
POLYFS VISUALISER

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Paul Fallon

June 2016

c© 2016

Paul Fallon

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: PolyFS Visualiser

AUTHOR: Paul Fallon

DATE SUBMITTED: June 2016

COMMITTEE CHAIR: Foaad Khosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Zachary Peterson, Ph.D.

Associate Professor of Computer Science

COMMITTEE MEMBER: Phil Nico, Ph.D.

Professor of Computer Science

iii

ABSTRACT

PolyFS Visualiser

Paul Fallon

One of the most important operating system topics, file systems, control how we store

and access data and form a key point in a computer scientists understanding of the

underlying mechanisms of a computer. However, file systems, with their abstract

concepts and lack of concrete learning aids, is a confusing subjects for students.

Historically at Cal Poly, the CPE 453 Introduction to Operating Systems has been

on of the most failed classes in the computing majors [13], leading to the need for

better teaching and learning tools. Tools allowing students to gain concrete examples

of abstract concepts could be used to better prepare students for industry.

The PolyFS Visualizer is a block level file system visualization service built for

the PolyFS and TinyFS file systems design specifications currently used by some of

professors teaching CPE 453. The service allows students to easily view the blocks

of their file system and see metadata, the blocks binary content and the interlinked

structure. Students can either compile their file system code with a provided block

emulation library to build their disk on a remote server and make use of a visualization

website or place the file mounted as their file system directly into the visualization

service to view it locally. This allows students to easily view, debug and explore their

implementation of a file system to understand how different design decisions affect

its operation.

The implementation includes three main components: a disk emulation library

in C for compilation with students code, a node JS back-end to handle students

file systems and block operations and a read only visualization service. We have

conducted two surveys of students in order to determine the usefulness of the PolyFS

Visualizer. Students responded that the use of the PolyFS visualizer helps with

iv

the PolyFS file system design project and has several ideas for future features and

expansions.

v

ACKNOWLEDGMENTS

Thanks to:

• My parents for supporting me throughout my college career.

• Professor Foaad for his guidance and good advice.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

2 Related Works . 3

2.1 DECAFS . 3

2.2 Tree-Maps and StepTree . 4

2.3 SOsim . 6

2.4 PortOS . 7

2.5 WADEin . 8

3 Background . 10

3.1 The Class . 10

3.2 PolyFS . 10

3.2.1 PolyFS History . 11

3.2.2 Poly FS Phase I: Disk Emulator 11

3.2.3 Poly FS Phase II: File System 12

3.3 Difficulties of Teaching Operating Systems 14

4 Design . 15

4.1 Goals . 15

4.2 Requirements . 15

4.2.1 Accessibility . 16

4.2.2 Server Deployment and Maintenance 17

4.2.3 Visualizer Deployment . 18

4.2.4 Disk Emulator . 19

4.2.5 Visualizer Elements . 21

4.2.6 Visualizer Configurability . 22

5 Implementation . 24

5.1 Overview . 24

vii

5.2 Server . 24

5.2.1 Edit Requests . 27

5.2.2 Database Architecture . 31

5.2.3 Module Overview . 31

5.3 Visualizer . 33

5.3.1 Config . 36

5.3.2 Disk Metadata . 38

5.3.3 Modules . 39

5.4 Client Disk Library . 43

5.4.1 Modules . 45

6 Software Validation . 47

6.1 Test Sets . 47

6.1.1 External Tests . 48

6.1.2 Internal Tests . 50

6.1.3 Server Tests . 52

6.1.4 Disk Tests . 54

6.1.5 Meta Tests . 55

6.1.6 Config Tests . 56

6.2 Deployment . 57

6.2.1 Server Operating System . 57

6.2.2 Resolution . 58

6.2.3 Browser . 59

7 Experiment . 61

7.1 Hypothesis . 61

7.2 Experimental Design . 61

7.3 Concerns with Experimental Design 62

7.4 Survey One Results . 63

7.5 Survey Two Results . 68

7.6 Survey Conclusions . 73

8 Future Work . 76

9 Conclusion . 77

BIBLIOGRAPHY . 78

viii

APPENDICES

A TinyFS Specification . 81

A.1 TinyFS and disk emulator . 81

A.1.1 Objective . 82

A.2 Phase I: Disk Emulator . 82

A.2.1 LibDisk Interface Functions 82

A.3 Phase II: TinyFS file system implementation 84

A.3.1 Block Types . 84

A.3.2 Block format . 86

A.3.3 TinyFS interface functions: . 86

A.3.4 Error Codes . 88

A.4 Assignment & Additional Features 89

A.5 Deliverables . 92

B Before Survey . 94

B.1 TinyFS File System and Emulator Project 94

B.1.1 Do you agree with the above statement? 96

B.1.2 Your name . 96

B.2 Short Answer Questions . 96

B.3 Grid Questions . 96

C After Survey . 98

C.1 TinyFS File System and Emulator Project 98

C.1.1 Do you agree with the above statement? 100

C.1.2 Your name . 100

C.2 Short Answer Questions . 100

C.3 Grid Questions . 100

C.4 Visualizer Responses . 101

D Sample Code . 103

D.1 Block Modal Links . 103

D.2 Block Metadata Per Type Handlers 105

D.3 Proper Name-spacing . 107

E Test code . 108

F Test code . 117

ix

LIST OF TABLES

Table Page

6.1 The test sets used to verify the PolyFS Visualizer 48

6.2 Table of the external test suite and results 50

6.3 Table of the internal test suite and results 52

6.4 Table of the server test suite and results 53

6.5 Table of the disk test suite and results 54

6.6 Table of the meta test suite and results 55

6.7 Table of the config test suite and results 57

6.8 Table of the resolutions tested . 59

6.9 Table of the browsers tested . 60

x

LIST OF FIGURES

Figure Page

2.1 Tree-Maps used to visualize a file system 4

2.2 A StepTree file system visualization 5

2.3 The OSsim Memory Management module display 7

2.4 The GUI for WADEin . 8

5.1 An overview of the PolyFS Visualizer architecture 25

5.2 An overview of the server architecture 27

5.3 Open() flow for num blocks = 0 . 29

5.4 Open() flow for num blocks != 0 29

5.5 Read() flow . 30

5.6 Write() flow . 30

5.7 An overview of the visualizer architecture 34

5.8 The visualizer before a disk is loaded 35

5.9 The visualizer after disk “demo2” has been loaded 36

5.10 The visualizer with mouse over the first block 37

5.11 The visualizer with block modal shown 38

5.12 The visualizer with disk loading modal shown 39

5.13 An example configuration file . 40

5.14 An example metadata file . 40

5.15 An overview of the disk emulator architecture 44

5.16 Open request to the server . 45

7.1 Survey 1: Aggregation of “Name some of the challenges you faced
with this project” . 64

7.2 Survey 1: Aggregation of “How did you verify your file system was
storing data correctly?” . 64

7.3 Survey 1: Aggregation of “What tools did you use to help you with
this project?” . 65

7.4 Survey 1: Aggregation of “How could this project be improved?” . 66

7.5 Survey 1: agree/disagree grid questions 67

xi

7.6 Survey 2: Aggregation of “Name some of the challenges you faced
with this project” . 69

7.7 Survey 2: Aggregation of “How did you verify your file system was
storing data correctly?” . 70

7.8 Survey 2: Aggregation of “How could this project be improved?” . 71

7.9 Survey 2: agree/disagree grid questions 72

7.10 Survey 2: Aggregation of all comments on the PolyFS Visualizer . . 73

F.1 Disk Test 1: perfect disk . 117

F.2 Disk Test 2: empty disk . 117

F.3 Disk Test 3: disk with last block incomplete 118

F.4 Disk Test 4: One incomplete block 118

F.5 Disk Test 2: disk missing . 118

F.6 Disk Test 6: 100 blocks x 256 bytes 119

F.7 Disk Test 7: 100 blocks x 1 byte . 119

F.8 Disk Test 8: 1 block x 256 bytes . 119

F.9 Disk Test 9: 100 blocks x 128 bytes 120

F.10 Disk Test 10: 100 blocks x 512 bytes 120

xii

Chapter 1

Introduction

The PolyFS Visualizer is a visualizer for student made file systems for CPE453:

Introduction to Operating Systems. The last project of CPE453 is to build a file sys-

tem following the sparse PolyFS specification. The PolyFS specification purposefully

leaves out most internal design details in order to allow students to create their own

designs, making the project very much focused on conceptual file system architecture.

As a result, many students struggle to implement their designs, either because they

can not translate their design into code or because their design does not completely

delineate the file system or programming process. In order to help students imple-

ment and understand their designs at a deeper level, the PolyFS Visualizer will allow

them to easily examine their disk data at a binary level.

Most previous work in the area of education of operating systems has focused

on simulation or portability of learning platforms. Works like SOsim and PortOS

exemplify this. However, Cal Poly wishes to focus more on larger design based projects

where students are asked to both design and implement a program. This gives need to

tools students can use to help them understand how their design and implementation

connect and how their implementation reflects their design.

Research in education on operating systems has focused on the canned simulation

or, at best, simulation of user inputs. Cal Poly hopes to focus on a more hands on

method of allowing students to design and build their own file system while having

the resources to visually represent the disk. To close the gap between design and un-

derstanding and implementation, which leaves many students confused, we developed

PolyFS.

1

The contribution of this paper is threefold:

1. Design and build a visualization service for PolyFS that views the disk at the

block and binary levels, allowing student’s to view their disks easily and com-

pletely.

2. Design and build a server and client that transparently replaces the student’s

disk library and builds their disk on a remote server in a format for visualization

3. Test file system visualization in a classroom environment and analyze the effec-

tiveness of visualization tools as they are applied to file system understanding

and design.

This thesis describes how these three contributions were achieved.

Background information and related works are chapters 1 and chapter 2 respec-

tively. The goals, requirements and design of the system are explained in chapter

3. The implementation is explained in detail in chapter 4. Validation is in two sec-

tions with software validation in chapter 5 and the student experiment in chapter

6. Finally, future work and the conclusion are related in chapter 7 and chapter 8

respectively.

2

Chapter 2

Related Works

Educational tools have been an area of study and development for some time. The

two areas of programming platforms and visualization tools, both of which are in-

corporated into the PolyFS Visualizer have several prior projects of interest. These

project are outlined below with a short critique on the design, implementation and

verification of each. Particular concern is placed on the verification due to the direct

application of those concepts to this paper.

2.1 DECAFS

DECAFS is a distributed file system (DFS) intended to help teach students how

distributed file systems works. Developed by Cal Poly student Halli Meth and advised

by Professor Chris Lupo, DECAFS provides a modular, expansive DFS and a set of

labs for students to work with.

DFSs tend to be much larger and more complex than typical quarter long projects

making it much more difficult for classes to follow Cal Poly’s learn by doing ideology.

Therefore, DECAFS is intended to be fully working and with a modular design allow-

ing for students to replace specific sections of the DFS. This allows for in depth labs,

projects and activities with a real DFS to be accomplished within a quarter class.

This project was ambitious with a feature set very close to full industrial DFSs.

DECAFS was tested in grad level distributed programming courses, relying on the

knowledge of graduate students to aid in fixing any problems found in either the DFS

or the assignments. Unfortunately, it was found the DECAFS was not fully read for

deployment. The project was very ambitious and sacrificed some software validation

3

for additional features. Thus, the graduate class found DECAFS had bugs and other

problems making completing the associated labs difficult.

This project has several similarities to the PolyFS Visualizer. Both are intended

to allows classes to better follow Cal Poly’s Learn by Doing philosophy. Therefore,

as a result of DECAFS outcome and usage, it was decided to sacrifice an expansive

features set for more rigorous software validation in the building the PolyFS Visual-

izer. Additionally, user testing was conducted during the course of the project rather

than left for future work. [17]

2.2 Tree-Maps and StepTree

StepTree is a visualization tool for hierarchical data structures with an easy applica-

tion for file systems. The paper uses file systems as its primary example, including

using it for an analysis of the effectiveness of its tool.

StepTree was developed in several parts, each building off of the last and providing

further features or user studies. In 1991 Brian Johnson and Ben Shneiderman of

University of Maryland developed a new technique for the visualizing of hierarchical

data structures call Tree-Maps. The technique was based off of Venn diagrams but

reformatted to make use of 100% of the provided space.

Figure 2.1: Tree-Maps used to visualize a file system

4

Tree-Maps was extended to create StepTree in 2004 by Thomas Bladh, David A.

Carr, and Jeremiah Scholl from the Lule University of Technology. Tree-Maps was

extended to 3 dimensions and a user study was performed on the effectiveness of 3D

Tree Maps on communicating file system data. The user study included 20 partici-

pants (one had to be replaced due to color blindness) and focused on a comparison

between StepTree and Tree-Maps. The user study showed the simple data retrieval

tasks could be done at least as fast with StepTree despite the 3D user interface.

Figure 2.2: A StepTree file system visualization

A final paper was done as an extension of StepTree, again by Thomas Bladh, David

A. Carr and Matja Kljun to analyze the affects of adding animations to the navigation

through the StepTree. In this paper selection of a sub-hierarchy was animated to

try and aid users in understanding the affects of the actions and ease the strain of

navigating through the hierarchy. They found that in general use the addition of

animation did make it easier for the user to navigate through the hierarchy. However,

the general improvement came at the price of much greater difficulty recovering from

mistakes. In this case users kept attempting to make use of the shortcuts introduced

with the animations rather than going back to a more measured step by step approach.

The core similarity between StepTree, Tree-Maps and the PolyFS Visualizer is the

5

use of visualization to easily show users file system information. However, StepTree

and Tree-Map intend to show directory structure rather than data structure. This

difference completely changes the use cases of the system and makes it very difficult

to adapt StepTree or Tree-Maps to the problem of visualizing binary disk data for

CPE 453 students. [12, 8, 7]

2.3 SOsim

SOsim is a program meant to provide a simulated operating system environment in

order to visualize operating system functionality and concepts. The program includes

visualization for virtual memory, processes and scheduling algorithms.

To illustrate one of these systems, the memory management system is described

by the paper: “main memory is divided in 100 page frames and each process can

allocate up to five frames. Processes have their own page table that can be observed

while changes take place.”

Two things stand out about SOsim. Firstly, it has a global perspective to oper-

ating systems and visualizes the system as a whole. Users select what they want to

view at any one time but a good portion of the topics in an operating systems course

are included. Secondly, the verification of the system is much better documented.

A class of 30 students was given a project using SOsim and upon completion of the

project filled out a seven question survey (questions documented in the paper). The

exact results are in the paper but they showed an agreement that the system helped

the students understand operating systems concepts. [14, 15]

6

Figure 2.3: The OSsim Memory Management module display

2.4 PortOS

PortOS has the goal of providing a portable, standardized operating system for stu-

dent populations with a large percentage of remote students. Designed off of 3 main

principles “provide a realistic but sanitized environment”, “support common plat-

forms” and “support familiar development environments”.

PortOS is used to provide a common operating system for Internet classes and thus

focuses on provided portability above all other concerns. Additionally, the features are

geared specifically toward students, meaning features are planned more as examples

and conceptual explanations rather than rigorous use. [4]

7

2.5 WADEin

With the goal of providing an adaptable visualization of expression evaluation in

the c programming language, WADEin has a GUI interface that allows the input of

an expression and shows a step by step processing of the expression. The current

expression at the current phase of processing is displayed in a “shrinking copy” on

the GUI as seen in 2.4.

Figure 2.4: The GUI for WADEin

Thought WADEin is geared toward a different topic of computer science (begin-

ning C programmers rather than introduction to operating systems), the concepts

used in teaching the students are the same and the project resembles this one in

terms of application and methodology of visualization.

The primary contributions of WADEin is the adaptable system meant to show the

8

correct level of detail to students of differing skill levels. It has 5 skill levels, the first

of which shows each step in slow motion with animations and the last processes the

expression in one step. The skill of the student is monitored by what they have already

viewed through the program as well as through self-evaluation interfaces provided to

the student during the animations.

The paper reports positive feedback from students stating “Many students con-

sidered WADEin as the most useful tool among all tools that are currently connected

to the KnowledgeTree portal”, which is a grouping of server based educational tools

meant to aide professors in teaching programming classes. However, the paper only

notes pilot testing in a single practical c course adding that “Currently we are running

a larger and more formal evaluation of the system in an introductory programming

class”. From this comment we can conclude that they are still drawing their con-

clusions off of small groups of students and their lack of documented experimental

design or empirical analysis leads me to believe their evaluation was informal at best.

[9]

9

Chapter 3

Background

3.1 The Class

The PolyFS Visualizer is aimed at helping students in introductory operating systems

classes. This specific tool is a proof of concept for file system visualization geared

toward classroom learning and will be developed for students taking CPE 453 Intro-

duction to Operating Systems at California Polytechnic State University at San Luis

Obispo. These students are typically Junior or Senior level and the course description

of CPE 453 according to the Cal Poly Computer Science catalog is:

Introduction to sequential and multiprogramming operating systems; ker-
nel calls, interrupt service mechanisms, scheduling, files and protection
mechanisms, conventional machine attributes that apply to operating sys-
tem implementation, virtual memory management, and I/O control sys-
tems.

Students in CPE 453 are expected to have completed CSC/CPE 357, and CSC/CPE

225 or CPE/EE 229 or CPE/EE 233. CPE 357 is a course in C systems program-

ming covering advanced C including memory management. CPE 225, EE 229 and

EE 233 are courses that cover low level organization of computing systems and in-

clude topics such as assembly languages, basic computer architecture, instruction set

architectures. Students are expected to be comfortable with these topics at the start

of CPE 453.

3.2 PolyFS

PolyFS is a two phase project. The first phase is a disk emulator mounted onto a single

Unix file system in order to abstract out hardware interaction. The second phase

10

builds a complete, if basic, file system on top the disk emulator. The PolyFS Visualizer

is designed to be integrated with PolyFS and its predecessor TinyFS. The visualizer

will provide a framework for the second part of the assignment and allow students to

make use of several additional features without removing any of the current learning

objectives or assignment deliverables. PolyFS and TinyFS are specifications for a

small file system with a basic feature set and milestones that can be implemented by

the students within a 3 week period. While the entire specification of both projects

are included in the appendices, important features and considerations for PolyFS are

highlighted here. Both phases have a defined API that must be implemented by the

students

3.2.1 PolyFS History

TinyFS was created by Foaad Khosmood in 2012 in order to provide a more in depth

assignment for students in CPE 453. TinyFS provides students the opportunity to

design portions of their file system implementation which requires significant under-

standing of the concepts. TinyFS has been offered as an assignment for several years

with incremental improvements after each term.

PolyFS is a more dynamic successor, introduced originally in 2013 and will soon

replace TinyFS. PolyFS is intended to accomplish the same goals as TinyFS but

provide students more opportunities to implement their own designs [13].

3.2.2 Poly FS Phase I: Disk Emulator

Phase I is a disk emulator implemented as a single Unix file and supporting basic

block level operations. All operations for Phase I will be based around blocks, with

all data buffers being of BLOCK SIZE size and undefined behavior for any input

buffers not of the correct size. Phase I has 3 functions to implement at the disk

11

emulator level, for a more in depth discussion of these functions view the complete

specification in the appendix:

1 int openDisk(char *filename , int nBytes);

2 int readBlock(int disk , int bNum , void *block);

3 int writeBlock(int disk , int bNum , void *block);

3.2.3 Poly FS Phase II: File System

PolyFS Phase II is a file system build on top of the disk emulator. The specifications

for the part of the assignment are purposefully vague allowing for students to apply

the knowledge they learned in the class including a wide variety of file system de-

sign methodologies. The specifications have three main goals: provide the students

a direction and place to start, ensure the projects are uniform enough to be graded

fairly, and give the professor and TAs enough information on the project to be able to

aid students their specific implementations. The specifications require the implemen-

tation of several basic file system functions, listed below. Again, for more specifics

regarding each function view the full specification in the appendices.

1 int tfs_mkfs(char *filename , int nBytes);

2 int tfs_mount(char *filename);

3 int tfs_unmount(void);

4 fileDescriptor tfs_openFile(char *name);

5 int tfs_closeFile(fileDescriptor FD);

6 int tfs_writeFile(fileDescriptor FD , char *buffer , int size);

7 int tfs_deleteFile(fileDescriptor FD);

8 int tfs_readByte(fileDescriptor FD , char *buffer);

9 int tfs_seek(fileDescriptor FD , int offset);

12

PolyFS does not support hierarchical files and having no directories and a com-

pletely flat structure. Thus, the file system can have four types of blocks:

Block name Block

code

Description Number

Possible

Size

(bytes)

superblock 1 must contain the magic number,

pointer to root inode, and the free

block-list implementation

1 256

inode 2 must contain the name of the file,

the file size and a data block index-

ing implementation

many 256

file extent 3 contains block# of the inode block many 256

free 4 is ready for future writes many 256

Each block is required to have a couple bytes at the beginning of the block in a

specific format. The format is meant to provide a structure to the blocks and includes

a preset location for linking blocks (free lists, file linked lists, etc), a magic number

to easily find corrupt or empty blocks and the block type. The exact layout is shown

below:

Byte first byte offset second byte offset

0 [block type = 1,2,3,4,....] 0x44

2 [address of another block] [empty]

4 [data starts] ...

6

It should be noted that these specifications do not require any design decisions in

13

terms on how to track free blocks, group data blocks into files, or manage data on

the inodes or superblock. All these design decisions are up to the student.

3.3 Difficulties of Teaching Operating Systems

Operating Systems is one of the harder classes for professors to effectively teach and

for students to understand. “Unlike other disciplines in the computer area, OS is a

subject that does not exhibit a linear structure that allows the lecturer to progress

through the topics in a sequential order.”[14]. The lack of a linear progression means

students may have a hard time connecting individual topics into a single framework of

understanding. Prior works have noted that “The problem is due to both the teach-

ing model and the lack of appropriate tools capable of translating the theory being

presented into a more practical reality. And without a practical vision the student

tends to lose touch and just ‘float’ around the introduced concepts and mechanisms

without gaining a realistic view of what is really going on.”[14]. Thus, there is a well

established need for more structure and teaching tools for introductory Operating

Systems classes.

14

Chapter 4

Design

This section discusses the general goals of the projects and then formalize these goals

into a set of requirements. The requirements are not a mix of technical specifications

and usability concerns, focusing on how users will interact with the product rather

than how it will be built.

4.1 Goals

First and foremost, the visualizer is meant to help students understand file systems.

Logistically this means students must have easy access to an intuitive, easy-to-use

interface with the ability to test their code. Additionally the visualizer must not draw

conclusions for the students but merely provides students with the tools to draw their

own conclusions. For example, the visualizer should not directly identify errors, but

merely display the content that was found. Students will be able to identify errors

from the content. Furthermore, the visualizer must not become a crutch for students

to complete assignments easily and quickly but rather a way for them to expand their

knowledge and build a deeper understanding of the material through concrete and

visual examination of their file system.

4.2 Requirements

In this section, the requirements for the PolyFS Visualizer are discussed and laid out

in a more formal format. Since the goals of the system are so generic, we must distill

out a more stringent set of requirements for what is displayed and how as well as the

ability of the students to access and use the system. The requirements are discussed

15

for each of six elements: accessibility, server deployment and maintenance, visualizer

deployment, disk emulator, visualizer elements and visualizer configurability.

Accessibility is the ability of the students to access the system as well as the

equipment necessary for them to do so. Server maintenance and deployment is the

ease of setting up new systems as well as maintaining old ones. Visualizer deployment

is the ease of setting up the visualizer. Note that this section is necessary because

the visualizer can be deployed separately from the server. Disk emulator is the part

of the server as well as the associated client side library that handles disk access and

manipulation. Visualizer elements is concerned with what is actually displayed in

the visualizer while visualizer configurability is the ease of configuring the visualizer

elements to fit different disk formats and visual needs.

4.2.1 Accessibility

The visualizer must be easily accessible for students. In order to help students it

was decided that the visualizer must be accessible in two formats, a server framework

with associated website and a read only website front end that can be deployed locally

quickly and easily. This allows students more options on how they want to use the

system as well as ensuring they have the ability to make use of it no matter where,

when or how they work.

The formalized requirements are noted below:

• Visualizer can be deployed on any web server (such as apache) without any

custom back-end

• Visualizer must be a read only web application

• Visualizer must work on laptops with a resolution greater than 1024x640 pixels

16

• Visualizer must work on the three main browsers use by students browsers

(Chrome, Firefox, Safari)

• Visualizer must not require the installation of any plug-ins

• When the server is unavailable (possibly due to maintenance or network outage)

another means to access the visualizer must be possible

Several things are noted to be outside the specification for this project:

• Visualizer is not required to work on mobile devices

4.2.2 Server Deployment and Maintenance

The server must be easy to deploy and maintain since there will be no dedicated re-

sources for the long term maintenance of the system. It is assumed that professors of

CPE 453 will be deploying and maintaining the visualization service and associated

infrastructure after research and development has been concluded. It is therefore

required that maintenance take very limited effort during the quarter but some po-

tentially with some required setup or cleanup between quarters. Additionally, it is

assumed that the professors using this tool have a solid understanding of how to de-

ploy and manage websites but no knowledge of this specific system. Deployment must

still be easy to accomplish for the professors and all dependencies and requirements

must be clearly established.

The formalized requirements are noted below:

• Server must not require maintenance during school quarters

• Server must provide a script to manage deletion of disks by the server admin

• Server must run on a standard Ubuntu Linux box

17

• Server must support up to 100 students over the course of a quarter

• Server must not generate unreasonable amounts of network traffic

• Complete documentation of all server requirements and dependencies must exist

Several things are noted to be outside the specification for this project:

• Server is not required to include automated student content management such

as deletion of old disks

• It is not required to have a scripted deployment

4.2.3 Visualizer Deployment

The deployment of the visualizer is concerned with two main goals: the accessibility

of the site for the students and the ease of deploying the visualizer with the server.

For the students, the visualizer must be deployable as a separate component easily

and quickly so that students can set up their own local visualizers. The visualizer

must also be compatible with Cal Poly’s CSC student websites, which are hosted

through the students CSC Unix server accounts and are read-only. The visualizer

must not have any external dependencies in order to focus on an easy installation.

For deployment with the server, the visualizer must be easily associated with the

server back-end. This means the server back-end must send data to the visualizer in

the exact same format as the students deploying the visualizer locally.

The formalized requirements are noted below:

• As noted in the accessibility section, the visualizer can be deployed on any web

server (such as apache) without any custom back-end

18

• As noted in the accessibility section, the visualizer must be a read only web

application

• Visualizer must be compatible with the student websites hosted on cal poly

CSC servers

• Visualizer must be able to easily disassociate from the back-end server

• Visualizer must accept only file inputs both as a separate entity and when

deployed with the server.

• A space within the Visualizer must be provided for students to place Disk files

along with associated meta and settings files

Several things are noted to be outside the specification for this project:

• Visualizer is not required to update when the disk is updated

• Visualizer is not required to provide front end interface for uploading disks

• Visualizer is not required to provide front end interface for changing configura-

tions

• Visualizer is not required to provide security

4.2.4 Disk Emulator

The Disk emulator will replace the students version after they complete the first part

of PolyFS. Therefore, the disk emulator must have the exact same user facing API

as the PolyFS specification as well as the exact same operation:

1 int openDisk(char *filename , int nBytes);

2 int readBlock(int disk , int bNum , void *block);

3 int writeBlock(int disk , int bNum , void *block);

19

Furthermore, the disk API will be given to students when they complete the first

part of the PolyFS specification (their own disk API). Thus, the disk API must not

provide students an easy way to obtain the solution to building their own disk API.

It also must easily compile with students’ code for their file system in the place of

their own disk API, without any modifications to the existing code.

Finally, the disk API will connect to the visualizer through a server. It is not

required to handle the case where the Internet is not available or deal with any issues

involved with the Internet. If the Internet is available it will open a socket to the

server and send the appropriate requests.

The formalized requirements are noted below:

• The disk emulator must provide openDisk, readBlock and writeBlock functions

as noted above

• The disk emulator must be able to compile with students c or c++ programs

using gcc or g++

• The disk emulator must meet the specification for PolyFS exactly

• The disk emulator must not have any dependencies

• The disk emulator must be provided to students in a compiled format

Several things are noted to be outside the specification for this project:

• The disk emulator is not required to store a copy of the disk locally

• The disk emulator is not required to function without Internet

20

4.2.5 Visualizer Elements

The purpose of the visualizer is to provide students with the ability to examine their

file system easily and give them the means to dig deeper into the design decisions

required in building a file system as well as how they affect the final product.

The visualizer is meant to have all the basic information ready at a glance. There-

fore the visualizer must provide three main sections on a single page: disk metadata,

file system block overview, and block metadata for a selected block. The disk meta-

data is all global metadata relevant to the disk such as the size and number of blocks.

The block metadata is all the values stated in the PolyFS specification and a block’s

metadata should be displayed when that block is selected from the block overview.

Additionally, greater depth should be available to the students, most importantly

in the form of complete data representations of the blocks. Thus, it must be easy to

access both hex and ascii representations of the block data as well as examine block

links.

Finally, the interface for loading disks must be transparent and easy to use. How-

ever, it is not required to provide the ability to load multiple disks at the same time,

merely that switching between disks should be fast and easy.

The formalized requirements are noted below:

• The disk metadata, block overview and block metadata for a selected block

must be available from a single page

• The disk metadata must include the disk name, users name, number of blocks

and the block size

• The block metadata must show the values of all metadata in the PolyFS speci-

fication and the associated meanings if provided in specification (i.e. type field

21

must display value and the string type name)

• The block overview must easily show block type

• The block overview must be expandable to show block details

• Block details must include the data of the block in both hex and ascii represen-

tations

• An intuitive interface must be provided for loading disks

Several things are noted to be outside the specification for this project:

• It is not required to allow multiple file systems to be loaded simultaneously

• Visualizer is not required to update when the disk is updated

4.2.6 Visualizer Configurability

The application of the visualizer should not be limited solely to the current PolyFS

specification. This is both because new applications for the software could arise other

than showing PolyFS data and because the PolyFS specification is prone to change.

Therefore, it is required to allow the visualizer to allow the configuration of minor

design decisions in the PolyFS specification. The most important of these design

decisions is the size of a block. Additionally, the metadata of a block should be com-

pletely configurable with the sole assumption that it will be a contiguous component

at the beginning of every block.

Since these changes may apply to only a subset of the disks, settings must be

manageable at the disk level. This will allow for the addition of disks with minor

changes to the visualization. However, it is not a requirement to add the ability to

change the settings through the front end visualizer.

22

The formalized requirements are noted below:

• The visualizer block size should be modifiable

• The visualizer should make no assumptions about number of blocks

• The visualizer should have completely configurable block and byte colorings

• The visualizer metadata bytes should be configurable and of variable length but

always a contiguous chunk at the beginning of the block

• The block types should be configurable

• Visualizer is configurable for each disk independently

Several things are noted to be outside the specification for this project:

• The visualizer does not need to provide a method for changing the configurations

through the front end

23

Chapter 5

Implementation

This section explains how the PolyFS Visualizer was implemented. The goal of the

section is to make clear the structure and program flow both. Additionally, for anyone

choosing to add or work with the PolyFS Visualizer code base, this section provides

a general overview of the code base and its organization.

5.1 Overview

The architecture has three main components. The disk emulator is formed by a server

side block driver and a client side block API. The block API is compiled with the

students code to transparently replace the students disk emulator. The block driver

fulfills requests from the block API and edits the disk hosted on the server. The last

component is the visualizer which is separate, but also relying on the students disk.

The overview is shown in Figure 5.1.

5.2 Server

The server is written in Node.js with express. The server is structured with server

javascript files at the base level and three directories of resources. The disks directory

stores all the disks and their associated data and metadata. The static directory stores

all javascipt files needed for the visualizer with the exception of libraries which are

stored in the vendor directory.

The server handles several types of requests. A “visualizer request” is a request

for the main page of the visualizer or any of the associated files in the static or vendor

directories. An “edit request” is a request to modify a disk stored on the server. The

24

Figure 5.1: An overview of the PolyFS Visualizer architecture

last type of request is a “disk request” which is a request for the raw data of a disk

within the disk directory.

Disks stored within the disks directory are viewed as static from the perspective of

the visualizer and user media from the perspective of the disk emulator. This allows

the visualizer to be deployed on any web server without any custom back-end. A disk

includes a basic binary data file with the disk’s data, a metadata file with a JSON

structure of all the disks metadata and a config file with a JSON structure of the

configuration of the visualizer. The binary disk data is named with the disk name

and no extension while the metadata and config files are named with the disk name

and .meta and .config extensions respectively.

The directory structure of the entire server and visualizer is shown below for

reference.

25

visualizer

server.js

edit.js

disks.js

handles.js

meta.js

error.js

disks

demo1

demo1.meta

demo1.config

vendor

bootstrap

jquery

jcanvas

static

binaryTransprot.js

block meta.js

block modal.js

config.js

custom.css

data.js

disk config.js

disk meta.js

draw.js

draw utils.js

history.js

26

load disk.js

main.html

The architecture is design to try to isolate specific features into different files to

create a more modular and extensible design. The final design is show in figure 5.2.

Server.js receives all requests and passes off some of the requests on to edit.js for

processing. Each file shown is given a short description at the end of this section.

Figure 5.2: An overview of the server architecture

5.2.1 Edit Requests

The edit requests are responsible for all requests to manipulate the data of the disks

on the server. These requests are handled through a separate router on the server so

27

they can be easily decoupled if only the visualizer is wanted.

There are three edit requests: open, read and write. Each request is described in

detail below.

The open request is a JSON post request that accepts in JSON format the “name”,

“block size”, “num blocks”, and “user” of a disk. Name and user are string identifiers

of the disk and the user respectively. If a user tries to open a disk that a different user

created the request fails and a fail message is returned to the client. The block size

is a positive integer for the number of bytes in a block and num blocks is a positive

integer for the number of blocks in a disk. If any of these fields are missing from the

request the request fails and a fail message is returned to the client. If num blocks

has a value of 0 then the disk will be created if it does not already exists. In this case,

if it does exist an error will be returned to the user. If num blocks does not have a

value of 0 then the disk will be found and its handle returned. Again, in this case, if

the disk does not exist in this case an error is returned.

The read request is another JSON post request. It accepts in JSON format the

“handle” and “block”. The handle is the numeric id of the disk to be read and the

block is the numeric index of the block to be read from the disk. If any of these fields

is missing the request fails and an error message is returned to the client. The handle

is then used to fetch the disk information. If the handle is invalid an error message

is returned to the user. After the disk information is fetched, the block is read from

the disk and base 64 encoded before being returned to the user.

The write request is also a JSON post request. It accepts in JSON format the

“handle”, “block” and the “buffer”. The handle is a numeric identifier of the disk to

be written to and block is the index of the block to be written. Buffer is a base 64

encoding of a binary block. The disk is fetched using the handle and the buffer is

written to the correct block of the disk. If the block is invalid or if the buffer is not

28

:Client :Server :Handles :Disks

open()

disk.open()

access()

open()

write()

close()

handle.add()

disk handle

disk handle

Figure 5.3: Open() flow for num blocks = 0

:Client :Server :Handles :Disks

open()

disk.open()

access()

handle.find by name()

disk handle

disk handle

Figure 5.4: Open() flow for num blocks != 0

the same size as a block an error is returned to the user.

29

:Client :Server :Handles :Disks

read()

handle.get()

disk
disk.read()

open()

read()

close()

block data

disk handle

Figure 5.5: Read() flow

:Client :Server :Handles :Disks

write()

handle.get()

disk
disk.write()

open()

write()

close()

disk handle

Figure 5.6: Write() flow

30

5.2.2 Database Architecture

The database is meant to keep track of all the disks stored by the server. The

visualizer does not make any use of the database and does not track disks available

to it. Instead, it just fetching disks by name and returns an error to the user if the

name does not exist.

The database consists of a sole table that is a mapping from handles to the disk

data. The tables columns are:

• block size INT

• num blocks INT

• id INT NOT NULL AUTO INCREMENT

• name VARCHAR(30)

The block size is the size of the block in bytes. Num blocks is the number of blocks

on the disk. The id is an auto incrementing numeric handle used to reference a disk.

Finally, the name is simply the string name of the disk and can be up to 30 characters.

There is one entry per disk in the database and multiple users access a disk

through the same handle in the database. The entry is added when a disk is created

and removed when the disk is removed.

5.2.3 Module Overview

This section is intended to aid anyone attempting to understand the code base for

the server. Each of the modules is given a short description of its goal as well as role

within the server. The server is designed along block box principles with a hierarchy

of modules, each dedicated to a specific aspect of the overall function.

31

server - The module server.js is the main for the node.js server. It starts listening

on a port for incoming requests and handles disk requests and visualizer requests. It

passes off all edit requests onto the edit.js module. If the 2 lines initializing the edit

module and setting up the routes to it are removed then the entire disk emulation

back-end is removed leaving just the visualizer.

edit - The module edit.js is the router for all edit requests. The types of requests

include open, read and write. Edit requests are described in detail in 5.2.1. edit.js

makes use of 3 modules: handles for database transactions, disks for disk transactions

and meta to generate and fetch disk metadata.

handles - The module handles.js is responsible for all interactions with the mysql

database. The database is used to store mappings of handles to all essential data for

disk operations. Handles.js provides four functions: add entry, remove entry, get and

find by name. Add entry adds a new disk to the database, remove entry removes the

entry from the database. The get and find by name simply fetches and returns the

entry of a given handle or the name respectively.

disks - The module disk.js is responsible for all interactions with the disk binary

files. The binary files consist of a series of blocks each a determined number of

bytes. Disk.js provides three methods for working with the disk on a block level:

open disk, read block and write block. Open disk handles ensuring the disk exists

and if instructed (num blocks is 0) creates the disk. Read block accepts a disk handle

and block number and returns the binary data of the given block. Finally, write block

accepts a disk handle, block number and buffer and writes the buffer to the given block

on the given disk.

meta - The module meta.js handles the disk metadata. It provides to methods:

create and get user. When a disk is created its create method is called to create the

associated .meta file. Also when a disk is opened its get user method is called to

32

check the user.

config - The module config.js contains the global configuration that may have

to be changed for different deployments of the server. Currently that includes a

max block size and max num blocks in order to limit the size of the disks stored on

the server.

error - The module error.js is simply a mapping of errors to error codes and is

used to return error codes to the client.

5.3 Visualizer

The visualizer is primarily Javascript formed around HTML. Bootstrap is used for the

majority of the formatting though CSS makes up small changes on specific elements.

Additionally, jquery is used for the interactions with the DOM from Javascript. Fi-

nally, Jcanvas is used to add a level of layering and functionality to the HTML canvas

elements. Jcanvas allows for mouse events to be made on specific objects on the canvas

making it possible to draw an interactive diagram.

Like the server architecture, the visualizer architectures is intended to isolate

specific features into different files to create a more modular and extensible design.

The final design is show in figure 5.7. In addition to this architecture is html in

main.html and a config in config.js. These two files are left off of the diagram as

they are above and below the Javascript code shown. All of the files can use the

config.js without affecting any other files since config.js is completely static. The

exact opposite is true with main.html, which uses all of Javascript files and can be

edited by them. Since these edits are independent (independence is guaranteed since

each file edits separate parts of the DOM with no overlap), main.html remains outside

the hierarchy.

33

Figure 5.7: An overview of the visualizer architecture

The site has one page and three tabs linking to modals. The first tab opens up

the load disk modal allowing the user to specify the name of the disk they wish to

load. The second tab is for instructions and the third is a simple about-this-project

modal. Most of the information is on the main page which has five main elements:

disk metadata, history, block diagram, block metadata and legend. These elements

get updated when a disk is loaded.

At the top of the left margin, the disk metadata panel displays statistics about the

disk included the block size and number of blocks. Below the disk metadata panel

the history panel tracks the disks the user has loaded and provides quick links to

each one. The center panel has an array of blocks representing a disk, each block is

colored to represent the block type. Blocks in the array can be inspected by mousing

over them, populating the block metadata panel on the top of the right column. Also

clicking on a block brings up a detailed representation of the data in the block modal.

34

The coloring of the blocks is explained by the last element on the main page, the

legend at the bottom of the right column.

Before a disk is loaded most of the panels are not populated with any data and

remain either blank or with a shell for the data that will be loaded as seen in Figure

5.8.

Figure 5.8: The visualizer before a disk is loaded

After disks are loaded then most of the panels populate with content. Figure 5.9

shows a picture of the main page with the disk “demo2” loaded. Note that “demo1”

was loaded previously and therefore is accessible by a link in the history panel.

If a student chooses to look at the metadata for a given block, they can easily do

so by mousing over the block to inspect it. In Figure 5.10 the block metadata panel

is populated with the highlighted blocks information.

Then if the metadata for that block was not specific enough the block modal

35

Figure 5.9: The visualizer after disk “demo2” has been loaded

could be brought up by simply clicking on the block. As seen in Figure 5.11, the

block modal includes representations of the disks data in both hexadecimal and ascii

as well as color coded metadata.

A new disk can always be loaded through the “Choose Disk” located in the menu

bar. Figure 5.12 shows the modal.

5.3.1 Config

The visualizer is configurable both in terms of data formatting and data display. The

configuration is done through the back end and read as a static file by the visualizer.

This has the downside of making it impossible for students to edit the configuration

of their disks on the server but the much greater upside of keeping the visualizer itself

read only.

36

Figure 5.10: The visualizer with mouse over the first block

The config file is stored with the disks and named with the name of the disk it is

associated with and the extension “.config”. It is a JSON file with a specific format

shown in Figure 5.13.

The data config object tells the visualizer what different values mean for each

metadata type. Each type makes up an object with its potential values as entries.

For each entry is an English interpretation of that value. The English interpretation

is displayed in the block metadata panel of the visualizer.

The display config object is for coloring. The block object is for configuring for

block display on the main page while the byte object is for configuring the block

modal’s byte representations. Currently fill style is the only color configuration avail-

able but the configuration structure allows for others to easily be added. The block

fill style is based off of the data config.types English representations. Each represen-

tation has a key and the value is the RGB string color. The byte fill style is based

37

Figure 5.11: The visualizer with block modal shown

off of the block config with each entry in the block config being a key and the value

is the RGB string color.

The last object, the block config, is for block metadata. Each byte of metadata

can be named and the name will be used in the block modal. The list of metadata

bytes starts at the first byte of the block and continues in the order defined by the

block config list until the last entry, then the regular block data starts. It is not

possible to define metadata that is not a contiguous chunk at the start of the block.

5.3.2 Disk Metadata

When a disk is created by the server, a .meta file is generated with it. If the user is

looking at the visualizer without the sever then they will need to create the associated

meta file themselves. This holds basic static information about the disk and is never

updated after disk creation. The meta file is loaded by the visualizer in order to

38

Figure 5.12: The visualizer with disk loading modal shown

understand the format of the disk well enough to parse it.

The meta file, an example of which is shown in Figure 5.14, holds only a few values.

User and name are string identifier of the user and disk respectively. Block size and

num blocks are positive integers for the size of a block and the number of blocks on

the disk respectively.

5.3.3 Modules

This section is intended to aid anyone attempting to understand the code base for

the visualizer. Most of the modules are given a short description of its goal as well

as its role within the visualizer. The modules that were left out are made up of

helper functions to be used by larger modules. The visualizer’s design centers around

main.html and all the modules are name-spaced so that the code is more readable.

39

Figure 5.13: An example configuration file

Figure 5.14: An example metadata file

The modules are all loaded through one HTML page, main.html. They also all

access config.js for any configuration information. There are five modules to populate

40

visual panels of the web page: block meta.js, block modal.js, draw.js, disk meta.js

and history.js. Supporting these modules are three that load and process resources:

load disk.js, data.js, disk config.js.

main - This is the main html for the page and the starting point for all the

Javascript modules. Main.html provides the structure for the page and the modals

but does not populate most of the content.

config - This is the config for the visualizer and includes all configurations needed

to display a disk along with access methods. The default config and the actual running

config are separated with a provided method, reset(), to set the running config back

to the default. Several access methods are also supplied for to simplify config access.

load disk - This handles the loading of a disk. It directly handles the loading of

the main disk binary file and calls the data module for processing. It also calls the

disk config and disk meta modules for loading of their respective resources. Finally, it

updates the history using the history module with the loaded disk. It should also be

noted that in order to load a binary file, a custom ajax transport (binaryTransport.js)

had to be used.

data - This is the processing modules that accepts a disk as binary data array

and processes it into blocks. A block is an object with a block type and separate

data representations as hex and char. The binary disk is broken up into blocks and

processed into both binary and hexidecimal formats to create an array of blocks. This

array of blocks is available to other modules to actual display the data.

disk config - This loads the config file for the disk and handles the configuration

updates. The user define configuration is loaded at the root level meaning every

element of the root of the JSON config object can be set by the user independently.

Any root element not defined by the user is set to the default values. This module

is called for every disk, so every disk has separate user configurations. If the config

41

file for a disk does not exist an alert is shown on the visualizer and the default

configuration is used.

disk meta - This loads the metadata for the disk and handles the disk metadata

panel updates. No assumption is made about the contents of the metadata except that

it is a single level JSON structure. The contents are displayed in the disk metadata

panel in a “key: value\n” format. If the metadata fails to load then defaults are used.

However, since the disk metadata is key to correct representation of the blocks of a

disk this is not recommended.

block meta - This accepts a block name and updates the block metadata panel

with all of that blocks data. The block name is the numeric index of the block, and

is retrieved from the name of the block element drawn on the canvas that the user

has selected. Block meta.js uses the block config from the config module to identify

the metadata for the block and displays both the hex and binary representations

of the data in the panel. It also calls a per-type custom function that allows for

interpretation of the metadata into meaningful results. For example the type 0x01

can be represented as the string “super block”.

block modal - This accepts a block and updates the block modal with all of

that blocks data. It has one externally used method, update block, which accepts the

block object of the block to be displayed in the block modal and sets up the display.

It displays both the hex and char as well as a legend. Additionally it sets up click-able

link meta-data so that links bold when you move your mouse over them and when

clicked go to the linked block.

draw - This handles drawing the main canvas with the blocks and the legend

that goes with it. It has two methods: draw and update legend. Draw accepts a

list of blocks and displays the list of blocks on the main canvas of the main page.

Update legend fills in the legend associated with the main canvas.

42

history - This accepts a disk name and updates the history panel with a quick

link to that block. When the button is clicked the block is loaded without having to

go through the load modal.

5.4 Client Disk Library

In order to communicate with the server and provide a transparent disk emulator for

the students, the disk library replaces the student’s disk emulator. The disk library

formats and sends JSON POST requests to the server and then receives and parses

the response. It provides the exact same API interface as the disk emulator:

1 int openDisk(char *filename , int nBytes);

2 int readBlock(int disk , int bNum , void *block);

3 int writeBlock(int disk , int bNum , void *block);

Each of the API calls is essentially a wrapper for the associated server edit request

and will handle the inputs and network for each request. Also, in order to allow for

easy modification, the disk emulator contains several layers of APIs in addition to

the external API. These allows for different functionality to be modularized and

extensible. It also allows for additional features to be hidden from the students but

available to professors for use or future addition. Figure 5.15 shows the organization

of the APIs in relation to each other with api.c being the external API and networks.c

being in direct communication with the server.

The first API below the external API is called the ”internal” API. The internal

API allows greater flexibility for requests with the external API being a simplified

wrapper for the internal API. The internal API has more options and features that

can easily be hidden from the students but still available for professors. These features

include support for user spaces and specific disk sizes. The exact declaration of the

API is below:

43

Figure 5.15: An overview of the disk emulator architecture

1 int send_open(char *name , int num_blocks ,

2 int block_size , char *user);

3 int send_read(int handle , int block , char *buffer);

4 int send_write(int handle , int block ,

5 char *buffer , int size);

Finally, the external API sends all requests using a network API that accepts the

url and body and returns the response text.

1 void setup ();

2 char *send_post_request(char *url , char *body);

3 void cleanup ();

The end result of all the nested APIs is a separation of tasks. The network API

sends data to the server. The Internal API formats the data to send the server

and then formats the response to send to the user. Finally, the external API forms

a simplified interface that exactly matches the requirements of the disk library in

PolyFS. An example of the call stack for a request to the server is shown in Figure 5.16.

44

:client :External API :Internal API :Network API :Server

openDisk()

send open()

setup()

send post request()

send post request()

error code

error code
cleanup()

error code

error code

Figure 5.16: Open request to the server

5.4.1 Modules

This section is intended to aid anyone attempting to understand the code base for

the disk library. All of the modules are given a short description of its goal as well

as its role within the disk library. Generally, each file or module forms an API layer

and works with the API below it while being called by the API above it.

api - The module api.c forms the external API and provides a thin wrapper on

the internal API, simplifying the interface for the students.

disk - The module disk.c forms the internal API and provides most of the func-

tionality for the disk emulator. It formats the JSON for the JSON requests before

passing off both the url and JSON body to the network module. It also does limited

error checking on the parameters. However, most of the error checking is left to the

server. If an error is found, disk.c uses the same error codes as the server.

network - The module network.c forms the network API. For every request it

45

opens a socket to the server and sends the request. It the cleans up the socket after

the request has been made. If an error happens in sending or receiving the packet

then an error message is printed and the program is exited. However, if an error

happens when the response is being parsed then an error is printed and NULL is

returned by send post request().

base64 - The module base64.c provides a library for converting to and from base64

data. This is required to base64 encode the binary data blocks in order to send them

in the JSON POST requests.

46

Chapter 6

Software Validation

This section provides an explanation of how the code base was tested to ensure it was

working properly. In this case, working properly means all the components function

according to design with no unintended results even for invalid inputs. However, this

section does not intend to analyze the validity of the design itself, merely that the

implementation is complete and correct in following the design.

6.1 Test Sets

The software was validated through the use of test cases with a combination of manual

verification of test case results and automated error code checks. Test cases were

meant to test both valid operations or valid inputs and invalid operations or invalid

inputs.

The entire test suite is composed of five sets of tests, each targeting a different

interface of the PolyFS Visualizer. All of the tests were conducted as block box

tests, with know knowledge of the internal workings of the code. The five interfaces

identified as potential risks were the external API, internal API, server requests, disk

file, .meta file, and the .config file. Though the internal API and server requests are

not user facing, they are more flexible allowing for in depth tests not possible with the

user facing APIs. The other three interfaces are user facing and thus must be tested

to be able to handle user actions and mistakes. It should be noted now that though

limitted testing has been done to address basic security concerns, security was not a

part of the software validation and has not been addressed in depth in any part of

this project.

47

Table 6.1 shows all the test sets as well as the interface they are intended to test

and the a generalized testing goal for the types of test and their coverage.

Table 6.1: The test sets used to verify the PolyFS Visualizer

Test Name Interface tested Test Type

externalTest external API general usage

internalTest internal API general usage

networkTest server API malformed server requests

configTest Configuration file malformed .config files

metaTest Metadata file malformed .meta files

diskTest disk file malformed disk files

The following sections explain each of the test sets in turn. The test performed

and the test coverage they provide is examined as well as the results of the tests.

6.1.1 External Tests

The external API is the api the students use to replace their disk emulator and exactly

matches the disk emulator. Therefore, testing was required to ensure it maintained

the same level of functionality according to the PolyFS specification.

The test cases are meant to cover the possible error cases. First is simply no error,

with several tests for the correct operation of each API. Each input is then tested

independently, with the error codes checked against expected values to ensure the

visualizer caught the input being tested and not some other problem. Finally, null

inputs and similar values are tested (i.e. NULL, 0 and ””). These test cases combine

to give good coverage of the possible errors the students could make.

Since the external API is written in C, a strictly typed language, the required

48

test space is greatly decreased as each parameter has limited inputs. Thus these test

cases, which test a wide range of values for each parameter including 0, above the

upper bound, below the lower bound, and a valid test case are adequate to have

reasonable assurance of proper execution. The external tests test the disk emulator

and the server back-end, ensuring the student facing API is functioning. A summary

as well as the results of the test can be seen in Table 6.2.

49

Table 6.2: Table of the external test suite and results

Test Name Test Description

open()

1 Test standard usage, disk exists

2 Test standard usage, disk does not exist

3 Invalid disk name

4 Null inputs

5 Invalid number of bytes

6 Disk does not exist

7 Disk exists, should not create

read()

8 Test of standard usage

9 Invalid disk

10 Null inputs

11 Invalid block number

write()

12 Test of standard usage

13 Invalid disk

14 Null inputs

15 Invalid block number

16 Invalid buffer size

6.1.2 Internal Tests

The internal API allows additional flexibility than the external API. Thus several

additional tests can be done at this level that are impossible from the external API.

50

Furthermore, future use of the PolyFS visualizer and potential future changes of the

PolyFS spec could easily cause changes in the external API to take greater advantage

of the internal APIs flexibility. In this case, the internal API would have to function

outside the bounds of the external API tests.

The internal API tests focus on the ability of the internal API to specify block

size and number of blocks independently as well as the size of the write buffer. These

features provide the ability to easily change the block size of the disk emulator. For

each function in the API several tests of the standard use cases are performed. In

addition to these tests, tests of various block sizes and numbers of blocks were done

with the send open(). These parameters were tested independently, keeping the other

constant and the error codes were checked to ensure the correct error was caught and

reported. Similar tests were performed for the write() testing the functionality that

was not visible in the external API: the ability to specify buffer size. Again, attention

was paid to which error code was reported to ensure the test was successfully reaching

the correct case.

Tests of the read() API were unnecessary because the external API read simply

calls the internal API equivalent with no manipulation of parameters.

Code coverage was primarily achieved through the combined external and inter-

nal tests. The tests listed here ignore all the cases already covered by the external

tests and focus purely on the additional functionality presented by the internal API.

This test focuses on the disk emulator and the server back-end, without testing the

visualization front-end at all. A table of the tests as well as the results can be seen

in Table 6.3.

51

Table 6.3: Table of the internal test suite and results

Test Name Test Description

send open()

1 Test of standard usage

2 Various block sizes

3 Various numbers of blocks

4 Null inputs

send read()

tests unnecessary, completely covered by external tests of read()

send write()

5 Test of standard usage

6 Invalid disk

7 Null inputs

8 Various block numbers

9 Various block sizes

10 Various buffer sizes

11 Large disk writes

6.1.3 Server Tests

The server itself can be used without the disk emulator, providing another interface

to test. Since the server can be used independently of an provided client side code, it

should be tested to ensure it can handle inputs in formats other than those provided

by the disk emulator.

The tests focus on malformed JSON and packets. Malformed requests are tested

52

with each parameter missing as well as the wrong type. Additionally, tests of JSON

syntax errors and empty JSON objects were made. These tests were conducted by

leveraging the network API in order to completely customize the body of the requests,

allowing for malformed requests.

Again, like the internal tests, test coverage is achieved here by focusing solely on

the cases missed by the internal and external tests. These tests focus on the server

back-end and has only a minimum of client side code to run the test. The tests as

well as their results can be viewed in Table 6.4.

Table 6.4: Table of the server test suite and results

Test Name Test Description

editopen

1 Test of standard usage

2 Invalid JSON

3 Wrong parameter types

4 Missing parameters

editread

5 Test of standard usage

6 Invalid JSON

7 Wrong parameter types

8 Missing parameters

editwrite

9 Test of standard usage

10 Invalid JSON

11 Wrong parameter types

12 Missing parameters

53

6.1.4 Disk Tests

The disk tests focus on the visualizer as an entity separate from the server. When

deployed on its own, the user will provide the disk, .mete and .config files, introducing

the possibility for additional errors not found in the system with the server. These

tests are focused solely on the visualizer and do not test the server back-end or disk

emulator.

The main tests is with the disks used by CPE 453 students with TinyFS. However,

these disks are rather specific with set block size and number of blocks. Therefore,

other tests were run with a variety of disk configurations and full disk writes in order

to ensure the disk could be configured and written. In addition to valid disks, different

varieties on invalid disks including disks with incomplete blocks, missing disks and

simply empty disks.

Since the disk is binary data and only structured by both the server and the visu-

alizer in terms of blocks, testing differences in data on the disk has no value. Instead,

tests must evaluate the amount of binary data in comparison to the block size as

well as the size and number of the blocks. Therefore, these tests, while not providing

complete code coverage, do exercise all main visualizer elements and features.

Table 6.5: Table of the disk test suite and results

Test Name Test Description

1 Test of standard usage

2 Disk missing

3 Incomplete blocks

4 Empty disk

5 Various valid disk sizes

54

6.1.5 Meta Tests

Similar to the disk tests, the .meta file can be provided by the user when the visualizer

is deployed separate from the server. Thus, testing of the .meta file in the context

of the visualizer is necessary to ensure users inputs will not cause unintended results

and provide proper error handling and user messages to fix invalid files.

Since the .meta file is a JSON file the tests revolve around detecting invalid JSON

and then missing required data. The first test is simply of a standard, correct .meta

file while the rest of the tests focus on categories of errors.

The goal of these tests is to show that the visualizer will detect and throw out

invalid metadata files, always managing to load the disk. Since the format is JSON

and validated JSON parsers are used, the tests can ensure code coverage even with

limited testing of invalid JSON formats. Completeness of the testing of valid JSON

formats is easier, with tests for of missing and extra keys being enough because the

.meta file is ambivalent to the existence of most keys.

Table 6.6: Table of the meta test suite and results

Test Name Test Description

1 Test of standard usage

2 Meta file missing

3 Invalid JSON

4 Empty meta file

5 Extra keys

6 Missing keys

55

6.1.6 Config Tests

The last of the files editable by users when the visualizer is used as a separate unit is

the config file. The .config is most complex than the .meta file and has several more

failing modes. Where possible, the user needs to be notified of the errors so they

can be corrected and where notification is not possible the visualizer needs to contain

failures.

The tests of the .config file are similar to the .meta file, with simply more individual

tests for each grouping. However, given the wide variety of possible valid config files,

a limited selection of the possibilities is tested to verify performance while the most

of the tests are conducted to ensure failures are found, contained and reported. These

tests include missing config files, empty config files and invalid config formats. The

possible invalid configuration formats are broken down into invalid or missing keys,

missing or empty objects or values and wrong value types. A grouping of tests covers

each of these cases.

Testing all three of the types of invalid configurations allows for reasonable confi-

dence of the code coverage of the tests in terms of handling errors. The ability of the

visualizer to correctly execute the config in the visualizer is shown through examples

but incomplete simply due to the large possible combinations of configurations.

56

Table 6.7: Table of the config test suite and results

Test Name Test Description

1 Test of standard usage

2 Config file missing

3 Empty Config file

4 Invalid/Missing Keys

5 Missing/Empty objects and values

6 Wrong value types

6.2 Deployment

This section discusses the testing used to determine the portability of the PolyFS

Visualiser to different platforms. Since the visualizer is intended for students, the

requirements for computer and browser are as few as possible. Thus, the visualizer

must be tested to confirm its functionality on a variety of browsers, operating systems

and screens.

The visualiser was never intended for mobile or tablet applications, so these are

outside the scope of the tests.

6.2.1 Server Operating System

Though web applications and servers are supposed to be far removed from the operat-

ing system, minor changes in how API calls act on their parameters can easily break

servers. Thus full deployment on the supported operating systems was necessary in

order to validate the server.

It was decided to support two operating systems OSX and Ubuntu Linux. De-

57

ployment was completed on both operating systems and all of the server oriented

tests on both. These tests include the external test, internal test and server tests.

It was not necessary to run the visualizer tests on each operating system since the

visualizer is isolated from the operating system by the web server.

6.2.2 Resolution

Another major concern with deployment is the diversity of screen sizes in comput-

ers used by students. Testing is required to ensure the visualizer UI is usable for

all reasonable resolutions. The visualizer was exercised on a selection of different

resolutions.

Importantly, since the project is intended for students in Cal Poly CSC classes,

the resolutions of the Cal Poly computer science lab was tested specifically. The tests

performed as well as the computer that was used to perform the tests are listed below.

Since all errors that were found have been corrected and are no longer present in the

final project, the outcome of the tests is invariably success and thus has been left out

of the table.

The tests conducted are shown in table 6.8.

58

Table 6.8: Table of the resolutions tested

Test Resolution Computer Operating System

1 1920x1200 Macbook Pro 2016 OSX (Yosemite)

2 1680x1050 Macbook Pro 2016 OSX (Yosemite)

3 1440x900 Macbook Pro 2016 OSX (Yosemite)

4 1280x800 Macbook Pro 2016 OSX (Yosemite)

5 1024x640 Macbook Pro 2016 OSX (Yosemite)

6 1680x1050 Cal Poly Computer Science Lab Centos

7 2560x1440 Cal Poly Computer Science Lab OSX

6.2.3 Browser

Browsers must also be explicitly tested as many create slightly different environ-

ments.For example it was found that the PolyFS Visualizer conflicted with some

environment variables in the chrome browser. Since, from personal experience, stu-

dents use primarily Firefox, Chrome and Safari it is sufficient to support those three

browsers.

Additionally, portability between operating systems in addition to browsers was

found to be an issue. For example, Linux and OSX calculate the height of canvas

elements differently. Thus, testing was done for each of the browsers for each of OSX,

Linux (Centos) and Windows 10. However, safari was not tested on browsers other

than OSX since it is so rarely used on any other operating system.

The tests conducted are shown in table 6.9.

59

Table 6.9: Table of the browsers tested

Test Browser Operating System

1 Firefox OSX (Yosemite)

2 Safari OSX (Yosemite)

3 Chrome OSX (Yosemite)

4 Firefox Linux (Centos)

5 Chrome Linux (Centos)

4 Firefox Windows 10

5 Chrome Windows 10

60

Chapter 7

Experiment

Since this thesis is an educational tool, its purpose is to aid students to gain a better

and deeper understanding of the material. Thus, in order to measure the effectiveness

of the PolyFS Visualizer the abilities of the students must be assessed in comparison

with students with similar curriculum’s minus the visualization software.

7.1 Hypothesis

With this basic concept a hypothesis can be formed: The PolyFS Visualizer increases

students ability to understand file system concepts.

7.2 Experimental Design

In an ideal experiment, two identical groups of students would be placed into identical

classrooms with identical professors and curriculum. One group would also be pro-

vided the PolyFS visualizer as a platform with which to do their file system project

while the other group would complete the same project with the currently used tools

instead of the visualizer. Both groups would receive a test at the end of the project

meant to test understanding of file systems. The test would have a very wide range

of questions not given in the class, allowing for a good scale of the students ability to

be developed. The comparison of the two groups could then be used to determine if

the PolyFS Visualizer aided in a significant increase in student understanding.

Thus the independent factors in the experiment would be the students, the learn-

ing environment, curriculum and professor. The dependent variable would be the

usage of the PolyFS Visualizer. The measured variable would the the test scores of

61

both groups of students from after the file system project was completed.

This experiment attempts to get as close to the ideal as possible. Since we must

work with live classes, it is inappropriate to split the classes and provide some with

the visualizer and provide no tools to the other. Thus the experiment was be split over

two quarters with a the PolyFS Visualizer provided in the second quarter. Survey 1

will be given to students in the first quarter to analyze their needs, techniques and

tools and then survey 2 will be given to students in the second quarter with the exact

same questions plus a few specific to the PolyFS Visualizer.

Between these two surveys we hope to draw conclusions about how students com-

plete the TinyFS and PolyFS project and how they use the PolyFS Visualizer.

7.3 Concerns with Experimental Design

There are several problems and concerns with the current experimental setup. Firstly,

no two groups of students are identical. Different pools of students will not provide

the same data even in the exact same conditions unless they are of very large size.

The performance of individual classes (the most basic pool of students available)

often varies greatly over quarters or even sections during the same quarter. Thus it is

harder to draw conclusions based on comparing two classes. Secondly, the Cal Poly

class schedule does not allow for the exact same teaching environment and professor

for both groups of students in the experiment. Given the option a preference should be

made for having the same professor over having the same classroom and environment

due to the overwhelming effects of different professors on students understanding (i.e.

professors apply emphasis to different topics within the same curriculum).

In this study we recognise the bias applied by the lack of constant independent

variables. As a result the data collected in the two surveys is suspect and can not be

trusted entirely. However, the efforts made to create a fair test allow us to draw some

62

conclusions from the results in an effort to get closer to understanding how students

learn file systems and apply what they learned.

7.4 Survey One Results

Survey 1 was conducted in Professor Foaad Khosmood’s Winter 2016 CPE 453 class

and 28 students filled out the survey. The survey was given to students after they had

completed the TinyFS assignment for the class. All students completed the survey in

its entirety, although several responses were clearly jokes or filler and were excluded.

For the open response questions, it was necessary to break down students responses

into specific items. This was done by going through each item and placing them in a

bin, if they did not fit any current bin a new one was created for it. The responses

therefore have been broken down into the core concepts the student was trying to get

across.

The first prompt for the students was “Name some of the challenges you faced

with this project”. Figure 7.1 shows the a chart of how each students answered. It is

interesting to not that the largest problem concerning students was implementation,

followed by design and testing. The root cause of struggle with the implementation

can be several things: the underlying design is inherently flawed leading to difficulty

implementing it, the programming itself is difficult, or the sheer size of the program is

daunting. The PolyFS Visualizer would be able to aid students understand what their

implementation is doing by displaying their disk. This would leave the programming

and debugging to the students while providing them a bit of help to bridge the

concepts with concrete code.

The second question, shown in figure 7.2, for students was “How did you verify

your file system was storing data correctly?”. This question is in reference to the

PolyFS Visualizer as a testing tool that would easily allow students to see if their

63

Figure 7.1: Survey 1: Aggregation of “Name some of the challenges you
faced with this project”

data was being written correctly. In the absence of the PolyFS Visualizer, over half

the students stated they analyzed the data manually. Many stated they used hexdump

to read the data. This methodology lends itself very well to the PolyFS Visualizer

which basically acts as a more intelligent hexdump by delineating the blocks and

breaking out the metadata.

Figure 7.2: Survey 1: Aggregation of “How did you verify your file system
was storing data correctly?”

64

The third question is “What tools did you use to help you with this project?”.

This question was intended to help determine what students used to aid them with

their projects in order to determine what tools the PolyFS Visualizer could replace

and how it would be better than those tools. The PolyFS Visualizer was intended to

replace hexdump which was theorized to be a common tool for this project. The graph

is split up into categories with students answers for what they used within a category

show. The categories are version control, documentation sources, editors, debuggers

and visualizers. Hexdump and hexedit were considered visualizers because their main

purpose for this project is to edit the disks not the code directly. Interestingly, 25%

of the class mentioned they used hexdump or hexedit, despite the extremely open

ended question. The rest of the categories clearly reflect how Cal Poly students are

taught, favoring git repositories, vim and GDB which are all taught and supported

better than their peers.

Figure 7.3: Survey 1: Aggregation of “What tools did you use to help you
with this project?”

The fourth question, shown in figure 7.4, is “How could this project be improved”.

Asking for improvements is intended to examine what students think needs to be

changed for the project in order to figure out if a tool along the lines of the PolyFS

65

Visualizer would be a good addition to the class. Students may have mentioned

more than one category and thus the total of the results will not add up to the

number of students. It is very interesting to note that the most popular category is

asking for more functionality and options to implement within their file system. It

seems students are looking to expand the project. Tied for second is testing help and

specifications. The PolyFS Visualizer is clearly intended to aid students in testing

their code and should help the students who said the former. The later on the other

hand results from either poorly written specs or a poor understanding of the concepts

on the part of the students. The ability of the PolyFS Visualizer to show students

demo disks and let them examine an actual disk implementing PolyFS will probably

greatly help them understand what the spec is expecting and the concepts it covers.

Figure 7.4: Survey 1: Aggregation of “How could this project be im-
proved?”

The last set of questions are all agree/disagree questions, with the results shown

in figure 7.5. Students were given a statement and asked to what degree did they

agree with the statement. The options were strongly agree, agree, neutral, disagree,

strongly disagree. The first and second statements were “The project” is difficult and

66

“The project was helpful in understanding file systems”. Students overwhelmingly

agreed or strongly agreed with these two statements showing an excellent mix of

difficulty, file system concepts and time.

However, when asked the next two questions, “I had difficulty visualizing the

content of the disk” and “It was hard to design the superblock”, about half the

students disagreed or strongly disagreed, possibly showing they did not need help

from a visualization service. Of the remaining students less than a quarter stated

they agreed to either statement. However, give the number of students that cited

design and testing to be difficult portions of the project in the previous questions, it

seems likely that the original meaning for the question was not clear to students. It is

likely that the word “visualize” was ambiguous to the students and if they answered

based off of their ability to read the disk through hexdump then many of them would

have disagreed.

Figure 7.5: Survey 1: agree/disagree grid questions

Finally, one students actually stated in their answer that having a program like

the PolyFS Visualizer would be really helpful. The student said:

“Something which would have been *really* cool would have been a real-
time hexdumping libDisk. Imagine if we had been provided with a lib-

67

Disk.o which used ncurses to demonstrate the contents of the disk, as
hexdump would, as our TinyFS is interacting with it.”

This program would be a very close rendition of the PolyFS Visualizer. It would be

completely command line based and focus on just hexdump rather than providing

a lot of the other features however, the main concept is definitely the same. It is

interesting that in an open ended question a student would state a “really cool” idea

that is so close to the project we are trying to validate.

7.5 Survey Two Results

Survey 2 was conducted the quarter after survey 1 with Professor Foaad and Professor

Peterson’s Spring 2016 CPE 453 classes. During this quarter students were provided

the PolyFS Visualizer for use with their project. Survey 2 includes all the questions

in survey 1 but also has some questions specific to the PolyFS Visualizer.

The results were analyzed in the same manner as survey 1. However, the results

are skewed by the necessity of taking the survey earlier in the quarter. Students had

not completed the TinyFS project before taking the survey and were just finishing

the first phase of the project. Thus, many were focused more on the disk emulator

and had not finished the main focus of the project.

The second survey had 26 participants, although one student took the survey

twice, saying they wanted to correct their answers in light of continued use of the

PolyFS Visualizer. In addition, students taking survey 2 were told the survey con-

cerned the PolyFS Visualizer tool they were testing versus students taking survey 1

who were told simply that the survey concerned PolyFS. This had a very large affect

on the results as students interpreted “this project” to mean the PolyFS Visualizer

when it was intended to refer to the PolyFS project they were completing. As a result,

the first set of questions have a category in the aggregation of results for students that

68

answered the questions from the perspective of the PolyFS Visualizer rather than the

PolyFS assignment. The students are still included in the results to show the bias.

As a result of these changes in the survey set up, comparisons of survey 1 and

survey 2 are not valid and will not be attempted. Both surveys will be analyzed

entirely separately.

Just like in survey 1, the first prompt for the students was “Name some of the

challenges you faced with this project”. Figure 7.6 shows a chart of how each students

answered. It is interesting to note that students taking survey 2 stated they had

difficulties with design and concepts. Several cited the PolyFS Visualizer as a tool

that helped them understand how the disk was supposed to be set up and more

specifically how their disk implementation worked. It is likely that the increase in

difficulty with understanding and design stems from the timing of the survey. In

the beginning of the project, students typically are going through the design and

understanding portion of the work and therefore a survey given at that time would

greatly skew the results toward those categories. In fact one student even stated in

the survey that they had not gotten far enough in the project to begin testing and

could not answer a question as a result.

Figure 7.6: Survey 2: Aggregation of “Name some of the challenges you
faced with this project”

Again, like the first survey, the second question for students was “How did you

69

verify your file system was storing data correctly?”. The results, shown in figure 7.7,

shows students often relying on the PolyFS and hexdump. This is also an artifact

of the time the survey was given. At this stage of the project students are primarily

working with the disk emulator which has both a small code base and a basic output,

lending itself to more visual and manual methods of debugging such as examining the

data and printing out debug messages.

Figure 7.7: Survey 2: Aggregation of “How did you verify your file system
was storing data correctly?”

The third question is “How could this project be improved?” shown in figure 7.8.

This question was largely answered with problems with the ambiguities in the speci-

fication, saying the using the PolyFS Visualizer or a tool with similar features would

make it better, or saying they needed more deadlines and shorter parts to help their

time management. The large number of students mentioning specification is likely

a result of students being earlier in the project and in the phase of trying to under-

stand the specification and concepts. Interestingly, a couple of the students stated

they needed help visualizing the content of the disk but then stated they did not use

the visualizer in the survey. For example one students said in answer to this question

that they needed “An easier way to see what I had written to my TinyFS file system”

and yet this student did not make use of the PolyFS Visualizer. One possibility is

70

installing the visualizer was daunting or that the student did not even attempt to

figure out what the project was and therefore did not know it would help them.

Figure 7.8: Survey 2: Aggregation of “How could this project be im-
proved?”

The grid questions, exactly the same as the first survey, simply asked to what

degree did students agree with a statement. The first two questions shown in figure 7.9

have very unsurprising results and are very congratulatory of the PolyFS project as

a whole. However, the last two questions in figures 7.9 show an even split in the

students. This reflects the general trend of the second survey toward greater difficulty

with concepts, specifications and other items early in the development cycle.

The last figure of the after survey is not in survey 1 and consists of an aggregation

of all the students comments about the PolyFS Visualizer. Since the students got

confused and answered many of the initial questions in terms of the PolyFS Visualizer,

this graph does not represent any one question. The results concerning the visualizer

were combined per person from all the questions they answered. This allowed the

general sentiment of the student to be analyzed manually, creating a more accurate

conclusion over studying each question individually.

71

Figure 7.9: Survey 2: agree/disagree grid questions

For purposes of the survey, the students were provided with the standalone vi-

sualizer. This visualizer must be installed into the students websites hosted on the

CSC servers. Additionally, students were not taught or informed of the possibility

of configuring their disks or editing the meta file. The test was intended to be sim-

ple and specific to PolyFS. The graph below categorizes students comments on the

standalone visualizer. It is promising to see that the two top comment categories are

that it was helpful and suggestions for new features. The other categories featured in

prominence deal with the installation, which turned out to be a very divisive topic.

Students stated in nearly equal numbers that installation was challenging and that

installation was easy.

Students stated several areas for improvement for the PolyFS Visualizer. One

student stated an item that was already featured prominently in the product they

tested. Since other students seemed to have little trouble finding this feature, it is

likely that the student was not very thorough in their evaluation. Another student

asked for a feature that is included in the extended feature set, and was not explained

for the purposes on the survey. The remaining students asked for features that were

not present in the visualizer and would suggest possible future work or revisions to

the project. These suggested revisions are:

72

Figure 7.10: Survey 2: Aggregation of all comments on the PolyFS Visu-
alizer

• add disk drop-down selector (requested by 3 students)

• make visualizer work locally

• change demo disk to have more clear data examples

• create an easier way to make config and meta files

• add a way to select and see two blocks at a time (the student wanted look for

data overflow between blocks)

These revisions are left for future work. However, it should be noted that a drop-

down selector was considered, but a method of scanning for available disks was not

found creating custom back-end calls and breaking the requirement that the visualizer

be deploy-able with no custom back-end. The other items are left for future work, with

a potential emphasis placed on the 4 item as both the most complex and potentially

the most useful item.

7.6 Survey Conclusions

The two surveys were meant to be compared directly in order to establish what dif-

ference the PolyFS Visualizer provided. However, due to limited time and experience

73

with the visualizer and a great difference in the timing of the two surveys, the results

are not comparable. As a result any analysis of our original hypothesis is impractical

and the experiment remains inconclusive. Most of the difference in results can easily

be explained by the phase of the project the students were in rather than any affect

of the PolyFS Visualizer. Additionally, most students did not work in depth with the

visualizer and opened it primarily for the purpose of the survey rather than for actual

use with their project. Therefore, it will be more important to take note of students

continued use of the system now that they have been motivated to make use of it.

While the surveys could not be compared, the items on individual surveys do

give us a lot of data on how students go about working on their projects and what

they struggle with. Since the first survey was taken after the project was concluded

and without the introduction of the PolyFS Visualizer, its results can be trusted. It

shows that students generally struggle with design, implementation and specifications.

Thus a tool to help with this project should target those areas. Anecdotal evidence

from the second survey does show that the PolyFS Visualizer successfully targets

these areas with students saying: “Using the PolyFS Visualizer from the beginning

would have helped, especially seeing a working one [disk] when first starting to help

understand and visualize the structure” and “CS needs more tools like this. Students

that struggle always think the solution is some sort of magic, but if they could just

see it’s all logical I think that would be a huge help. I am a big fan of tools like

these.”. To back up their point, the later student had built a visualizer of their own

with a similar purpose and feature set but not GUI or server based.

Additionally, the PolyFS Specific comments on the after survey are quite helpful.

Despite the confusion causing students to put their comments on the PolyFS Visu-

alizer under the wrong questions, the comments themselves are still valid. Thus we

can conclude that the visualizer needs the most work in its installation process in

order to get students to use it. In response to this survey, an installation script has

74

been provided that downloads, installs the standalone visualizer and starts it. Simply

running the script is enough to set up the visualizer and if the student turns it off

they can turn it back on by simply running the script again, it will not only restart

the visualizer if it detects an existing installation.

The two other most common comments were that the visualizer is helpful and

they thought it was a good addition to the project and that they would like to add

additional features to the project. Both of these comments are very good signs,

showing that students think the project would help them better complete the project

and that they see the possibility for future improvements.

Overall, though the surveys allow for conclusion on whether or not the PolyFS

Visualizer improved students understanding of file systems. However, the statistics of

student’s troubles with the project and anecdotal evidence from the students shows

that the PolyFS Visualizer targets the right areas for students to gain the most.

Hopefully, future work can help show more conclusively whether or not this is in fact

the case.

75

Chapter 8

Future Work

This thesis provides a robust basis for file system visualization. It provides a slightly

limited feature set with a high degree of confidence, allowing for future extensions to

be easily built.

It was noted than many students use hex edit in order to create known disks that

they could use to test their writes. Thus adding the ability to edit disks and save

their contents back to the server would be a good extension of the PolyFS Visualizer.

However, this would break the requirements that the visualizer be read only.

Finally additional work could be done with the visualization. Additional features

of the file system could be detected and visualized. For example, since certain data

types such as dates have known formats, detection of these data types is possible and

could be very useful for recognising other parts of the file system.

Overall, this thesis provides a strong, dependable base visualization service that

allows for a great deal of expansion and innovation in the future.

76

Chapter 9

Conclusion

In this thesis we presented the PolyFS Visualizer a three part system that seamlessly

replaces the disk emulator in the TinyFS and PolyFS specifications in order to build

the disk on a remote server and provide visualization of the disks data. In order to

complete this project, we designed a set of requirements for a system that would aid

students in their project without encroaching on the design portions of the PolyFS

project.

The implementation of these requirements, the PolyFS Visualizer, has undergone

thorough software validation on every API interface as well as user provided files.

Additionally, the PolyFS Visualizer has also been tested on a wide range of machines

and deployments allowing it to be easily accessible to students.

Finally, the visualizer has been tested in Cal Poly’s Introduction to Operating

Systems classes, where students used the system to help with their TinyFS project

and responded to surveys. Though the surveys were not conclusive in showing that

students gained a greater understanding of file systems through the use of the PolyFS

Visualizer, anecdotes from students show that the system is helpful and a good ad-

dition to the project. One student even said ”Using the PolyFS Visualizer from the

beginning would have helped, especially seeing a working one [disk] when first starting

to help understand and visualize the structure”.

Overall, this project successfully built and tested a file system visualization service.

Perhaps most importantly, the PolyFS Visualizer provides a strong base and thorough

software validation for other projects that can build and improve upon what was

accomplished here.

77

BIBLIOGRAPHY

[1] Cal poly catalog. http://catalog.calpoly.edu/collegesandprograms/

collegeofengineering/computerscience/#courseinventory.

[2] Cal Poly Github. http://www.github.com/CalPoly.

[3] Tinyfs specification.

[4] B. Atkin and E. G. Sirer. Portos: an educational operating system for the post-

pc environment. In ACM SIGCSE Bulletin, volume 34, pages 116–120. ACM,

2002.

[5] M. J. Becker. CUDA Web API Remote Execution of CUDA Kernels using

Web Services. Master’s thesis, California Polytechnic State University, San Luis

Obispo, 2012.

[6] M. Bedy, S. Carr, X. Huang, and C.-K. Shene. A visualization system for multi-

threaded programming. In ACM SIGCSE Bulletin, volume 32, pages 1–5. ACM,

2000.

[7] T. Bladh, D. A. Carr, and M. Kljun. The effect of animated transitions on user

navigation in 3d tree-maps. In Ninth International Conference on Information

Visualisation (IV’05), pages 297–305, July 2005.

[8] T. Bladh, D. A. Carr, and J. Scholl. Computer Human Interaction: 6th Asia

Pacific Conference, APCHI 2004, Rotorua, New Zealand, June 29-July 2, 2004.

Proceedings, chapter Extending Tree-Maps to Three Dimensions: A Comparative

Study, pages 50–59. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[9] P. Brusilovsky and H.-D. Su. Adaptive visualization component of a distributed

78

web-based adaptive educational system. In Intelligent Tutoring Systems, pages

229–238. Springer, 2002.

[10] D. Dobrilovi and Z. Stojanov. Using Virtualization Software in Operating Sys-

tems Course. Master’s thesis, 2006.

[11] B. M. English and S. B. Rainwater. THE EFFECTIVENESS OF ANIMATIONS

IN AN UNDERGRADUATE OPERATING SYSTEMS COURSE. Master’s the-

sis, Henderson State University and The University of Texas at Tyler, May 2006.

[12] B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the

visualization of hierarchical information structures. In Visualization, 1991. Vi-

sualization ’91, Proceedings., IEEE Conference on, pages 284–291, Oct 1991.

[13] F. Khosmood and P. Nico. Polyfs: An extensible, underspecified, pedagogical file

system and disk emulator. In 2013 ASEE PSW Conference Proceedings, pages

251–268. ASEE, 2013.

[14] L. P. Maia, F. B. Machado, and A. C. Pacheco Jr. A constructivist framework

for operating systems education: a pedagogic proposal using the sosim. In ACM

SIGCSE Bulletin, volume 37, pages 218–222. ACM, 2005.

[15] L. P. Maia and A. C. Pacheco Jr. A simulator supporting lectures on operating

systems. In Frontiers in Education, 2003. FIE 2003 33rd Annual, volume 2,

pages F2C–13. IEEE, 2003.

[16] J. I. Messner and M. J. Horman. Using Advanced Visualization Tools to Improve

Construction Education. Master’s thesis, 2003.

[17] H. E. Meth. DecaFS: A Modular Distributed File System to Facilitate Dis-

tributed Systems Education. Master’s thesis, California Polytechnic State Uni-

versity, San Luis Obispo, 2014.

79

[18] P. C. L. X.-p. NIU Zhen-zhou, YANG Xing-qiag. Research on Windows Op-

erating System Visualization. Master’s thesis, Shandong University and Jinan

Vocational Collage.

[19] T. M. Peters. DEFY: A Deniable File System for Flash Memory. Master’s thesis,

California Polytechnic State University, San Luis Obispo, 2014.

[20] S. C. Pungdumri. An Interactive Visualization Model for Analyzing Data Storage

System Workloads. Master’s thesis, California Polytechnic State University, San

Luis Obispo, 2012.

80

APPENDICES

Appendix A

TinyFS Specification

Program 4 — CPE 453

Last Modified: May 27, 2015

You may work in groups of three for this assignment

A.1 TinyFS and disk emulator

For this assignment, youll be implementing TinyFS (the tiny file system), mounted

on a single Unix file that emulates a block device.

81

A.1.1 Objective

The goal of this assignment is to gain experience with the fundamental operations of

a file system. File systems are not only an integral part of every operating system,

but they incorporate aspects of fault tolerance, scheduling, resource management and

concurrency.

A.2 Phase I: Disk Emulator

The first part of the assignment is to build a disk emulator. You will implement

an emulator that will accomplish basic block operations, like the kind supported by

block devices (e.g. hard disk drives), on a regular Unix file.

A.2.1 LibDisk Interface Functions

The emulator is a library of three functions that operate on a regular UNIX file. The

necessary functions are: openDisk(), readBlock(), writeBlock(). There is also a

single piece of data that is required: BLOCKSIZE, the size of a disk block in bytes. This

should be statically defined to 256 bytes using a macro (see below). All IO done to the

emulated disk must be block aligned to BLOCKSIZE, meaning that the disk assumes

the buffers passed in readBlock() and writeBlock() are exactly BLOCKSIZE bytes

large. If they are not, the behavior is undefined.

/* This functions opens a regular UNIX file and designates the first nBytes

of it as space for the emulated disk. If nBytes is not exactly a multiple

of BLOCKSIZE then the disk size will be the closest multiple of BLOCKSIZE

that is lower than nByte (but greater than 0) If nBytes is less than BLOCKSIZE

failure should be returned. If nBytes > BLOCKSIZE and there is already

a file by the given filename, that files content may be overwritten. If

82

nBytes is 0, an existing disk is opened, and should not be overwritten.

There is no requirement to maintain integrity of any file content beyond

nBytes. The return value is -1 on failure or a disk number on success.

*/

int openDisk(char *filename, int nBytes);

/* readBlock() reads an entire block of BLOCKSIZE bytes from the open disk

(identified by disk) and copies the result into a local buffer (must be

at least of BLOCKSIZE bytes). The bNum is a logical block number, which

must be translated into a byte offset within the disk. The translation

from logical to physical block is straightforward: bNum=0 is the very first

byte of the file. bNum=1 is BLOCKSIZE bytes into the disk, bNum=n is n*BLOCKSIZE

bytes into the disk. On success, it returns 0. -1 or smaller is returned

if disk is not available (hasnt been opened) or any other failures. You

must define your own error code system. */

int readBlock(int disk, int bNum, void *block);

/* writeBlock() takes disk number disk and logical block number bNum and

writes the content of the buffer block to that location. block must be

integral with BLOCKSIZE. Just as in readBlock(), writeBlock() must translate

the logical block bNum to the correct byte position in the file. On success,

it returns 0. -1 or smaller is returned if disk is not available (i.e.

hasnt been opened) or any other failures. You must define your own error

code system. */

int writeBlock(int disk, int bNum, void *block);

83

A.3 Phase II: TinyFS file system implementation

TinyFS is a very simple file system. It is purposefully under-specified, giving you the

freedom to implement it using many of the algorithms and primitives youve learned

throughout this course. TinyFS does not support a hierarchical namespace, i.e. there

are no directories beyond the root directory, and all the files are in a flat namespace.

A.3.1 Block Types

The disk blocks of TinyFS may be any of these types:

Block name Block

code

Description Number

Possible

Size

(bytes)

superblock 1 must contain the magic number,

pointer to root inode, and the free

block-list implementation

1 256

inode 2 must contain the name of the file,

the file size and a data block index-

ing implementation

many 256

file extent 3 contains block# of the inode block many 256

free 4 is ready for future writes many 256

1. superblock

The superblock stores metadata about the file system and is always stored at logical

block 0. The block contains three different pieces of information. 1) It specifies the

magic number, used for detecting when the disk is not of the correct format. For

TinyFS, that number is 0x44, and it is to be found exactly on the second byte of

every block. 2) It contains the block number of the root inode (for directory-based

84

file systems). 3) It contains a pointer to the list of free blocks, or some other way to

manage free blocks. How you implement the free block list is up to you, but it might

be done, for example, by having a pointer to the first free block in a chain of free

blocks, or by implementing a bit vector and storing it directly within the superblock.

2. inode

An inode block keeps tracks of metadata for each file within TinyFS. In real file

systems, this is typically ownership (user, group), file type, creation time, access

time, etc. For TinyFS core only the files name and size is required. You must

support names up to 8 alphanumeric characters (not including a NULL terminator),

and no longer. For example: file1234, file1 or f.

For inode blocks, you must design where and how to store the file metadata. This

includes how you index the data blocks (file extents) that correspond to the inode.

Here again, there are many possible implementations, including a linked list of blocks,

direct indexing, multi-level indexing, or even content-based addressing (see additional

features below).

3. file extent

A file extent block is a fixed sized block that contains file data and (optionally) a

pointer to the next data block. If the file extent is the last (or only) block, the

remaining bytes and the pointer should be set to 0x00.

4. free block

Free blocks are empty and available for writing. But just as any other block, they

have to have the required bytes 0 and 1 (see below). Once again, you have many

options for managing your free block list. For example, you may choose to use the

link field (found at byte 2) to form a chain of free blocks.

85

A.3.2 Block format

The following bytes are defined for all blocks: Bytes 0 and 1 must be formatted as

specified. A suggestion for bytes 2 and 3 has been made for you, but is optional. I.e.

the bytes beyond byte 1 are up to you to implement however you see fit.

Byte first byte offset second byte offset

0 [block type = 1,2,3,4,....] 0x44

2 [address of another block] [empty]

4 [data starts] ...

6

A.3.3 TinyFS interface functions:

Nine API functions are needed to implement the TinyFS interface.

/* Makes a blank TinyFS file system of size nBytes on the unix file specified

by ‘filename. This function should use the emulated disk library to open

the specified unix file, and upon success, format the file to be mountable

disk. This includes initializing all data to 0x00, setting magic numbers,

initializing and writing the superblock and inodes, etc. Must return a

specified success/error code. */

int tfs mkfs(char *filename, int nBytes);

/* tfs mount(char *diskname) ‘‘mounts a TinyFS file system located within

diskname unix file. tfs unmount(void) ‘‘unmounts the currently mounted

file system. As part of the mount operation, tfs mount should verify the

file system is the correct type. Only one file system may be mounted at

86

a time. Use tfs unmount to cleanly unmount the currently mounted file system.

Must return a specified success/error code. */

int tfs mount(char *diskname); int tfs unmount(void);

/* Creates or Opens an existing file for reading and writing on the currently

mounted file system. Creates a dynamic resource table entry for the file,

and returns a file descriptor (integer) that can be used to reference this

file while the filesystem is mounted. */

fileDescriptor tfs openFile(char *name);

/* Closes the file, de-allocates all system/disk resources, and removes

table entry */

int tfs closeFile(fileDescriptor FD);

/* Writes buffer ‘buffer of size ‘size, which represents an entire files

content, to the file system. Previous content (if any) will be completely

lost. Sets the file pointer to 0 (the start of file) when done. Returns

success/error codes. */

int tfs writeFile(fileDescriptor FD,char *buffer, int size);

/* deletes a file and marks its blocks as free on disk. */

int tfs deleteFile(fileDescriptor FD);

/* reads one byte from the file and copies it to buffer, using the current

file pointer location and incrementing it by one upon success. If the file

pointer is already at the end of the file then tfs readByte() should return

an error and not increment the file pointer. */

87

int tfs readByte(fileDescriptor FD, char *buffer);

/* change the file pointer location to offset (absolute). Returns success/error

codes.*/

int tfs seek(fileDescriptor FD, int offset);

In your tinyFS.h file, you must also include the following definitions:

/* The default size of the disk and file system block */

#define BLOCKSIZE 256

/* Your program should use a 10240 Byte disk size giving you 40 blocks total.

This is a default size. You must be able to support different possible

values */

#define DEFAULT DISK SIZE 10240

/* use this name for a default disk file name */

#define DEFAULT DISK NAME “tinyFSDisk

typedef int fileDescriptor;

A.3.4 Error Codes

You must specify a set of unified error codes returned by your TinyFS interfaces.

textbfAll error codes must be negative integers (-1 or lower), but it is up to you to

assign specific meaning to each. Error codes must be informational only, and not

used as status in subsequent conditionals. Create a file called tinyFS errno.h and

implement the codes as a set of statically defined macros. Take a look at man 3

88

errno on the UNIX* machines for examples of the types of errors you might catch

and report.

A.4 Assignment & Additional Features

• Implement the core interface functions above (80%).

• Add two additional areas of functionality from the list (a-h) below (20%). Note

that some features count as two. You are free to implement the features in

your own way, so be creative, but feel free to do a little research, and base your

design decisions on existing solutions.

1. Fragmentation info and defragmentation (10%)

– implement tfs displayFragments() /* this function allows the user

to see a map of all blocks with the non-free blocks clearly designated.

You can return this as a linked list or a bit map which you can use to

display the map with */

– implement tfs defrag() /* moves blocks such that all free blocks are

contiguous at the end of the disk. This should be verifiable with the

tfs displayFraments() function */

2. Directory listing and renaming (10%)

– tfs rename(fileDescriptor FD, char* newName) /* renames a file.

New name should be passed in. File has to be open. */

– tfs readdir() /* lists all the files and directories on the disk, print

the list to stdout */

3. Hierarchical directories (20%)

– Support hierarchical directories by creating a root directory link in the

superblock and re-designing the inode block, so that in can indicate a

89

directory (same name requirements as a file). Use absolute paths for

all files and directories.

∗ discuss your design and implementation

– tfs createDir(char *dirName) /* creates a directory, name could

contain a / delimited path) */

– tfs removeDir(char *dirName) /* deletes empty directory */

– tfs removeAll(char *dirName) /* recursively remove dirName and

any file and directories under it. Special / token may be used to

indicate root dir. */

– tfs openFile(): modify so that it supports directories as part of the

file name. Return an error if any directory in the path does not exist.

It must maintain backwards compatibility.

4. Read-only and writeByte support (10%)

– implement the ability to designate a file as read only. By default all

files are “read write (RW).

– tfs makeRO(char *name) /* makes the file read only. If a file is RO,

all tfs write() and tfs deleteFile() functions that try to use it fail. */

– tfs makeRW(char *name) /* makes the file read-write */

– tfs writeByte(fileDescriptor FD, int offset, unsigned int data),

a function that can write one byte to an exact position inside the file.

∗ tfs writeByte(fileDescriptor FD, unsigned int data) is also

acceptable. (uses current file pointer instead of offset).

5. Timestamps (10%)

– implement creation, modification and access timestamps for each file

to be stored in the inode block

90

– tfs readFileInfo(fileDescriptor FD) /* returns the files creation

time or all info (up to you if you want to make multiple functions) */

– return format is up to you

6. Implement content-based address (20%)

– Instead of addressing data blocks by their offsets, address them by

their content

– In this way, identical blocks will be shared between files, reducing the

total number of data block necessary

7. Implement full-disk encryption (20%)

– All data and metadata should be encrypted using a semantically secure

block cipher in a sensible mode of operation (e.g. CTR, CBC, or better

XTS). This page on disk encryption theory may be helpful.

– You may (and should) use an pre-existing cryptography library, such

as OpenSSL for your core cryptographic operations.

– The key and data in memory may be unencrypted, but at rest data

(data on disk) should always be encrypted.

– The key used to encrypt/decrypt data should be derived from a pass-

word given when you format the file system; you must use a secure

key derivation function (e.g. PBKDFv2, scrypt or bcrypt).

– Modify tfs mkfs() to accept a password, and format and encrypt an

initial TinyFS image.

– tfs mount() should also be modified to take in the users password,

unlocking the file system; all other TinyFS interfaces should remain

unaltered.

– Discuss your design decisions and threat model (i.e. what attacks your

system is strong and weak against.)

91

8. Implement file system consistency checks (10%)

– Upon mount, verify the entire file system is in a consistent state, and

fail to mount and report an error if it is not.

– An inconsistent file system might include:

∗ blocks on both the free list and allocated to an inode

∗ data blocks that are not on the free list of allocated to an inode

∗ blocks that have been corrupted due to latent disk failures

∗ Other scenarios.

– See this set of lecture notes for more information on file system con-

sistency

– Discuss the types of inconsistency your file system detects.

• Write a demo program that includes your TinyFS interface to demonstrate

the basic functionality of the required functions and your chosen additional

functionality. You can display informative messages to the screen for the user

to see how you demonstrate these.

• Implementation: This program must be implemented in C.

• EXTRA CREDIT: Extra credit points, which will count towards your total

programming assignment score, may be awarded for completing up to two ad-

ditional features. Each single feature will contribute up to 10 points, with those

features that count as 2, up to 20 points. No more than 20 points, in total, will

be awarded for extra credit.

A.5 Deliverables

As usual, submit a tar.gz archive via PolyLearn with the following:

92

• all source files: .c, .h (at least three separate source files)

– emulator file (libDisk)

– tinyFS interface file (libTinyFS). This file will access libDisk for disk em-

ulator functionality

– tinyFsDemo driver file that contains a main(), and includes libTinyFS

headers (but not libDisk)

• A Makefile that compiles all the libraries and makes the following executable:

– tinyFsDemo

• a README with:

– Names of all partners

– explanation of how well your TinyFS implementation works

– An explanation of which additional functionality areas you have chosen

and how you have shown that it works.

– Any limitations or bugs your file system has.

93

Appendix B

Before Survey

This survey was given to Professor Foaad Khosmood’s Winter 2016 CPE 453 class.

It is intended for students who have already completed the TinyFS assignment but

did not used the PolyFS Visualizer.

B.1 TinyFS File System and Emulator Project

Introduction. You are invited to participate in a research study entitled “Tiny FS.

The purpose of this study is to investigate how TinyFS help teach file system concepts.

This research project is being conducted by the following investigators:

* Paul Fallon, MS student, Computer Science, Cal Poly * Foaad Khosmood,

Assistant Professor of Computer Science, Cal Poly

Activity. You are being asked play a game related to the study and then provide

feedback through an anonymous survey. The surveys will ask questions about your

background and opinions related to the game, and to the subject matter. Participa-

tion in the surveys will likely involve between 2-5 minutes. None of the activities are

strenuous; indeed, they are intended to be engaging and fun. Nevertheless, you may

withdraw at any point in the survey, or only answer those questions that interest you,

or withdraw from any other portion of the research activity, without penalty.

Location. The activity will occur online. Cost. There is no cost to participate in

this study. Compensation. No compensation will be provided for your participation.

Voluntary Nature of Study. Your participation in this study is strictly voluntary.

Your grades will not be affected by your participation or lack thereof. If you choose

94

to participate, you can still change your mind at any time and withdraw from the

study. If you choose not to participate in this study or to withdraw, you will not be

penalized in any way or lose any other entitled benefits. You do not have to answer

any question you choose not to answer.

Potential Risks or Discomforts. There are no risks anticipated with your partici-

pation in this study. Only limited identifying data will be collected during the study,

so even in the unlikely event of data mismanagement (i.e., unintended disclosure of

study data) there is no clear harm anticipated.

Anticipated Benefits. Anticipated benefits from this study are improvements to

educational programs here at Cal Poly and beyond.

Confidentiality & Privacy Act. Any information that is obtained during this study

will be kept confidential to the full extent permitted by law. Any collected materials

that carry your name (like this one) will be held in an offline, physically secure archive

(access to which is strictly controlled). Research results will use only summary and

anonymized data. Quoted responses will only ever be anonymous (i.e., “one student

observed...). You will not be mentioned by name by this study. The results of your

participation will be confidential.

Points of Contact. If you have any questions or comments about the research, or

have questions about any discomforts that you experience while taking part in this

study please contact the Principal Investigator, Foaad Khosmood, foaad@calpoly.edu.

If you have concerns regarding the manner in which the study is conducted, you may

contact Dr. Steve Davis, Chair of the Cal Poly Human Subjects Committee, at

(805) 756-2754, sdavis@calpoly.edu, or Dr. Dean Wendt, Dean of Research, at (805)

756-1508, dwendt@calpoly.edu.

Statement of Consent. If you agree to voluntarily participate in this research

project as described, please indicate your agreement by selecting I volunteer and

95

completing the online survey. Please print a copy of this document now and retain

for your reference.

Online Consent. You may be shown this informed consent form in an online form

prior to answering survey questions. You can indicate your acceptance by continuing

on to the survey. If you do not agree, we ask that you stop immediately and not

further continue with the survey.

B.1.1 Do you agree with the above statement?

Yes or no

B.1.2 Your name

short answer

B.2 Short Answer Questions

These questions are about your final assignment: TinyFS file system and emulator

Name some of the challenges you faced with this project.

How did you verify your file system was storing data correctly?

What tools did you use to help you with this project?

How could this project be improved?

B.3 Grid Questions

Indicate your level of agreement

96

strongly

disagree

disagree neutral agree strongly

agree

This project was dif-

ficult

This project was

helpful in under-

standing file systems

I had difficulty visu-

alizing the content of

the disk

It was hard to design

the superblock.

97

Appendix C

After Survey

This survey was given to Professor Foaad Khosmood and Professor Zachary Peterson’s

Spring 2016 CPE 453 classes. It is intended for students who have started the TinyFS

assignment and are using the PolyFS Visualizer.

In order to allow for comparison this survey is exactly the same as the before

survey with the exception of the last two questions.

C.1 TinyFS File System and Emulator Project

Introduction. You are invited to participate in a research study entitled “Tiny FS.

The purpose of this study is to investigate how TinyFS help teach file system concepts.

This research project is being conducted by the following investigators:

* Paul Fallon, MS student, Computer Science, Cal Poly * Foaad Khosmood,

Assistant Professor of Computer Science, Cal Poly

Activity. You are being asked play a game related to the study and then provide

feedback through an anonymous survey. The surveys will ask questions about your

background and opinions related to the game, and to the subject matter. Participa-

tion in the surveys will likely involve between 2-5 minutes. None of the activities are

strenuous; indeed, they are intended to be engaging and fun. Nevertheless, you may

withdraw at any point in the survey, or only answer those questions that interest you,

or withdraw from any other portion of the research activity, without penalty.

Location. The activity will occur online. Cost. There is no cost to participate in

this study. No compensation will be provided for your participation.

98

Voluntary Nature of Study. Your participation in this study is strictly voluntary.

Your grades will not be affected by your participation or lack thereof. If you choose

to participate, you can still change your mind at any time and withdraw from the

study. If you choose not to participate in this study or to withdraw, you will not be

penalized in any way or lose any other entitled benefits. You do not have to answer

any question you choose not to answer.

Potential Risks or Discomforts. There are no risks anticipated with your partici-

pation in this study. Only limited identifying data will be collected during the study,

so even in the unlikely event of data mismanagement (i.e., unintended disclosure of

study data) there is no clear harm anticipated.

Anticipated Benefits. Anticipated benefits from this study are improvements to

educational programs here at Cal Poly and beyond.

Confidentiality & Privacy Act. Any information that is obtained during this study

will be kept confidential to the full extent permitted by law. Any collected materials

that carry your name (like this one) will be held in an offline, physically secure archive

(access to which is strictly controlled). Research results will use only summary and

anonymized data. Quoted responses will only ever be anonymous (i.e., “one student

observed...). You will not be mentioned by name by this study. The results of your

participation will be confidential.

Points of Contact. If you have any questions or comments about the research, or

have questions about any discomforts that you experience while taking part in this

study please contact the Principal Investigator, Foaad Khosmood, foaad@calpoly.edu.

If you have concerns regarding the manner in which the study is conducted, you may

contact Dr. Steve Davis, Chair of the Cal Poly Human Subjects Committee, at

(805) 756-2754, sdavis@calpoly.edu, or Dr. Dean Wendt, Dean of Research, at (805)

756-1508, dwendt@calpoly.edu.

99

Statement of Consent. If you agree to voluntarily participate in this research

project as described, please indicate your agreement by selecting I volunteer and

completing the online survey. Please print a copy of this document now and retain

for your reference.

Online Consent. You may be shown this informed consent form in an online form

prior to answering survey questions. You can indicate your acceptance by continuing

on to the survey. If you do not agree, we ask that you stop immediately and not

further continue with the survey.

C.1.1 Do you agree with the above statement?

Yes or no

C.1.2 Your name

short answer

C.2 Short Answer Questions

These questions are about your final assignment: TinyFS file system and emulator

Name some of the challenges you faced with this project.

How did you verify your file system was storing data correctly?

What tools did you use to help you with this project?

How could this project be improved?

C.3 Grid Questions

Indicate your level of agreement

100

strongly

disagree

disagree neutral agree strongly

agree

This project was dif-

ficult

This project was

helpful in under-

standing file systems

I had difficulty visu-

alizing the content of

the disk

It was hard to design

the superblock.

C.4 Visualizer Responses

These questions are about your usage of the PolyFS Visualizer

Did you use the PolyFS Visualizer for this project?

yes or no

Is there anything you would like to change about the PolyFS Visualizer?

short answer

Did you use the PolyFS Visualizer for this project?

yes or no

Did you have any difficulty using the PolyFS Visualizer?

short answer

Is there anything you would like to change about the PolyFS Visualizer?

short answer

101

Any comments or suggestion concerning the PolyFS Visualizer?

short answer

102

Appendix D

Sample Code

A couple sections of the code have been highlighted here to highlight some of the

techniques used in this project as well as some of the challenges faced and problems

solved.

D.1 Block Modal Links

The requirements of the block modal were to include click-able links for the “link”

block metadata type. This required retrieving the block from the canvas click, closing

the current modal and opening a new block modal for the correct block.

The first step was getting the value of the link from a click. The below code

segment is the click call back function for then the canvas receives a click event.

Jcanvas passes into all events the name of the specific object that was clicked as an

identifier. Therefore, the hex and char representations of the bytes within the block

modal were drawn onto Jcanvas named according to their index and a pre-pended

“h” for hex or “c” for char. This made it possible to identify the exact byte clicked

and its formate (2 ascii symbols per hex byte versus 1 ascii symbol per char byte).

From the name the value of the link that was clicked could be retrieved (see lines 3 -

5 in the code below).

The second step was acting on a click by closing the current block modal and pop-

ulating a new one with the correct data. Hiding the current modal is easy. However,

telling the modal to reopen with the correct data as more difficult. The final tactic

used was to define a hidden field within the modal to store the block to show. Thus,

the callback could simply set the hidden field to the value of the link and tell open

103

the modal (see line 11). The draw handlers for the modal would read the hidden field

and load the correct data.

The final problem present in following links within the block modal is showing the

user that the link is being followed. If the new modal pops up immediately then it

is not immediately apparent that the data has changed and can get very confusing.

Using the hidden field method of selecting data for display it is possible to completely

separate the what and when properties of the modal. Therefore, a timeout function

could be used to open the new modal (line 12) with a suitable delay after the previous

one had been closed (line 6).

1 show_block_callback: function(block , byte_num){

2 return function(layer){

3 var number = layer.name.substring (1);

4 var byte_num = layer.name.substring(0, 1) == "h" ? Math.

floor(number /2) : number;

5 var link = parseInt(block.get_byte(byte_num));

6 $(’#blockModal ’).modal(’hide’);

7 if(link < 0 || link >= polyFS_visualizer.data.blocks.length

){

8 warning("invalid link");

9 return;

10 }

11 $("#block -number").val(link);

12 setTimeout(function (){ $(’#blockModal ’).modal(’show’); },

600);

13 };

14 }

104

D.2 Block Metadata Per Type Handlers

The requirement for the block meta was to display a meaningful message for each

metadata element based on the data in the element. Thus for the “type” byte of the

metadata the string name of the block type should be displayed next to the hex and

char values in the block metadata panel.

However, this requires a different, custom action per metadata type. Additionally,

since the metadata is configurable it could easily be the case that the metadata type

did not exist when the PolyFS Visualizer was created and a default action should be

taken instead. This represented a challenge of managing a wide range of handlers.

The following code shows the solution employed by the PolyFS Visualizer to solve

the problem. Essentially it is a map of metadata byte types to the function handler

for that type. Additionally, a default type exists that can be used if the more specific

handler is missing. This has the advantage that all the handlers are in one place,

clearly labeled and easily understood. Changing the handlers or adding new ones is

very easy and can be done without changing or affecting the current code.

1 metadata_config: {

2 "type": function (block){

3 return ", " + polyFS_visualizer.config.get_data_config("

type", block.get_byte(polyFS_visualizer.config.

block_config.bytes.indexOf("type")));

4 },

5 "magic -number": function (block){

6 return ", " + polyFS_visualizer.config.get_data_config("

magic -number", block.get_byte(polyFS_visualizer.

config.block_config.bytes.indexOf("magic -number")));

7 },

8 "link": function (block){

9 var linked_block = polyFS_visualizer.data.blocks[block.

105

get_byte(polyFS_visualizer.config.block_config.bytes.

indexOf("link"))];

10 if(! linked_block){

11 return "";

12 }

13 return ", linking to a " + polyFS_visualizer.config.

get_data_config("type", linked_block.get_byte(

polyFS_visualizer.config.block_config.bytes.indexOf("

type")));

14 },

15 "default": function (block){

16 return "";

17 },

18 }

In order to make use of the function map, the polyFS Visualizer attempts to get

the handler for the type. If the handler does not exist then it uses the default.

The following code example shows a call to fetch the text metadata message for the

byte from the correct handler. If the specific handler exists then the or statement will

be short-circuited, the default handler will never be fetched and the specific handler

will be used. On the other hand if the specific handler does not exist then the default

handler will be called and used in its place.

1 Var custom_message = (polyFS_visualizer.block_meta.

metadata_config[polyFS_visualizer.config.block_config.bytes[

index]] || polyFS_visualizer.block_meta.metadata_config["

default"])(current_block);

106

D.3 Proper Name-spacing

When testing the project with Google Chrome it was found that some of the vi-

sualizers variables conflicted with Google Chromes environment leading to the page

loading improperly. In order to fix this the entire project was name-spaced under

object polyFS visualizer. All objects were included into the polyFS visualizer name-

space in order to guarantee browsers would not conflict with the visualizer.

107

Appendix E

Test code

This is the external test code included as an example of the test suites used. The

internal tests and server tests were handled in very similar fashions with very similar

executables.

1 #include <string.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 #include "libDisk.h"

6

7 #define BLOCK_SIZE 256

8 #define NUM_BLOCKS 50

9

10 // disk0: exists , normal operation

11 // disk1: does not exist

12 // disk2: exists , normal operation , writes

13 // disk3: exists , normal operation , reads

14

15 int run_open(char *filename , int nBytes , int expectedError);

16 void test_open ();

17 void run_read(int disk , int bNum , void *block , int expectedError ,

char *expectedBlock);

18 void run_write(int disk , int bNum , void *block , int expectedError);

19 void test_write ();

20 void test_read ();

21

22 int main(){

23 test_open ();

108

24 test_write ();

25 test_read ();

26

27 printf("\nTest success !\n");

28 }

29

30 int run_open(char *filename , int nBytes , int expectedError){

31 printf("running open disk ... ");

32 int fd = openDisk(filename , nBytes);

33 printf("%d\n", fd);

34

35 // make sure error is as expected

36 if((! expectedError && fd < 0) || (expectedError && fd !=

expectedError)){

37 printf("ERROR: expected %d but got %d\n", expectedError , fd);

38 exit (0);

39 }

40

41 return fd;

42 }

43

44 // int openDisk(char *filename , int nBytes){

45 void test_open (){

46

47 printf("\n\nRUNNING OPEN TESTS\n");

48

49 // create disk

50 printf("test 1:\n");

51 run_open("disk0", BLOCK_SIZE * NUM_BLOCKS , 0);

52 run_open("disk2", BLOCK_SIZE * NUM_BLOCKS , 0);

53 run_open("disk3", BLOCK_SIZE * NUM_BLOCKS , 0);

54 run_open("disk4", BLOCK_SIZE * NUM_BLOCKS , 0);

109

55

56 // open disk that does not exist , no create

57 printf("test 2:\n");

58 run_open("disk1", 0, -203);

59

60 // create disk that already exists

61 printf("test 3:\n");

62 run_open("disk0", BLOCK_SIZE * NUM_BLOCKS , -202);

63

64 // open disk that exists

65 printf("test 4:\n");

66 run_open("disk0", 0, 0);

67 run_open("disk2", 0, 0);

68 run_open("disk3", 0, 0);

69 run_open("disk4", 0, 0);

70

71 // disk with name too long

72 printf("test 5:\n");

73 run_open("

disk1_this_name_is_much_too_long_as_you_can_tell_by_looking",

BLOCK_SIZE * NUM_BLOCKS , -300);

74 run_open("

disk1_this_name_is_much_too_long_as_you_can_tell_by_looking",

0, -300);

75

76 // open disk with null inputs

77 printf("test 6:\n");

78 run_open(NULL , 0, -300);

79 run_open(NULL , BLOCK_SIZE * NUM_BLOCKS , -300);

80

81 // disk with empty string name

82 printf("test 7:\n");

110

83 run_open("", 0, -300);

84 run_open("", BLOCK_SIZE * NUM_BLOCKS , -300);

85

86 // open disk with negative nBytes

87 printf("test 8:\n");

88 run_open("disk1", -1, -205);

89

90 // open disk with less than a block of bytes

91 printf("test 9:\n");

92 run_open("disk1", 1, -203);

93

94 // try insecure disk names

95 printf("test 10:\n");

96 run_open("../ disk0", BLOCK_SIZE * NUM_BLOCKS , -300);

97 run_open("<body onload=console.log(’XSS ATTACK SUCCESSFUL ’)>",

BLOCK_SIZE * NUM_BLOCKS , -300);

98 run_open("hi, 1, 1); drop table open_disks;", BLOCK_SIZE *

NUM_BLOCKS , -300);

99

100

101 }

102

103 void run_read(int disk , int bNum , void *block , int expectedError ,

char *expectedBlock){

104

105 printf("running read disk ... ");

106 int error = readBlock(disk , bNum , block);

107 printf("%d\n", error);

108

109 // make sure error is as expected

110 if((expectedError >= 0 && error < 0) || (expectedError && error

!= expectedError)){

111

111 printf("ERROR: expected %d but got %d\n", expectedError , error

);

112 exit (0);

113 }

114

115 if (expectedError >= 0) {

116

117 // check buffer against expected result

118 if(memcmp(block , expectedBlock , BLOCK_SIZE) != 0){

119 printf("ERROR: read wrong data!\n Expected :\n\n%s\n\n

Received :\n\n%s\n\n", (char *)block , expectedBlock);

120 exit (0);

121 }

122 }

123 }

124

125 void run_write(int disk , int bNum , void *block , int expectedError){

126 char *test_block[BLOCK_SIZE];

127

128 printf("running write disk ... ");

129 int error = writeBlock(disk , bNum , block);

130 printf("%d\n", error);

131

132 // make sure error is as expected

133 if((expectedError >= 0 && error < 0) || (expectedError && error

!= expectedError)){

134 printf("ERROR: expected %d but got %d\n", expectedError , error

);

135 exit (0);

136 }

137

138 // do a test read on the block to make sure it is good

112

139 if(expectedError >= 0){

140 run_read(disk , bNum , &test_block , 0, block);

141 }

142 }

143

144 // int readBlock(int disk , int bNum , void *block){

145 void test_read (){

146 char block0[BLOCK_SIZE];

147 char block1[BLOCK_SIZE];

148 char block2[BLOCK_SIZE];

149 char read1[BLOCK_SIZE];

150

151 printf("\n\nRUNNING READ TESTS\n");

152

153 // open up a disk for the test

154 int fd3 = run_open("disk3", 0, 0);

155 printf("fd3: %d\n", fd3);

156

157 // create a couple blocks for the test

158 memset(block0 , ’$’, BLOCK_SIZE);

159 memset(block1 , 0x01 , BLOCK_SIZE);

160 memset(block2 , 0, BLOCK_SIZE);

161

162 // write a block for correct tests

163 // since run_write checks write correctness with reads this also

test standard read cases

164 printf("test 1:\n");

165 run_write(fd3 , 0, block0 , 0);

166 run_write(fd3 , 5, block0 , 0);

167 run_write(fd3 , 40, block1 , 0);

168 run_write(fd3 , 49, block1 , 0);

169

113

170 // read block before it is ever written

171 printf("test 2:\n");

172 run_read(fd3 , 1, read1 , 0, block2);

173

174 // read block with negative block number

175 printf("test 3:\n");

176 run_read(fd3 , -1, read1 , -200, block0);

177

178 // read block with too large block number

179 printf("test 4:\n");

180 run_read(fd3 , 100, read1 , -200, block0);

181

182 // read block with invalid disk number

183 printf("test 5:\n");

184 run_read (-100, 5, read1 , -206, block0);

185

186 // read block with null values

187 printf("test 6:\n");

188 run_read(fd3 , 5, NULL , -207, block0);

189 }

190

191 // int writeBlock(int disk , int bNum , void *block){

192 void test_write (){

193 char block0[BLOCK_SIZE];

194 char block1[BLOCK_SIZE];

195 char block2[BLOCK_SIZE /2];

196 char block3[BLOCK_SIZE *2];

197

198 printf("\n\nRUNNING WRITE TESTS\n");

199

200 // open up a disk for the test

201 int fd2 = run_open("disk2", 0, 0);

114

202 printf("fd2: %d\n", fd2);

203

204 // create a couple blocks for the test

205 memset(block0 , ’$’, BLOCK_SIZE);

206 memset(block1 , 0x01 , BLOCK_SIZE);

207 memset(block2 , ’a’, BLOCK_SIZE /2);

208 memset(block3 , ’a’, BLOCK_SIZE *2);

209

210 // write block

211 printf("test 1:\n");

212 printf("HERE 1\n");

213 run_write(fd2 , 0, block0 , 0);

214 printf("HERE 2\n");

215 run_write(fd2 , 5, block0 , 0);

216 printf("HERE 3\n");

217 run_write(fd2 , 40, block1 , 0);

218 printf("HERE 4\n");

219 run_write(fd2 , 49, block1 , 0);

220 printf("HERE 5\n");

221

222 // write block with negative block number

223 printf("test 2:\n");

224 run_write(fd2 , -1, block1 , -200);

225

226 // write block with too large block number

227 printf("test 3:\n");

228 run_write(fd2 , 100, block1 , -200);

229

230 // write block with invalid disk number

231 printf("test 4:\n");

232 run_write (-100, 5, block1 , -206);

233

115

234 // write block with null values

235 printf("test 5:\n");

236 run_write(fd2 , 5, NULL , -207);

237

238 // write block with block size too large

239 printf("test 6:\n");

240 run_write(fd2 , 7, block3 , 0);

241

242 // write block with block size too small

243 printf("test 7:\n");

244 run_write(fd2 , 15, block2 , 0);

245

246 }

116

Appendix F

Test code

These images show the outcome of the disktests test suite. The suite is described in

detail in the validation section.

(a) main page (b) first block

Figure F.1: Disk Test 1: perfect disk

Figure F.2: Disk Test 2: empty disk

117

(a) main page (b) first block

Figure F.3: Disk Test 3: disk with last block incomplete

(a) main page (b) first block

Figure F.4: Disk Test 4: One incomplete block

Figure F.5: Disk Test 2: disk missing

118

(a) main page (b) first block

Figure F.6: Disk Test 6: 100 blocks x 256 bytes

(a) main page (b) first block

Figure F.7: Disk Test 7: 100 blocks x 1 byte

(a) main page (b) first block

Figure F.8: Disk Test 8: 1 block x 256 bytes

119

(a) main page (b) first block

Figure F.9: Disk Test 9: 100 blocks x 128 bytes

(a) main page (b) first block

Figure F.10: Disk Test 10: 100 blocks x 512 bytes

120

