represent the true impact force.  What was measured was the 

inertial force of the out cylinder slowing down upon impact.  In order to obtain true force values, the 

load cell needed to be re-constrained so the inner and outer cylinders were independently constrained.  It 
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is unclear why the load cell was previously constrained improperly or why it was 

never examined or tested. 

 In order to correctly capture the load cell, a capsule was designed where the 

outer cylinder would be held in place, while the impact tup would apply a load to the 

internal cylinder.  Some limitations to the design were weight minimization to add 

as little weight as possible to the apparatus, the ability to mount to the existing rail, 

and limiting overall size so the fixture is not hard to install and does not affect the 

overall performance of the testing apparatus.  The design process for the fixture 

began with defining what was necessary to be constrained and how the impact tup, 

load cell, and rail would all fit together.  The tup would need to be loaded against 

the inner cylinder and held in place with a nut while the load cell would be only 

have the outer cylinder fixed.  This was performed by creating a two piece fixture,  with a base mounting 

to the existing rail system, and a lid clamping the load cell into place.  The base would end up being the 

heaviest addition to the rig because of the need to carry the impact force.  The outer cylinder is fully 

fixed meaning that load of the impact is transferred completely from the inner cylinder to the outer 

cylinder, thus causing the actual force to be measured.   

 The final design is visible in Figure 3.3.3.  The fixture has an outer diameter of 4.5 inches and is 

designed to lock into the existing rail via a ½-13 threaded-hole and a rectangular extrusion for clocking 

purposes.  The base of the fixture is 1.1 inches tall and features 8 ¼-20 threaded holes spaced evenly 

around the circumference at 4 inches from the center.  Also, a ¼ inch channel was milled out to allow 

passage of the load cell cabling.  In order to save weight, there were 8 pockets milled out along the outer 

edge of the fixture.  These pockets lead to a weight savings of approximately 0.2 lbs.  The clamping 

portion of the load cell features 8 thru-holes indexed to mirror the threaded holes of the base.  There is 

also a large round applied to the outer edge to also reduce weight.  The hole in the clamping portion of 

the fixture was designed to only interact with the outer cylinder.  Size was a limiting factor to the design, 

Figure 3.3.2: Original 

constraining of load cell 

showing outer cylinder 

of load cell being 

unconstrained 
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the impact tup needed to be blocked so that the threaded 

portion could be secured inside the base, but not restrict the 

deflection of the load cell.  A gap of approximately 0.1 

inches was left between the end of the threads for the tup, 

and the bottom face of the seat.  A specially made nut was 

used to secure the tup in placed.  Any store bought nut with 

the appropriate thread size would be too tall to fit into this 

combined space so Kyle Rosenow used some spare 

aluminum to turn a 0.25 inch nut that would be used to 

secure the tup in place.  There was no consideration given 

to proper thread engagement for the nut and tup because the 

nut would only need to support the impact tup and washers 

used to step the tup outboard from the load cell.  An 

exploded view of the new load cell mount can be seen in Figure 3.3.4. 

 Instead of creating a new fixture, additional options were explored such as replacing the current 

load.  The available options for replacement included a new strain gage based load cell that would have 

the impact tup thread into one face while being mounted to the rail using the opposite face.  A second 

and more preferable option would have been the purchase of a piezoelectric based load cell.  When 

calling Transducer Techniques, the company that manufactured the current load cell, the representative 

said when a load cell is used for dynamic load cases such as impact, piezoelectric load cells perform 

much better.  A piezoelectric load cell has a higher overload threshold when compared to a strain gage 

based load cell.  However, piezoelectric load cells are quite expensive and do required the additional use 

of an amplifier.  The new fixture was created for just under $60 for the raw materials. 

 

Figure 3.3.3: New load cell fixturing for 

Dynatup 8250 impact tester 
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Figure 3.3.4: Exploded view of new load cell mount to properly measure impact force 

 

 

3.3.3. Wing Fixture 

The wing was constrained during the impact tests using two 6061 aluminum bars with the upper 

and lower profiles of the wing milled out.  The purpose of this fixture is to firmly secure the wing for 

testing without creating stress concentrations.  If the wing was clamped without the use of the fixture, the 

wing would be crushed because the pressure force would be concentrated on the thickest portion of the 

airfoil ruining the specimen before any testing was even done.  The fixture was designed to secure the 

upper and lower portions of the airfoil while also using a flat face on the outer edges of the fixture as 
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stops so the wing was not compressed beyond its static shape.  The fixture was machined on a CNC end 

mill by Allen Captina.  The CAD model is visible in Figure 3.3.5. 

3.4.  Design of Vibration Testing Fixture 

Testing the wing design on the shaker table presented a challenge because the structure is hollow 

and applying a clamping force to the hollow wing would create stress concentrations in the region where 

the skin and rib come into contact, possibly causing damage.  The innermost rib was designed thicker 

than the other two ribs; so this rib could be used as an anchor when holding the wing to the fixture.  The 

first fixture created was a simple bar of aluminum 6061 with two holes drilled into the side to bolt the 

wing and two holes drilled through the top to mount the fixture to the shaker table.  As mentioned earlier 

in Section 3.2, the first attempt at the mount showed many different problems that needed to be fixed 

before the final testing could be completed.  The plan to reduce the torsional stress on the bolts as 

mentioned earlier was to extend the skin beyond the innermost rib by ¼ inch.  The fixture used to mount 

the wing during testing is displayed in Figure 3.4.1.  The purpose of the design is to bolt the face of the 

inner rib to the middle plug and then use the upper and lower halves of the mold to clamp down onto the 

overhanging skin and reduce the torsional loading on the bolts.  A third bolt hole was added at the 

suggestion of Dr. Elghandour to distribute the load more evenly across the rib.  The bolt holes were 

placed so that they would not interfere with the mounting of the spars with the hole closest to the leading 

Figure 3.3.5: CAD model of how win will be fixed in place 

during impact testing 
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edge being in front of the leading edge spar and the other two 

holes being placed between the leading and trailing edge spars. 

To mount the wing, the middle plug is placed face to 

face against the inner rib and then the wing and plug are 

placed into the bottom half of the fixture and three screws are 

threaded through the bottom half, plug, and into the weld nuts 

glued to the inner rib.  The screws are then hand tightened 

being careful not to over-tighten and cause damage to the 

inner rib.  In Figure 3.4.2, the plug is seen resting in place on the bottom half with the screws in place.  

The four outer holes are steel threaded key-inserts.  The inserts are used along with bolts to clamp the 

upper half of the mold down over the plug and skin overhang, locking the skin and preventing any 

rotational displacement.  The inserts were used over just threading the aluminum of the bottom half due 

to concerns that over time the wear and tear from repeated testing would cause the aluminum threads to 

be ineffective.  Threaded inserts are used to directly stop this from occurring.  They are put into place by 

machining a large thread that matched the outer thread of the insert and then threading the insert into the 

hole.  The reason for selecting threaded inserts is because this is currently used on the shaker table 

mounting surface.  The only different between what was used on the mount and what is used on the table 

mounting surfaces is that key-inserts instead of HeliCoils were used.  HeliCoils are coiled steel inserts 

that are threaded and locked into place using any available thread lock glue.  What were used for the 

mount were ACME key-inserts.  These inserts operate the same way as HeliCoils except they are a little 

bit more robust and use pins that are driven into the material after installation to lock the insert in place.  

Figure 3.4.3 displays a comparison of HeliCoils and key-inserts.  The two counter sunk holes in Figure 

3.4.2 were used to bolt the entire fixture to the testing table. 

Figure 3.4.1: Front view of 3 piece 

mount used to constrain wing during 

frequency sweep 
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Once the fixture was designed and manufactured, it needed to be tested to determine any of its 

natural frequencies were excited during the sinusoidal sweep the wings would be tested under.  The 

reason this was done was to verify that the fixture did not interfere or skew the testing results.  To mount 

the fixture, the base is first bolted to the shaker table with two black phosphate coated bolts found in the 

drawer behind the table and tightened to 25 ft-lbs.  The plug is placed in the carrier of the bottom half 

and the screws are pushed through to restrict movement of the plug.  For testing the mount, three 

individual weld nuts were used to hold the plug in place.  The final step is to bolt down the upper portion 

of the mount.  The mount testing went quickly and no signs of resonance were seen.  Testing was done 

by placing accelerometers over various places of the mount and measuring the frequency response.  No 

natural frequencies were detected during any of the test runs for the mount (Figure 3.4.4).  For the entire 

sweep, from 10-2000 Hz, the accelerometers measured the same response acceleration as was being 

generated by the VwinII software.  In the figure, the various lines represent accelerometer measurements 

around the mount. 

Figure 3.4.2: View of how aluminum plug and screws fit onto mount 

Figure 3.4.3: Heli-coil versus Thread insert [28] 
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Figure 3.4.4: Frequency response of wing mount to ensure there is 

noe modal excitations during test sweep 
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4. Specimen Manufacturing 

 This chapter covers the manufacturing process for the wing design.  First, a test was done to 

determine the best cure cycle to be used for part manufacturing throughout this thesis project.  

Afterwards, the manufacturing method for the skin and the testing done will be presented.  The third 

topic goes over the manufacturing of the internal structure parts (i.e. ribs and spars).  And finally, this 

chapter will end with a look at the assembly process for the wing design. 

4.1.  Curing Cycle for LTM45EL 

 The cure cycle used for this thesis was selected by first curing various plates of LTM45EL using 

the heat press located in the lab to cure each plate.  

The material data sheet (MDS) for LTM45EL 

listed various different cure cycles with varying 

soak temperatures and times [8].  Table 4.1-1 

displays the various cure cycles that were 

available.  Due to the resources required to run the 

autoclave (e.g. water, air, energy) as well as the 

having to be in the lab while the autoclave is 

running, a cure time of 24 hours was rejected.  

Ideally, a cure time of less than a few hours would 

be selected as it would equate to a very fast turnaround time for curing.  It would also mean a quick 

manufacturing for all of the required assembly pieces.  After curing a single plate for 1.5 hours at 248°F 

using the heat press in the aerospace composites lab, the quality of the laminate was so poor that this 

cure cycle was rejected.  Next, 4 different plates were created using the remaining four cure cycles.  

Each plate was cut into thin strips and then tested dynamically on the shake table, impacted from 12 

inches, and then tested dynamically again to see if the damping ratios for the first and second mode of 

the strips had changed.  The results are listed in Table 4.1-2.  From testing, it was shown that for the first 

Table 4.1-1: Various available cure cycles for 

LTM45EL based on material datasheet 

Temperature (°F) Cure Time (hrs) 

122 24 

140 9 

158 7 

176 4 

194 2 

248 1.5 
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mode, there is a small change for the damping ratio.  For the second mode damping ratio, the change is 

much more drastic.  The damping ratios for the pre- and post-impact tests are showcased in Table 4.1.2.  

Based on this data, and on a visual inspection of the laminates, a 7 hour, 158°F cycle was chosen.  The 7 

hour cycle was chosen because it showed the largest variation for the first and second mode damping 

ratios.  Figure 4.1.1 is a plot of the cure cycle selected. 

Table 4.1-2: Damping ratio results from initial cure cycle study to determine optimum cycle for 

study 

Damping 

Ratios 

1
st
 mode 

pre impact 

1
st
 mode 

post impact 

% 

Difference 

2
nd

 mode 

pre impact 

2
nd

 mode 

post impact 

% 

Difference 

2 hrs at 

194°F 

0.0225 0.0222 1.33 0.0215 0.0220 2.36 

4 hrs at 

176°F 

0.0225 0.0219 2.67 0.0222 0.0252 13.51 

7 hrs at 

158°F 

0.0228 0.0221 3.07 0.0204 0.0223 9.31 

9 hrs at 

140°F 

0.0225 0.0219 2.67 0.0205 0.0223 11.71 

 

Figure 4.1.1: Temperature and Pressure profile for autoclave curing 

cycle of LTM45EL 
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4.2.  Manufacturing of the Wing Skin 

 There were multiple ideas as to how the wing skin could be manufactured.  The various ideas 

included: creating a top and bottom half of the skin and then gluing together post-cure, a three-part 

construction, and using a single sheet and wrapping around a male plug.  The idea used to manufacture 

all of the wings skins for this thesis was a single ply of material wrapped around a male plug.  This 

concept was chosen because it had the lowest manufacturing complexity out of the three various options.  

The way this technique would work would be to wrap the carbon around a male plug that was machined 

to match the NACA 2412 airfoil profile starting at the trailing edge and wrapping the material across the 

bottom face, around the leading edge, and then connecting again at the trailing edge after enclosing the 

upper surface of the mold.  The circumference of the airfoil is over 6 inches and the wingspan over 8 

inches; sheets of carbon were cut into 8 inch by 10 inch squares.  Having excess material in a layup is 

standard practice for any composite manufacturing process because it is important to drive edge effects 

away from the desired part.  As stated in Chapter 3.2, a single sheet of material would be used for each 

wing skin manufactured.  One problem with manufacturing the skin this way was any excess material on 

one end of the sheet would come into contact with the other end of the sheet after wrapping around the 

mold.  If the two sheets were allowed to come into contact, they would cure together in the autoclave.  

The solution to this problem was to place a single sheet of non-porous teflon coated film around the 

aluminum mold.  The size of the sheet was one inch longer than the composite ply in both the length and 

width and separated the carbon from both the aluminum mold as and itself.  This had the added bonus of 

not requiring constant application of mold lubricant to the aluminum every few cures.  Also, the Teflon 

film was able to last multiple cures before degrading to a point insufficient for use, making it the most 

functional.  The lifespan typically lasted three to four cure cycles.  Though it became the most favorable 

option, this concept needed to first be proven before it would be used to manufacture all of the wing 

skins.   
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 To prove this was the 

desired option, a single sheet of 

LTM45EL was wrapped around a 

scrap piece of wood following the 

same method described above.  

Displayed in Figure 4.2.1 is the 

carbon wrapped around the wood 

block with the vacuum bag sealed 

and ready to be de-bulked.  The 

brownish sheet between the block and nozzles is the Teflon sheet used to prevent the carbon from 

coming into contact after wrapping.    The result of this test is shown in Figure 4.2.2.  A very important 

lesson learned from this test run was that corners where carbon has to turn require a large amount of 

attention during the de-bulking step before being placed in the autoclave.  If care is not taken during the 

layup and de-bulking, the carbon can begin to slide and create unwanted crease in the part.  The reason 

this crease occurs is because during de-bulking, the last areas becoming pressurized are corners and areas 

with abrupt slope changes, such as the corners of the wood block or the leading and trailing edge of the 

wing.  To prevent this from occurring, de-bulking is broken down into 

multiple quick steps with small amounts of air being pulled from the bag, 

adjusting the bag and carbon so that the sheet is wrapped very tightly around 

the mold, and then pulling more air out.  This process is repeated multiple 

times until the bag has all air removed.  Once the air is entirely removed, the 

sheet would be worked to ensure the sheet is wrapped around the mold as 

tightly as possible.  This was done by beginning at the leading edge of the 

mold, and massaging the material, pushing and excess material towards the 

trailing edge of the wing. Figure 4.2.3 displays a wing skin bagged and about 

Figure 4.2.2: Vacuum bag of experimental cure to determine 

validity of proposed manufacturing method of the wing skin 

Figure 4.2.1: Successful 

test of manufacturing 

method of wing skin with 

carbon being removed 

from mold with ease 
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to be cured in the autoclave.  The pink film is used to facilitate airflow from the carbon to the white 

cotton sheet on the right side of the figure.  This film is a form of breather material dotted with holes.  If 

this film was not used, then air could get trapped under the carbon or teflon film below meaning the part 

would need to be scrapped.  All wing skins were manufactured this way. 

 The wing skin mold, as seen in Figure 4.2.4, was machined from AL 6061-T6 by Kyle Rosenow 

in the Aerospace Departments CNC end mill.  The wing was machined by first cutting a rough profile of 

the upper surface of the wing and then using a smaller bit to cut a finer profile.  The reason for starting 

with a more rough profile is to decrease the total machining time of the part.  Once the top profile was 

cut, the part was flipped over and the bottom profile was cut in the same fashion. Once the profile was 

finished, the clamped ends of the mold were cut off using a band saw.  At this point the mold had the 

general shape of the NACA 2412 profile, but had small ridges across the wing.  However, due to 

aluminum being very soft, all that was needed was a fine grit sand paper to sand the mold down to the 

finished part as seen in Figure 4.2.4.  To provide some variability to the mold, the length of the mold was 

Figure 4.2.3: Wing skin in vacuum bag just before curing in autoclave 
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designed to be 13 inches so future theses could use this same mold for wing spans up to 12 inches. 

 

4.3.  Manufacturing of the Spars and Ribs 

 Manufacturing of the ribs and spars was much simpler compared to the skin.  One major reason 

was that the size and complexity of the parts was very low.  In order to get the spars to have the correct 

shape, a mold was created by cutting channels of the proper thickness out of dense foam.  This mold 

could survive an autoclave curing cycle.  The channels were cut 

out using a table saw because it was the most efficient and accurate 

cutting method available.  Foam was used over metal because the 

geometry of the spars was very simple and did not require a robust 

mold.  Before having this mold made however, a test was 

performed to ensure the foam could both withstand a cure cycle in 

the autoclave and create a part matching the design.  The prototype 

mold can be seen in Figure 4.3.1.  Preparation for the mold 

included applying scotch tape over any surface that would come 

into contact with carbon fiber as well as a generous application of 

release wax to make removal of the carbon easier.  As shown in 

Figure 4.2.4: Wing skin mold after sanding and polishing 

Figure 4.3.1: Successful test of 

spar manufacturing method 
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Figure 4.3.1, the test was a success with the mold withstanding the autoclave cure as well as proving a 

viable method for manufacturing.   

 Once the prototype mold proved this was a viable manufacturing method, it was time to create a 

full-scale mold.  This new mold was also cut using a table saw with the 4 ridges the spars were wrapped 

around to be cured.  The channels were each 10 inches long and would produce 4 sets of spars for every 

cycle the mold was put through.  However, during manufacturing of the mold, an errant cut was made 

causing one of the channels to become very weak and deform during the cure cycle.  The deformed 

channel and the mold after running through an autoclave cycle is displayed at the bottom of Figure 4.3.2.  

Also showcased is the waviness in the other sets of spars.  This was due to the channels the carbon was 

draped over becoming flimsy during the 

cure cycle.  The mold would not be able 

to produce reliable parts, a new one 

needed to be made. 

The next and final mold made to 

cure the spars was made out of much 

denser foam than the previous molds.  

This foam did not have a designation or marker identifying the foam itself but showed no sign of 

degradation from cycle to cycle such that this foam would not succumb to the same problems.  The final 

mold consisted of a 10 inch by 15 inch foam block with 8 different channels (as seen in Figure 4.3.3).  

The channels spanned the full length of the block and each individual channel created 2 4 inch spar 

sections.  So for every cycle the mold went through, 8 sets of spars were created, drastically reducing the 

total time required to manufacture all of the necessary spar sets.  This mold was also covered with 

adhesive tape however instead of using the mold release wax, a liquid mold release donated by Quatro 

Composites was used because it was easier to apply and left no residue on the mold. 

Figure 4.3.2: Manufacturing of trailing edge spars using first 

foam mold 
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The layup process for the spars was very time consuming because of the necessary care taken to 

ensure each piece did not slip when the air was pulled from the vacuum bag.  To begin, carbon fiber was 

cut into 10 inch by 1 inch strips and then had some plastic breather film applied to both sides of the 

material.  After all of the strips and mold were prepared, each strip was placed over a ridge and folded 

over.  Due to how stiff the uncured composite was, the fiber needed to be massaged for around a minute 

that left a slight bend in each strip.  The purpose of this was to preset the bend of the carbon so that when 

the vacuum bag was drained of air, the carbon would naturally fall into place instead of sliding and 

becoming misaligned.  In between each channel, cotton breather was placed so that air could travel from 

the carbon through the breather film into the cotton and then out of the bag through the vacuum nozzles.  

One important part to the bagging process of the spars was getting the bag to properly fill in the tight 

corners at the bottom of each ridge.  If the bag did not fill in all the way down to the corners than the 

carbon would not cure to the proper shape but instead flex outward away from the ridge.  To do this, the 

bag was cut much larger than would be traditionally used and air was pulled from the bag in short 

segments.  After each pull of air, the bag was readjusted to fill in any tight corners to pull the carbon 

against the mold as tightly as possible.  Once the mold was bagged and drained of air, it was placed in 

the autoclave and cured.  Removing the spars was very simple due to the two pieces of film placed onto 

the strips.  The film extended longer than the strips and with the application of the mold release, just a 

Figure 4.3.3: Final foam manufacturing mold for spars 
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slight pull on the film lifted the spars off of the mold.  Once the spars were cured, they needed to be cut 

into 4 inch segments and then have their flanges cut to down to 0.25 inches.  This was done using a 

water cooling tile saw as seen in Figure 4.3.4.  The final 

step required to get the spars ready for assembly was to 

get the L-brackets glued into place.  This was done using 

super glue.  The L-brackets were created using the scrap 

ends from the spars and then super glued into the 

appropriate place.  Figure 4.3.5 shows a row of spars 

with the L-brackets attached waiting to be assembled.  

Before assembly however, the L-brackets for each spar 

were trimmed down to be in-line with the ends of the spar flanges.  This was done to keep the L-brackets 

from overlapping the weld nut flanges that were glued to the inner rib and keep each wing as uniform as 

possible. 

The ribs were manufactured by first creating 2 laminates 0.032 inches (2 layers) thick and a 

Figure 4.3.4: Cutting process used to trim spars 

down to size 

Figure 4.3.5: Row of leading edge spars with L-brackets attached using super glue 
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laminates 0.064 inches (4 layers) thick.  All of the laminates had dimensions of 12 inches by 12 inches.  

In order to accurately match the NACA 2412 airfoil, the ribs were cut out using the Aerospace 

departments CNC end mill by Kyle Rosenow.  To prevent the thin laminates from bowing when placed 

in the vice grips of the mill, the laminates were glued to a wooden block.  While the plates were being 

cut, the holes for the mounting ribs were also drilled to ensure no misalignment occurred between the 

weld-nuts and the dynamic testing fixture.  After cutting, each of the individual ribs had the edges filed 

to remove excess fibers not fully cut through by the end mill.  At this point all, the thinner ribs were 

complete and ready for assembly.  However, the mounting ribs required another process before being 

ready for assembly.   

The next step done for the mounting ribs was to glue the weld-nuts in place.  As a reminder, the 

weld-nuts were used to restrict lateral movement of the wing specimens during dynamic testing.  To 

begin, three weld-nuts were set aside for each wing specimen and were cut to specifically match the 

NACA 2412 profile of the airfoil.  One nut was placed in front of the leading edge spar location while 

the other two nuts were located between the leading and trailing edge spars.  Figure 4.3.6 displays before 

and after shot for the weld nuts.  The nuts were then glued to the rib in the appropriate locations.  To 

verify the weld nuts matched up with the holes drilled into the mounting rib a screw was inserted 

through the mounting rib hole and then threaded into the weld nut.  Glue was then applied to the nut 

flange face that would come into contact with 

the rib, pulled firmly against the rib face and 

held securely place while the glue solidified as 

shown in Figure 4.3.7.  In the figure, a clear gap 

exists between the left and middle weld nut 

where the spar will be glued.  The trailing edge 

spar will be glued just to the right of the 

rightmost weld-nut. 

Figure 4.3.6: Original size of weld-nuts and trimmed 

base of weld-nuts for gluing to mounting rib 
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4.4. Assembly of Wing Specimen 

 The wing assemble was finished in two stages, assembly of the ribs and spars to create the 

internal structure of the wing and the addition of the skin and final trimming of excess material.  Before 

assembling each internal structure, the parts for each wing were separated to ensure that there were 

enough parts to construct all 15 specimens.  There were enough parts to make 21 wings for emergencies 

(i.e. an error occurred during assembly, rendering the set unusable).  Figure 4.4.1 displays each set of 

internal parts.  One reason it was important to group the parts was so that the lengths of all of the spars 

could be matched as closely as possible.  This was necessary because the length of the spar tended to 

vary from 4 inches to 4.025 inches.  The variation of the lengths occurred during cutting of the spar 

segments on the tile saw.  Any spar that was manufactured outside of this size window was discarded as 

displayed by the stack of spars in the lower right corner of Figure 4.4.1.   

 The internal assembly was first put together using super glue and then checked for alignment 

before applying the structural adhesive to strengthen the bonds.  To begin, the internals of a wing were 

laid out as shown in Figure 4.4.2.  The gray lines in the figure are used to aid in lining up the spars with 

the appropriate locations on the ribs.  The first step was to glue the spars to the outer ribs.  Gluing took 

Figure 4.3.7: Method used to ensure that the weld-nuts aligned with the mounting rib for best possible 

fit 
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place on cutting mats that had boxed lines on them so that the angle between the ribs and spars could be 

controlled as accurately as possible.  To bond the spar to the rib, a small dab of super glue was placed 

onto the L-bracket of the spar.  Next, the spar was pressed firmly into place against the rib and held in 

place for up to 30 seconds for the glue to solidify.  While the glue solidified, care was taken to keep the 

spar in alignment.  A finished bond of the spar to the rib is shown in Figure 4.4.3.  In the figure, the 

leading edge spar, outer rib and the L-bracket used to connect the two pieces is showcased.  The process 

was done with first applying the leading edge spar and then repeating the process for the trailing edge 

spar.  This same process was repeated with the mounting rib while taking care to keep place the spars so 

that they do not interfere with the weld-nuts already glued to the rib.  The finished mounting rib half is 

Figure 4.4.1: Layout of wing specimen sets including ribs, spars, and weld-nuts 

Figure 4.4.2: Layout of how internal structure will be pieced together 



 

57 

 

displayed in Figure 4.4.4.  After gluing the both sets of 

spars to a rib, it was time to glue the middle rib into plate.  

The middle rib was first adhered to the spars connected to 

the mounting rib.  This was done by placing glue onto 

both of the spar L-brackets and then firmly pressing the 

middle rib against them.  It was necessary to glue both 

spars at the same time because gluing them one by one 

could possibly cause the first bond to break when 

applying glue to the second area.  The reason the spars were grouped this way was so each set was as 

close to the same length as possible.  If the spar pairs were of different lengths, then the ribs at either of 

the spar pairs would never be parallel which is not desired in the design.  Figure 4.4.5 shows an up-close 

view of the middle rib after it has been glued into place.  As seen in the Figure, the edge for the spars 

does not fully come into contact with the rib faces.  This will be corrected when the structural adhesive 

will be added to fill in these gaps.  This process was done for all 15 wing structures and all 15 finished 

internal structures is presented in Figure 4.4.6.   

 Once all of the internal structures were completed, each internal section was test fit with the wing 

skin it would be paired with to determine how well the parts would fit 

together.  After each test fit was complete, it was time to begin the final 

assembly step of attaching the skin to the internal structure.  To complete 

this, structural adhesive was applied to the top and bottom of the flanges 

of the spars and edges of the ribs of the internal structure while also 

adding a strip of adhesive to the trailing edge of the skin to aid in closing 

out the trailing edge.  Once the adhesive was applied, the internal 

structure was carefully placed into position inside of the skin.  All of the 

surfaces of the internal structure were covered with adhesive, screws that 

Figure 4.4.3: Bonding of leading edge spar to 

end rib 

Figure 4.4.4: Mount rib 

with both leading and 

trailing edge spars glued in 

place 
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were inserted into the weld nuts were used to position the 

internal assembly into place.  Once the internal structure 

was set, it was then placed into the impact mount designed 

to hold the specimen in place during impact testing.  This 

was used to would allow the application of uniform 

pressure across the skin surface while the adhesive cured.  

To increase the pressure applied, some weights were placed 

over the top plate for the duration of the curing.  To speed up the curing process, the wing was placed on 

the heating table in the Cal Poly Aerospace Structures/Composites lab that was designed by Dr. 

Elghandour to speed up the process of curing composite parts.  The table was set to 150°F and took 

approximately 2 hours for the adhesive to solidify.  Once the adhesive had cured, the wing was taken 

from the fixture and placed off to the side to await one last machining step before the specimen was 

complete.  This process was repeated for each wing specimen.  The final phase of manufacturing for 

each wing was to trim off the excess skin and trailing edge flaps.  The skin was 

manufactured at 10 inches long and was trimmed to the final dimension after 

assembly.  The wingtip was trimmed so the end of the skin was flush with the 

outer rib and the inner section was trimmed to match the 0.25 inch overhang as 

designed for the dynamic testing fixture. A finished wing specimen is displayed 

in Figure 4.4.8.  

Figure 4.4.6: All 15 

completed internal 

structures for wing 

design 

Figure 4.4.5: Top-down view of middle rib 

after having both sets of spars glued in 

place 
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Figure 4.4.7: Application of structural adhesive to internal structure just before 

being placed inside of wing skin 

Figure 4.4.8: First wing completed and ready for testing
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5. Experimental Results and Discussion 

Chapter 5 is the core of this project with an analysis of the experimental results for material 

property testing, dynamic testing, and impact testing.  Results for the material property testing of the 

tension and compression specimens are discussed in Section 1.  Section 2 presents the results of the pre-

impact dynamic testing of the wings meaning the dynamic results for the wings before they are 

damaged under impact.  Section 3 is a failure analysis of each group of wing impacts including 

similarities and difference in each group.  Section 4 compares the pre- and post- impact dynamic 

characteristics of each wing specimen.  The post-impact data is taken from the wings after each one was 

damaged using the Dynatup 8250.   

5.1.  Material Property Testing Results 

 After testing all tensile specimens, the data was read into MATLAB and analyzed.  The results of 

the testing are available in Table 5.1-1.  The average ultimate tensile strength was 105 ksi with a 

standard deviation of 3.7 ksi.  This means the variation across each specimen was around 3.5% of the 

mean meaning that the five specimens tested can be considered similar.  The average tensile modulus 

was 6,240 ksi with a standard deviation of 240 ksi.  The variation for Young’s Modulus was 3.85%.  

Figure 5.1.1 displays the experimental results from each specimen plotted over each other.  The stress 

strain curve for this material shows that there is no plastic deformation occurring before failure which is 

expected.  LTM45EL is a very strong and brittle material. 

Table 5.1-1: ASTM D3039 Tensile Testing Results 

Specimen # 1 2 3 4 5 

Ultimate Tensile 

Strength (ksi) 

107 102 100 107 109 

Mean (ksi) 105 Standard Deviation (%) 3.5 

Tensile Modulus (ksi) 6,540 6,110 5,980 6,120 6,440 
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Mean (ksi) 6,240 Standard Deviation (%) 3.8 

 The testing results for LTM45EL were consistent across all specimens meaning the values 

determined from these tests are to be taken as the true material properties for this material.  Now that the 

material strength is determined, it is important to determine the degradation the material roll has 

sustained.   

 Table 5.1-2 lists the tested material properties compared to the material properties taken from the 

material data sheet.  From the table, it can be shown that the LTM45EL material has had major strength 

degradation since its manufacturing date in 2007.  This is to be expected, prepreg materials typically 

have a shelf life of 6-12 months depending on what temperature the material is stored at.  The reason 

prepreg expires is because while the material is stored in a freezer at a low temperature, the resin is still 

slowly curing.  As discussed in Section 1.2, the resin system of a prepreg is partially cured during 

manufacturing so that the resin and matrix will stay together during layups and transportation.  However, 

the resin never stops curing, but is slowed drastically at lower temperatures.  This phenomenon is 

partially the reason for such drastic strength loss.  The resin over the last few years has been slowly 

Figure 5.1.1: Stress vs strain experimental results from ASTM D3039 testing 



 

62 

 

curing causing the material to lose strength.  Another source of strength loss is that the material was 

cured at 70 psi instead of the recommended 90 psi however this cannot be fixed.  The reason is the 

autoclave that was used for this thesis has a pressure cap of 70 psi and cannot be pressurized any higher.  

After experimental testing was completed, it was determined that the measurement of strain from the 

Instron was very inaccurate and so a quick test was done to determine the tensile modulus of the 

LTM45EL weave using a more accurate method of measuring strain.  An extensometer was held firmly 

against a tensile specimen and tested to 4000 lbf.  As seen in Table 5.1-2, the use of an extensometer 

shows that the tensile modulus of the material is much closer to the data sheet that previously thought. 

Table 5.1-2: Comparison of Experimental Values to Data Sheet Values 

Value Experimental Data Sheet % Difference Extensometer 

Ultimate Tensile 

Strength (ksi) 

107 88.6 20 N/A 

Tensile Modulus 

(ksi) 

6,240 9,060 31 8,615 

 

5.2. Pre-Impact Vibration Testing 

 Before impacting any of the wings, it was important to first characterize how the wings would 

responds to determine the natural variation across the sample size.  Wing 1 was tested the most 

thoroughly as mentioned in Chapter 2.3 with 80 different locations analyzed and tested.  The other 14 

specimens were compared to this wing to determine the natural variation as well as establish a baseline 

for each wing before impact to be compared to after being damaged.   

Wing 1 was the first wing to be fully assembled and tested.  This wing is one of the three control 

wings.  The wing was placed onto the vibration table and then tested multiple times.  Five different 

locations were tested for every ½ inch of span and the data was analyzed (as explained in Chapter 2.3).  

Figure 5.2.1 displays the resulting over-plotted frequency responses.  In the figure, a definitive first 
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mode excitation exists around 200 HZ with a less clearly defined second mode excitation between 900 

Hz and 1000 Hz.  When analyzing each run and determining each natural frequency, the average first 

mode excitation occurred at 196 Hz with a standard deviation of 3.5 Hz while the second mode average 

was 923 Hz with a standard deviation of 121 Hz.  A much higher variation for the second mode 

excitation is present due to the asymmetric geometry of the wing.  For solid symmetric structures, the 

natural frequency excitation occurs uniformly across the specimen whereas the wing structure does not 

have evenly distributed mass.  Mass for the wing structure is concentrated along the spars, which is 

where the majority of the material and adhesive is located and ca n cause the modal excitation frequency 

to fluctuate.  When analyzing the data of the second mode more closely and comparing the natural 

frequencies along each chord location, a clear result shows the high variation of the second mode 

excitation stems from areas not along the spars.  In Table 5.2-1, the second mode natural frequency and 

damping ration averages and standard deviations at each chord location.  The highest variation occurs at 

the trailing edge of the wing due to trailing edge of the wing being discontinuous.  As mentioned earlier 

Figure 5.2.1: All Frequency response results from first wing 
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in this paper, the trailing edge of the wing is glued together with structural adhesive and caused the high 

damping ratio variation along this section.  The second region with high variation is the middle chord 

region.  What is believed to be occurring is the skin is displacing up and down more than the 

surrounding regions during testing, increasing the effective damping of the region and causing a higher 

variation of the second mode excitation.   

Table 5.2-1: Averages of 2
nd

 mode data values and corresponding standard deviations 

Chord Location Average 2
nd

 

Mode Frequency 

(Hz) 

Standard 

Deviation of 

Frequency (%) 

Average 2
nd

 

Mode Damping 

Ratio 

Standard 

Deviation of 

Damping Ratio 

(%) 

Leading Edge 952  5.56 0.042 54.24 

Leading Edge 

Spar 

930 1.82 0.030 10.33 

Half Chord 922 16.70 0.062 66.12 

Trailing Edge 

Spar 

921 2.28 0.027 7.41 

Trailing Edge 950 21.26 0.078 69.23 

 

A clear visual representation of this is shown when comparing the frequency responses along the 

leading edge spar and along the wing at 50% of the chord focusing between 500 Hz and 1100 Hz. This is 

displayed in Figures 5.2.3 and 5.2.2 respectively.  In Figure 5.2.2, a clearly defined region around 900 

Hz is where the natural frequency is being excited.  When examining Figure 5.2.3, the region of the 

natural frequency excitation is much larger and varies from 800 Hz to 1000 Hz.  This also corroborates 

that it is the displacement of the skin in this region that is causing the high variation seen.   
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Another interesting finding came when looking at the first mode response amplitudes across the 

wing.  Figure 5.2.4 is a 3D bar chart with the long axis representing various locations along the span, the 

depth axis representing different chord locations, and the vertical axis showing the response amplitude at 

each point.  From this chart, the modal shape of the wing in the first natural frequency region mimics the 

shape that would be seen for a beam under the same condition.  From Figure 5.2.4, it is clearly visible 

that as the accelerometer is moved out along the wing span, the response amplitude increases.  As 

mentioned in Chapter 2, the response amplitude is directly proportional to the displacement.  This means 

the mode shape of the wing matches what would be expected for a first bending mode of a cantilever 

beam with the lowest displacement occurring near the fixed end and the highest at the tip.  Now because 

this structure is in no way continuous, it will not perfectly mimic a simple cantilever beam, but the trend 

can still be seen.  The same trend can be seen for the second mode response, the Figure can be found in 

the appendix section.  

Figure 5.2.2: Second mode response of 1st wing along the middle of 

the chord 
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Every wing after Wing 1 experienced fewer total test runs due to problems the shaker table was 

experiencing.  The testing of the wings pre-impact went smoothly with no trouble experienced on the 

shaker table.  Each individual wing was placed onto the shaker table and had measurements made that 

the locations specified in Chapter 2.3.  The locations tested are displayed in Figure 5.2.5.  Points 1, 3, 5, 

8, and 9 are all located along the leading edge of the wing with points 3 and 4 also lying directly over the 

middle rib.  Points 4 and 7 lie along the trailing edge spar and points 2 and 6 are located over hollow 

regions of the wing.  

After testing all of the wings, the data was again analyzed using MATLAB.  All of the wings 

had very similar first mode excitations with the exception of Wings 4 and 5.  Wings 4 and 5 had strain 

gages placed on them for strain measurements during impact and also had lead wires attached during the 

pre-impact testing.  Figure 5.2.6 shows the 4
th
 Wing mounted in on the shaker table with the leading 

wires attached and wrapped around the wing.  The wires being attached altered the mass distribution of 

the wing and lowered the natural frequency for the first mode excitation to 168 Hz.  For this reason, the 

Figure 5.2.3: Second mode response of 1st wing along leading edge spar 
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dynamic data from Wings 4 and 5 cannot be used when analyzing the before and after effects of the 

impact.  For the other 12 Wings, their dynamic results will be analyzed independently and then 

compared at the end of this section.   

To analyze the rest of the wings, the results will be grouped into first and second mode data.  

Table 5.2.2 lists the first mode natural frequency and damping ratio along with the standard deviation for 

each wing and the weights of each wing.  From here on, Wing 1 data will represent only the 9 common 

points tested across all of the wings.  The table shows most of the wings have their first mode natural 

Figure 5.2.5: Locations of response measurements of wing specimens 
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frequency excited between 190 Hz and 200 Hz with the exceptions being Wings 4 and 5.  The variation 

for each wing was also very small, ranging from 4 Hz to 5 Hz.  This suggests that all of the wings 

manufactured are very similar and that the manufacturing process was well controlled.  There is 

however, a high variation in the damping ratio from wing to wing with the lower end being 0.0139 and 

the upper end 0.0198.  This can be explained by an inability to accurately control the thickness of the 

adhesive applied during assembly and the natural variation of the carbon fiber.  There standard 

deviations for the damping ratios are also small relative ranging from 0.0007 to 0.0044.  Based off of this 

data, it’s accurate to state first mode characteristics of all of the wings are similar. 

Table 5.2-2: 1
st
 mode dynamic data averages of Wing specimens 

 1
st
 Mode Natural 

Frequency (Hz) 

Standard 

Deviation (%) 

1
st
 Mode 

Damping Ratio 

Standard 

Deviation (%) 

Wing 1 198 2.83 0.0160 18.75 

Wing 2 193 2.38 0.0149 11.41 

Wing 3 189 2.59 0.0164 4.26 

Wing 4 168 2.92 0.0434 20.05 

Wing 5 168 1.91 0.0315 13.99 

Figure 5.2.6: Top down view of Wing 4 with accelerometers mounted over locations 3, 7 and 8 
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Wing 6 195 2.15 0.0168 10.71 

Wing 7 195 2.31 0.0198 2.02 

Wing 8 189 2.22 0.0158 5.69 

Wing 9 188 2.66 0.0162 11.11 

Wing 10 194 2.32 0.0153 4.57 

Wing 11 196 2.50 0.0160 7.50 

Wing 12 189 2.65 0.0155 10.32 

Wing 13 196 2.45 0.0139 5.75 

Wing 14 189 2.43 0.0155 4.52 

Wing 15 195 2.87 0.0148 18.24 

 

 The same results for the second mode are displayed in Table 5.2-3.  For the second mode, the 

natural frequencies ranged from 850 Hz to 900 Hz and the standard deviation varied from 40Hz to 60 

Hz.  So as expected, the second mode of each wing tended to have a higher variation.  This is also true 

for the damping ratio of the wings.  The range for the second mode damping ratios was from 0.0146 to 

0.0299 with the standard deviations spanning from 0.0026 to 0.0222.  The two wings with the highest 

average damping ratios were Wings 7 and 8, while also having the highest variation of the damping 

ratios.  Wing 7 and Wing 8 both produced incredibly high damping ratios at Location 2, which is directly 

over a hollow region of the wing closest to the wing root.  The values at location 2 were 0.0763 and 

0.0655 respectively.  No commonality was seen across all of the wings.  All other wings except for 

Wings 7 and 8 had damping ratios at Location 2 within the standard deviation.  One reason for the 

skewed data of Wings 7 and 8 could be that not enough adhesive exists over the spar and rib near this 

location, allowing more energy to be dissipated.  When examining the damping ratio at Location 1 for 

Wing 8, the damping ratio is higher than the average of Wing 8 alleging that Wing 8 does not have 

enough adhesive along the spar.  However, for Wing 7, the damping ratio at location 1 is very close to 
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the average.  If the damping ratio for location 2 is removed then the average damping ratio falls to 

0.0190 and the standard deviation falls to 0.0052 which closely mimics the data from the other wings.  It 

is difficult to determine what the difference with Location 2 of Wing 7 is because all of the data for 

Wing 7 is similar to the other wings in the group. 

Table 5.2-3: 2
nd

 mode dynamic data averages of Wing specimens 

 2
nd

 Mode 

Natural 

Frequency (Hz) 

Standard 

Deviation 

2
nd

 Mode 

Damping Ratio 

Standard 

Deviation 

Wing 1 864 5.90 0.0215 36.84 

Wing 2 839 6.67 0.0223 63.23 

Wing 3 864 6.02 0.0146 26.71 

Wing 4 825 5.69 0.0495 54.74 

Wing 5 808 4.08 0.0392 15.81 

Wing 6 884 4.64 0.0207 20.29 

Wing 7 874 5.03 0.0272 81.61 

Wing 8 868 5.81 0.0299 64.88 

Wing 9 795 4.40 0.0232 21.12 

Wing 10 870 7.12 0.0151 45.69 

Wing 11 905 5.19 0.0205 31.22 

Wing 12 861 5.11 0.0170 24.11 

Wing 13 887 4.85 0.0148 18.92 

Wing 14 858 6.06 0.0185 37.29 

Wing 15 871 5.97 0.0167 15.57 
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5.3.  Impact Testing of the Wings 

 As mentioned earlier in Chapter 2.3, there were various locations impacted.  The first three wings 

act as control specimens.  Wings 4-6 sustaining damage over the middle rib/leading edge spar 

intersection.  Wings 7-9 sustaining damage a half inch inward from the mid-span of the wing over the 

leading edge spar.  Wings 10-12 sustained damage over the over the middle rib at 50% of the chord.  

Finally wings 13-15 sustained damage over only skin located a half inch to the right of the middle rib at 

50% of the chord.  No damage was sustained by the first 3 wings, the wings are not analyzed in this 

section. 

 Wings 4-6 were impacted directly over where the middle rib and leading edge spar intersect.  

This is the most robust section of the wing due to the large amount of adhesive concentrated there so 

little visible damage is expected from the impact force.  Each wing was placed in the Dynatup 8250 

testing clamp, clamped in place by the pistons, and then damaged by the impact tup set to 8 inches above 

the wing.  As mentioned previously in Chapter 5.2, Wings 4 and 5 were equipped with strain gages to 

have strain data taken during the impact testing.  The reason strain gages were implemented so late into 

the process was because it was uncertain whether or not the shaker table would be available for use.  

After testing Wing 1, the shaker table was unavailable for a few weeks due to electrical problems in the 

amplifier and shaker head.  Because the system would be repaired in a timely manner, an alternative idea 

was done to apply strain gages to the wing to determine the amount of damage sustained.  Before testing 

the wings though, it needed to be determined how well the DAQ for the Dynatup 8250 worked with 

strain gages.   

 To test how well the DAQ would work, an experiment was performed using the Instron 8801 

system by pulling an aluminum bar with a strain gage attached and reading the data into the LabVIEW 

DAQ created to read in strain data that was discussed in Chapter 2.2.  The test pulled the bar under 

uniaxial tension up to 1000 lbf and measure strain data as the bar was elongated.  The data was then used 

to determine the Young’s Modulus of the bar.  The Young’s Modulus calculated was 10.21 msi while the 
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documented Young’s Modulus is 10 msi.  So using the strain data and load cell data, the Young’s 

modulus of aluminum was determined within 2 percent of the actual value which is considered very 

accurate.  This proves that the strain data taken using the new LabVIEW DAQ is accurate. 

 To also confirm the strain gages were working correctly, a 4 inch by 6 inch 

by 0.125 inch plate of aluminum was impacted from a height of twelve inches.  The 

strain data from the impact test would then be compared to an FEA model of the 

same scenario.  The strain gages were placed at various locations near the impact 

site with two gages lying on the long axis of the plate and two gages perpendicular 

to the long axis.  Figure 5.3.1 is a top view of the impacted plate.  The impact force 

on the plate was 909 lbf and the impact velocity was 8 fps.  The strain gages all 

operated perfectly during the test.   The strain data is available in Figure 5.3.2.  The 

figure displays some permanent deformation on the gages after impact, which is 

expected when impacting the aluminum.  The maximum strain measured from each gage can be found in 

Table 5.3-1.  This strain data will be compared to an FEA model in the next chapter.  

Figure 5.3.1: View of 

test plate used as strain 

gage verification 

Figure 5.3.2: Strain data from plate impact test showing permanent deformation of plate after impact 
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Table 5.3-1: Maximum strain values for plate impact experiment 

Gage Number Maximum Strain (μin/in) 

Gage 1 1,600 

Gage 2 1,000 

Gage 3 2,300 

Gage 4 700 

 Only Wing 5 was able to provide strain data as during the impact test.  Testing of Wing 4 yielded 

no usable data as the connection between the solder points and the strain gage became disconnected 

during the impact.  However, force data was still able to be taken during the impact.  In Table 5.3-2, the 

maximum impact force measured and the impact velocity for Wings 4, 5, and 6.  Images of each impact 

can also be seen in Figure 5.3.3.  When analyzing the impact forces, Wing 5 seemed to have felt a lower 

impact force even though the impact velocity was nearly identical to the other two tests.  However, when 

looking at the visible damage of Wing 5 compared to Wings 4 and 6, it was clearly visible that Wing 5 

had sustained much more noticeable damage and deformation of the wing skin.  The deformation of 

Wings 4 and 6 seemed to be just slight cracks of the wing skin around the impact sight while wing 5 

showed a significant deformation of the skin.  A better look at the damage sustained by Wing 5 can be 

seen in Figure 5.3.4.  In the figure, a depression of the skin to the right of the strain gage as well as a 

crack running from the leading edge to the trailing edge of the wing.   

Table 5.3-2: Force and velocity data from impact test of Wings 4, 5 and 6 

 Maximum Impact Force (lbf) Impact Velocity (ft/s) 

Wing 4 860 6.42 

Wing 5 570 6.34 

Wing 6 939 6.55 
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The reason the impact force of 

wing 5 was lower when 

compared to Wings 4 and 6 was 

because there was more work 

done deforming the skin with 

Wing 5, meaning more energy 

was absorbed during the impact 

resulting in a lower impact fore.  

The physics at work here is the 

Work-Energy principle and is explained with Equation 5.3.1 where m is the mass of the object, V is the 

impact velocity of the impact, F is the impact force, and d is how deep the impact penetrated. 

     
 

 
             (5.3.1) 

 In the equation, all of the kinetic energy of the fall is converted into deforming the wing skin and by 

rearranging Equation 5.3.1; it can be shown the impact force is inversely proportional to the depth of the 

impact.  This principle is the reason why bumpers of cars are designed to deform; the force of a crash is 

lowered due to the energy dissipation of the bumper.  So because Wing 5 has much more skin 

deformation than the other two wings, the impact force should be lower as the data states.  As for the 

failure mode of the impact over the rib/spar intersection, it seems to just be slight cracking of the wing 

skin with no visible damage to the internal structure of the wing.  As for the strain data measured during 

the impact, the strain gage for Wing 5 measure a maximum strain of 780 (μin/in). 

 

Figure 5.3.3: Views of wing damage for Wings 4 (a), 5 (b) and 6 (c) 

(b) (a) (c) 
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 The 

next 

impact location looked at was an impact directly of the leading edge spar, a half inch inward from the 

middle rib and consisted of Wings 7, 8, and 9.  The images of each impact are displayed in Figure 5.3.5.  

In the figure there is clear cracking of the skin for Wings 7 and 8.  As for Wing 9, there is evidence of 

fibers splitting and cracking in the photo.  The impact forces and velocities can be found in Table 5.3-3.   

Table 5.3-3: Force and velocity data from impact test of Wings 7, 8 and 9 

 Maximum Impact Force (lbf) Impact Velocity (ft/s) 

Wing 7 187 6.52 

Wing 8 242 6.54 

Wing 9 285 6.44 

 

From this group of impacts, Wing 7 sustained the lowest impact force of 187 lbf while Wing 9 sustained 

the highest impact force with 285 lbf.  When visually inspecting the damage to each wing, it was clear 

the most visual damage was seen in Wing 7.  There was a clear crack 1.1 inches long running from the 

leading edge towards the trailing edge.  After pressing down onto the impact location, it was evident that 

the leading edge spar had sustained some heavy damage to the right of the impact site.  When pressing 

down, it was felt that the spar underneath the skin give way as if the vertical portion of the c-channel had 

Figure 5.3.4: Close up of impact damage sustained by wing 
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buckled during the impact.  

This same phenomenon 

was felt when examining 

wing 8 however wing 8 

deformed much less when 

compared to Wing 7.  The 

damage of Wing 8 was 

also visually smaller than 

Wing 7 with the crack 

length being just under 0.6 inches.  A lower amount of damage can also be inferred by again looking at 

the load cell data from the test runs.  So following this trend, Wing 9 should, and does, have the least 

visible damage among the three wings due to the very minimal amount of surface damage that can be 

seen.  The only visible damage to Wing 9 is a few frayed and broken fibers at the impact site.  Also, 

when firmly pressing down over the impact location of Wing 9, no perceptible deformation occurs like 

the other two wings suggesting the leading edge spar in this section did not buckle from the impact.  

 The third impact location tested was the directly over the middle rib at 50% of the chord.  The 

impact forces and speeds are listed in 

Table 5.3-4 below and the pictures of 

the damage sustained are available in 

Figure 5.3.6.  The failure modes for 

these impacts are more varied than the 

previous sets.  Wing 10 impacted just 

to the right if the rib and glanced deep 

into the skin in Figure 5.3.6.  There is 

a nice round hole at the impact site 

where the tup penetrated into the wing.  The impact for Wing 11 was directly over the rib and left a small 

 

Figure 5.3.5: Views of wing damage for Wings 7 (a), 8 (b) and 9 (c) 

(a) (b) (c) 

 

Figure 5.3.6: Views of wing damage for Wings 10 (a), 11 (b) and 12 

(c) 

(a) (b) (c) 
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dimple in the skin.  Wings 12 had the tup glance off of the middle rib and penetrate the wing skin to the 

right of the wing skin.  The impact of Wing 12 was interesting because instead of the skin deforming as 

Wing 10 had, the skin seemed to crack along the rib and create a sort of flap seeming to slow the tup.  

An interesting note is the impact force of Wing 10.  When analyzing data it was seen from the 

force data, two different impacts occurred during this test, the first being the penetration of the skin and 

glancing off the middle rib and the second is the tup bottoming out against the bottom skin section.  The 

penetration of the skin is low due to how the skin actually is.  Figure 5.3.7 shows the force versus time 

plot of the impact data for Wing 10.  In the figure, an initial impact is present and then about 0.005 

seconds later there is a second, much stronger impact, which is the top bottoming out against the bottom 

wing skin and mounting fixture.  The reason the impact tup does not penetrate through the next layer of 

skin is because the fixture that holds the wing in place is pressed directly against the wing skin.    

Table 5.3-4: Force and velocity data from impact test of Wings 10, 11 and 12 

 Maximum Impact Force (lbf) Impact Velocity (ft/s) 

Wing 10 175* 6.50 

Wing 11 404 6.39 

Wing 12 235 6.52 

 

 The final impact location was just inward of the middle rib and behind the leading edge spar so 

only the skin was struck by the impact tup.  The impact forces and velocities are listed below in Table 

5.3-5 and the images of the impacts can be seen in Figure 5.3.8.  The impacting of only the wing skin 

saw the highest variation between impact forces.  Wing 13 was the lowest of the three impact forces.  

The maximum force measured during impact was only 170 lbf.  However, Wing 13 was also the only 

wing requiring the impact tup to be separated from the wing by force. 



 

78 

 

Table 5.3-5: Force and velocity data from impact test of wings 13, 14 and 15 

 Maximum Impact Force (lbf) Impact Velocity (ft/s) 

Wing 13 170 6.41 

Wing 14 205* 6.54 

Wing 15 195* 6.39 

 

Based upon the visual evaluation of the impact damage for Wing 13, it is likely that instead of tup 

penetrating the wing all the way to the bottom skin, the carbon deformed in such a way it created a 

cushion absorbing the energy of the impact force.  This is displayed in the force versus time response of 

Wing 13 shown in Figure 5.3.9.  Displayed in Figure 5.3.6, it is clear after the maximum impact force is 

reached, the energy slowly dissipates.  The impact tup and rail seemed to bounce up after impact, 

because of the slope change in the data.  An upward slope means the load cell is being unloaded and 

since the data moves up and then back down again it means that the tup bounced. 

Figure 5.3.7: Force vs. Time history of Wing 10 impact test showing initial impact and the 

secondary impact forces 
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 Wing 14 was also a very 

interesting impact to analyze.  As 

displayed in Figure 5.3.8, a very 

long and distinct crack formed 

parallel to the middle rib and a sort 

of flap was formed.  This flap 

would have done very little to slow 

the speed of the impact and this is 

why the second impact force 

measure during the Wing 14 test is so much higher than the other tests.  The impact tup hit the bottom of 

the wing skin at almost full velocity.  The force versus time data from Wing 14 is displayed in Figure 

5.3.10.  When comparing the data shown in Figure 5.3.7 and Figure 5.3.10, the change in force of Figure 

5.3.10 is much more abrupt than in Figure5.3.7.  What this suggests is the upper layer of skin 

immediately gave way to the impact force and provided little to no resistance to the impact tup whereas 

with Figure 5.3.7, the rate of change for force is smoother suggesting the upper portion of wing skin is 

Figure 5.3.9: Force vs. time history of Wing 13 impact test 

 

Figure 5.3.8: View of wing damage for Wings 13 (a), 14 (b) and 15 

(a) (b) (c) 
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resisting the movement of the impact tup, resulting in a lower impact force.  Based on the data shown in 

Figure 5.3.10, the upper portion of wing skin crushing during the test did very little to absorb the kinetic 

energy of the impact tup.  The reason the secondary impact of Wing 14 was so high because it collided 

with the bottom portion of the wing skin at almost full speed. 

 As with Wing 14, Wing 15 also had a two-stage impact, but showed a much lower secondary 

impact.  Visually, the impact damage is similar to that of Wing 13 however, when looking closer the 

damage to the skin is more substantial.  For Wing 15, the skin seems to have just been moved away from 

the point of impact tup during the impact, causing slowing due to friction.  However, it was considerably 

less compared to Wing 13’s data.  The force versus time data for Wing 15 can be seen in Figure 5.3.11.  

From the figure, it is shown that at the initial impact there seems to be some resistance by the skin as the 

force peaks multiple times around 140 lbf and then slowly decreases until the tup bottoms out and the 

impact force maxes out at 475 lbf.  

 

 

Figure 5.3.10: Force vs. time history of Wing 14 impact showing initial impact and secondary impact forces 
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Figure 5.3.11: Force vs. time history of Wing 15 impact showing initial impact and secondary impact forces 
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5.4.  Post-Impact Dynamic Testing 

 After all the wings were impact tested, they were again tested dynamically to determine whether 

or not noticeable change existed in the dynamic characteristics of the wing.  To determine the natural 

variation, Wings 1-3 were first analyzed to set the baseline for all of the other wings to be compared to.  

Table 5.4-1 displays the 1
st
 and 2

nd
 pre- and post-impact dynamic data for Wings 1, 2, and 3.  Based on 

the data below, the natural variation for the 1
st
 mode resonant frequency is 4 Hz while the natural 

variation of the average damping ratio is 0.0015.  Now the natural variation can be caused by many 

different factors.  One factor that could have an effect is the stress from the multiple dynamic tests could 

cause some internal damage to the adhesive or various parts of the wing.  Another aspect that could have 

affected the results is how the wing was mounted for each test.  If the screws holding the wing in place 

or the top plate were tightened differently, it could have an effect on the results.  One last possibility is 

the structure just has some natural variation from test to test due to the high complexity of the structure. 

 

Table 5.4-1: Comparison of pre- and post-impact data for wings 1, 2 and 3 

 Wing 1 Wing 2 Wing 3 

Average Pre-Impact 1
st
 

Mode Natural 

Frequency (Hz) 

198 193 189 

Average Post-Impact 

1
st
 Mode Natural 

Frequency (Hz) 

200 194 193 

% Change 1.01 0.52 2.12 

Average Pre-Impact 1
st
 

Mode Damping Ratio 

0.0160 0.0149 0.0164 

Average Post-Impact 

1
st
 Mode Damping 

Ratio 

0.0143 0.0155 0.0172 

% Change -10.625 4.03 4.88 

Average Pre-Impact 2
nd

  

Mode Natural 

Frequency (Hz) 

864 839 864 

Average Post-Impact 

2
nd

  Mode Natural 

Frequency (Hz) 

873 842 869 

% Change  -1.04 0.36 0.58 

Average Pre-Impact 2
nd

 

Mode Damping Ratio 

0.0215 0.0223 0.0146 
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Average Post-Impact 

2
nd

  Mode Damping 

Ratio 

0.0194 0.0146 0.0224 

% Change -9.76 -34.53 53.42 

 

The second mode variation was also fairly low with the highest frequency change being 9 Hz.  However, 

a large change occurred in the second mode damping ratio for Wings 2 and 3 with the change being a 

decrease 0.0077 for Wing 2 and an increase of 0.0077 for wing 3.  Any change larger than this will be 

considered evidence of damage. 

 We will begin examining Wing 6.  As mentioned earlier in Chapter 5.2; Wings 4 and 5 would 

only be used for determining the strain damage sustained by the wing.  As for wing 6, the pre- and post-

impact data is listed in Table 5.4-2.  Based upon the average damping ratio changes, there is no evidence 

this wing has sustained any damage even though it was impacted and damaged from testing.  However, 

when looking at the damping ratio changes from point to point for Wing 6, a very large change occurred 

for the 2
nd

 mode damping ratio at point 3, which is where this wing was impacted.  The pre-impact 2
nd

 

mode damping ratio for wing 6 at point 3 was 0.0260 and the post-impact 2
nd

 mode damping ratio was 

0.0137. 

Table 5.4-2: Comparison of pre- and post-impact data for wing 6 

 Wing 6 

Average Pre-Impact 1
st
 Mode Natural Frequency 

(Hz) 

195 

Average Post-Impact 1
st
 Mode Natural Frequency 

(Hz) 

195 

% Change 0.0 

Average Pre-Impact 1
st
 Mode Damping Ratio 0.0168 

Average Post-Impact 1
st
 Mode Damping Ratio 0.0170 

% Change 1.01 

Average Pre-Impact 2
nd

  Mode Natural Frequency 

(Hz) 

884 

Average Post-Impact 2
nd

  Mode Natural 

Frequency (Hz) 

873 

% Change -1.24 

Average Pre-Impact 2
nd

 Mode Damping Ratio 0.0207 

Average Post-Impact 2
nd

  Mode Damping Ratio 0.0172 

% Change -16.91 
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This represented a decrease in the damping ratio by 0.0123.  What this means is this region of the wing 

became stiffer in the 2
nd

 mode after impact.  This can be best illustrated by looking at the second mode 

time response of point 3 on Wing 6 seen in Figure 5.4.1.  In the figure, the red line represents the time 

response of before the wing was impacted while the blue line represents the post-impact time response.  

As shown in the figure, it is clear that location 3 now dissipates less energy over time.  This region of the 

wing was so robust due to the high concentration of adhesive and carbon in this region, the energy of the 

impact was not sufficient enough to cause damage and instead, compressed the region, increasing the 

stiffness at point 3.   The impact for wing 6 was also the second highest of all of the impact forces (939 

lbf), being second to wing 14 where the impact tup struck directly into the bottom of the wing skin.  The 

high measured impact force says that there was very little deformation of the wing in this region and the 

Figure 5.4.1: Second mode time response for Wing 6 at point 3 showing the effects of the impact damage on 

the time response 
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decrease in the second mode damping ratio says that the adhesive did not dis-bond from the wing skin 

but was instead compressed and hardened.  All of the other tested locations for wing 6 showed no sign of 

significant change after impact testing.  So for Wing 6 it can be said that damage to the wing was 

localized to just the impact region and did not dissipate to areas around the rib/spar intersection. 

 The next set of wings that will be analyzed are Wings 7, 8, and 9 which were impacts directly 

over the leading edge spar.  Table 5.4-3 lists the pre- and post-impact 1
st
 and 2

nd
 mode natural 

frequencies and damping ratios.  Again, previewing the data and comparing the average changes to what 

was seen in the control samples, no value stands out.  The largest change of any of the values is the 

second mode damping ratios of Wing 8 with a decrease in the damping ration of 0.0055 and wing 7 with 

an increase in the damping ratio by 0.0049.  However, these damping ratio changes are within the natural 

variation of the control samples (wings 1-3).  The impact location for this set of wings was directly 

between points 1 and 3 and points 2 and 4 were also very close to this region. 

Table 5.4-3: Comparison of pre- and post-impact data for Wings 7, 8 and 9 

 Wing 7 Wing 8 Wing 9 

Average Pre-Impact 1
st
 

Mode Natural 

Frequency (Hz) 

195 189 188 

Average Post-Impact 

1
st
 Mode Natural 

Frequency (Hz) 

189 189 187 

% Change -3.07 0.0 -0.53 

Average Pre-Impact 1
st
 

Mode Damping Ratio 

0.0198 0.0158 0.0162 

Average Post-Impact 

1
st
 Mode Damping 

Ratio 

0.0191 0.0163 0.0167 

% Change -3.54 3.16 3.09 

Average Pre-Impact 2
nd

  

Mode Natural 

Frequency (Hz) 

874 868 795 

Average Post-Impact 

2
nd

  Mode Natural 

Frequency (Hz) 

815 839 788 

% Change -6.75 -3.34 -0.88 

Average Pre-Impact 2
nd

 

Mode Damping Ratio 

0.0190 0.0248 0.0232 
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Average Post-Impact 

2
nd

  Mode Damping 

Ratio 

0.0239 0.0193 0.0200 

% Change 25.79 -22.17 -13.79 

When comparing the damping ratio changes on a point by point basis, some trends do begin to 

emerge.  For the 2
nd

 mode of Wing 7, there was a noticeable damping ratio increase at points 1, 5, and 9.  

The value increase for each point was just above 0.0200 and the change to the time response of Location 

1 is shown in Figure 5.4.2.  From Figure 5.4.2, the damping ratio increased after impact suggesting 

damage was sustained to the wing.  There were also observed decreases to the 2
nd

 mode damping ratio of 

Wing 7 at Locations 3, 7, and 8.  The decrease in the damping ratio also suggests a change has occurred 

in the wing structure which was caused by the impact damaged sustained by the wing.  So for Wing 7, 

when analyzing the individual locations, it is very evident some damage was sustained by Wing 7.  Wing 

Figure 5.4.2: Second mode time response of Wing 7 at point 1 showing the effect of the impact damage in the 

time response 
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8 also showed no noticeable change for the 1
st
 mode time response of the wing but did show a drastic 

change for some locations of the 2
nd

 mode.  The largest change was at location 1.  With the damping 

ratio decreasing as can be seen from the time response at point 1 for Wing 8 shown in Figure 5.4.3.  

Wing 9 had the most variations with some ratios increasing while some others decreased.  With the 

average damping ratio, no noticeable change was seen.  The largest change for Wing 9 came at point 4 

which is located just to the right of the impact sight. 

Wings 10 and 11 had the same story where there was no large change to the damping ratios; 

however Wing 12 has a large change in the average 1
st
 mode damping ratio.  Wing 12 is the only wing to 

have shown a large change of the 1
st
 mode damping ratio.  Wing 12 showed an increase in damping ratio 

for all 9 locations measured with the minimum increase being 0.0051, which is well outside the natural 

variation set by the control set of wings.   

 

Table 5.4-4: Comparison of pre- and post-impact data for wings 10, 11 and 12 

 Wing 10 Wing 11 Wing 12 

Average Pre-Impact 1
st
 

Mode Natural 

Frequency (Hz) 

194 189 196 

Average Post-Impact 

1
st
 Mode Natural 

Frequency (Hz) 

194 198 187 

% Change 0.0 4.76 -4.59 

Average Pre-Impact 1
st
 

Mode Damping Ratio 

0.0153 0.0160 0.0155 

Average Post-Impact 

1
st
 Mode Damping 

Ratio 

0.0150 0.0164 0.0224 

% Change -1.96 -2.50 -44.51 

Average Pre-Impact 2
nd

  

Mode Natural 

Frequency (Hz) 

870 805 861 

Average Post-Impact 

2
nd

  Mode Natural 

Frequency (Hz) 

869 903 857 

% Change -0.12 12.17 -0.46 

Average Pre-Impact 2
nd

 

Mode Damping Ratio 

0.0151 0.0205 0.0170 
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Average Post-Impact 

2
nd

  Mode Damping 

Ratio 

0.0147 0.0185 0.0147 

% Change -2.65 -9.75 -13.53 

 

The impact location for this batch of wings was directly over the middle rib and while Wings 10 and 12 

sustained impacts that glanced off of the middle rib and punctured down into the skin, Wing 11 showed a 

direct impact onto the middle rib and the full force of the impact was felt at this location.  The change to 

the first mode time response at Location 4, directly behind the impact site, is seen in Figure 5.4.4.  One 

reason for the large change in the first mode damping ratios for Wing 12 was the location of the impact.  

Now it is very interesting that Wing 12, with a low impact force of 235 lbf, is the only wing so far to 

show any distinct sign of a major change to the structure’s dynamic characteristics when Wing 6, which 

Figure 5.4.3: Second mode time response for Wing 8 at point 1 showing the effects of the impact damage on 

the time response 
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had recorded the largest impact force, only showed signs of damage at a single measurement point. 

 When comparing the tests of Wing 6 and Wing 12, a clear contrast can be seen that fits with the 

work-energy principle.  Wing 6 measured a very high impact force and showed very little visible damage 

whereas Wing 12 measured a very low impact force while there was a large visible crack in the skin.  

The reason Wing 12 showed a large change in the dynamic properties of the first bending mode is in 

part, due to the high amount of energy that was transferred into the structure at a key location.  The 

middle rib is the only impacted location that is directly connected to both the leading and trailing edge 

spars.  A strike at this location could allow the energy from the impact to effect the rest of the internal 

structure the most effectively.  Wing 6 did not show a large change because the impact was at the most 

robust portion of the wing and the adhesive resisted the impact energy very well, reflecting most of the 

energy back into the impact tup.  This is why the force measurement for this test was so high, while 

Wing 12 had very little adhesive near the impact region so the impact energy was transferred into the 

structure.  Also, because the rib was thicker than the spars it did not compress to the degree the leading 

edge spar did which leads to another reason as to why this specific wing showed such a large change.  

With the leading edge spar impact, most of the energy was absorbed by the crushing of the leading edge 

spar and skin in this region.  With the rib being thicker and stiffer, less of the energy from the impact 

went into deforming the composite and more was absorbed into the structure and bonds.  As stated 

earlier, Wings 10 and 11 did not show this same result due to the impact tup not perfectly aligning with 

the rib at contact.  No wings from this batch showed any large change for the second mode response as 

well.  One reason this could be true is that the region of the impact was located at a node of the second 

mode.   There is little to no deflection at the impact site, so during the second mode excitation, the 

impact damage has little effect to the modal response. 



 

90 

 

 The final group of Wings (13, 14, and 15) consisted of impacts directly over the skin.  The pre- 

and post-impact averages can be seen in Table 5.4-5.  Wing 13 showed no significant change for either 

the first or second mode dynamic response.  As a reminder, the Wing 13 impact measured a very low 

impact force of 170 lbf while sustaining a large circular deformation of the skin.  Since the impact was 

localized to the skin, and the skin is less stiff relative to the rest of the structure, it was not expected for 

damage to be visible for this impact location.  The reason is because the skin will be able to absorb more 

of the impact energy due to the low stiffness of this region of the design.  Wing 15 also showed little 

variation for the pre- and post-impact data.  Wing 14, like Wing 12, showed a dramatic increase to the 

average damping ratio for the 1st bending mode which is interesting because a skin impact should not 

affect the rest of the structure so drastically.  However recall that wing 14 recorded two different 

Figure 5.4.4 First mode time response for Wing 12 at point 4 showing the effects of the impact damage on 

the time response 
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impacts, the second measured the highest impact force of 972 lbf, which could explain what occurred to 

Wing 14.  What happened was initially the wing skin cracked (as shown in Figure 5.3.7) but did little to 

slow the speed of the impact tup causing the impact tup to smash into the bottom of the wing at full 

speed.  Since a high force was measured, it is known little deformation occurred, but unlike the impact of 

Wing 6, which also measures a force close to this, no adhesive reinforcement existed in the impact site.  

The lack of adhesive near the impact location caused the energy imparted into the structure to disperse 

outward along the wing, causing dis-bonding of the skin and the internal structure. 

Table 5.4-5: Comparison of pre- and post-impact data for Wings 13, 14 and 15 

 Wing 13 Wing 14 Wing 15 

Average Pre-Impact 1
st
 

Mode Natural 

Frequency (Hz) 

196 189 195 

Average Post-Impact 

1
st
 Mode Natural 

Frequency (Hz) 

197 184 194 

% Change 0.51 -2.64 -0.51 

Average Pre-Impact 1
st
 

Mode Damping Ratio 

0.0139 0.0155 0.0148 

Average Post-Impact 

1
st
 Mode Damping 

Ratio 

0.0136 0.0203 0.0144 

% Change -2.16 30.96 -2.70 

Average Pre-Impact 2
nd

  

Mode Natural 

Frequency (Hz) 

887 858 871 

Average Post-Impact 

2
nd

  Mode Natural 

Frequency (Hz) 

872 844 857 

% Change -1.69 -1.63 -1.60 

Average Pre-Impact 2
nd

 

Mode Damping Ratio 

0.0148 0.0185 0.0167 

Average Post-Impact 

2
nd

  Mode Damping 

Ratio 

0.0164 0.0174 0.0134 

% Change 10.81 -5.96 -19.76 

 

The impact of Wing 6 occurred directly over the adhesive which stopped the energy if the impact from 

disbursing through the internal structure.  The adhesive at the rib/spar intersection is what prevented the 

damage form the Wing 6 impact from spreading.  
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6. Finite Element Analysis (FEA) 

Chapter 6 discusses the methodology used to create the wing and analyze the finite element 

model of the wing design.  Section 1 discusses the initial problems with using ANSYS [35] to perform 

the finite element analysis and why a switch to Abaqus [34] was made.  Section 2 discusses the method 

used in creating the model of the wing beginning with the creation of each individual part as well as the 

assigning of the material properties.  Also covered in this section is how the model was structured so all 

of the parts in the model interact properly and how the mesh was applied.  Section 3 discusses how the 

frequency analysis was setup and performed on the model as well as comparing the numerical results to 

the experimental results.  Section 4 begins by explaining the creation of the plate model to verify the 

impact step of the model by comparing experimental and numerical strain data.  Finally in Section 4, 

the creation of the tup and the steps required for the explicit dynamic solver are discussed as well as a 

comparison of the experimental and numerical strain results for the wing structure. 

6.1.  Selecting an FEA solver 

 There are many different programs that can be used to perform FEA, each with its own specialty.  

Some solvers are better used for dynamic simulations whereas other solvers are superior for static or 

fluid simulations.  The programs available for this research project were ANSYS and Abaqus.   

 At the start of this thesis, ANSYS was planned to be used as the modeling tool and solver because 

the software integrated with Solidworks so imported parts did not decrease in quality.  This meant the 

curved surfaces of the ribs and skin would not become blocky after importing, which was a problem 

when importing parts into Abaqus.  ANSYS was also very simple to use, as the setup for projects was 

very streamlined.  However, problems using the meshing tools with ANSYS arose.  ANSYS 

automatically meshes the parts of an assembly and had trouble making a quality mesh along the trailing 

edge of the skin.  Another problem was meshes becoming distorted due to bonding conditions between 

the various parts in the assembly.  When bonding the skin to the spars, nodes and elements would be 

distorted, causing the solution in those areas to lose resolution. Based on these problems, the FEA 



 

93 

 

package was switched from ANSYS to Abaqus.  Abaqus is not as user friendly as ANSYS and does not 

work well with imported parts, but the meshing tools of Abaqus were much easier to use and customize.  

For this reason, it was decided to use Abaqus for numerical validation. 

6.2.  Building the Model 

 The model was built in Abaqus by first creating a 2D sketch of the NACA 2412 airfoil and 

importing it into the model.  The sketch was created using XFLR5 [36].  This program created a text file 

containing the X and Y coordinates based on percent chord.  XLFR5 interface is displayed in Figure 

6.2.1.  In order to scale the X and Y coordinates to match the 3 inch chord length of the specimen, the 

data was read into MATLAB and then scaled to match the real world specimen, then exported to a new 

text file. Next the sketch was imported into Abaqus to begin the process of making the assembly of the 

model.  The airfoil sketch was used as a basis to create all of the parts inside of Abaqus.  To reduce the 

computation time of the model, every part was modeled as a shell.  This was possible because the 

thickness of the various parts is smaller compared to the width and length of each part.  The major 

consideration that needs to be taken when working with shells is the model needs to represent the mid-

surface of whatever part is being created.  This is required because shells are modeled with no thickness; 

however that does not mean the thickness of each part is not important.  The thickness of the part is used 

during the numerical solving of the model.  The thickness of each shell is assigned in the second step of 

the FEA model assembly.  

Figure 6.2.1: Creation of NACA 2412 airfoil X and Y coordinates in XFLR5 for use in Abaqus 
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 The first step done in Abaqus was to model each part of the wing.  This was done in the part 

module by first creating a sketch of the part after selecting the base feature for the part.  The base feature 

used for the skin and spars was a 3D deformable shell extrusion while the ribs were modeled as3D 

deformable planar shells.  The ribs were the simplest parts to create because the sketch was already 

created using XFLR5.  The imported sketch is displayed in Figure 6.2.2.  In the figure are four vertical 

construction lines that were placed in the sketch to mark the locations of the spars.  These lines expedited 

the creation of the spars.  All that was needed to do for the ribs after importing the sketch was to save the 

part.  However, the mounting rib required an extra step; the mounting holes needed to be added to the 

part.  The holes were modeled as 0.635 inch diameter circles in the sketch and were located to mimic the 

specimen ribs.  Figure 6.2.3 shows the sketch of the mounting rib with the holes.  After the ribs were 

created the next part made was the skin.  As mentioned earlier, the skin was modeled as a 3D deformable 

shell extrusion and was again, based off of the XFLR5 airfoil sketch.  Recall the shells must be modeled 

as the mid-planes of the respective parts, which means that the imported sketch will require a slight 

modification in order to accurately model the wing skin.  To correctly model the mid-plane of the wing 

skin, the airfoil sketch needed to have each point moved outward by 0.0075 inches, or half a ply 

thickness of LTM45EL.  This was done easily as Abaqus has an “Offset Curves” which offset the skin 

outward from the center by 0.0075 inches.  Once the offset was complete, the profile was extruded to 

match the same length of the wing specimens.  The final two parts that needed to be created were the 

spars.  Again, 3D deformable shell extrusions were created and the XFLR5 sketch was imported.  The 

profile again needed to be offset, but only in certain areas which is where the construction lines (shown 

in Figure 6.2.2) come into play.  Because the 

spars matched only a part of the airfoil profile, 

any section not a part of the spars is removed 

from the sketch.  Before removal though, the 

points that make up the spar are selected and 
Figure 6.2.2: Base sketch of NACA 2412 airfoil used in 

creation of all model parts in Abaqus 
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then offset inward by 

0.0075 inches.  A line 

is drawn to connect the 

upper and lower 

flanges of the spar.  In 

Figure 6.2.4, the 

yellow lines are what 

will be extruded to 

create the leading edge 

spar while all of the green lines will be removed from the sketch.  This method is used to create both the 

leading and trailing edge spars.  Both of the spars were extruded 4 inches to match the manufactured 

parts of the wing specimens. 

Now that each part of the assembly has been created, the material properties must be applied. 

The material used for these parts was a carbon weave; the material properties were implemented as 

engineering constants with the assumptions that the 1 and 2 directions are equal.  The values used for the 

model are listed below in Table 6.2-1.  Values with experimental data available were used and when 

experimental data was unavailable the values were taken 

from the data sheet and scaled according to the data sheet 

of the material.  The values for E1 and E2 were taken from 

the experimental testing done on LTM45EL while all of 

the other values were used from Kodi Rider’s Master’s 

Thesis as he used the same type  of material that was used 

in this thesis. 

Figure 6.2.3: Sketch of mounting rib with locations of holes labeled 

Figure 6.2.4: Showing the side profile of 

leading edge spar and how it will be 

positioned in model assembly 
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Table 6.2-1: Material property variables used for wing model 

Material Property Value 

Density 0.0548 lb/in
3 

E1 = E2 6,540,000 psi 

E3 2,900,754 psi 

Nu12 = Nu13 0.096 

Nu23 0 

G12 = G13 725,000 psi 

 

After the material properties of LTM45EL were defined in Abaqus, sections needed to be created for 

each part.  Sections are used to assign the material property to a part as well as the how thick the section 

will be.  For solid sections, only a material property is assigned whereas with a shell, the thickness must 

be set as well.  A section was created for the skin, spars, and both the mounting rib and outer ribs as each 

of these had different thicknesses.  The thickness values used matched the experimental part thickness 

values. 

The next stage for creating the model was to assemble the structure in the assembly module of 

Abaqus.  The first part placed in the assembly was the mount rib.  From there, the wing was pieced 

together, first by placing all of the ribs and spars and then placing the skin last.  Since all of the parts are 

mid surface representations of the actual parts, this needed to be taken into account when assembling the 

model.  For instance, between the ribs and spars, there is a gap ½ the thickness of the rib.  So between 

the mounting rib and first set of spars, there is a 0.032 inch gap while the other two ribs have a 0.016 

inch gap.  The gaps between the spars and middle rib are visible in Figure 6.2.5.  As mentioned prior, the 

spar flanges were created to be offset below the airfoil profile so once the X and Z locations for the spars 

were set, they also had to be aligned vertically so that during the integration step on the analysis, the 
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spars and skin come into contact.  After placing all of the internal parts, the skin was added to the 

assembly (as seen in Figure 6.2.6).  The skin is aligned so that when the thickness of the part is applied, 

it will come into contact, but not overlap, the ribs and spar flanges.  To verify that all of the parts were 

correctly placed, the Abaqus query tool was used to measure the distances between each part. 

After assembling the wing design inside of Abaqus, all of the parts needed to be tied together 

using the Abaqus Tie Constraint.  The tie constraint connects two nodes or surfaces so no relative 

displacement exists between the two nodes or 

surfaces during testing.  This was done to 

simplify the bonding condition of the wing 

because attempting to model the adhesive 

properties of the structural adhesive would be 

excessive for what was being modeled.  Tie 

constraints work by first selecting a master set 

of nodes or surface and then slaving a separate 

Figure 6.2.5: View of the gaps between the middle rib and spars 

Figure 6.2.6: Visualization of gap between wing skin 

and internal structure in Abaqus model 
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set of nodes or surface to this.  The reason for the 

master-slave relationship between the sets is 

mainly used to make it easy for the Abaqus solver 

to determine how the structure will react.  It does 

not have an effect on the final results.  For the 

model, the skin was always set as master surfaces 

while the ribs were always set as slaves.  The spars were set as a slave to the spars, but as the master to 

the ribs.  This hierarchy was chosen because element size does play a role in which surface should be set 

as the master.  For Abaqus, the program suggests that the part with the larger element size is set as the 

master surface and because the spars had the largest elements, they were set as the master surfaces.  Now 

as for the specific ties, the spars and ribs were modeled as node-to-node constraints because the surfaces 

of each part were perpendicular to each other, so a surface-to-surface contact would not work.  A 

surface-to-surface contact was used when tying the spars and the skin together.  To tie the skin to the 

ribs, a node-to-node contact was used.  The next step done was to create the mesh for each part.  The 

mesh for the spars was very simple with a seed size of 0.2 inches.  The final mesh for the leading edge 

spar can be seen in Figure 6.2.7.  The trailing edge spar mesh was made with the same parameters.  The 

seed sizing for the skin was 0.4 inches and the seed sizing for the ribs was 0.1 inches.  The element type 

were 4 node quad elements with reduced integration 

After the meshing was complete, a test case for the wing was done to ensure that the mesh and 

tie constraints were operating correctly.  The test case was done by applying a upward point load of 10 

lbf while applying a fixed boundary condition at the wing root to simulate a cantilever loading of the 

wing.  After the analysis was run, the wing was inspected to see how all parts in the assembly interacted.  

Figure 6.2.8 shows the resulting model response to the applied load.  When examining the response of 

the assembly, it certainly does appear that all the ties are working correctly.  This is evident because the 

skin, spars, and ribs are all moving together as a unified structure.  Figure 6.2.9 shows the assembly, 

Figure 6.2.7: Mesh of leading edge spar 
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hiding the skin, so it is apparent that the internal structure is also working in unison.  From the figure it is 

clear the load is being correctly transferred along the leading edge spar to the fixed mounting rib.  Based 

on this test case, the model was ready to proceed to frequency analysis. 

  

Figure 6.2.8: Results of cantilever analysis of wing model to verify all tie constraints 

are operating correctly 

Figure 6.2.9: Visual confirmation that the tie constraints of the internal structure are operating 

correctly 
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6.3.  Frequency Response Step 

 In order to analyze the dynamic response of the wing, a frequency response step had to be created 

in the model tree.  The step was defined to determine the natural frequencies from 0 Hz to 2000 Hz.  The 

boundary conditions of the wing for this step were a fixed boundary condition on the outer face of the 

mounting rib as well as the section of skin that hangs past the mounting rib.  This was done to mimic as 

close as possible the clamping condition during the experimental testing.  No load needed to be applied 

to the structure.  The initial run of the model was not promising in the results.  The first bending mode of 

the first run was solved to be at 12 Hz, which is nowhere near what the first mode excitation was for the 

experimental testing which was between 190-200 Hz.  This means that there is something wrong with 

the model and the most likely suspect was the material properties.  The material properties were 

identified as the problem. The frequency solver in Abaqus uses an eigenvalue extraction method to 

determine what the natural frequencies of the model are.  The key variables in this solver are the mass 

and stiffness matrix which are both derived from the material properties.  The equation used by the 

Abaqus eigenvalue extraction is shown in Equation 6.3.1. 

                         (6.3.1) 

M is the mass matrix, K is the stiffness matrix, Φ is the eigenvector matrix, and M and N are the degrees 

of freedom for the structure.  So it is clear from Equation 6.3.1, the material properties are what the 

greatest effect of on the natural frequency.  To prove this, a sensitivity analysis was done by changing 

the Young’s Modulus and the material density to determine which value had the greatest effect on the 

structure.  The Young’s Modulus of the structure was varied from 1e6-5e8 psi and it was determined this 

equated to a first mode natural frequency range of 4-40 Hz which is would not move the natural 

frequency of the first mode to the same magnitude of the experimental testing.  So the next property to 

be analyzed was the density.  As a reminder, the density used to define LTM45EL was 0.0548 lb/in
3
 and 

so the density was varied from 1 lb/in
3
 down to 1e-5 lb/in

3
 and showed that the 1

st
 mode natural 
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frequency varied from 3-946Hz.  The result show the natural frequencies of the structure are most 

influenced by the density of the material.  After looking at the densities and the corresponding 

frequencies, it was determined that the original density of 0.0548 lb/in
3
 was off by a factor of gravity 

meaning that the units needed to be in slugs instead of lb.  When converted to slugs/in
3
, the density of the 

model became 0.00017 slug/in
3
.  After this change, the 1

st
 mode natural frequency was 214 Hz and the 

2
nd

 mode natural frequency was 926 Hz.  The 1
st
 and 2

nd
 mode shapes are shown in Figure 6.3.1 and 

6.3.2 respectfully.  Displayed in Figure 6.3.1, the 1
st
 mode shape mimics what is expected from a 

cantilever beam with a large deflection at the tip and no deflection at the root.  This also agrees with 

what was shown in Chapter 5 when analyzing the response amplitudes.  When looking at the 2
nd

 mode 

shape, it is evident that the mode shape not only experiences bending, but also some torsional stress.  

This is because the cross section of the model is not symmetric and so the inertial force of the leading 

edge creates a lag, causing the torsional loading.  This can be seen to a lesser extent in the 1
st
 mode 

shape.   

After looking at the modal shapes and natural frequencies of the model it was time to compare 

them to the experimental test values.  The results are listed in Table 6.3-1.  From the results, the 

Figure 6.3.1: Mode shape of 1
st
 mode of wing model in Abaqus 
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numerical model of the wing is very accurate as the largest percent difference was the 1
st
 mode natural 

frequency at 10.28% while the 2
nd

 mode percent difference was 7.95% which is very acceptable. 

Table 6.3-1: Comparison of 1
st
 and 2

nd
 mode experimental and numerical results 

 Experimental Numerical Percent Difference 

1
st
 Mode Natural 

Frequency (Hz) 

192 214 10.28 % 

2
nd

 Mode Natural 

Frequency (Hz) 

858 926 7.95 % 

 

 To verify the results of this model, a convergence study was done.  The purpose of a convergence 

study is to ensure that the results from the numerical model are accurate.  The results from the 

convergence study are shown in Table 6.3-2.  From the table, it is clear that doubling number of seeds 

for each part has a small to insignificant effect on the 1
st
 and 2

nd
 mode natural frequency results.  Based 

on this data, it can be said that the model results are accurate. 

Figure 6.3.2: Mode shape of 2
nd

 mode of wing model in Abaqus 
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Table 6.3-2: Results from convergence study of numerical wing model 

Part Global Seed Size (nodes/inch) 

Leading Edge Spar 0.4 0.2 0.1 

Middle and End Rib 0.2 0.1 0.05 

Mount Rib 0.2 0.1 0.05 

Trailing Edge Spar 0.4 0.2 0.1 

Skin 0.8 0.4 0.2 

1
st
 Mode Freq (Hz) 215 214 214 

2
nd

 Mode Freq (Hz) 939 926 923 

 

6.4. Impact Analysis of Plate and Wing 

 Before performing an impact step onto the wing model, an analysis was first conducted to 

compare the experimental strain results from the plate test to a numerical model.  The plate model was 

created as 3D deformable solid with dimensions matching the experimental plate.  The plate model is 

shown in Figure 6.4.1.  There are partition lines around the outer edge that will be used during the load 

step of the model.  The material was modeled as Al 6061-T6 to match the experimental plate.  The 

Young’s Modulus used was 10 Msi with a Poisson ratio of 0.33 and a density of 0.0975 lb/in
3
.   

A new part that is required for this step is the creation of the impact tup.  The tup was modeled 

as a 3D discrete rigid shell sphere with diameter of 0.625 inches and because it is a rigid part, also 

requires a reference point, which was placed at the center of the sphere.  The purpose of the reference 

point is so there is a location to assign the tup a mass as well as where boundary conditions or velocities 

can be applied. The tup was assigned a weight of 10.1 lbf in the inertia manager of the properties module. 

After both parts were created, they were placed into the assembly stage with the sphere placed 

just above the plate.  After the assembly is set up it was time to assign the necessary step required to run 
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the impact analysis.  To do this an explicit dynamic step was created with a total time of 0.025 seconds.  

The time was set to 0.025 seconds to ensure that the ball bounces off of the plate and the maximum 

deflection of the plate is achieved.  After the step was created, the interaction properties needed to be set.  

The purpose for the interaction properties is so that the numerical solver knows that objects are not 

allowed to pass through each other.  If this property was not set, the tup would pass straight through the 

plate with no interaction.  To set the appropriate contact property in the interaction step, the interaction 

property was selected and a new property was created.  The property used was “Normal Behavior” 

located in the Mechanical tab and the default settings were used.  After the property was created it was 

assigned to the model.  The second to last step before running the analysis was to apply any boundary 

conditions as well as a predefined field to the tup to assign a velocity so that the impact can occur.  A 

boundary condition was assigned to both the tup and the plate.  The condition assigned to the plate was a 

pinned fixing of the outer half-inch of the plate to mimic the experimental testing conditions.  A 

boundary condition was also assigned to the tup so during and after the impact there would be no lateral 

or rotational movement of the tup.  This condition was assigned to the reference point of the tup.  In 

order for the tup to move, a predefined field needed to be assigned to the tup at the reference point.  The 

Figure 6.4.1: Isometric view of partitioned plate part to be used to verify experimental impact strain results 

for plate test 
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velocity assigned was a downward velocity of 96 ips (inches per second).  In Figure 6.4.2, the assembly 

of the plate and tup as well as the boundary condition assigned to the plate is shown.  The final step is to 

assign a mesh to the ball and plate which were done using the global seed controls.  A medial axis sweep 

with a seed sizing of 0.0625 inches was used for the plate.  This size seed was chosen so that there would 

be at least 2 layers of elements that would make up the plate for a more accurate solution.  After the 

mesh was assigned, the job was submitted and the results were analyzed and compared to the 

experimental results of the plate.   

The analysis ran smoothly and the tup was able to impact the plate and rebound off.  To 

determine the strain results of the plate, the query tool was used and the elements closet to the location of 

the strain gages was probed to determine the accuracy of the model.  The locations for the strain gages 

are listed in Table 6.4-1 as well as the experimental and numerical strain values and the percent error.  

As a reminder, Gages 1 and 2 were located on the lengthwise on the plate while Gages 3 and 4 were 

located along the width of the plate.  Refer back to Figure 5.3.1 for a top down picture of the impacted 

plate.  As shown in Table 6.4-1, the percent error was fairly high for the model but there is a very close 

relation between the experimental and numerical results.  Based on the data it can be said that the 

Figure 6.4.2: Isometric view of plate impact model assembly with sphere representing impact tup and 

showing boundary condition 
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elements further from the impact location yield a less accurate result but the results are still within a 

close margin of the experimental results. 

Table 6.4-1: Comparison of experimental and numerical results for impacted plate experiment 

 Location  (inches 

from impact 

location) 

Experimental 

Strain  (µin/in) 

Numerical Strain  

(µin/in) 

Percent Error (%) 

Gage 1 0.710 1,600 1,900 18.75 

Gage 2 1.425 1,000 1,200 20.00 

Gage 3 0.540 2,300 2,520 9.56 

Gage 4 1.050 700 920 23.91 

 

 Figure 6.4.3 shows how the max principal strains are distributed across the impacted plate.  The 

largest strains are located near the impact site as well as the boundary condition closest to the impact 

location.  This model verifies the experimental results of the plate. 

Figure 6.4.3: Contour view of logarithmic maximum principal strain of plate impact model 



 

107 

 

After analyzing the impacted plate, it was time to apply this methodology to the wing model 

created in Chapter 6.2.  The same steps were followed with a change to the boundary conditions of the 

wing and the initial velocity of the tup.  The boundary condition that was applied to the wing was meant 

to closely mimic the experimental conditions of the test specimens.  To do this, a fixed boundary 

condition was applied to the skin except for a 2 inch by 1.5 inch square directly over the impact location 

which mimics the constraints of the experimental testing.  The predefined field for the tup was a 

downward velocity of 78 ips (inches per second) to match the experimental impact velocities.  The 

comparison of the experimental and numerical results can be found in Table 6.4-2.  The percent error 

from the experimental and numerical strain value is 15.39% which is well within the region that finite 

element models can be considered valid.   

Table 6.4-2: Comparison of experimental and numerical results for impacted wing results of Wing 

5 

 Location  (inches 

from impact 

location) 

Experimental 

Strain  (µin/in) 

Numerical Strain  

(µin/in) 

Percent Error (%) 

Gage 1 0.25 780 900 15.39 

 

A view of the impact damage of the wing is displayed in Figure 6.4.4.  It is an isometric view of 

the skin at the apex of the impact showing the von-mises stress in the skin.  From Figure 6.4.4, it can be 

seen that the stress of the damage is localized around the impact site and is not transferred very far from 

the impact site.  This is because of the low-velocity of the impact only being able to generate a small 

amount of energy imparted into the wing.   

It is also important to look at how the internal structure of the wing reacts to the impact as 

demonstrated in Figure 6.4.5 with a close up look at the rib/spar intersection of the model with the skin 

hidden from view.  Based on the figure, it is clear that the middle rib absorbs the majority of the impact 

energy with very little energy being transferred into the spars.  Sources of error for this model include 
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the material properties of the carbon fiber used, the lack of adhesive modeling and the effect it has on 

reinforcing the joint of the wing in this region as well as experimental error with the measurement 

system or inaccurate modeling of the impact speed.  

  

Figure 6.4.4: Isometric view of maximum mises stress for wing model impact 

Figure 6.4.5: Isometric view of maximum mises stress for wing model impact without skin visible 
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6.5.  Case Study on Spar Geometry 

 To better understand the effect the spar geometry has on the frequency response of the wing a 

study was done changing the direction of the spar flanges.  The four cases analyzed involved switching 

the direction that the flanges of the leading and trailing edge spars protruded.  The first case was the 

original design with both flanges pointing inward to the center of the airfoil.  The second case is the 

opposite of the first case with both flanges pointing outward to the edges of the airfoil.  Case three has 

both flanges pointing towards the trailing edge and Case four has both flanges pointing towards the 

leading edge.  A drawing of the four cases can be seen in Figure 6.5.1.  All aspects of the model will be 

the same.  The only change to the model is the direction of the spar flanges protrude.  The reason for this 

study was to determine if the altering the spars can change either the torsional or bending strength of the 

wing design.  The results of the study can be seen in Table 6.5-1 with the 1
st
, 2

nd
, and torsional mode 

frequencies listed.  Clear trends can be seen after 

analyzing the table.  The trend for the 1
st
 bending 

mode is a drop of 4 Hz when the trailing edge spar 

is facing the trailing edge of the airfoil.  The leading 

edge spar does not seem to have an effect on the 1
st
 

bending mode as Case 1 and 4, and Case 2 and 3, 

have opposite facing leading edge spars and no 

change to the 1
st
 bending mode frequency was 

observed.  When analyzing the torsional mode, the 

same trend can be seen.  However, there is a large 

change between each test case for the torsional 

mode.  The original design shows a torsional mode 

frequency of 554 Hz and drops substantially to 523 

Figure 6.5.1: Four different scenarios analyzed for 

case study on the effect of the spar geometry on the 

natural frequencies of the wing 
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Hz for Case 2.  Case 3 and Case 4 have torsional modes between Case 1 and Case 2. 

Table 6.5-1: Frequency results for all four cases analyzed in study 

Cases 1
st
 Bending Mode 

Natural Frequency (Hz) 

Torsional Mode Natural 

Frequency (Hz) 

2
nd

 Bending Mode 

Natural Frequency (Hz) 

Case 1 214.81 554.32 926.96 

Case 2 210.92 523.34 901.87 

Case 3 210.94 536.44 907.21 

Case 4 214.46 540.72 921.51 

 

The trend for the 2
nd

 bending mode is the same with Case 1 have the highest frequency and Case 2 at the 

lowest.  Case 3 and Case 4 range between Case 1 and Case 2.  When analyzing the mode shapes, there is 

no change from case to case.  The 1
st
, 2

nd
, and torsion modes are all similar.  The torsional mode for Case 

1 is shown in Figure 6.5.2.  Based on the results from Table 6.5-1, it can be said that the trailing edge 

spar has the largest effect on the modal frequencies of the wing design.  The reason for this is because 

the center of rotation for the torsional mode is closer to the trailing edge of the wing and changing the 

flanges of the trailing edge spar to face the trailing edge of the airfoil (e.g. Case 2 and 3) aligns the shear 

Figure 6.5.2: Isometric view of torsional mode for Case 1 study 
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center of the spar with the center of rotation of the wing.  Based upon Equation 6.3.1, a change to the 

natural frequency is either caused by the mass of the wing or the stiffness of the wing changing.  Since a 

lowering of the natural frequencies occurred when the spars were turned away from the center of the 

airfoil and no mass has changed, it can be said that the stiffness of the model has decreased with the 

change in spar geometry.   
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7. Conclusion 

  In this study a small scale wing was designed and built to determine the effectiveness of using 

dynamic characteristics to identify and structural damage after a low velocity impact.  The conclusion 

remarks are presented in two different tasks. 

The first task is the impact testing.  The impact load was dependent of where on the wing 

structure the impact.  Higher force measurements were recorded when an impact occurred over the 

middle rib.  Smaller force measurements were recorded when only the skin was impacted.  The amount 

of visible damage was inversely proportional to the force measurement of the load cell.   

 The second task is the vibrational testing.  The 1
st
 bending mode of the wing design was around 

190 Hz and the 2
nd

 bending mode close to 900 Hz.  The natural variation of the structure’s dynamic 

characteristics due to the uniqueness and hand built aspect of each manufactured wing.  Only 2 out of the 

10 wings tested showed a dramatic shift for either the 1
st
 or 2

nd
 mode vibrational characteristics across the 

entire structure.  There were also a few wings that showed localized changes near the impact locations.  

Impact locations over the middle rib of the wing tended to affect a larger region of the structure. 
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8. Future Works 

 This study introduced too many variables across the design and manufacturing to be able to 

pinpoint any major flaws.  Future work will need to consider an improved design to reduce natural 

variations of the wing and the manufacturing process.  Another approach is to revert back to a simple 

geometry instead of a wing; for example a laminate or sandwich.  As far as the testing goes, it is advised 

that the vibrational testing have the control acceleration lowered to below 1g as this high acceleration 

could have caused damage in the structure affecting the results. 
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APPENDICES 

Appendix A 

% Thesis MATLAB Code analyzing Wing Data for Pre and Post Impact 

clc 

clearvars 

close all 

format compact 

tic 

  

% Description of Structures 

All. -> Res g and zeta for all wings sorted by run before and after in 

single arrays 

Specials. -> Inidivual arrays or res g zeta for each wing 

Time. -> Time Responses sorted by Wing 

Wings. -> Dynamic Run data for each Wing 

data. -> Avgs and Stddevs for Wings 

diff. -> Percent diffs for pre vs post of each data point 

Load Data 

load('WingRuns_Pre.mat') 

load('WingRuns_Post.mat') 

load('ImpactAnalysis.mat') 

load('tension.mat') 

load('compression.mat') 

weight = [0.0735 0.0760 0.0785 0.0780 0.0750 0.0785 0.0765 0.0750 0.0755 0.0775 0.0770 0.0785 

0.0775 0.0785 0.0765]; 

list = [1 5 9 2 4 6 3 7 8]; 

new = [1 4 7 5 2 6 8 9 3]; 

for i = 1:length(Order_Pre) 

    Order_old{i,1} = Order_Pre{i}; 

    Order_old{i,2} = Order_post{i}; 

end 

for i = 1:15 

    for j = 1:9 

        Order{9*(i-1)+j,1} = Order_old{9*(i-1)+new(j),1}; 

        Order{9*(i-1)+j,2} = Order_old{9*(i-1)+new(j),2}; 

    end 

end 

for i = 1:9 

    for j = 1:15 

        eval(['Wings.W',num2str(j),'{i,1} = Order{i+',num2str(j-1),'*9,1};']); 

        eval(['Wings.W',num2str(j),'{i,2} = Order{i+',num2str(j-1),'*9,2};']); 

    end 

end 

  

Freq = Order{1,1}(:,2); 

for i = 1:9 

    for j = 1:15 
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        eval(['Wings.W',num2str(j),'_pre(:,',num2str(i),') = Wings.W',num2str(i),'{i,1}(:,3);']); 

        eval(['Wings.W',num2str(j),'_post(:,',num2str(i),') = Wings.W',num2str(i),'{i,2}(:,3);']); 

    end 

end 

  

% Determining Resonance Characteristics and Damping Ratios 

[num,col] = size(Order); 

Res = zeros(num,col); 

Res2 = zeros(num,col); 

Res_g = zeros(num,col); 

Res_2g = zeros(num,col); 

zeta = zeros(num,col); 

zeta2 = zeros(num,col); 

for i = 1:num 

    for j = 1:col 

        count = [i,j]; 

        [Res(i,j),Res_g(i,j),zeta(i,j),Y{i,j},t{i,j},Avg{i,j}] = Modal_Analysis(Order{i,j},count); 

        [Res2(i,j),Res_2g(i,j),zeta2(i,j),Y2{i,j},t2{i,j},Avg2{i,j}] = Modal_Analysis2(Order{i,j},count); 

    end 

end 

Res_g = -Res_g; 

Res_2g = -Res_2g; 

for i = 1:length(Res) 

    for j = 1:2 

        if Res_g(i,j) < 2 

            Res(i,j) = NaN; 

            Res_g(i,j) = NaN; 

            zeta(i,j) = NaN; 

        end 

        if Res_2g(i,j) < 2 

            Res2(i,j) = NaN; 

            Res_2g(i,j) = NaN; 

            zeta2(i,j) = NaN; 

        end 

    end 

end 

  

save('ResndShit.mat','Res','Res_g','zeta','Y','t','Res2','Res_2g','zeta2','Y2','t2') 

% Sort out special values for each wing 

for i = 1:9 

    for j = 1:15 

        eval(['Specials.Res_w',num2str(j),'(i,1) = Res(i+',num2str(j-1),'*9,1);']) 

        eval(['Specials.Res_w',num2str(j),'(i,2) = Res(i+',num2str(j-1),'*9,2);']) 

        eval(['Specials.Resg_w',num2str(j),'(i,1) = Res_g(i+',num2str(j-1),'*9,1);']) 

        eval(['Specials.Resg_w',num2str(j),'(i,2) = Res_g(i+',num2str(j-1),'*9,2);']) 

        eval(['Specials.Res2_w',num2str(j),'(i,1) = Res2(i+',num2str(j-1),'*9,1);']) 

        eval(['Specials.Res2_w',num2str(j),'(i,2) = Res2(i+',num2str(j-1),'*9,2);']) 

        eval(['Specials.Res2g_w',num2str(j),'(i,1) = Res_2g(i+',num2str(j-1),'*9,1);']) 

        eval(['Specials.Res2g_w',num2str(j),'(i,2) = Res_2g(i+',num2str(j-1),'*9,2);']) 

        eval(['Specials.zeta_w',num2str(j),'(i,1) = zeta(i+',num2str(j-1),'*9,1);']) 

        eval(['Specials.zeta_w',num2str(j),'(i,2) = zeta(i+',num2str(j-1),'*9,2);']) 
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        eval(['Specials.zeta2_w',num2str(j),'(i,1) = zeta2(i+',num2str(j-1),'*9,1);']) 

        eval(['Specials.zeta2_w',num2str(j),'(i,2) = zeta2(i+',num2str(j-1),'*9,2);']) 

         

    end 

end 

Place Responses for Wings into pre and post cells 

for i = 1:9 

    for j = 1:15 

        eval(['Wings.W',num2str(j),'{i,1} = Order{i+',num2str(j-1),'*9,1};']); 

        eval(['Wings.W',num2str(j),'{i,2} = Order{i+',num2str(j-1),'*9,2};']); 

        eval(['Wings.W',num2str(j),'_',num2str(i),'{1,1} = Wings.W',num2str(j),'{i,1};']) 

        eval(['Wings.W',num2str(j),'_',num2str(i),'{1,2} = Wings.W',num2str(j),'{i,2};']) 

    end 

end 

  

Place Pre and Post into single array, sorted into each wing pre then post 

for i = 1:15 

        eval(['All.Res_all(:,',num2str(2*i-1),':',num2str(2*i),') = Specials.Res_w',num2str(i),'(:,1:2);']) 

        eval(['All.Res2_all(:,',num2str(2*i-1),':',num2str(2*i),') = Specials.Res2_w',num2str(i),'(:,1:2);']) 

        eval(['All.Resg_all(:,',num2str(2*i-1),':',num2str(2*i),') = Specials.Resg_w',num2str(i),'(:,1:2);']) 

        eval(['All.Res2g_all(:,',num2str(2*i-1),':',num2str(2*i),') = Specials.Res2g_w',num2str(i),'(:,1:2);']) 

        eval(['All.zeta_all(:,',num2str(2*i-1),':',num2str(2*i),') = Specials.zeta_w',num2str(i),'(:,1:2);']) 

        eval(['All.zeta2_all(:,',num2str(2*i-1),':',num2str(2*i),') = Specials.zeta2_w',num2str(i),'(:,1:2);']) 

end 

Sorting Time Response Vectors 

for i = 1:15 

    for j = 1:9 

        a = 9*(i-1)+j; 

        eval(['Time.W',num2str(i),'{j,:}= {t{a,1},Y{a,1},t{a,2},Y{a,2},t2{a,1},Y2{a,1},t2{a,2},Y2{a,2}};']) 

    end 

end 

for i = 1:15 

    for j = 1:9 

        eval(['Time.p',num2str(j),'{i,:} = Time.W',num2str(i),'{j};']) 

    end 

end 

% Data Analysis 

data.pre_res = sum(Res(:,1))/length(Res(:,1)); 

data.post_res = sum(Res(:,2))/length(Res(:,2)); 

data.stdev_res_pre = std(Res(:,1)); 

data.stdev_res_post = std(Res(:,2)); 

data.pre_res2 = sum(Res2(:,1))/length(Res2(:,1)); 

data.post_res2 = sum(Res2(:,2))/length(Res2(:,2)); 

data.stdev_res2_pre = std(Res2(:,1)); 

data.stdev_res2_post = std(Res2(:,2)); 

data.pre_resg = sum(Res_g(:,1))/length(Res_g(:,1)); 

data.post_resg = sum(Res_g(:,2))/length(Res_g(:,2)); 

data.stdev_resg_pre = std(Res_g(:,1)); 

data.stdev_resg_post = std(Res_g(:,2)); 

data.pre_res2g = sum(Res_2g(:,1))/length(Res_2g(:,1)); 

data.post_res2g = sum(Res_2g(:,2))/length(Res_2g(:,2)); 
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data.stdev_res2g_pre = std(Res_2g(:,1)); 

data.stdev_res2g_post = std(Res_2g(:,2)); 

data.pre_zeta = sum(zeta(:,1))/length(zeta(:,1)); 

data.post_zeta = sum(zeta(:,2))/length(zeta(:,2)); 

data.stdev_zeta_pre = std(zeta(:,1)); 

data.stdev_zeta_post = std(zeta(:,2)); 

data.pre_zeta2 = sum(zeta2(:,1))/length(zeta2(:,1)); 

data.post_zeta2 = sum(zeta2(:,2))/length(zeta2(:,2)); 

data.stdev_zeta2_pre = std(zeta2(:,1)); 

data.stdev_zeta2_post = std(zeta2(:,2)); 

for i = 1:num 

    diff.res(i,1) = (Res(i,1)-Res(i,2))/(Res(i,1))*100; 

    diff.resg(i,1) = (Res_g(i,1)-Res_g(i,2))/(Res_g(i,1))*100; 

    diff.res2(i,1) = (Res2(i,1)-Res2(i,2))/(Res2(i,1))*100; 

    diff.res2g(i,1) = (Res_2g(i,1)-Res_2g(i,2))/(Res_2g(i,1))*100; 

    diff.zeta(i,1) = (zeta(i,1)-zeta(i,2))/(zeta(i,1))*100; 

    diff.zeta2(i,1) = (zeta2(i,1)-zeta2(i,2))/(zeta2(i,1))*100; 

end 

[A(1),B(1)] = max(diff.res); 

[A(2),B(2)] = max(diff.resg); 

[A(3),B(3)] = max(diff.res2); 

[A(4),B(4)] = max(diff.res2g); 

[A(5),B(5)] = max(diff.zeta); 

[A(6),B(6)] = max(diff.zeta2); 

  

  

AVG per Wing 

for i = 1:15 

    eval(['mn.res(i,:) = mean(Specials.Res_w',num2str(i),');']) 

    eval(['mn.resg(i,:) = mean(Specials.Resg_w',num2str(i),');']) 

    eval(['mn.res2(i,:) = mean(Specials.Res2_w',num2str(i),');']) 

    eval(['mn.res2g(i,:) = mean(Specials.Res2g_w',num2str(i),');']) 

    eval(['mn.zeta(i,:) = mean(Specials.zeta_w',num2str(i),');']) 

    eval(['mn.zeta2(i,:) = mean(Specials.zeta2_w',num2str(i),');']) 

end 

mn.res = resm; 

mn.resg = resgm; 

mn.res2 = res2m; 

mn.res2g = res2gm; 

mn.zeta = zetam; 

mn.zeta2 = zeta2m; 

str = {'res';'resg';'res2';'res2g';'zeta';'zeta2'}; 

% Checking Data Removing wings 4&5 

mn.resd = mn.res; 

mn.resd(4:5,:) = []; 

mn.resgd = mn.resg; 

mn.resgd(4:5,:) = []; 

mn.res2d = mn.res2; 

mn.res2d(4:5,:) = []; 

mn.res2gd = mn.res2g; 

mn.res2gd(4:5,:) = []; 
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mn.zetad = mn.zeta; 

mn.zetad(4:5,:) = []; 

mn.zeta2d = mn.zeta2; 

mn.zeta2d(4:5,:) = []; 

  

mn.resall = mean(mn.resd); 

mn.resall = mean(mn.resd); 

mn.resall = mean(mn.resd); 

mn.resall = mean(mn.resd); 

mn.resall = mean(mn.resd); 

mn.resall = mean(mn.resd); 

for i = 1:6 

    eval(['mn.',str{i},'all = mean(mn.',str{i},'d);']) 

end 

  

% Variations 

j = 0; 

for i = 1:9 

    for j = 1:15 

        diff.zetas(i,j) = All.zeta_all(i,2*j)-All.zeta_all(i,2*j-1); 

        diff.zeta2s(i,j) = All.zeta2_all(i,2*j)-All.zeta2_all(i,2*j-1); 

        diff.ress(i,j) = All.Res_all(i,2*j)-All.Res_all(i,2*j-1); 

        diff.resgs(i,j) = All.Resg_all(i,2*j)-All.Resg_all(i,2*j-1); 

        diff.res2s(i,j) = All.Res2_all(i,2*j)-All.Res2_all(i,2*j-1); 

        diff.res2gs(i,j) = All.Res2g_all(i,2*j)-All.Res2g_all(i,2*j-1); 

        if abs(diff.zetas(i,j)) > 0.002 

         check(i,1) = 1; %#ok<*SAGROW> 

        elseif All.zeta_all(i,2*j-1)-All.zeta_all(i,2*j) < -0.002 

            check(i,j) = -1; %#ok<*SAGROW> 

        else 

            check(i,j) = 0; 

        end 

    end 

     

end 

  

% Excel Export 

  

file_name = 'Wing_Shit.xlsx'; 

xlswrite(file_name,All.Res_all','Res') 

xlswrite(file_name,All.Resg_all','Resg') 

xlswrite(file_name,All.Res2_all','Res2') 

xlswrite(file_name,All.Res2g_all','Res2g') 

xlswrite(file_name,All.zeta_all','zeta') 

xlswrite(file_name,All.zeta2_all','zeta2') 

clc 

  

  

  

  

% Plots Script 
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Plots_Script 

% Box_Plots 

%Entire ResponsePlots 

% number = {'First Wing','Second Wing','Third Wing','Fourth Wing','Fifth Wing','Sixth Wing',... 

%     'Seventh Wing','Eighth Wing','Ninth Wing','Tenth Wing','Eleventh Wing','Twelfth Wing',... 

%     'Thirteenth Wing','Fourteenth Wing','Fifteenth Wing'}; 

number = {'One','Two','Three','Four','Five','Six','Seven','Eight','Nine','Ten'... 

    'Eleven','Twelve','Thirteen','Fourteen','Fifteen'}; 

number = {'1','2','3','4','5','6','7','8','9','10','11','12','13','14','15'}; 

for i = 1:15 

    for j = 1:9 

%         number = 'First Wing'; 

        figure_name = ([number{i},' Pre & Post Impact Point ',num2str(j)]); 

        item = (['Pre & Post Impact @ Point ',num2str(j)]); 

%         type = 1; 

%         col = 3; 

        eval(['wingplots(Wings.W',num2str(i),'_',num2str(j),',number{i},item,figure_name,1,3)']) 

    end 

end 

  

for i = 1:15 

    for j = 1:9 

        eval(['timeresponse(Time.W',num2str(i),'{j,1},number{i},j)']) 

    end 

end 

timer_pts(Time.p1,1,1) 

number = {'One','Two','Three','Four','Five','Six','Seven','Eight','Nine','Ten'... 

    'Eleven','Twelve','Thirteen','Fourteen','Fifteen'}; 

for i = 1:9 

    eval(['timer_pts(Time.p',num2str(i),',number{i},i)']) 

    eval(['timer_sub(Time.p',num2str(i),',i)']) 

    eval(['timer_ind(Time.p',num2str(i),',number,i)']) 

end 

  

  

%% Curecycle Plot 

Press = [0 70 70 70 70 0]; 

Temp = [70 158 158 158 158 140]; 

Time = [0 30 30 450 450 456]; 

Timep = [0 5 5 456 456 456]; 

  

% figure(1) 

subplot(2,1,1) 

plot(Time,Temp,'r') 

hold on 

grid on 

xlabel('Time (s)') 

ylabel('Temperature (F)') 

title('Temperature Profile for LTM45EL Curing') 

ylim([0 175]) 

subplot(2,1,2) 
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plot(Timep,Press,'b') 

hold on 

grid on 

xlabel('Time (s)') 

ylabel('Pressure (psi)') 

title('Pressure Profile for LTM45EL Curing') 

ylim([0 100]) 

  

  

save('Data.mat') 

toc 

 

function [Res,Res_g,zeta,Y,t,Avg] = Modal_Analysis(Data,count1) 

% [Res,zeta,Y,t,Avg,Res2,zeta2,Y2,t2,Avg2,Res3,zeta3,Y3,t3,Avg3] 

% Input is data from Shake Table.  Data is in format of #x3 matrix.  Data 

% is seperated into index, control freq, and response acceleration.  Moving 

% average is taken of data to smooth out the freq response. 

  

% Outputs 

%Res = Resonance Freq of specific mode chosen 

%zeta = damping factor for mode 

%Y = displacement of time response 

%t =  time of time response 

%Avg = avgd response data 

  

  

Index = Data(:,1); 

Freq = Data(:,2); 

Response = Data(:,3); 

Avg = zeros(length(Index),1); 

Avg(:,1) = tsmovavg(Response(:,1),'s',10,1); 

Run = pchip(Freq(10:end,1),Response(10:end,1)); 

  

% semilogy(Avg) 

% hold on 

% title('Mode 1') 

% [x,~] = ginput(2); 

% close all 

% x = round(x); 

x(1) = find(Freq > 150,1,'first'); 

x(2) = find(Freq > 250,1,'first'); 

% x = [550 730]; 

% freqs = [Freq(x(1)),Freq(x(2))] 

[Res,Res_g] = fminbnd(@(x) (-ppval(Run,x)),Freq(x(1)),Freq(x(2))); 

A = ppval(Run,Freq(x(1)))+Res_g/(sqrt(2)); 

B = ppval(Run,Res)+Res_g/(sqrt(2)); 

if A > 0 && B >0 

    zeta = NaN; 

    Y = NaN; 

    t = NaN; 

%     count1 
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else 

[fa] = fzero(@(x) ((ppval(Run,x) + Res_g/sqrt(2))),... 

    [Freq(x(1)) Res]); 

[fb] = fzero(@(x) ((ppval(Run,x) + Res_g/sqrt(2))),... 

    [Res Freq(x(2))]); 

  

zeta = -.5*(fa-fb)/Res; 

  

sys = tf(Res^2,[1 2*zeta*Res Res^2]); 

[Y,t] = impulse(sys); 

Y = Y/(Res^2); 

end 

end 

 

function [Res,Res_g,zeta,Y,t,Avg] = Modal_Analysis2(Data,count) 

% [Res,zeta,Y,t,Avg,Res2,zeta2,Y2,t2,Avg2,Res3,zeta3,Y3,t3,Avg3] 

% Input is data from Shake Table.  Data is in format of #x3 matrix.  Data 

% is seperated into index, control freq, and response acceleration.  Moving 

% average is taken of data to smooth out the freq response. 

  

% Outputs 

%Res = Resonance Freq of specific mode chosen 

%zeta = damping factor for mode 

%Y = displacement of time response 

%t =  time of time response 

%Avg = avgd response data 

  

  

Index = Data(:,1); 

Freq = Data(:,2); 

Response = Data(:,3); 

Avg = zeros(length(Index),1); 

Avg(:,1) = tsmovavg(Response(:,1),'s',10,1); 

Run = pchip(Freq(10:end,1),Response(10:end,1)); 

  

% semilogy(Avg) 

% hold on 

% title('Mode 2') 

% [x,~] = ginput(2); 

% close all 

% x = round(x); 

x(1) = find(Freq > 650,1,'first'); 

x(2) = find(Freq > 1000,1,'first'); 

% x = [950 1040]; 

[Res,Res_g] = fminbnd(@(x) (-ppval(Run,x)),Freq(x(1)),Freq(x(2))); 

A = ppval(Run,Freq(x(1)))+Res_g/(sqrt(2)); 

B = ppval(Run,Res)+Res_g/(sqrt(2)); 

C = ppval(Run,Freq(x(2)))+Res_g/(sqrt(2)); 

if A > 0 && B >0 

    zeta = NaN; 

    Y = NaN; 
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    t = NaN; 

%     count 

%     a = 1 

elseif B > 0 && C > 0 

    zeta = NaN; 

    Y = NaN; 

    t = NaN; 

%     count 

%     b = 1 

else 

[fa] = fzero(@(x) ((ppval(Run,x) + Res_g/sqrt(2))),... 

    [Freq(x(1)) Res]); 

[fb] = fzero(@(x) ((ppval(Run,x) + Res_g/sqrt(2))),... 

    [Res Freq(x(2))]); 

  

zeta = -.5*(fa-fb)/Res; 

  

sys = tf(Res^2,[1 2*zeta*Res Res^2]); 

[Y,t] = impulse(sys); 

Y = Y/(Res^2); 

end 

end 

function [Data,Energy] = thesis_impact(A,weight,height,rate,strain) 

  

%%%% Inputs %%%% 

% A = Recorded Data from Impact machine 

        %[Loadcell,Accelerometer,SI detecor] 

% weight = weight of impactor tup, rail guide, etc. (lbs) 

% height = drop distance from tip of tup to top of test surface (ft) 

% rate = rate of samples taken per second 

  

%%%% Outputs %%%% 

% v = velocity calculated from SI detector 

% V_trapz = velocity calculated from accelerometer 

% avg_F = average force over the impact time 

% peak_F = maximum force calculated from acceleration 

% Energy = kinetic energy calculated from V_trapz 

% Potential = energy calculated from drop height 

% Energy_vel = kinetic energy calculated from SI detector velocity 

% timpact = time of deceleration 

  

%% Calibrations and Constants 

g = 32.174; %ft/s 

mass = weight*0.0310809502; %lbs->slugs 

time = linspace(0,length(A(:,2))/rate,length(A(:,2))); 

dx = 0.390/12; %flange distance 

calib_a = 0.93; 

%% Data Seperation 

load = A(:,1)-mean(A(:,1)); 

accel = A(:,2)*calib_a; 

Vel = A(:,3); 



 

126 

 

%% Load Data 

avg_force = tsmovavg(load,'s',100,1); 

Data.Max_F = max(avg_force); 

  

%% Velocity Data and Calcs 

si = 1./(Vel+0.1-min(Vel)); %Invert SI data to find peaks for calculation 

c = mean(si); 

bias = ceil(0.5*rate/1000); %Bias of moving average => 0.5ms 

Vel_Avg(:,1) = tsmovavg(si,'s',bias*5,1); 

ii = find(Vel_Avg>c+1,1,'first'); 

t_step = 2/1000; 

ph = (max(Vel_Avg)+c)/2; 

% [a,b] = findpeaks(Vel_Avg(1:ii+floor(rate*50/1000)),'minpeakheight',ph,... 

%     'minpeakdistance',t_step*rate,'npeaks',2); 

[a,b] = findpeaks(Vel_Avg(1:ii+(0.03)*rate),'minpeakheight',ph,... 

    'minpeakdistance',t_step*rate); 

k = a; 

[C,I] = max(k); 

k(I) = NaN; 

[C1,I1] = max(k); 

  

% dt = diff(b); 

dt = b(I1)-b(I); 

Data.v = dx./(dt./rate); 

  

%% Acceleration Data 

Accel_Avg = tsmovavg(accel,'s',bias,1); 

offset = 5; 

free_fall = mean(accel(b(1):b(2))); 

dip1 = find(Accel_Avg(ii:end)<free_fall-offset,1,'first')+ii; 

dip2 = find(Accel_Avg(dip1:end)>free_fall-offset,1,'first')+dip1; 

  

%% Energy Calculations 

Energy.V_trapz = trapz([dip1:1:dip2]/rate,(Accel_Avg(dip1:dip2)-free_fall)*g); %ft/s 

Energy.avg_F = trapz([dip1:1:dip2]/rate,(Accel_Avg(dip1:dip2)-free_fall)*g*mass)... 

    /((dip2-dip1)/rate); %lbf 

Energy.peak_F = min(Accel_Avg(dip1:dip2)*g*mass); %lbf 

Energy.Kinetic = 0.5*mass*Energy.V_trapz^2; %1/2mV^2 %ft*lb 

Energy.Potential = mass*g*height; %mgh  %ft*lb 

Energy.Energy_vel = 0.5*mass*Data.v^2; %1/2mV^2 %ft*lb 

Energy.timpact = (dip2-dip1)/rate; 

Energy.ActualVel = sqrt(2*g*height); 

%% Strain Gage Analysis 

  

if strain == 1 

    SG1 = A(:,4); 

    p = plot(SG1); 

    [x,~] = ginput(2); 

    x = round(x); 

    close all 

    Index = SG1(x(1):x(2)); 
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    a = max(Index); 

    b = min(Index); 

    Vex = 2.5; 

    GF = 2.14; 

    Data.Vr = abs(abs(a)-abs(b))/(Vex); 

    Data.Strain1 = (-4*Data.Vr)/(GF*(1+2*Data.Vr)); 

elseif strain == 2 

    %% gage 1 

    SG1 = A(:,4); 

    p = plot(SG1); 

    [x,~] = ginput(2); 

    x = round(x); 

    close all 

    Index = SG1(x(1):x(2)); 

    a = max(Index); 

    b = min(Index); 

    Vex = 2.5; 

    GF = 2.14; 

    Data.Vr = abs(abs(a)-abs(b))/(Vex); 

    Data.Strain1 = (-4*Data.Vr)/(GF*(1+2*Data.Vr)); 

    %% gage 2 

    SG2 = A(:,5); 

    p = plot(SG2); 

    [x,~] = ginput(2); 

    x = round(x); 

    close all 

    Index = SG2(x(1):x(2)); 

    a = max(Index); 

    b = min(Index); 

    Vex = 2.5; 

    GF = 2.14; 

    Data.Vr2 = abs(abs(a)-abs(b))/(Vex); 

    Data.Strain2 = (-4*Data.Vr2)/(GF*(1+2*Data.Vr2)); 

    %% gage 3 

    SG3 = A(:,6); 

    p = plot(SG3); 

    [x,~] = ginput(2); 

    x = round(x); 

    close all 

    Index = SG3(x(1):x(2)); 

    a = max(Index); 

    b = min(Index); 

    Vex = 2.5; 

    GF = 2.14; 

    Data.Vr3 = abs(abs(a)-abs(b))/(Vex); 

    Data.Strain3 = (-4*Data.Vr3)/(GF*(1+2*Data.Vr3)); 

    %% gage 4 

    SG4 = A(:,7); 

    p = plot(SG4); 

    [x,~] = ginput(2); 

    x = round(x); 
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    close all 

    Index = SG4(x(1):x(2)); 

    a = max(Index); 

    b = min(Index); 

    Vex = 2.5; 

    GF = 2.14; 

    Data.Vr4 = abs(abs(a)-abs(b))/(Vex); 

    Data.Strain4 = (-4*Data.Vr4)/(GF*(1+2*Data.Vr4)); 

end 

function wingplots(Data,number,item,figure_name,type,col) 

% Plots for basic information 

%type = entire, 1st, 2nd 

%col = pre/post/both 

%% Figure Parameters 

width = 16;     % Width in inches 

height = 9;    % Height in inches 

alw = 1;    % AxesLineWidth 

fsz = 16;      % Fontsize 

lw = 2;      % LineWidth 

msz = 8;       % MarkerSize 

  

if type == 1 % Entire Frequency 

    ax(1) = 50; 

    ax(2) = 3000; 

elseif type == 2 % First Mode Region 

    ax(1) = 100; 

    ax(2) = 500; 

elseif type == 3 % Second Mode Region 

    ax(1) = 500; 

    ax(2) = 1500; 

end 

  

if type == 1 % Entire Frequency 

    ind(1) = find(Data{1,1}(:,2) > 9,1,'first'); 

    ind(2) = find(Data{1,1}(:,2) > 1999,1,'first'); 

elseif type == 2 % First Mode Region 

    ind(1) = find(Data{1,1}(:,2) > 100,1,'first'); 

    ind(2) = find(Data{1,1}(:,2) > 300,1,'first'); 

elseif type == 3 % Second Mode Region 

    ind(1) = find(Data{1,1}(:,2) > 500,1,'first'); 

    ind(2) = find(Data{1,1}(:,2) > 1000,1,'first'); 

end 

%% Plotting 

  

[count,~] = size(Data); 

% c = ['b','r','k','g','c']; 

if col == 1 

newDefaultColors = jet(col*count); 

set(gca, 'ColorOrder', newDefaultColors, 'NextPlot', 'replacechildren'); 

% j = 1; 

for i = 1:count 
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    for j = 1:col 

h = loglog(Data{i,j}(ind(1):ind(2),2),Data{i,j}(ind(1):ind(2),3)); 

hold all 

set(h,'linewidth',lw,'MarkerSize',msz) 

pos = get(gcf,'Position'); 

set(gcf,'Position',[pos(1) pos(2) width*100,height*100]) 

set(gca,'FontSize',fsz,'linewidth',alw) 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

% xlim([Data{1,1}(ind(1),2) Data{1,1}(ind(2),2)]) 

xlim([ax(1) ax(2)]) 

ylim([10e-3 10e2]) 

% axis([5,2000,.01,100]) 

% axis equal 

grid on 

xlabel('Control (Hz)') 

ylabel('Response (g)') 

% title([num2str(number),' ',item]) 

  

% j = j+1; 

    end 

end 

% legend('1','2','3','4','5','6','7','8','9','Location','northwest') 

AX=legend('1','2','3','4','5','6','7','8','9'); 

LEG = findobj(AX,'type','text'); 

set(LEG,'FontSize',10) 

elseif col == 2 

newDefaultColors = jet((col-1)*count); 

set(gca, 'ColorOrder', newDefaultColors, 'NextPlot', 'replacechildren'); 

% j = 1; 

for i = 1:count 

    j = 2; 

%     for j = 1:col 

h = loglog(Data{i,j}(ind(1):ind(2),2),Data{i,j}(ind(1):ind(2),3)); 

hold all 

set(h,'linewidth',lw,'MarkerSize',msz) 

pos = get(gcf,'Position'); 

set(gcf,'Position',[pos(1) pos(2) width*100,height*100]) 

set(gca,'FontSize',fsz,'linewidth',alw) 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

% xlim([Data{1,1}(ind(1),2) Data{1,1}(ind(2),2)]) 

xlim([ax(1) ax(2)]) 

ylim([10e-3 10e2]) 

% axis([5,2000,.01,100]) 

% axis equal 

grid on 

xlabel('Control (Hz)') 

ylabel('Response (g)') 

% title([num2str(number),' ',item]) 
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% j = j+1; 

%     end 

end 

% legend('1','2','3','4','5','6','7','8','9','Location','northwest') 

AX=legend('1','2','3','4','5','6','7','8','9'); 

LEG = findobj(AX,'type','text'); 

set(LEG,'FontSize',10) 

elseif col == 3 

% newDefaultColors = jet((col-1)*count); 

% set(gca, 'ColorOrder', newDefaultColors, 'NextPlot', 'replacechildren'); 

% j = 1; 

for i = 1:count 

%     for j = 1:(col-1) 

h = 

loglog(Data{i,1}(ind(1):ind(2),2),Data{i,1}(ind(1):ind(2),3),'r',Data{i,2}(ind(1):ind(2),2),Data{i,2}(ind(1

):ind(2),3),'b'); 

hold all 

set(h,'linewidth',lw,'MarkerSize',msz) 

pos = get(gcf,'Position'); 

set(gcf,'Position',[pos(1) pos(2) width*100,height*100]) 

set(gca,'FontSize',fsz,'linewidth',alw) 

set(gca,'xscale','log') 

set(gca,'yscale','log') 

% xlim([Data{1,1}(ind(1),2) Data{1,1}(ind(2),2)]) 

xlim([ax(1) ax(2)]) 

ylim([10e-3 10e2]) 

% axis([5,2000,.01,100]) 

% axis equal 

grid on 

xlabel('Control (Hz)') 

ylabel('Response (g)') 

% title([num2str(number),' ',item]) 

AX=legend('Pre','Post'); 

LEG = findobj(AX,'type','text'); 

set(LEG,'FontSize',10) 

% j = j+1; 

%     end 

end 

end 

% legend('Front','LE','Mid','TE','Back') 

  

print(figure_name,'-dpng') 

  

close all 

  

end 

 

end 

%Richard de Luna 

%October 29th 2014 

%Plate Testing with different cure cycles to determine different damping 
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%characteristics for different cure cylces 

  

clc,clear all,close all 

format compact 

addpath('ExcelFiles') 

  

%First Wing Data Read In 

Run1 = xlsread('First Wing Run 1.csv','A29:N1228'); 

Run2 = xlsread('First Wing Run 2.csv','A29:N1228'); 

Run3 = xlsread('First Wing Run 3.csv','A29:N1228'); 

Run4 = xlsread('First Wing Run 4.csv','A29:N1228'); 

Run5 = xlsread('First Wing Run 5.csv','A29:N1228'); 

Run6 = xlsread('First Wing Run 6.csv','A29:N1228'); 

Run7 = xlsread('First Wing Run 7.csv','A29:N1228'); 

Run8 = xlsread('First Wing Run 8.csv','A29:N1228'); 

Run9 = xlsread('First Wing Run 9.csv','A29:N1228'); 

Run10 = xlsread('First Wing Run 10.csv','A29:N1228'); 

Run11 = xlsread('First Wing Run 11.csv','A29:N1228'); 

Run12 = xlsread('First Wing Run 12.csv','A29:N1228'); 

Run13 = xlsread('First Wing Run 13.csv','A29:N1228'); 

Run14 = xlsread('First Wing Run 14.csv','A29:N1228'); 

Run15 = xlsread('First Wing Run 15.csv','A29:N1228'); 

Run16 = xlsread('First Wing Run 16.csv','A29:N1228'); 

Run17 = xlsread('First Wing Run 17.csv','A29:N1228'); 

Run18 = xlsread('First Wing Run 18.csv','A29:N1228'); 

Run19 = xlsread('First Wing Run 19.csv','A29:N1228'); 

Run20 = xlsread('First Wing Run 20.csv','A29:N1228'); 

Run21 = xlsread('First Wing Run 21.csv','A29:N1228'); 

Run22 = xlsread('First Wing Run 22.csv','A29:N1228'); 

Run23 = xlsread('First Wing Run 23.csv','A29:N1228'); 

Run24 = xlsread('First Wing Run 22.csv','A29:N1228'); 

Run25 = xlsread('First Wing Run 2.csv','A29:N1228'); 

Run26 = xlsread('First Wing Run 26.csv','A29:N1228'); 

Run27 = xlsread('First Wing Run 27.csv','A29:N1228'); 

Run28 = xlsread('First Wing Run 28.csv','A29:N1228'); 

Run29 = xlsread('First Wing Run 29.csv','A29:N1228'); 

Runs = {Run1,Run2,Run3,Run4,Run5,Run6,Run7,Run8,Run9,Run10,Run11,Run12,Run13... 

    ,Run14,Run15,Run16,Run17,Run18,Run19,Run20,Run21,Run22,Run23,Run24,Run25... 

    Run26,Run27,Run28,Run29}'; 

%% Locations for Each Test 

%1:1,2,3          Mid:0.5,3.5,6.5 

%2:4,5,6          Mid over Ribs:0,4ish,8ish 

%3:7,8,9          LE: 1,4,7 

%4:10,11,12       TE: 1,4,7 

%5:13,14,15       Front:0.5,3.5,6.5 

%6:16,17,18       LE:0.5,3.5,6.5 

%7:19,20,21       TE:0.5,3.5,6.5 

%8:22,23,24       Back:0.5,3.5,6.5 

%9:25,26,27       Back:1,4,7 

%10:28,29,30      TE:1,4,7 

%11:31,32,33      Mid:1,4,7 
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%12:34,35,36      Front:1,4,7 

%13:37,38,39      Front:1.5,4.5,7.5 

%14:40,41,42      LE:1.5,4.5,7.5 

%15:43,44,45      Mid:1.5,4.5,7.5 

%16:46,47,48      TE:1.5,4.5,7.5 

%17:49,50,51      Back:1.5,4.5,7.5 

%18:52,53,54      Back:2,5,8 

%19:55,56,57      TE:2,5,8 

%20:58,59,60      Mid:2,5,8 

%21:61,62,63      LE:2,5,8 

%22:64,65,66      Front:2,5,8 

%23:67,68,69      Front:2.5 5.5 6 

%24:70,71,72      LE:2.5,5.5,6 

%25:73,74,75      Mid:2.5,5.5,6 

%26:76,77,78      TE:2.5,5.5,6 

%27:79,80,81      Back:2.5,5.5,6 

%28:82,83,84      Front Mid Back @ 3inches 

%29:85,86,87      LE(2) TE(4) @ 3 inches 

%% Indexing 

for i = 1:length(Runs) 

    Index(:,i) = Runs{i,1}(:,1); 

    Freq(:,i) = Runs{i,1}(:,2); 

    Control(:,i) = Runs{i,1}(:,7); 

    Input(:,i) = Runs{i,1}(:,3); 

    Response1(:,i) = Runs{i,1}(:,9); 

    Response2(:,i) = Runs{i,1}(:,11); 

    Response3(:,i) = Runs{i,1}(:,13); 

     

end 

% A = [5,6,1,7,8,12,3,11,4,9,13,14,15,16,17,22,21,20,19,18,5,6,1,7,8,12,3,... 

%     11,4,9,13,14,15,16,17,22,21,20,19,18,5,6,1,7,8,12,3,11,4,9,13,14,15,... 

%     16,17,22,21,20,19,18]; 

% B(1:20) = 9; 

% B(21:40) = 11; 

% B(41:60) = 13; 

%  

% for i = 1:length(A) 

%     Order{i,1} = [Runs{A(i),1}(:,1) Runs{A(i),1}(:,2) Runs{A(i),1}(:,B(i))]; %#ok<*SAGROW> 

% end 

  

  

  

  

A1 = [5,6,1,7,8,12,3,11,4,9,13,14,15,16,17,22,21,20,19,18,23,24,25,26,27,... 

    28,29,28,29,28,5,6,1,7,8,12,3,11,4,9,13,14,15,16,17,22,21,20,19,18,23,... 

    24,25,26,27,23,24,25,26,27,5,6,1,7,8,12,3,11,4,9,13,14,15,16,17,22,21,... 

    20,19,18]; 

B = zeros(1,80); 

B(1:20) = 9; 

B(31:50) = 11; 

B(61:80) = 13; 
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B(21:25) = 9; 

B(26) = 9; 

B(27) = 9; 

B(28) = 11; 

B(29) = 13; 

B(30) = 13; 

B(51:55) = 11; 

B(56:60) = 13; 

for i = 1:length(A1) 

    Order{i,1} = [Runs{A1(i),1}(:,1) Runs{A1(i),1}(:,2) Runs{A1(i),1}(:,B(i))]; %#ok<*SAGROW> 

end 

  

save('FirstWing.mat','Runs','Order') 

z = zeros(length(Index(:,1)),1); 

%% Load in Data from other Wings 

w1r1 = xlsread('w1r1.csv','A29:N1228'); 

w1r2 = xlsread('w1r2.csv','A29:N1228'); 

w1r3 = [Index(:,1),Freq(:,1),z,z,z,z,z,z,Order{37,1}(:,3),z,Order{49,1}(:,3),z,Order{57,1}(:,3),z]; 

w2r1= xlsread('w2r1.csv','A29:N1228'); 

w2r2= xlsread('w2r2.csv','A29:N1228'); 

w2r3= xlsread('w2r3.csv','A29:N1228'); 

w3r1= xlsread('w3r1.csv','A29:N1228'); 

w3r2= xlsread('w3r2.csv','A29:N1228'); 

w3r3= xlsread('w3r3.csv','A29:N1228'); 

w4r1= xlsread('w4r1.csv','A29:N1228'); 

w4r2= xlsread('w4r2.csv','A29:N1228'); 

w4r3= xlsread('w4r3.csv','A29:N1228'); 

w5r1= xlsread('w5r1.csv','A29:N1228'); 

w5r2= xlsread('w5r2.csv','A29:N1228'); 

w5r3= xlsread('w5r3.csv','A29:N1228'); 

w6r1= xlsread('w6r1.csv','A29:N1228'); 

w6r2= xlsread('w6r2.csv','A29:N1228'); 

w6r3= xlsread('w6r3.csv','A29:N1228'); 

w7r1= xlsread('w7r1.csv','A29:N1228'); 

w7r2= xlsread('w7r2.csv','A29:N1228'); 

w7r3= xlsread('w7r3.csv','A29:N1228'); 

w8r1= xlsread('w8r1.csv','A29:N1228'); 

w8r2= xlsread('w8r2.csv','A29:N1228'); 

w8r3= xlsread('w8r3.csv','A29:N1228'); 

w9r1= xlsread('w9r1.csv','A29:N1228'); 

w9r2= xlsread('w9r2.csv','A29:N1228'); 

w9r3= xlsread('w9r3.csv','A29:N1228'); 

w10r1= xlsread('w10r1.csv','A29:N1228'); 

w10r2= xlsread('w10r2.csv','A29:N1228'); 

w10r3= xlsread('w10r3.csv','A29:N1228'); 

w11r1= xlsread('w11r1.csv','A29:N1228'); 

w11r2= xlsread('w11r2.csv','A29:N1228'); 

w11r3= xlsread('w11r3.csv','A29:N1228'); 

w12r1= xlsread('w12r1.csv','A29:N1228'); 

w12r2= xlsread('w12r2.csv','A29:N1228'); 

w12r3= xlsread('w12r3.csv','A29:N1228'); 
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w13r1= xlsread('w13r1.csv','A29:N1228'); 

w13r2= xlsread('w13r2.csv','A29:N1228'); 

w13r3= xlsread('w13r3.csv','A29:N1228'); 

w14r1= xlsread('w14r1.csv','A29:N1228'); 

w14r2= xlsread('w14r2.csv','A29:N1228'); 

w14r3= xlsread('w14r3.csv','A29:N1228'); 

w15r1= xlsread('w15r1.csv','A29:N1228'); 

w15r2= xlsread('w15r2.csv','A29:N1228'); 

w15r3= xlsread('w15r3.csv','A29:N1228'); 

k = 1; 

c = 1; 

AA = zeros(1,135); 

for i = 1:length(AA) 

    AA(i) = c; 

    k = k+1; 

    if k == 4 

        c = c+1; 

        k = 1; 

    end 

end 

  

BB = [9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,... 

    9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,... 

    9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,... 

    9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,... 

    9,11,13,9,11,13,9,11,13,9,11,13,9,11,13,9,11,13]; 

Runs_Pre = {w1r1,w1r2,w1r3,w2r1,w2r2,w2r3,w3r1,w3r2,w3r3,w4r1,w4r2,w4r3,w5r1,w5r2,w5r3,... 

    w6r1,w6r2,w6r3,w7r1,w7r2,w7r3,w8r1,w8r2,w8r3,w9r1,w9r2,w9r3,w10r1,... 

    w10r2,w10r3,w11r1,w11r2,w11r3,w12r1,w12r2,w12r3,w13r1,w13r2,w13r3,... 

    w14r1,w14r2,w14r3,w15r1,w15r2,w15r3}; 

Runs_Pre = Runs_Pre'; 

  

for i = 1:length(AA) 

    Order_Pre{i,1} = [Runs_Pre{AA(i),1}(:,1) Runs_Pre{AA(i),1}(:,2) Runs_Pre{AA(i),1}(:,BB(i))]; 

%#ok<*SAGROW> 

end 

save('WingRuns_Pre.mat','Runs_Pre','Order_Pre') 
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