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ABSTRACT 

A Comparison of Wavelet and Simplicity-Based Heart Sound and Murmur Segmentation 

Methods 

Joshua David Korven 

 

Stethoscopes are the most commonly used medical devices for diagnosing heart 

conditions because they are inexpensive, noninvasive, and light enough to be carried 

around by a clinician. Auscultation with a stethoscope requires considerable skill and 

experience, but the introduction of digital stethoscopes allows for the automation of this 

task. Auscultation waveform segmentation, which is the process of determining the 

boundaries of heart sound and murmur segments, is the primary challenge in automating 

the diagnosis of various heart conditions. The purpose of this thesis is to improve the 

accuracy and efficiency of established techniques for detecting, segmenting, and 

classifying heart sounds and murmurs in digitized phonocardiogram audio files. Two 

separate segmentation techniques based on the discrete wavelet transform (DWT) and 

the simplicity transform are integrated into a MATLAB software system that is capable of 

automatically detecting and classifying sound segments. 

The performance of the two segmentation methods for recognizing normal heart 

sounds and several different heart murmurs is compared by quantifying the results with 

clinical and technical metrics. The two clinical metrics are the false negative detection rate 

(FNDR) and the false positive detection rate (FPDR), which count heart cycles rather than 

sound segments. The wavelet and simplicity methods have a 4% and 9% respective 

FNDR, so it is unlikely that either method would not detect a heart condition. However, the 

22% and 0% respective FPDR signifies that the wavelet method is likely to detect false 

heart conditions, while the simplicity method is not. The two technical metrics are the true 
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murmur detection rate (TMDR) and the false murmur detection rate (FMDR), which count 

sound segments rather than heart cycles. Both methods are equally likely to detect true 

murmurs given their 83% TMDR. However, the 13% and 0% respective FMDR implies 

that the wavelet method is susceptible to detecting false murmurs, while the simplicity 

method is not. Simplicity-based segmentation, therefore, demonstrates superior 

performance to wavelet-based segmentation, as both are equally likely to detect true 

murmurs, but only the simplicity method has no chance of detecting false murmurs. 
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1 Introduction 

1.1 Cardiac Structure and Function 

The purpose of the heart is to circulate blood throughout the body and supply the vital 

organs with oxygen, route the blood flow through the lungs to enrich the blood with oxygen, 

and dispose of the CO2 waste collected from the body. The most basic functional 

breakdown of the heart is to separate it into a right and a left side. Right and left are relative 

to the observer’s own frame of reference, so the orientation is reversed when the heart is 

presented on a diagram. The right side receives CO2-laden, oxygen-poor blood from the 

body and sends it to the lungs for CO2 removal and oxygen enrichment. Conversely, the 

left side receives oxygen-rich blood from the lungs and sends it to the rest of the body for 

oxygen distribution and CO2 waste collection. This process is synchronous because the 

left and right sides send and receive blood in unison [1]. The flow of blood through both 

sides of the heart is illustrated in Figure 1-1. 

 
Figure 1-1: Blood flow through the heart (oxygen-poor blood is blue, oxygen-rich blood is red). 

Adapted from [2]. 
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The two sides of the heart are separated by a muscular wall called the septum. Each 

side of the heart is further subdivided into two chambers, of which there are two types: 

atria and ventricles. The atria are the upper chambers that collect blood, and the ventricles 

are the lower chambers that pump blood. The heart has four chambers in total because 

each side has an atrium and a ventricle [1]. 

Blood enters the heart through veins and exits through arteries. The right atrium 

collects CO2-laden waste blood from the body through the venae cavae, where blood from 

the upper body flows through the superior vena cava, and blood from the lower body flows 

through the inferior vena cava. The right ventricle then sends the waste blood to the lungs 

through the pulmonary artery. At the same time, the left atrium collects oxygen-rich blood 

from the lungs through the pulmonary vein and sends the oxygen-rich blood to the body 

through the aorta. The heart’s chambers, veins, and arteries are labeled in Figure 1-2. 

 
Figure 1-2: The heart’s chambers, veins, arteries, and valves [2]. 
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The heart is able to pump blood because valves separate the chambers and enable 

pressure gradients to form. Valves are passive structures made of connective tissue rather 

than muscle and are shaped like leaflets. The leaflet structure allows pressure differences 

alone to open or close valves, and it ensures that blood flows in a single direction without 

backflow into a previous chamber. A valve with leaflets pointing into a chamber will snap 

shut when the chamber’s pressure exceeds the surrounding environment. Likewise, a 

valve with leaflets protruding from a chamber will open when the chamber’s pressure 

exceeds the surrounding environment. 

The atria and ventricles are separated by the atrioventricular valves: the tricuspid 

valve separates the right atrium and right ventricle, while the mitral valve (bicuspid valve) 

separates the left atrium and left ventricle. Likewise, the ventricles and arteries are 

separated by the semilunar valves: the pulmonary valve separates the right ventricle and 

pulmonary artery, while the aortic valve separates the left ventricle and aorta. The four 

valves are labeled in Figure 1-2. 

1.2 Cardiac Cycle 

The cardiac cycle is divided into two distinct phases: diastole and systole. Diastole 

occurs when the ventricles relax and blood fills the atria (filling phase), while systole occurs 

when the ventricles contract and pump blood into the arteries (ejection phase) [3]. 

Diastole begins after the ventricles expel blood into the arteries, and the semilunar 

valves snap shut due to the arterial pressure exceeding ventricular pressure. At the same 

time, atrial pressure exceeds ventricular pressure, so blood returning from the body flows 

through the atrioventricular valves and fills the ventricles. The majority of the blood 

reaches the ventricles passively, but the atria eventually contract and force any remaining 

blood into the ventricles. 



4 
 

Systole begins after the ventricles completely fill with blood, and the atrioventricular 

valves snap shut due to the ventricular pressure exceeding the atrial pressure. The 

semilunar valves are already shut from diastole, so the ventricles begin contracting to 

rapidly increase their pressure. When ventricular pressure exceeds arterial pressure, the 

semilunar valves snap open, and blood is ejected from the ventricles into the arteries. In 

a healthy heart, systole is shorter than diastole because the ejection phase is much 

quicker than the filling phase. A blood flow for diastole and systole is illustrated in Figure 

1-3. 

 
Figure 1-3: Diastole and systole [4]. 

1.3 Auscultation, Heart Sounds, & Murmurs 

Auscultation is the act of listening to internal body sounds [5] and is performed with a 

stethoscope when listening for heart sounds. The stethoscope’s two-sided chestpiece has 

the bell and diaphragm acoustic pickups (Figure 1-4). The diaphragm has the larger 
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circumference and is used for listening to higher pitched sounds, while the bell has the 

smaller circumference and is used for listening to lower pitched sounds [5]. However, 

modern stethoscopes often have a tunable diaphragm, instead of a bell, which can be 

adjusted for both low and high pitched sounds. 

 
Figure 1-4: Labeled stethoscope [5]. 

Normal heart sounds associated with systole and diastole are audible during 

auscultation when closing heart valves vibrate against the chambers of the heart and 

radiate sound throughout the chest (opening valves are inaudible) [1]. The first normal 

heart sound, S1, occurs at the beginning of systole when the atrioventricular valves snap 

shut; and the second normal heart sound, S2, occurs at the beginning of diastole when 

the semilunar valves snap shut. In addition to the normal heart sounds, extra heart sounds 

may occur during diastole. If blood strikes a non-compliant left ventricle during passive 

filling, then an extra S3 sound occurs shortly after the normal S2; and if the blood ejected 

by the left atrium at the end of diastole also strikes a non-compliant left ventricle, then an 

extra S4 sound occurs shortly before the S1 that starts the next systole phase. 

Unlike heart sounds, murmurs are sounds that are caused by the disruption of laminar 

blood flow rather than the closing of heart valves, and are induced through four primary 
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means: narrowing of valves (stenosis), backflow through bad valves (valve insufficiency 

or “regurgitation”), irregular flow between chambers (septal defect), and high volume flow 

[6]. Murmurs are typically named after the heart valve or chamber where the defect occurs, 

for example: aortic stenosis (AS), mitral regurgitation (MR), atrial septal defect (ASD), etc. 

For this thesis, describing the murmurs as either systolic or diastolic is sufficient. 

A phonocardiogram (PCG) is a recording of a heart sound’s intensity over time [7], 

which is illustrated in Figure 1-5 for a healthy heart. A PCG makes it possible to 

algorithmically detect and classify the heart sounds and murmurs. 

 
Figure 1-5: Phonocardiogram of a healthy heart [heart_sounds.m]. 

In a phonocardiogram, S1 is typically louder (higher amplitude) than S2 due to the 

higher pressure on the left side of the heart. However, the relative intensities are 

sometimes switched, particularly in the elderly, so this feature cannot be used to reliably 

distinguish S1 from S2. Instead, systole and diastole are determined by comparing the 

distances between unidentified heart sounds, where systole is shorter than diastole 

because blood ejects from the ventricles more rapidly than it fills the ventricles. Since S1 
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is the beginning of systole, and S2 is the beginning of diastole, S1 and S2 can therefore 

be identified by their temporal locations and spacing rather than by their intensities. 

Normal heart sounds are in fact the superposition of two sound components 

generated by a valve closing on each side of the heart. Therefore, a split heart sound 

occurs when it is possible to audibly or visually distinguish the two independent sound 

components resulting from each individual heart valve closure, which can be seen in 

Figure 1-6 [8]. For a split S1, the mitral valve (M1) closes before, and is louder than, the 

tricuspid valve (T1); and for a split S2, the aortic valve (A2) closes before, and is louder 

than, the pulmonic valve (P2). A physiological split occurs when the two sound 

components constituting S1 or S2 are audible during inspiration, but are inaudible 

otherwise, which is a common occurrence in healthy individuals and does not necessarily 

indicate heart dysfunction on its own. However, split sounds might indicate dysfunction 

when the split is persistent, regardless of inspiration, or when the first split component has 

a lower intensity than the second split component. 

 
Figure 1-6: PCG with a split S2 [heart_sounds.m]. 
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Since S3 occurs shortly after S2, and S4 occurs shortly before S1, it is often difficult 

to distinguish S3 and S4 from split sound components. However, both of these sounds 

typically have lower frequencies and lower intensities than S1 and S2, so it is possible to 

identify them through careful auscultation or visual analysis of the PCG. S3 can be seen 

in Figure 1-7, and S4 can be seen in Figure 1-8. It is also important to note that S3 and 

S4 are ignored when determining S1 and S2 by comparing the distances between 

unidentified normal heart sounds. 

 
Figure 1-7: PCG with an S3 [heart_sounds.m]. 
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Figure 1-8: PCG with an S4 [heart_sounds.m]. 

Murmurs are distinguishable from heart sounds because they have higher pitches 

and are irregularly shaped compared to heart sounds. If murmurs are present, they exist 

in the time periods between S1 and S2, and are therefore classified as either systolic or 

diastolic. They are further categorized by their relative durations and locations within 

systole or diastole as either early, mid, late, or holo-systolic/diastolic murmurs (“holo” 

murmurs occupy the entire systole or diastole). 

1.4 Heart Sound and Murmur Segmentation Goals 

The primary purpose of this thesis is to improve the accuracy and efficiency of 

established techniques for detecting and segmenting heart sounds and murmurs. Since 

the sounds are nonstationary events, the first challenge is distinguishing sound segments 

from background noise, which is accomplished through a process known as peak peeling. 

In general, the peaks extracted through peak peeling do not necessarily represent a single 

sound segment since heart sounds and murmurs are often merged into a single peak. For 

example, ejection murmurs are initiated shortly after S1, and holosystolic murmurs span 

the entirety of systole, so both of these murmurs blur the boundaries between heart 
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sounds and murmurs. Also, split heart sounds with multiple peaks are sometimes difficult 

to detect through peak peeling alone. As a result, additional techniques must be developed 

for accurately segmenting heart sounds and murmurs, irrespective of their proximities to 

other sounds. 

In addition to locating the segment boundaries, this thesis attempts to classify the 

specific type of each sound segment. Central to this objective is using the normal heart 

sounds S1 and S2 as markers for locating the heart cycle boundaries and distinguishing 

systole from diastole. In particular, the heart cycle boundaries are located by cross 

correlating the signal with itself (autocorrelation) [9] and then aligning the boundaries with 

the nearest S1 or S2 segment for greater accuracy. Isolating the heart cycles allows for 

systole and diastole, and hence S1 and S2, to be identified on a cycle-by-cycle basis. 

Finally, the murmurs can be located within systole or diastole and classified accordingly. 

1.5 Literature Review 

Various methods have been established for detecting heart sounds and murmurs, but 

this thesis in particular extends established wavelet and simplicity-based segmentation 

techniques. 

The peak peeling algorithm introduced by Hadjileontiadis and Rekanos [10] [11] was 

developed for the purpose of extracting explosive lung and bowel sound segments from 

the background noise. It is most effective at detecting these transient sound peaks when 

applied to the fractal dimension of the PCG, which is a positive-valued signal that is a 

measure of time domain complexity. In particular, the fractal dimension attenuates noise 

significantly (including noise that is typically unfilterable through standard linear 

processing techniques) but transforms the actual sounds into prominent peaks. Peak 

peeling is sufficient for accurately segmenting explosive lung and bowel sound peaks due 

to their characteristic crescendo-decrescendo shape, which tends to produce distinct start 
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and stop boundaries. When multiple sounds are merged into a single peak, a second peak 

peeling iteration is typically sufficient for separating the sounds, as the crescendo-

decrescendo shape tends to produce a deep, distinct trough, even between merged 

peaks. Peak peeling is likewise effective at segmenting normal heart sounds given their 

similar morphology to explosive lung and bowel sounds. However, it is ineffective at 

detecting merged heart sounds and murmurs because murmurs that begin immediately 

after S1 or S2 do not produce a deep enough trough for a second iteration to reliably 

separate the peaks. 

A rudimentary wavelet-based segmentation technique is proposed by Atanasov and 

Ning [12]. The purpose of the discrete wavelet transform (DWT) here is to attenuate the 

higher frequency murmurs but not the lower frequency heart sounds. The peaks are then 

analyzed in the filtered PCG’s energy waveform, where the non-attenuated peaks are 

identified as heart sound segments. In practice, the attenuated murmurs will have a small, 

but non-zero, energy value, so a threshold is used to distinguish peaks from non-peaks. 

After segmenting the heart sounds, the unfiltered PCG’s energy waveform is used to 

segment the murmurs. This straightforward approach is acceptable as long as the 

murmurs are attenuated sufficiently, which is the case here because the demonstrated 

murmurs exhibit ideal attenuation.  

The simplicity transform detailed by Nigam and Priemer [13] forms the basis of an 

amplitude and energy-invariant segmentation technique that is implemented by Kumar et 

al [14]. The simplicity is an inverse measure of signal complexity that is obtained by 

embedding the time domain signal into a higher dimensional state space representation, 

so that the state space dimension can be used to estimate signal complexity. Unlike the 

fractal dimension, each sound segment has an approximately constant simplicity value, 

or level, which allows for accurate identification of segment boundaries and sound type. 
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In particular, simplicity-based segmentation can distinguish between heart sounds, 

murmurs, and noise because heart sounds have higher simplicity levels than murmurs, 

while noise has the lowest possible simplicity level.  

1.6 Proposed Modifications to the Established Methods 

The wavelet-based segmentation method proposed by Atanasov and Ning is 

problematic because it assumes that all murmurs are sufficiently attenuated after filtering, 

so that each peak encompasses a single heart sound segment. However, some of the 

murmurs examined in this thesis are only partially attenuated after filtering, so certain 

peaks may only contain murmurs, while others may contain both heart sounds and 

murmurs. Therefore, three improvements are proposed for wavelet-based segmentation. 

The first applies a threshold to the filtered energy waveform to remove any partially 

attenuated, low energy murmur peaks. The second searches the remaining peaks for 

troughs that might indicate merged heart sounds and murmurs, and if found, removes the 

murmurs. The third uses peak peeling to detect the heart sound and murmur segment 

boundaries with greater accuracy. In particular, the heart sounds are segmented by 

peeling the filtered energy waveform, while the murmurs are segmented by peeling the 

fractal dimension of the original PCG. 

The simplicity-based segmentation method proposed by Kumar et al, despite offering 

a marked performance improvement over wavelet-based segmentation, is also 

problematic in certain regards. This is primarily a result of the simplicity waveform’s 

imperfect resemblance to a piecewise constant function, where the simplicity values in 

each segment do not form a constant level, and the transitions between levels are not 

instantaneous. This is acceptable when the sound segments are disconnected, as each 

segment’s level can be approximated by its average simplicity value, but is ineffective 

when heart sounds and murmurs are merged into a single peak. Instead, the simplicity 
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waveform’s piecewise constant approximation can be determined through a process 

known as piecewise constant denoising, the theory of which is detailed by Little and Jones 

[15]. The particular denoising algorithm used in this thesis is implemented in the MATLAB 

toolbox Pottslab by Storath et al [16] [17] [18]. Another drawback of simplicity-based 

segmentation is the computational cost incurred by embedding the time domain signal into 

state space, which involves multiplying matrices that are proportional in size to number of 

samples in the analyzing window. Since the sound segments are only intermittent events, 

calculating the simplicity for all samples in the PCG is inefficient. In this thesis, the sound 

peaks are first extracted from the background noise by peak peeling, so that the simplicity 

only has to be calculated within sound segment boundaries. 
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2 Viability of Using a Stethoscope Array for Improved Heart Sound Detection 

2.1 Introduction 

A stethoscope is a single element passive acoustic sensor that receives sound waves 

from the body. Heart sounds and murmurs are best heard when the chestpiece of the 

stethoscope is placed on one of five precordial landmarks on the chest (Figure 2-1). The 

aortic (A), pulmonic (P), tricuspid (T), and mitral (M) landmarks are the optimal listening 

locations for their associated valves. Thus, S1 is best heard at the tricuspid and mitral 

areas, while S2 is best heard at the aortic and pulmonic areas. The fifth landmark, Erb’s 

point (E), evenly splits the sound between S1 and S2 [19]. 

 
Figure 2-1: Precordial landmarks: Aortic (A), Pulmonic (P), Erb’s point (E), Tricuspid (T), and 

Mitral (M) [6]. 

The five precordial landmarks are optimized for auscultating certain murmurs but are 

nonetheless corrupted by sounds from other locations in the heart and the rest of the body.  

2.2 Multiple Input Stethoscope 

A multiple input stethoscope is proposed by Wong in [20] to improve the signal to 

noise ratio (SNR) of a PCG. Of interest here is whether or not such a multi-sensor 

configuration could provide an improved PCG waveform for segmentation and heart sound 
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detection by applying beamforming techniques to focus the stethoscope’s acoustic 

sensitivity on a smaller region within the heart from which murmur sounds originate. 

Beamforming, focusing, and steering of a detector’s sensitivity requires multiple sensors, 

and its feasibility depends on the number, size, and physical arrangement of the sensors; 

as well as the frequency and location of the sound source, and the physical properties of 

the medium between the source and the sensors. 

In the proposed multiple input stethoscope array, each stethoscope diaphragm is 

secured to a supportive apparatus so that the sensors contact all five landmarks when the 

fixture is secured to the patient’s chest. Straps are used to secure the apparatus to the 

patient since manually holding the device corrupts the signal with noise. 

After collecting the data, a cross correlation is performed over all possible pairs of 

input signals (32 total) to align heart sound features in each of the five signals. Cross 

correlation is a procedure whereby two signals, offset in time relative to each other, are 

multiplied together sample-by-sample and then summed. The process continues until both 

signals are correlated at every possible offset, where one signal is fixed in time while the 

other advances by a single sample per correlation. The five signals are then aligned where 

the correlation is the greatest, and summing the aligned signals averages out the noise 

and improves the PCG’s SNR. 

2.3 Beamforming 

The acoustic pickup of a stethoscope receives sound waves incident from many 

directions. The elements of the stethoscope array are situated closest to the five listening 

locations, but nonetheless receive unwanted sounds from other areas of the body. The 

coherent averaging technique is an effective solution to reduce noise and enhance the 

quality of heart sounds in a PCG; however, data collection and processing occur 

independently—the sensors are only synchronized to start and stop together but otherwise 
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operate independently until the data is collected. An improved method, namely, beam 

steering or beamforming, uses the relative locations of the five sensors and the wave 

speed to electronically “steer” the beam pattern towards the sound source. 

A useful tool to understand wave reception is the beam pattern or directivity pattern. 

The directivity pattern is a spherical plot that displays a field’s intensity as a function of 

incident angle. When sound propagates from multiple locations, the wave fronts produce 

a field pattern of peaks and troughs caused by constructive and destructive interference. 

Knowing this, a sensor array can alter its directivity pattern by applying a phase offset to 

each element to either constructively or destructively align the beam pattern in a particular 

direction. This allows heart signals originating from different directions to be collected and 

analyzed separately, rather than averaged together. 

2.4 Acoustic Aperture 

An aperture is a region in space that transmits or receives propagating waves [21, p. 

3]. A digital stethoscope is a passive aperture that only receives acoustic waves as 

opposed to an ultrasound machine, which is an array of active apertures that both sends 

and receives acoustic waves to image the internal organs [22]. Thus, only passive 

apertures are considered for this thesis. A propagating acoustic wave is described by its 

intensity, or sound pressure, 𝑥(𝑡, 𝐫) as a function of time and position; alternatively, the 

wave can be described by its Fourier transformed intensity 𝑋(𝑓, 𝐫) as a function of 

frequency and position. The aperture function, or sensitivity function, 𝐴(𝑓, 𝐫) relates the 

wave intensity incident on the aperture, 𝑋(𝑓, 𝐫), to the wave intensity received by the 

aperture, 𝑋𝑅(𝑓, 𝐫) [21, p. 3]: 

𝑋𝑅(𝑓, 𝐫) = 𝐴(𝑓, 𝐫)𝑋(𝑓, 𝐫) 

where the position vector 𝐫 = [𝑥 𝑦 𝑧]T is relative to the sound source location. 
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The wave equation is a general formula that describes the propagation of acoustic 

and electromagnetic waves, among other types of waves [21, p. 2]: 

∇2𝑥(𝑡, 𝐫) −
1

𝑐2
𝛿2

𝛿𝑡2
𝑥(𝑡, 𝐫) = 0 

An acoustic wave resembles a spherical wave front in the near field, which is close to the 

origin of transmission [21, p. 6]. As the wave propagates into the far field, the profile 

flattens and approximates a planar wave front. The distinction between the near field and 

far field is dependent upon wavelength, aperture shape, and distance from the source to 

the aperture. The wave equation has both near field (planar) and far field (spherical) 

solutions [21, p. 2]: 

𝑥(𝑡, 𝐫) = 𝐴𝑒𝑗(𝜔𝑡−𝐤⋅𝐫) (planar) 

𝑥(𝑡, 𝐫) = −
𝐴

4𝜋𝑟
𝑒𝑗(𝜔𝑡−𝐤⋅𝐫) (spherical) 

where the wavenumber:  

𝐤 =
2𝜋

𝜆
[𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃]  

is a vector relative to the sound source location that is oriented along the direction of wave 

propagation and that measures the spatial wave density [21, p. 2]. The direction is 

specified as an angle, so each element in the vector is shown as a conversion from 

spherical to rectangular coordinates. Spherical coordinates are comprised of the (𝑟, 𝜃, 𝜙) 

dimensions, where 𝑟 is the magnitude, 𝜃 is the polar angle, and 𝜙 is the azimuthal angle, 

as shown in Figure 2-2. The phase shift given by the dot product 𝐤 ⋅ 𝐫 is maximized when 

the position vector is aligned with the direction of wave propagation. 
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Figure 2-2: Spherical coordinate system [23]. 

2.5 Directivity Pattern  

The aperture response 𝐴(𝑓, 𝐫) is a function of frequency and position. Position, 

however, is not a convenient reference because there is no way to directly compare 

apertures of different sizes and shapes, so an aperture response that depends on 

frequency and direction of arrival (DOA) is preferred. The Fourier transform is able to 

convert the aperture response from the spatial domain to the angular domain and replace 

the position vector with the wavenumber. In signal analysis, the Fourier transform is 

typically used to transform signals between the time and frequency domain but, in general, 

can transform signals between any two domains. The directivity pattern, or beam pattern, 

𝐷(𝑓, 𝛂) is the Fourier-transformed aperture response that is dependent on DOA instead 

of position [21, p. 4]: 

𝛂 =
𝐤

2𝜋
=
1

𝜆
[𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃] 

𝐷(𝑓, 𝛂) ⟺ 𝐴(𝑓, 𝐫) 

 𝐷(𝑓, 𝛂) = ∫ 𝐴(𝑓, 𝐫)𝑒−𝑗2𝜋𝛂⋅𝐫𝑑𝐫
∞

−∞
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In practice, the directivity pattern is presented as a two dimensional slice of a three 

dimensional pattern, where the frequency and one angle are held constant to demonstrate 

how the sensitivity varies over the other angle. 

2.6 Aperture Array 

The directivity pattern is not limited to a single continuous aperture, as the analysis 

can be extended to microphone arrays as well. Since the linearity property states that the 

Fourier transform of a sum of scaled responses is the sum of the scaled Fourier transforms 

of the individual responses, the total response of an array is the superposition of the 

individual responses [24, p. 97]: 

𝔽 {∑𝐾𝑛𝐴𝑛(𝑓, 𝐫𝑛)

𝑁

𝑛=1

} = ∑𝐾𝑛𝔽{𝐴𝑛(𝑓, 𝐫𝑛)}

𝑁

𝑛=1

 

where 𝐾𝑛 is the constant scaling factor for each aperture and 𝑁 is the total number of 

apertures. The array can be modeled as a sampled continuous aperture, where each 

microphone is an ideal point aperture. The sampling process consists of multiplying each 

aperture response with a Dirac delta impulse function. This approach is similar to the 

Discrete Time Fourier Transform (DTFT) [24, p. 101], with the exception that the sampling 

period (distance) is not necessarily constant. The delta function samples the sensitivity 

function by decomposing the continuous aperture into a finite collection of point apertures 

through the product property of the impulse [25, p. 24]: 

𝐴(𝐫)𝛿(𝐫 − 𝐫0) =  𝐴(𝐫0)𝛿(𝐫 − 𝐫0) 

and the array’s aperture function is: 

𝐴𝑎𝑟𝑟𝑎𝑦(𝑓, 𝐫𝑛) = ∑𝐴𝑛(𝑓, 𝐫𝑛)𝛿(𝐫 − 𝐫𝑛)

𝑁

𝑛=1
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The Fourier transform of a scaled, spatially offset impulse function applies a phase shift 

to each aperture but does not alter the magnitude response [24, p. 96]: 

𝐴(𝐫0)𝛿(𝐫 − 𝐫0) ⟺ 𝐴(𝐫0)𝑒
−𝑗2𝜋𝛂⋅𝐫0 

Thus, each sensitivity function is treated as a constant in the Fourier transformed 

response, so the array’s directivity pattern is [21, p. 8]: 

𝐷𝑎𝑟𝑟𝑎𝑦(𝑓, 𝛂) = ∑𝐴𝑛(𝑓)𝑒
−𝑗2𝜋𝛂⋅𝐫𝑛

𝑁

𝑛=1

 

2.7 Beamforming 

The primary advantage of a microphone array, as opposed to a single aperture, is the 

ability to electronically steer the directivity pattern. This is accomplished by applying a 

complex exponential weight to each microphone [21, p. 19]: 

𝑤𝑛(𝑓) = 𝑎𝑛(𝑓)𝑒
𝑗𝜑𝑛(𝑓) 

where the amplitude 𝑎𝑛(𝑓) alters the shape of the directivity pattern, and the phase 𝜑𝑛(𝑓) 

shifts or steers the pattern [21, p. 19]. This is because the inverse Fourier transform of a 

complex exponential produces a time delay, which phase aligns the wave fronts arriving 

at different elements in the array. Beamforming is the process of determining the weights 

in order to steer and focus the beam pattern towards the sound source for maximum 

reception [21, p. 19]. The simplest beamforming method is filter-sum beamforming, which 

applies a frequency dependent magnitude and phase weight to each element in the array 

[21, p. 23]: 

𝐷𝑎𝑟𝑟𝑎𝑦(𝑓, 𝛂) = ∑𝑤𝑛(𝑓)𝐴𝑛(𝑓)𝑒
−𝑗2𝜋𝛂⋅𝐫𝑛

𝑁

𝑛=1
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= ∑𝑎𝑛(𝑓)𝐴𝑛(𝑓)𝑒
−𝑗2𝜋𝛂⋅𝐫𝑛𝑒𝑗𝜑𝑛(𝑓)

𝑁

𝑛=1

 

Delay-sum beamforming is a variation of filter-sum beamforming that applies a frequency 

dependent phase weight to steer the main lobe and a frequency independent, constant 

amplitude weight to normalize the maximum intensity [21, p. 22]: 

𝑎𝑛(𝑓) =
1

𝑁
, 𝜑𝑛(𝑓) = 2𝜋𝛂

′ ⋅ 𝐫𝑛 

𝐷𝑎𝑟𝑟𝑎𝑦
′ (𝑓, 𝛂) = ∑

1

𝑁
𝐴𝑛(𝑓)𝑒

−𝑗2𝜋𝛂⋅𝐫𝑛𝑒𝑗2𝜋𝛂
′⋅𝐫𝑛

𝑁

𝑛=1

 

=
1

𝑁
∑𝐴𝑛(𝑓)𝑒

−𝑗2𝜋(𝛂−𝛂′)⋅𝐫𝑛

𝑁

𝑛=1

 

The normalized wavenumber 𝛂 depends on both the DOA and wavelength. In 

practice, the speed of sound through human tissue and the frequency of interest are 

known while the wavelength is not, so it is convenient to replace wavelength with both 

wave speed and frequency using the relationship: 

𝜆𝑓 = 𝜈 ⟶ 𝜆 =
𝜈

𝑓
 

Furthermore, the normalized wavenumber can be expressed as the direction vector 𝛃: 

𝛂 =
𝛃

λ
⟶ 𝛃 = [𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃] 

Thus, the final beam steering formula separates environmental assumptions (frequency 

and velocity) from the desired beam direction (𝛃 ∝ θ,ϕ) [21, p. 19]: 

𝐷𝑎𝑟𝑟𝑎𝑦
′ (𝑓, 𝛃) =

1

𝑁
∑𝐴𝑛(𝑓)𝑒

−𝑗
2𝜋
𝜆
(𝛃−𝛃′)⋅𝐫𝑛

𝑁

𝑛=1

=
1

𝑁
∑𝐴𝑛(𝑓)𝑒

−𝑗
2𝜋𝑓
𝜈
(𝛃−𝛃′)⋅𝐫𝑛

𝑁

𝑛=1
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The directivity pattern, being a Fourier-transformed function, is susceptible to aliasing. 

Spatial aliasing is avoided when the spacing between any two sensors is less than half 

the wavelength. When the sensor spacing exceeds this limit, directionality is lost because 

the directivity pattern’s main lobe is replicated in the side lobes [21, pp. 13-14]. 

2.8 Simulation Results 

The five element stethoscope array constructed in [20] is simulated in MATLAB with 

the stethoscope positions in Figure 2-3. 

 
Figure 2-3: Stethoscope positions in the apparatus [beamforming.m]. 

The stethoscopes are situated so that they lay over the precordial landmarks when the 

apparatus is strapped onto the patient’s chest. The stethoscopes comfortably conform to 

the chest since each one is placed in a PVC pipe with foam backing. This arrangement 

creates a slight z-plane offset which is difficult to measure and varies between patients, 

so it is ignored in the simulation. 
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The simulation is run with the script beamforming.m, where the wave velocity is set 

to 1,540 meters/sec, which is the average speed of sound through human tissue [26]. The 

target azimuthal angle 𝜙 iterates by 
𝜋

6
 radians through the range 0 to π, and the directivity 

pattern is computed for three different frequencies.  
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The first simulation is performed at a frequency of 500 Hz, which is within the typical 

murmur range of 125 to 800 Hz but less than the threshold for spatial aliasing. The results 

are displayed in Figure 2-4. 
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Figure 2-4: Steering Φ between 0 and π (f = 500 Hz, no spatial aliasing). 
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The second simulation is performed at a frequency of 7 kHz, which is greater than the 

typical murmur range but still less than the threshold for spatial aliasing. The results are 

displayed in Figure 2-5. 
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Figure 2-5: Steering Φ between 0 and π (f = 7 kHz, no spatial aliasing).  
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The third simulation is performed at a frequency of 20 kHz, which is inaudible, greater than 

the murmur range, and greater than the threshold for spatial aliasing. The results are 

displayed in Figure 2-6. 
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Figure 2-6: Steering Φ between 0 and π (f = 20 kHz, spatial aliasing).  
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2.9 Discussion 

The simulation at 7 kHz is the most effective of the three frequencies for beamforming 

applications. The main lobe (red arrow) is sufficiently narrow and effectively tracks the 

target angle, and the wavelength is large enough compared to the sensor spacing to 

prevent spatial aliasing. Unfortunately, the frequency is too large for the murmur spectral 

range. 

The simulation at 20 kHz has the narrowest main lobe at the expense of spatial 

aliasing, which duplicates the main lobe at the side lobes. The main lobe nonetheless 

accurately tracks the target angle, but like the 7 kHz simulation, the frequency range 

exceeds that of the murmur, and is therefore unsuitable for the stethoscope array. 

The simulation at 500 Hz has the least directionality of the three simulations. The 

directivity pattern is roughly a sphere without a distinguishable main lobe. The maximum 

intensity (red arrow) is only slightly greater than the rest of the pattern’s intensity, but it 

does manage to track the target angle nonetheless. Additionally, the wavelength is large 

enough compared to the sensor spacing that spatial aliasing does not exist. Unfortunately, 

the uniformity of the directivity pattern makes this frequency unsuitable for effective beam 

steering. 

These three simulations show that the main lobe’s width is inversely proportional to 

the frequency. However, it is also known that sensor density is inversely proportional to 

the main lobe width. Adding more stethoscopes to the array could possibly make 

beamforming feasible in the murmur’s frequency range, but the size and constrained 

locations of the stethoscopes makes it impractical to add more. Therefore, beamforming 

is not a suitable technique for the five element stethoscope array since the frequencies in 

the heart murmur range do not produce a narrow enough main lobe to steer the beam 

pattern.  
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3 Segmentation Algorithms and Concepts 

3.1 Frequency Domain Filtering 

The Fourier series maps a periodic, continuous signal to the discrete Fourier 

coefficients 𝑐𝑘 located at integer multiples of the fundamental frequency 𝜔0 [24, p. 84]: 

𝑐𝑘 =
1

𝑇0
∫ 𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 

𝑇0

 

The Fourier transform 𝔽 maps an aperiodic, continuous signal to the continuous frequency 

spectrum 𝑋(𝜔) by evaluating the limit of the Fourier series coefficients as the period 

approaches infinity [24, p. 91]: 

lim
𝑇0→∞

2𝜋

𝑇0
= 𝑑𝜔

𝜔0=
2𝜋

𝑇0
→    lim

𝑇0→∞
𝑘𝜔0 = 𝑘𝑑𝜔 = 𝜔 

𝑐𝑘∞ = lim
𝑇0→∞

1

2𝜋

2𝜋

𝑇0
∫ 𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

𝑇0

=
1

2𝜋
[∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

] 𝑑𝜔 =
1

2𝜋
𝑋(𝜔)𝑑𝜔 

𝔽{𝑥(𝑡)} ≡ 𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 

The shared connection between the Fourier series and the Fourier transform is that both 

use a periodic basis function to quantify the frequency distribution. In practice, it is simpler 

to use the Fourier transform for both periodic and aperiodic signals. Instead of integrating 

for the Fourier series, periodic signals can be truncated to a single period and transformed 

using tables of common transform pairs and properties. Thus, the concepts presented 

here apply equally to the Fourier transform and the Fourier series. 
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The utility of the complex exponential basis function is obscured by its notation. 

Euler’s identity reveals that the complex exponential is fundamentally sinusoidal [24, p. 

84]: 

𝑒−𝑗𝜔𝑡 = cos(𝜔𝑡) − 𝑗 sin(𝜔𝑡) 

The symbol 𝑗 denotes that the real and imaginary components are separate stores of 

information. In fact, sine and cosine are orthogonal functions [24, p. 83]: 

∫ cos(𝜔𝑡) sin(𝜔𝑡) 𝑑𝑡 = 0

2𝜋

0

 

because they are completely uncorrelated, despite only differing by a phase offset. Since 

sine and cosine both exist in ℝ2, and addition or subtraction would only superimpose the 

two sinusoids, they are instead represented as orthogonal vectors in the complex plane 

or ℂ2. Thus, their vector sum is the complex exponential, so that the cosine component 

lies on the real axis, the sine component lies on the imaginary axis, and the locus of all 

points is the unit circle. 

Applying Euler’s identity to the complex exponential demonstrates that the Fourier 

transform is a correlation between the input signal and two orthogonal sinusoids [24, p. 

603]: 

𝑋(𝜔) = ∫ 𝑥(𝑡) cos(𝜔𝑡) 𝑑𝑡
∞

−∞

− 𝑗∫ 𝑥(𝑡) sin(𝜔𝑡) 𝑑𝑡
∞

−∞

 

In general, both integrals are necessary for determining the spectrum of any continuous, 

physically realizable signal. For example, the sine and cosine Fourier transform pairs are 

given as [24, p. 96]: 

cos(𝜔0𝑡) ⟷ 𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] 
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sin(𝜔0𝑡) ⟷ −𝑗𝜋[𝛿(𝜔 − 𝜔0) − 𝛿(𝜔 + 𝜔0)] 

where the Dirac delta function, 𝛿(𝜔 − 𝜔0), is an infinite-magnitude, infinitesimal duration 

pulse located at the sinusoid’s frequency 𝜔0. The cosine spectrum is purely real whereas 

the sine spectrum is purely imaginary, but a time delayed cosine has both real and 

imaginary spectral components [24, pp. 96-97]: 

cos(𝜔0𝑡 − 𝑡0) ⟷ 𝜋[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)]𝑒
−𝑗𝜔𝑡0 

= cos(𝜔𝑡) [𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] − 𝑗 sin(𝜔𝑡) [𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)] 

Thus, the delayed cosine correlates with both sine and cosine in the time domain. 

Ultimately, there are some signals that only require one of the integrals in the Fourier 

transform, but in general, continuous signals require both the sine and cosine integrals. 

Just as a spectrum can be obtained through Fourier analysis, a signal can be 

constructed from a spectrum. Any periodic signal can be represented with its Fourier 

series coefficients as [24, p. 84]: 

𝑥(𝑡) = ∑ 𝑐𝑘𝑒
𝑗𝑘𝜔0𝑡

∞

𝑘=−∞

= 𝑐0 +∑2|𝑐𝑘|cos (𝑘𝜔0𝑡 + 𝜃𝑘)

∞

𝑘=1

 

The last expression is the combined trigonometric form or polar form of the Fourier series, 

and it demonstrates how a periodic signal can be theoretically generated from a 

superposition of amplitude weighted and phase shifted sinusoids. This principle can be 

extended to aperiodic signals through the inverse Fourier transform 𝔽−1 [24, p. 91]: 

𝑐𝑘∞ =
1

2𝜋
𝑋(𝜔)𝑑𝜔 

𝑥(𝑡) = ∑ 𝑐𝑘∞𝑒
𝑗𝑘𝜔0𝑡

∞

𝑘=−∞

= ∑ [
1

2𝜋
𝑋(𝜔)𝑑𝜔] 𝑒𝑗𝑘𝜔0𝑡

∞

𝑘=−∞

=
1

2𝜋
∑ 𝑋(𝜔)𝑒𝑗𝑘𝜔0𝑡𝑑𝜔

∞

𝑘=−∞
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𝔽−1{𝑋(𝜔)} ≡ 𝑥(𝑡) =
1

2𝜋
∫ 𝑋(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

∞

−∞

 

Knowing this, it is possible to attenuate undesirable bands of frequencies, such as 

murmurs, and then reconstruct a new signal. However, this is only possible when the heart 

sound and murmur frequencies do not overlap in the spectrum, but this is not always the 

case as can be seen in Figure 3-1. Since the Fourier transform uses a periodic basis 

function, it is assumed that the frequencies exist for all time, but PCG’s are non-stationary 

signals because the frequency content varies over time. 

 
Figure 3-1: PCG spectrum [PCG_FFT.m]. 

The Short-Term Fourier Transform (STFT) is a proposed solution because it adds 

time resolution to the spectrum by dividing the signal into segments and performing a 

separate Fourier transform on each segment [24, p. 606]: 
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𝑆𝑇𝐹𝑇(𝜏, 𝜔) = 𝑋𝑠(𝜔) = ∫[𝑥(𝑡)𝑤(𝑡 − 𝜏)]𝑒
−𝑗𝜔𝑡𝑑𝑡

𝑡

 

As a result, the STFT replaces the spectrum with a spectrogram, which has both time and 

frequency axes and either a third axis or color scheme representing the magnitude. 

However, the shortcoming of the STFT is that even though a greater number of windows 

increases resolution in the time domain, resolution in the frequency domain diminishes. 

Therefore, another technique is required for locating frequencies in time. 

3.2 Wavelet Transform 

3.2.1 Continuous Wavelet Transform 

The Fourier transform is incapable of locating frequencies in the time domain because 

the complex exponential is a periodic basis function of infinite extent, whereas the signal 

itself is of finite extent. Instead of dividing the signal into segments and performing 

separate Fourier transforms on each segment (STFT), the wavelet transform replaces the 

periodic complex exponential basis function with an aperiodic, finite-duration wavelet. 

Since the wavelet function is localized in time, it is both scaled and shifted in the wavelet 

transform correlation to determine where the signal most closely matches the wavelet. 

Thus, the wavelet transform is a function of time and scale instead of frequency, so it 

excels at locating events in the time domain instead of determining the frequency content.  

The continuous wavelet transform (CWT) is given by the integral [24, p. 611]: 

𝑊(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

 

where 𝜓 is the mother wavelet, 𝑎 is the scaling parameter, and 𝑏 is the translation 

parameter. The mother wavelet is the aperiodic basis function that is cross correlated with 

the signal at different scale values. Alternatively, the scaling function 𝜑 is a complementary 
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function that can be substituted for the mother wavelet in the integral [24, p. 611]. In fact, 

the mother wavelet and the scaling function are equivalent to high-pass and low-pass 

filters. 

The wavelet transform is typically applied to discrete time signals, which limits the 

translation parameter to integer values but does not restrict the scaling parameter. 

Therefore, the continuous wavelet transform is so named because the scaling parameter 

is continuous, even for discrete time inputs [24, p. 606]. 

3.2.2 Discrete Wavelet Transform 

In contrast to the CWT, the discrete wavelet transform (DWT) does away with the 

scaling, translation, and correlation operations and replaces them with the equivalent, but 

more efficient, dyadic down sampling and convolution. The mother wavelet and scaling 

functions are the same functions from before, except that they are now treated as impulse 

responses that are convolved with the signal rather than correlated. As a result, the mother 

wavelet is the high pass decomposition filter, and the scaling function is the low pass 

decomposition filter. 

The high pass decomposition filter is used to transform the input into the detail 

coefficients, while the low pass decomposition is used to transform the input into the 

approximation coefficients. The approximation and detail coefficients demonstrate how 

the time domain features change at different frequency bands or decomposition levels. 

The coefficients for the first level are acquired by separately convolving the PCG with the 

low pass and high pass decomposition filters and then down sampling each result by a 

factor of two to generate the approximation coefficient CA1 (low pass) and the detail 

coefficient CD1 (high pass). Down sampling restricts the first level’s frequency range to 

half the sampling rate of the PCG. In particular, CA1 represents the lower half of this 

frequency range and CD1 represents the upper half of this frequency range. Each 
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additional level is decomposed by repeating this procedure on the current level’s 

approximation coefficient so that the final set of coefficients for N levels, ordered from the 

lowest to highest frequency range, is CAN followed by CDN through CD1. The 

approximation and detail coefficients can then be modified and reconstructed with the high 

pass and low pass reconstruction filters, and the two reconstructed waveforms are 

combined to generate the filtered output signal. 

For heart sound segmentation, the DWT is used to attenuate murmurs so that the 

heart sounds can be segmented. This is achieved by determining the appropriate level 

(frequency band) where the heart sounds are concentrated, and then applying the low 

pass decomposition filter at this level to generate its approximation coefficient. 

Reconstructing just the approximation coefficient will generate an output waveform with 

attenuated murmurs. After the heart sounds are segmented, the original PCG is used to 

segment and classify the murmurs. 

3.3 Simplicity Transform 

Given that the discrete wavelet transform’s purpose is to attenuate the murmurs 

without otherwise altering the PCG, the heart sounds and murmurs require separate 

waveforms for segmentation. Therefore, an alternative segmentation technique is 

proposed, one which transforms the PCG into a waveform that can be used to segment 

both the heart sounds and murmurs. The underlying algorithm is known as the simplicity 

transform because the PCG is transformed into a waveform where the values quantify the 

simplicity of short segments in the PCG. 

3.3.1 Complexity and Simplicity 

The Fourier transform produces its sparsest spectrum when the signal is either a 

constant or a sinusoid. The transform pair for the constant is: 
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𝐴 ⟷ 2𝜋𝐴𝛿(𝜔) 

Likewise, the transform of a sinusoid is a pair of delta functions (from before). Thus, these 

are the “simplest” signals because the spectrum only contains a single frequency. 

Alternatively, the Fourier transform of the rectangle function is a sine cardinal or sinc 

function (Figure 3-2): 

rect(t) ⟺ sinc(𝑓) =
sin(𝑓)

𝑓
 

This is the most “complex” signal because its spectrum spans all frequencies. 

Consequently, sinusoids and rectangles are not physically realizable because real signals 

can neither persist for all time nor span all frequencies. However, both of these limiting 

cases demonstrate that “simple” signals have compact spectral ranges while “complex” 

signals have broad spectral ranges. 

 
Figure 3-2: Fourier transform of the sinc function [rect_sinc.m]. 
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Compared to the irregular shape of murmurs and background noise, heart sound 

segments (S1/S2 or S3/S4) resemble simple wavelet packets. Furthermore, auscultation 

reveals that murmurs resemble rumbles, clicks, or snaps while heart sounds are simple 

beats. Intuitively, heart sounds are “simple” while murmurs and noise are “complex”. Thus, 

one way to separate heart sound segments from murmur segments is to calculate the 

signal’s simplicity. Since heart sounds are the “simplest” segments in a PCG, the 

segments with simplicities greater than a threshold are classified as heart sounds, while 

the segments with simplicities less than the threshold are classified as either murmurs or 

noise. The inverse of simplicity is the complexity, so depending on the context, either term 

may be used to describe a signal. In general, Fourier analysis is unsuitable for quantifying 

simplicity, so the preferred method for calculating the simplicity is singular spectrum 

analysis. 

3.3.2 Dynamical Systems 

Dynamical systems theory is the study of how a system’s state changes over time. 

The state is represented with state variables, which are elements of the N-dimensional 

state vector: 

𝐲(𝑡) = [𝑦1, 𝑦2, … , 𝑦𝑛−1, 𝑦𝑛]
𝑇 

The orbit or trajectory is the time evolution of the state vector in N-dimensional state space 

or phase space. The dynamics of the system are the rules that specify a future state from 

an initial state, which are specified by the state transition function 𝜙: 

𝐲(𝑡) = 𝜙(𝑡, 𝐲(0)) 

The initial state is time independent, so it can be placed at any position on the trajectory. 

Differentiating the state transition function produces a vector field in state space that 

assigns a “velocity” to every point on the trajectory [27]:  
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𝑑𝐲(𝑡)

𝑑𝑡
= 𝐅(𝐲(𝑡)) 

An illustrative state space example is the orbit of a planet around the sun. The state 

variables are the planet’s position and velocity relative to the Earth, and the state transition 

function is Newton’s Law of Gravitation. Prior to discovering solar system dynamics, 

namely, the heliocentric model, Kepler’s elliptical orbit theory, and Newton’s Laws, the 

planetary positions were geometrically tracked with epicycles [28]. Epicycles accurately 

predicted the locations of planets in the sky, but the state variables were hidden because 

it was assumed that the sun and the planets orbited Earth; and the state transition function 

was unknown because the Law of Gravitation was not yet discovered. Likewise, 

auscultation is used to accurately diagnose heart conditions without requiring complete 

knowledge of the heart’s state or its underlying dynamics; but unlike epicycles, 

auscultation is still the most commonly used form of diagnosis because it is convenient, 

inexpensive, and nonintrusive. 

3.3.3 The Method of Delays 

In general, a measurement can be modeled as a function of a hidden state vector 

[13]: 

𝑥(𝑡) = ℎ(𝐲(𝑡)) + 𝑤(𝑡) 

Here the functional ℎ(𝐲(𝑡)) maps the state vector to a scalar, and 𝑤(𝑡) represents white 

noise. Although it is impossible to recover the state vector from a single measurement, 

Takens’ embedding theorem states that it is possible to reconstruct the state space 

trajectory from a sufficient number of noiseless measurements. The M-dimensional delay 

vector [13, p. 1008]: 

𝐱𝑖(𝑡) = [𝑥(𝑡), 𝑥(𝑡 − 𝜏),⋯ , 𝑥(𝑡 − (𝑚 − 1)𝜏)]
𝑇 (𝑚 > 2𝑛 + 1) 



41 
 

is an embedding, or one-to-one mapping, from N-dimensional to M-dimensional state 

space [29]. Takens’ theorem proves that the delay vector and the state vector follow similar 

dynamics in different state spaces [13, p. 1008]: 

𝐱𝑖(𝑡) → 𝐱𝑖(𝑡 + 𝑇) ⟺ 𝐲(𝑡) → 𝐲(𝑡 + 𝑇) 

Since a PCG (phonocardiogram) is a discrete time series, the delay 𝜏 is chosen to be the 

sampling period so that the delay vector simply contains consecutive samples. 

In practice, Takens’ theorem is impractical for reconstructing the signal’s exact 

trajectory because measurements are always corrupted with noise. However, signal 

complexity is proportional to the dimension, rather than the trajectory, in state space, so 

estimating the dimension is sufficient. The “method of delays” is an extension of Takens’ 

theorem for real signals, but instead of using a single delay vector to reconstruct the 

trajectory, it uses the complete set of delay vectors to estimate the dimension. The delay 

vector 𝐱𝑖(𝑡) acts as a sliding window that is iteratively stored in a new row of the trajectory 

matrix 𝐗 until the window reaches the end of the signal [13, pp. 1008-1009]: 

𝐗 =
1

√𝑃 
[
 
 
 
𝐱1
𝑇

𝐱2
𝑇

⋮
𝐱𝑃
𝑇]
 
 
 

=
1

√𝑃 
[𝐱𝐼 𝐱𝐼𝐼⋯𝐱𝑀] 

=
1

√𝑃 
[

𝑥(𝑡) 𝑥(𝑡 − 𝜏) ⋯ 𝑥(𝑡 − (𝑚 − 1)𝜏)
𝑥(𝑡 − 𝜏) 𝑥(𝑡 − 2𝜏) ⋯ 𝑥(𝑡 − 𝑚𝜏)

⋮ ⋮ ⋱ ⋮
𝑥(𝑡 − (𝑝 − 1)𝜏) 𝑥(𝑡 − 𝑝𝜏) ⋯ 𝑥(𝑡 − (𝑝 − 1)𝜏 − (𝑚 − 1)𝜏)

] 

The trajectory matrix can be interpreted as either containing P rows of M-dimensional 

delay vectors or M columns of P-dimensional delay vectors. The subscripts represent the 

number of samples minus one that the delay vector is offset; in particular, the M-
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dimensional delay vectors use Arabic numeral subscripts while the P-dimensional delay 

vectors use Roman numeral subscripts. 

The trajectory matrix is the set of all delay vectors in the signal, so it is used to 

construct the correlation matrix [13, p. 1009], which quantifies the relationship between 

every pair of delay vectors: 

𝐂 = 𝐗𝑇𝐗 =
1

𝑃
[𝐱1 𝐱2⋯𝐱𝑃]

[
 
 
 
𝐱1
𝑇

𝐱2
𝑇

⋮
𝐱𝑃
𝑇]
 
 
 

=
1

𝑃
[
 
 
 
𝐱𝐼
𝑇

𝐱𝐼𝐼
𝑇

⋮
𝐱𝑀
𝑇 ]
 
 
 
[𝐱𝐼 𝐱𝐼𝐼⋯𝐱𝑀] 

= [

𝑥(𝑡) 𝑥(𝑡 − 𝜏) ⋯ 𝑥(𝑡 − (𝑃 − 1)𝜏)

𝑥(𝑡 − 𝜏) 𝑥(𝑡 − 2𝜏) ⋯ 𝑥(𝑡 − 𝑃𝜏)

⋮ ⋮ ⋱ ⋮
𝑥(𝑡 − (𝑚 − 1)𝜏) 𝑥(𝑡 − 𝑚𝜏) ⋯ 𝑥(𝑡 − (𝑃 − 1)𝜏 − (𝑚 − 1)𝜏)

]

∗ [

𝑥(𝑡) 𝑥(𝑡 − 𝜏) ⋯ 𝑥(𝑡 − (𝑚 − 1)𝜏)

𝑥(𝑡 − 𝜏) 𝑥(𝑡 − 2𝜏) ⋯ 𝑥(𝑡 −𝑚𝜏)

⋮ ⋮ ⋱ ⋮
𝑥(𝑡 − (𝑃 − 1)𝜏) 𝑥(𝑡 − 𝑃𝜏) ⋯ 𝑥(𝑡 − (𝑃 − 1)𝜏 − (𝑚 − 1)𝜏)

] 

=

[
 
 
 
𝐱𝐼
𝑇𝐱𝐼 𝐱𝐼

𝑇𝐱𝐼𝐼 ⋯ 𝐱𝐼
𝑇𝐱𝑀

𝐱𝐼𝐼
𝑇 𝐱𝐼 𝐱𝐼𝐼

𝑇 𝐱𝐼𝐼 ⋯ 𝐱𝐼𝐼
𝑇 𝐱𝑀

⋮ ⋮ ⋱ ⋮
𝐱𝑀
𝑇 𝐱𝐼 𝐱𝑀

𝑇 𝐱𝐼𝐼 ⋯ 𝐱𝑀
𝑇 𝐱𝑀]

 
 
 

⟹ 𝐶𝑖𝑗 = 𝐱𝑖
𝑇𝐱𝑗 

Each element in this matrix is a dot product of P-dimensional delay vectors instead of the 

original M-dimensional delay vectors because the inner dimension M cancels during 

matrix multiplication. Thus, the correlation matrix completely characterizes the relationship 

between all pairs of P-dimensional delay vectors. A judicious selection of M will provide a 

correlation matrix that is both computationally efficient and suitably descriptive enough to 

determine the complexity of the signal. 
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3.3.4 Eigenvalue Decomposition and the Singular Spectrum 

In order to determine system complexity, the correlation matrix must be decomposed 

into its eigenvalues. The eigenvalues and eigenvectors are given in the equation [13, p. 

1009]: 

𝐂𝐯 = 𝜆𝐯 

where 𝐯 is an eigenvector and 𝜆 is an eigenvalue. The correlation matrix 𝐂 represents a 

linear transformation, which can be visualized in three dimensional Euclidean space as a 

rotation, reflection, scaling, or shearing. Eigenvectors, by definition, are mutually 

orthogonal to each other and maintain the same orientation in space after the linear 

transformation. Thus, applying the transformation to an eigenvector is equivalent to 

scaling the eigenvector by its eigenvalue. The eigenvalues are found by rearranging the 

original equation into the characteristic equation and solving for the roots: 

det(𝐂 − 𝜆𝐯) = 0 

where the maximum number of eigenvalues is the dimension M of the correlation matrix. 

The singular spectrum is the set of eigenvalues stored in a diagonal matrix, ranked by 

magnitude in descending order: 

𝜆1 > 𝜆2 > ⋯𝜆𝑀⟹  𝐃 = [

𝜆1 0 0 0
0 𝜆2 0 0
0 0 ⋱ 0
0 0 0 𝜆𝑀

] 

A system’s complexity is quantified by the relative magnitude, and total number, of 

eigenvalues. A “simple” system contains only a few large-magnitude eigenvalues while a 

“complex” system contains many small-magnitude eigenvalues. For example, Figure 3-3 

compares the singular spectrum of the sinc function to that of white Gaussian noise 

(WGN). WGN is maximally complex, so its spectrum contains the maximum number of 
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eigenvalues with small, comparable magnitudes. However, the sinc function is simple, so 

its first eigenvalue’s magnitude is nearly maximized while the few other eigenvalues’ 

magnitudes are nearly zero. 

 
Figure 3-3: Singular spectra comparison [singular_spectra.m]. 

3.3.5 Shannon Entropy 

The relationship between the singular spectrum and signal complexity mirrors the 

relationship between the probability mass function (pmf) of a random experiment and the 

uncertainty of the experiment’s outcome. The information content 𝐼 is the number of 

symbols required to represent an outcome given a symbol set of size 𝑏 and a sample 

space with 𝐾 outcomes. For example, one bit is sufficient to represent the outcome of a 

coin flip but not the outcome of a six-sided die roll. The first bit distinguishes two 

equiprobable events, such as sides 1-3 and 4-6. A second bit distinguishes side 1 from 
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sides 2-3 and side 4 from sides 5-6. If the roll’s outcome is neither side 1 nor 4, then a 

third bit distinguishes side 2 from 3 and side 5 from 6. Thus, the information content is 

either two or three bits, depending upon the outcome of the roll. 

For an experiment with a uniform probability distribution, the average information 

content is determined from the probability of a single outcome: 

𝑏𝐼 = 𝐾 =
1

𝑃
 

𝐼 = log𝑏
1

𝑃
= − log𝑏 𝑃 

In general, the minimum entropy 𝐻𝑋 is the expected value of the information content of a 

random variable 𝑋 [30, pp. 202-203]: 

𝐻𝑋 = 𝐸[(𝐼(𝑋)] = ∑𝑃[𝑋 = 𝑘]𝐼(𝑋 = 𝑘)

𝐾

𝑘=1

= −∑𝑃[𝑋 = 𝑘] log𝑏 𝑃[𝑋 = 𝑘]

𝐾

𝑘=1

 

In other words, it represents the minimum average number of symbols required to 

represent an outcome of the random variable [30, p. 209]. For example, imagine picking 

a letter from a random word. The probability of a letter occurring is not the same for every 

letter, so assume the probability is 10% for each vowel, 2.5% for each consonant other 

than X or Z, and 1.25% for X and 1.25% for Z. Instead of using the first bit to divide the 

alphabet into two events of thirteen letters each, it is more informationally efficient to 

separate the letters into two equiprobable events. Thus, the first bit distinguishes vowels 

from consonants because the probability of picking a vowel is 50% and the probability of 

picking a consonant is 50%. Likewise, the second bit divides the vowels and consonants. 

The probability of choosing the first ten consonants is 25%, and the probability of choosing 

the last eleven consonants is also 25% (owing to the lower probability of X and Z). 

However, the five vowels cannot be grouped equiprobably, so the average entropy is 
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greater than the minimum average entropy. This process of subdividing the events 

continues until the decision tree ends in the outcomes (letters). The minimum entropy of 

the experiment with non-uniform letter probabilities is: 

𝐻 = 𝑃𝑉𝐼𝑉 + 𝑃𝐶𝐼𝐶 + 𝑃𝑋𝑍𝐼𝑋𝑍 

= −5(0.1) log2(0.1) − 19(0.025) log2(0.025) − 2(0.0125) log2(0.0125) = 4.35 bits 

In comparison, the minimum entropy of the same experiment with uniform letter 

probabilities is: 

𝐻 = − log2(26) = 4.70 bits 

Thus, for a given random variable, a uniform pmf indicates maximum entropy while a non-

uniform pmf indicates lower entropy. Likewise, for a given trajectory matrix, a uniform 

singular spectrum indicates maximum complexity while a non-uniform singular spectrum 

indicates lower complexity. In order to quantify complexity, the eigenvalues are normalized 

so that they sum to one and are then substituted for probabilities: 

𝑃𝑘[𝑀 = 𝑖] = 𝜆̂𝑖(𝑘) =
𝜆𝑖(𝑘)

∑ 𝜆𝑖(𝑘)𝑖
 

where 𝑘 is the sample location of the window and 𝑀 is the eigenvalue index (the “random 

variable”). The eigenvalues are used to calculate the entropy of each window: 

𝐻𝑀(𝑘) = −∑𝑃𝑘[𝑀 = 𝑖] log2 𝑃𝑘[𝑀 = 𝑖]

𝑖

 

= −∑𝜆̂𝑖(𝑘) log2 𝜆̂𝑖(𝑘)

𝑖

 

and the entropy is used to determine the complexity Ω(𝑘), which is the average number 

of hidden states in the dynamical system: 
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𝐻𝑀(𝑘) = log2Ω(𝑘) → Ω(𝑘) = 2
𝐻𝑀(𝑘) 

Finally, the simplicity is the inverse of complexity: 

simpl(𝑘) =
1

Ω(𝑘)
 

3.4 Piecewise Constant Denoising 

The nonlinear simplicity transform is a fundamental algorithm for the comprehensive 

PCG segmentation system implemented and tested in this study. Even though the 

simplicity transform is more computationally demanding than conventional linear filters, 

such as those that use the Fast Fourier Transform (FFT), it can more effectively separate 

different sound signatures. 

Ideally, each different sound segment in the simplicity-transformed PCG (S1, S2, etc.) 

would be represented by a unique, constant simplicity value or level. Instantaneous 

transitions between simplicity levels would then occur at the boundaries between different 

sound segments at easily identified jump locations. The transformed PCG would then 

resemble a piecewise constant (PWC) or jump sparse signal, composed of only a few 

unique constant levels [15, p. 7]. The stratification of the PCG simplicity into distinct levels 

in this way enables sound segmentation and classification of the more complex murmurs 

and sounds by simple thresholding. However, since the raw simplicity values do not 

provide an ideal piecewise constant representation (as seen in Figure 3-4), it is necessary 

to first filter the noise in the raw simplicity values before attempting sound segmentation 

on the waveform. 
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Figure 3-4: Raw simplicity waveform [PCG_simpl.m]. 

Smoothing filters, such as the moving average filter, reduce noise by locally averaging 

the time domain features in a waveform. Low pass filters (LPF), however, are superior to 

simple moving averages for most signals because they can more selectively attenuate the 

high frequency noise while preserving the low frequency features. Unfortunately, 

traditional low pass filtering is not suitable for a noisy piecewise constant signal with many 

jump discontinuities, as it will distort the sharp edges at the jump locations which contain 

high frequencies, and add ripple variations to the piecewise constant amplitude levels. 

Since a PWC signal is a superposition of scaled and shifted rectangle functions, the 

effects of filtering can be illustrated on a single rectangular pulse. The Discrete Fourier 

Transform (DFT) of a rectangular pulse is a periodic train of discrete sinc functions that 

repeats at multiples of the sampling frequency. An ideal LPF truncates both the high 
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frequency noise and the high frequency side lobes of the sinc function. After applying the 

inverse DFT to the filtered frequency domain representation, the output resembles a PWC 

signal, but with ripple throughout, ringing on the edges, and smoothed jumps. This is 

similar to the Gibbs phenomenon from the Fourier series, as shown in Figure 3-5. Thus, it 

is impossible to recover a noiseless PWC signal using linear frequency domain filtering, 

so other noise reduction techniques are required. 

 
Figure 3-5: Low pass filtering a rectangle causes ripple. The signal at the right was filtered with a 

higher order LPF than the signal at the left [31]. 

Piecewise constant denoising or jump sparse reconstruction is the process of 

recovering a noisy signal’s optimal PWC representation. It is performed using either level-

set recovery or PWC smoothing algorithms, depending upon the expected number of 

unique levels in the recovered signal [15, p. 5]. Level-set recovery uses clustering 

algorithms such as K-means or mean shift to separate the sample values into a limited 

number of levels, so that the jump locations are found only after the levels are determined 

[15, p. 6]. This technique excels at detecting rapid fluctuations between levels, but it is not 

suitable for PCG segmentation because heart sound and murmur segments are 

associated with a multitude of simplicity levels. PWC smoothing, however, iteratively 

estimates a set of jump locations and levels until the output is an optimal PWC 

approximation of the original signal [15, p. 6] . Being constrained by both jump locations 

and sample values incurs an additional, but justified, computational cost for PWC 

smoothing because it enables detection of a greater number of unique levels with greater 

accuracy than level-set recovery. For example, the simplicity of an extra heart sound 
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(S3/S4) is only slightly greater than the simplicity of a normal heart sound (S1/S2), and 

the simplicity of a murmur is significantly less than that of any heart sound. Since neither 

extra heart sounds nor murmurs are guaranteed to exist, the algorithm must determine 

the number of levels automatically. However, when the simplicity variance is small, as in 

the case of normal and extra heart sounds, samples that should be placed in separate 

levels might be combined into one level. Thus, level-set recovery is inadequate for the 

segmentation and classification of heart sounds and murmurs. 

Solvers are algorithms that minimize functionals [15, p. 7]. A functional transforms a 

vector input, which is an element of a vector space, into a scalar output. For jump sparse 

reconstruction, the solver minimizes the functional by choosing the optimal set of jump 

locations and level values. A multitude of solvers exist for both PWC smoothing and level-

set recovery, but all are special cases of a generalized functional. An illustrative example 

of functional minimization is determining the shortest path between two points in Euclidean 

space. The path can be represented by an infinite number of curves, but the shortest path 

is uniquely represented by a line. The vector field is the set of all possible paths, the vector 

input is a single path, and the scalar output is length of the shortest path between the two 

points. In general, a functional minimizer is not unique, but the most common PWC solvers 

produce a convex set of functional outputs, such that each iteration of the solver 

approaches the absolute minimum of the functional. 

The simplicity transform of a PCG can be represented as a PWC signal corrupted 

with additive noise: 

𝐱 = 𝐦+ 𝐞 

where 𝑥 is the raw simplicity, 𝑚 is the PWC simplicity, and 𝑒 is the noise. The discrete 

functional equation for jump sparse reconstruction is given as: 
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𝐻[𝐦] =∑∑Λ(𝑥𝑖 −𝑚𝑗, 𝑚𝑖 −𝑚𝑗, 𝑥𝑖 − 𝑥𝑗, 𝑖 − 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

where 𝑥 is the input signal and 𝑚 is the output signal for the current iteration of the solver, 

so that the first iteration’s input 𝑥0 is the original signal, the last iteration’s output 𝑚𝑘 is the 

final PWC approximation, and all other iterations’ inputs and outputs are intermediate 

PWC approximations. The solver iterates until 𝐻[𝑚] reaches an absolute minimum, which 

is the only minimum if the functional is convex. The inputs to Λ are the differences: 

𝑑 = {

𝑥𝑖 −𝑚𝑗
𝑚𝑖 −𝑚𝑗
𝑥𝑖 − 𝑥𝑗
𝑖 − 𝑗

 

The first three are value differences because they only apply to sample values while the 

last is a sequence difference because it only applies to indices. The two types of functions 

in Λ are losses and kernels, both of which are non-negative functions of absolute 

difference or distance. Loss functions are typically of the form: 

𝐿𝑝(𝑑) = |𝑑|
𝑝 

where 𝑝 ∈ ℝ. For the specific case 𝑝 = 0, the loss reduces to: 

𝐿0(𝑑) = |𝑑|
0 = {

1 (𝑑 ≠ 0)

0 (𝑑 = 0)
 

Kernels are non-negative functions of loss and are classified as either value kernels or 

sequence kernels. Value kernels operate on value distances while sequence kernels 

operate on sequence distances. Hard kernels restrict the loss to a maximum distance 

while soft kernels modify the loss over distance. The hard kernel: 

𝐾𝑊1,𝑊2,𝑝(𝑑) = 𝐼(𝑊1 ≤ 𝐿𝑝(𝑑) ≤ 𝑊2) = {
1, (T)
0, (F)
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uses the indicator function 𝐼(⋅) to set a hard limit on the acceptable range of losses. 

Conversely, the soft kernel uses a non-zero, continuous function to modify the loss:  

𝐾𝑝(𝑑) = 𝑓 (𝐿𝑝(𝑑)) ≥ 0 

Typically, the soft kernel diminishes in value as the loss increases. The decaying 

exponential is a commonly used soft kernel because the loss is relatively unchanged over 

a short distance but rapidly approaches zero thereafter: 

𝐾𝑝(𝑑) = exp (−𝛽𝐿𝑝(𝑑)) 

Kernels are further classified as either local (at least one sample value is non-unity) or 

global (all sample values are unity). 

All terms in Λ are the product of a kernel and a loss. The loss directly contributes to 

the functional sum while the kernel modifies or restricts the loss: 

Λ = 𝐿𝑝(𝑑)𝐾𝑝(𝑑) 

A functional that only contains the regularization term: 

Λ =
|𝑚𝑖 −𝑚𝑗|

𝑝

𝑝
 

is minimized when all samples in the output 𝐦 are identical because the global kernel 

does not  modify or restrict the distance between sample values. Conversely, a functional 

that only contains the likelihood term: 

Λ =
|𝑥𝑖 −𝑚𝑗|

𝑝

𝑝
𝐼(𝑖 − 𝑗 = 0) =

|𝑥𝑖 −𝑚𝑖|
𝑝

𝑝
 

is minimized when the final output 𝐦1 is identical to the original input 𝐱0 because the 

sequence kernel restricts the input and output samples to identical indices. Neither the 
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regularization nor the likelihood term alone is sufficient for producing a PWC signal, but 

the combination of the two terms produces a PWC output: 

Λ =
|𝑥𝑖 −𝑚𝑖|

𝑝

𝑝
+ 𝛾

|𝑚𝑖 −𝑚𝑗|
𝑝

𝑝
 

The regularization parameter 𝛾 balances the tradeoff between data-fidelity (likelihood) and 

sparsity (regularization). Sparsity is maximized when the sample values are the same and 

minimized when the sample values are unique. Conversely, data-fidelity is maximized 

when the output matches the input. The likelihood and regularization terms oppositely 

influence the shape of the output, so the solver has to balance both requirements to 

minimize the functional and produce an optimal PWC representation. 

When 𝛾 is zero, the solver does not attempt to minimize the distance between sample 

values. As 𝛾 increases, the regularization term increases its contribution to the functional 

sum, which forces the solver to minimize the distance between output value samples. As 

𝛾 approaches infinity, all output sample values approach the same value. The constant 

value that minimizes the functional, then, is the average value of the original signal: 

lim
𝛾→∞

Λ =
|𝑥𝑖 − 𝑐|

𝑝

𝑝
 

A judicious choice of 𝛾 will balance the influence of both the likelihood and regularization 

terms so that the optimal PWC signal has the appropriate balance of sparsity and data-

fidelity. 

3.5 Potts Functional 

The Potts functional is suitable for jump sparse reconstruction of the simplicity 

waveform because it models the input as a blurred PWC signal corrupted with additive 

noise [17, p. 3654]: 
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𝐱 = 𝐚 ∗𝐦 + 𝐞 

Like before, 𝐱 is the raw simplicity, 𝐦 is the PWC signal, and 𝐞 is the additive noise. The 

blurring is modeled as the convolution of the blur kernel 𝐚 with the PWC signal. The blur 

kernel is not typically known a priori but is commonly assumed to be Gaussian: 

𝐺(𝑥) =
1

√2𝜋𝜎2
𝑒
−
𝑥2

2𝜎2 

where 𝜎 is the standard deviation. Alternatively, convolution can be reformulated with 

matrix multiplication: 

𝐱 = 𝐀𝐦+ 𝐞 

Here the blur kernel 𝐚 is converted to the blur matrix 𝐀, which takes the form of a Toeplitz 

matrix: 

𝐀 =

[
 
 
 
 
 
𝑎0 𝑎−1 𝑎−2 ⋯ ⋯ 𝑎−(𝑛−1)

𝑎1 𝑎0 𝑎−1 ⋱ ⋮
𝑎2 𝑎1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 𝑎−1 𝑎−2
⋮ ⋱ 𝑎1 𝑎0 𝑎−1

𝑎𝑛−1 ⋯ ⋯ 𝑎2 𝑎1 𝑎0 ]
 
 
 
 
 

 

The sums in the original discrete functional equation can removed when the losses and 

kernels are expressed as vector operations. The loss function takes the form of a p-norm: 

𝐿𝑝≠0(𝐝) = ‖𝐝‖𝑝 = (∑|𝑑𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

 

𝐿0(𝐝) = ‖𝐝‖0 =∑|𝑑𝑖|
0

𝑛

𝑖=1

= |{𝑖: 𝑑𝑖 ≠ 0}| 

The 0-norm counts the number of non-zero distances, which is represented by the 

cardinality operator (absolute value bars) applied to the set {𝑖: 𝑑𝑖 ≠ 0}. 
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Inverse Potts Minimization (iPotts) is the process of solving the Potts functional to 

recover an optimal PWC representation. The Potts functional is given as [17, p. 3654]: 

𝐻[𝐦] = 𝛾‖∇𝐱‖0 + ‖𝐀𝐦− 𝐱‖𝑝
𝑝
 

The regularization term’s 0-norm counts the total number of jumps: 

∇𝑥 = 𝑥𝑖+1 − 𝑥𝑖 

‖∇𝐱‖0 = ∑|𝑥𝑖+1 − 𝑥𝑖|
0

𝑁−1

𝑖=1

= |{𝑖: 𝑥𝑖 ≠ 𝑥𝑖+1}| 

Instead of penalizing the height of each jump, the 0-norm penalizes all jumps equally so 

that the final PWC output is less likely to merge two levels separated by only a small jump 

height. The likelihood term reduces to: 

‖𝐀𝐦− 𝐱‖𝑝
𝑝
= ‖𝐛 − 𝐱‖𝑝

𝑝
=∑|𝑏𝑖 − 𝑥𝑖|

𝑝

𝑁

𝑖=1

 

Each iteration attempts to construct an improved PWC approximation 𝐦 of the input 𝐱 by 

minimizing the noise, which is the distance between aligned samples of the blurred PWC 

approximation and the input. 

The MATLAB toolbox Pottslab [32] is used for jump sparse reconstruction in the 

segmentation system because it implements an efficient iPotts solver. Furthermore, 

Pottslab can solve univariate and multivariate signals, it allows the user to choose the 

likelihood term’s p-norm, and it is robust enough to handle signals that have missing 

samples. This toolbox’s primary benefit for PCG simplicity denoising is the choice of the 

p-norm, since the p-norm determines the noise model.  
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4 Segmentation System Implementation 

4.1 System Overview 

4.1.1 Introduction 

The algorithms and concepts introduced in Chapter 3 are combined in various ways 

to create a comprehensive heart sound and murmur segmentation system that is able to 

detect and classify normal heart sounds (S1/S2), split heart sounds (M1/T1, A2/P2), extra 

heart sounds (S3/S4, summation gallops), and murmurs (systolic/diastolic) from a raw 

PCG. The system is implemented in MATLAB (R2013b) for its seamless vector operations 

and data visualization, extensive signal processing toolboxes, and object oriented 

programming (OOP) support. 

The first operation is to load the PCG from the file system and remove any noise with 

a wavelet filter. Next, the heart sounds and murmurs are segmented using techniques 

specific to the particular segmentation function. The heart sound segments are then 

searched for split sound components and are consequently split into two segments are 

found. As a prerequisite to heart sound and murmur classification, the heart cycles are 

segmented by using the PCG’s autocorrelation waveform to locate the cycle boundaries. 

The sound sounds in each heart cycle are then classified and stored in specific arrays 

such as S1, S2, systolic murmur, diastolic murmur, etc. Custom data types are provided 

for quickly determining the detected conditions and the heart cycles in which they are 

located. In addition, the segment arrays can be saved to the filesystem or plotted as color 

coded segments according to their sound type on the PCG. 

4.1.2 Properties and Methods 

Object oriented designs encapsulate, or combine, properties (data) and the methods 

(functions) that operate on those properties into a class. In MATLAB, each class has a 
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single class definition file that is stored in the directory @classname. At a minimum, this 

file declares all properties and methods but may also set default property values and 

define methods. Any methods not fully defined in the class definition file must be 

implemented in separate files within the class directory. An object is an instance of a class 

and contains property values that define its state. The class constructor method initializes 

objects by assigning properties their default values or, for undefined properties, an empty 

double array. If additional functionality and arguments are required during object 

initialization, a custom constructor can be defined as: 

obj = classname(args) 

The software system for this project supports two distinct segmentation techniques 

that, while unique in implementation, retrieve the PCG waveform file in the same manner, 

depend on common parameters, store the results in the same format, and summarize and 

display the results identically. In addition, both techniques must be able to save the results 

to the file system and define default behaviors after reloading the results into the 

workspace. Thus, it is beneficial to encapsulate the system’s functions and data in the 

class definition file stethoscope.m, where objects of this class are initialized as: 

sscope = stethoscope(folder, file, varargin) 

In a class definition file, properties are declared in blocks delimited by the properties 

end keywords, and functions are declared in blocks delimited by the methods end 

keywords. Attributes, contained in parentheses after the properties or methods keywords, 

modify how properties are accessed, altered, and stored, and how functions are accessed: 

properties (Attribute1 = value1, Attribute2 = value2, ...) 
    prop1 
    prop2 
    ... 
end 
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methods (Attribute1 = value1, Attribute2 = value2, ...) 
    func1 
    func2 
    ... 
end 

The attribute Access is common to both properties and methods. For methods, the 

default value public allows any function to call those methods, while the value private only 

allows class methods (methods within the class) to call those methods. For properties, 

Access is just a shortcut that sets the GetAccess and SetAccess attributes to the same 

value, where GetAccess controls which functions can query the property values, and 

SetAccess controls which functions can modify the property values i.e. change the object’s 

state. The default value for both is public so that any function can read and write property 

values. This is not always desirable, as it is often necessary to restrict the ability to change 

state, so SetAccess=private only allows class methods to modify property values. 

Furthermore, GetAccess=private only allows class methods to query property values, but 

this attribute-value pair is not applied to any properties in this system because there is no 

requirement for hidden data. Finally, SetAccess=immutable only allows the class 

constructor to modify property values so that the values are permanent after object 

initialization. 

By default, properties are stored in memory when an object is in the workspace and 

stored in a file when the object is saved. The attributes Transient and Dependent modify 

how properties are stored in both these cases. Transient properties are stored in memory 

but are not stored in the filesystem when the object is saved, and Dependent properties 

are never stored but instead calculated when accessed because they depend on the 

values of other properties. These attributes’ values are logical, so they can either accept 

a Boolean value of true or false or are implicitly true when listed without a value. 
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Methods are distinguished from functions by the manner in which they are called and 

their type of arguments. Since methods operate on objects, the first and only required 

argument to a method is an object of the method’s class. However, static methods, or 

methods with the Static attribute, do not require this argument, as they are auxiliary 

methods that do not operate on an object of their class and are called as: 

class_name.static_method(args) 

The static method loadobj() loads object data from a file into an object in the workspace. 

Like the class constructor, loadobj() can be optionally defined for custom behavior, but 

unlike the constructor, loadobj() cannot be called directly. 

The properties in stethoscope.m are classified as either constants or data. Constants 

are not literal constant data types, as their values can be changed, but are so named 

because the PCG retrieval, wavelet pre-filtering, and segmentation methods reference, 

rather than modify, their values. The constants file and folder are required arguments to 

the class constructor since they are empty by default, but even constants with non-empty 

default values can be changed through additional constructor arguments, namely, optional 

arguments and parameters. Optional arguments, if passed, are listed in a predefined order 

after the required arguments so that each value is assigned to the correct property. 

Parameters, however, may be listed in any order after the required and optional arguments 

since they are passed as name-value pairs in the format (‘prop’,val). The constants listed 

in Table 4-1 can only be set during initialization (SetAccess = immutable) whereas those 

listed in Table 4-2 can be set during and after initialization (SetAccess = public) using the 

dot notation sscope.prop=val. In both tables, the constants are grouped and labeled in 

accordance with the methods that reference them. 
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 In contrast to constant properties, data properties cannot be set directly because they 

contain the results generated from class methods (SetAccess = private). These are listed 

in Table 4-3, where the properties that contain raw segmentation data are labeled as 

Segmentation Data, and the properties that contain data produced from other class 

methods or derived from the raw segmentation data are labeled in accordance with their 

attributes (either Dependent or Transient). 

Table 4-1: stethoscope.m constant properties (SetAccess = immutable). 

 Properties Type Argument Default Range 

P
C

G
 R

e
tr

ie
v
a
l 

folder char vector required empty NA 

file char vector required empty NA 

path char vector no empty NA 

max_PCG_dur double scalar parameter 5 positive reals 

min_PCG_dur double scalar parameter 0 [0,max_PCG_dur) 

Fs_min double scalar parameter 4 kHz positive reals 

ds_type char vector parameter ‘dyadic’ 
‘dyadic’ 
‘integer’ 
‘none’ 

 
Table 4-2: stethoscope.m constant properties (SetAccess = public). 

 Properties Type Argument Default Range 

D
W

T
 

show_filt logical scalar parameter false true, false 

wavef char vector parameter ‘db6’ NA 

lvl double scalar optional 0 nonnegative integers 

S
e

g
m

e
n

ta
ti

o
n

 

show_results logical scalar parameter false true, false 

max_HS_dur double scalar parameter 0.5 s positive reals 

min_HS_dur double scalar parameter 20 ms positive reals 

min_syst_dur double scalar parameter 100 ms positive reals 

min_murm_dur double scalar parameter 20 ms positive reals 
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Table 4-3: stethoscope.m data properties (SetAccess = private). 

 Properties Type Range 
T

ra
n

s
ie

n
t 

PCG double vector [-1,1] 

filt_PCG double vector [-1,1] 

Fs double scalar positive reals 

r double scalar positive integers 

D
e

p
e

n
d

e
n

t 

downsampled logical scalar true, false 

conditions Map vector 

‘Absent S1’ 
‘Absent S2’ 

‘Split S1’ 
‘Split S2’ 

‘S3’ 
‘S4’ 

‘Summation Gallop’ 
‘Systolic Murmur’ 
‘Diastolic Murmur’ 

short_list char vector NA 

num_cyc double vector positive integers 

S
e

g
m

e
n

ta
ti

o
n

 D
a
ta

 

seg_method char vector NA 

cyc_bnds double vector positive integers 

S1,M1,T1 

segment vector NA 

S2,A2,P2 

S3,S4 

sum_gallop 

syst_murm 

diast_murm 

 

4.1.3 PCG Retrieval 

The location of the PCG sound file is specified with path, which is automatically 

generated from the required constructor arguments folder and file. After setting any other 

constants passed as optional arguments, the constructor calls load_PCG(), which loads 

the PCG sound file but only stores the left, or first channel, in memory because the 
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segmentation functions require a single channel. The min_PCG_dur and max_PCG_dur 

constants specify the lower and upper limits, respectively, of the PCG’s duration in 

seconds, so the PCG is rejected if its duration is less than the minimum but is simply 

truncated if its duration exceeds the maximum. The PCG is also rejected if its sampling 

frequency is less than the minimum given by Fs_min. If ds_type (down sampling type) is 

either ‘dyadic’ or ‘integer’, load_PCG() calculates a down sampling factor r such that the 

down sampled frequency is as close to, but not less than, Fs_min. The default value 

‘dyadic’ restricts r to positive powers of two for efficiency while ‘integer’ restricts r to 

positive integers. Thus, if r is greater than one, the sampling frequency is reduced by 

removing every rth sample. If down sampling is unnecessary, it can be disabled by setting 

ds_type to ‘none’. 

The results of load_PCG() are stored in PCG, Fs, and r, all of which are Transient 

because it is inefficient to save the PCG samples when saving the object to the file system. 

Instead, the PCG can be reloaded exactly as before using load_PCG() since the constants 

that affect PCG retrieval are immutable and unchanged for the life of the object. Thus, 

load_PCG() is the first statement executed upon loading the object from the filesystem 

using the custom loadobj().  

4.1.4 Wavelet filtering 

The Discrete Wavelet Transform (DWT) is used to remove sharp edges and noise 

from the PCG before segmentation. The properties wavef and lvl specify the wavelet 

function and decomposition level, respectively, to be used during wavelet filtering. The 

default wavelet function is ‘db6’ (Daubechies wavelet) because it closely resembles the 

morphology of S1 and S2, but the default level is zero so that the system does not attempt 

to filter the PCG unless the level is explicitly set. When the level is set to a positive integer, 

the function dwt_filt() is called immediately after load_PCG() in the class constructor. The 
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PCG is then “low pass” filtered by convolving the approximation coefficient at level lvl with 

the low pass reconstruction filter and storing the result in filt_PCG. Thus, the high 

frequency features found in detail coefficients at current or lower levels are not included 

in the filtered PCG. 

The process of choosing the approximation coefficient for reconstruction is 

demonstrated in Figure 4-1. CD1 can be removed because it is almost pure noise and 

does not contain any discernible heart sound signatures. The heart sounds begin to 

appear in CD2 because the lower end of the CD2 frequency range is 689 Hz. Nonetheless, 

CD2 can also be removed because its maximum amplitude is three order of magnitude 

less than that of CA2, and the noise is still prevalent. The frequency band for CD3 is within 

the range of heart sounds and murmurs, the amplitude is only two orders of magnitude 

less than that of CD2, and the noise is small compared to the signal. Thus, the PCG is 

reconstructed from CA2 alone, so CD2 and CD1 are removed, and frequencies greater than 

689 Hz are excluded from the reconstructed the signal. The original and wavelet filtered 

PCG’s are compared in Figure 4-2. This particular PCG contains little noise, but the filter 

at least smooths sharp edges, which is a necessary prerequisite for the segmentation 

functions. 
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Figure 4-1: A range of approximation coefficients (left subplots) and detail coefficients (right 

subplots) are used to determine which approximation coefficient is optimal for PCG 
reconstruction [chp4_seg.m]. 
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Figure 4-2: The original PCG (top subplot) has very little noise, so the filtered PCG (bottom 

subplot) appears similar to the original PCG [chp4_seg.m]. 

4.1.5 Segmentation 

The segmentation functions require a special class, segment.m, for referencing and 

manipulating heart sound and murmur segments. In particular, this class stores the 

segment boundaries and provides methods for common segment operations. Objects of 

this class are initialized as: 

seg = segment(strt, stop, mag) 

where the required arguments strt and stop are the segment’s integer start and stop 

indices, respectively; and the optional argument mag is a non-zero magnitude assigned 

to the segment, which has a default value of one. The constructor verifies that strt does 

not exceed stop and that both are positive integers since they reference array indices. In 
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addition to storing segment boundaries, an object of this class can dynamically calculate 

the segment’s duration in samples, seg.dur, and generate a vector of the segment’s 

indices, seg.rng.  

The first group of methods includes those that manipulate segments. The method: 

seg = combine(seg, max_dur) 

combines adjacent segments within max_dur samples of each other, where max_dur is 

an optional argument that has a default value of zero. Additionally, the method: 

seg = split(seg, loc) 

splits segments apart at the sample locations given in the array loc such that the split 

segments are separated by one sample. 

The second group of methods includes those that generate a signal from segments. 

The method: 

sig = mask(seg, sz) 

creates a vector of dimension sz that has a value of one for samples within the segment 

boundaries and a value of zero for samples outside of the segment boundaries. The 

method: 

sig = levels(seg, sz) 

does the same, except samples within the segment boundaries have a value of seg.mag. 

Finally, the method: 

sig = signal(seg, ref, zero) 

creates a copy of the reference signal ref, but sets samples outside of the segment 

boundaries to the value zero. This method is typically used to generate segment layers 
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for a plot, where zero = NaN so that samples between segments do not appear on the 

plot. 

4.1.6 Storing and summarizing results 

The segmentation results are stored in the sscope object in separate arrays named 

for the heart sound and murmur types. Six segment arrays are created for the normal 

heart sounds (S1, M1, T1, S2, A2, P2) and three for the extra heart sounds (S3, S4, 

sum_gallop),  where each array has the same number of elements as the number of 

detected heart cycles and contains at most one segment per heart cycle. Thus, the 

location of non-empty segments in an array indicate which heart cycles contain those 

segments, while the locations of empty segments in an array indicate which heart cycles 

do not contain those segments. The systolic and diastolic murmur segments are stored in 

two cell arrays (syst_murm, diast_murm) of the same length as the heart sound arrays, 

and each cell contains a variable length segment array since there can be more than one 

murmur segment in either systole or diastole. 

Since it is difficult to determine which conditions are detected and in what heart cycle 

they are located from the raw heart sound and murmur arrays, stethoscope.m provides 

two Dependent properties, sscope.conditions and sscope.short_list, for consolidating and 

displaying these results, as well as the class method: 

print(sscope) 

The first dependent property, conditions, is a map object that extracts the most 

relevant information from the arrays. A map links each key in a keyset to a unique value. 

In MATLAB, the keys are strings, and the values are objects of a uniform type that are 

accessed using the keys as indices: 

map_obj(‘key’) = value 
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For conditions, the keys represent the detected heart conditions (Table 4-4), and the 

values are numeric arrays that list the number of segments in each heart cycle. 

Table 4-4: Set of all possible keys for conditions. 

Conditions Keys 

Absent S1 as1 

Absent S2 as2 

Split S1 ss1 

Split S2 ss2 

S3 s3 

S4 s4 

Summation Gallop sg 

Systolic Murmur sm 

Diastolic Murmur dm 

 
The conditions keyset is empty when S1 and S2 are present in each heart cycle because 

this is the expected result for a healthy heart. As a result, ‘as1’ or ‘as2’ is only added to 

the keyset if an S1 or S2 segment is absent from at least one cycle. Also, ‘ss1’ denotes 

the presence of M1 and T1 segments, while ‘ss2’ denotes the presence of A2 and P2 

segments. As an example, consider a PCG with four heart cycles and detected absent 

S2, split S1, and systolic murmur conditions. The keys and values are listed in Table 4-5. 

Table 4-5: Example keys and values for sscope.conditions. 

Keys Values 

‘as2’ [0 0 0 1] 

‘ss1’ [1 1 1 1] 

‘sm’ [1 2 2 2] 

 
Here, only the last cycle lacks an S2 segment, all cycles contain one M1 and one T1 

segment, and the first cycle contains one systolic murmur while the other three cycles 

each contain two systolic murmur segments. Thus, conditions reduces nine segment 

arrays and two cell arrays, each of which typically contains many empty elements, into a 

single object that specifies the type, quantity, and heart cycle locations of all segments, 

which is adequate for diagnosing heart health. 
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The function print(sscope) uses the data from conditions to list the number of: 

detected heart cycles (sscope.num_cyc), cycles with detected murmurs, heart cycles 

without detected murmurs, systolic segments with detected murmurs, and diastolic 

segments with detected murmurs. Using the example data from Table 4-5, the output of 

print(sscope) is: 

Cycles: 4 
With murmurs: 4 
Without murmurs: 0 
Syst murmurs: 4 
Diast murmurs: 0 
Syst+diast murmurs: 4 

The other dependent property, short_list, is a string that summarize the segmentation 

results. It is a comma separated list of the keys, with the exception that when conditions 

is empty, the string is simply ‘hh’, which is short for “health heart”. Using the same data 

from Table 4-5, the output of short_list is: 

as2, ss1, sm 

4.1.7 Displaying results 

In addition to displaying textual results, the system can plot a PCG with segments 

color coded for the different heart conditions. The class method: 

plot(sscope) 

overloads the built in MATLAB function plot() to create a figure that contains two subplots: 

the first displays the PCG with red vertical lines marking the heart cycle boundaries 

obtained from cyc_bnds, and the second displays the segmented, color coded PCG 

without the cycle markers. The heart condition color codes are listed in Table 4-6. 
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Table 4-6: Heart sound and murmur segment color codes for plot(sscope). 

Segments Colors 

S1 Blue 

S2 Red 

S3 Purple 

S4 Green 

Summation Gallop Black 

Systolic Murmur Magenta 

Diastolic Murmur Magenta 

 
As an example, a figure with both systolic murmur and split S2 segments can be seen in 

Figure 4-3. 

 
Figure 4-3: Graphical segmentation results for a PCG with systolic murmurs and split S2 

[chp4_seg.m]. 
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4.2 Wavelet-based Segmentation 

4.2.1 Heart Sound Segmentation 

The two segmentation functions developed for this project are differentiated by the 

specific algorithms used to distinguish heart sounds and murmurs, as this is the most 

fundamental operation for PCG segmentation. The function: 

sscope = dwt_segment(sscope, lvl, varargin) 

attenuates the murmur samples using the discrete wavelet transform (DWT), so that  the 

heart sounds can be segmented. As can be seen in Figure 3-1, the DWT is used in place 

of a frequency domain filter because the heart sounds and murmurs often overlap in 

frequency but have different time domain morphologies. This function’s wavelet filter, like 

the stethoscope object’s wavelet pre-filter, reconstructs a copy of sscope.PCG from its 

approximation coefficient at the decomposition level given by lvl. Since heart sounds and 

murmurs have lower frequencies than noise and sharp edges, and higher levels represent 

lower frequency bands, lvl must be greater than the pre-filter’s level given by sscope.lvl. 

The wavelet filter imperfectly attenuates the murmur samples, so any low amplitude 

samples must be zeroed through simple thresholding prior to heart sound segmentation. 

Since the PCG waveform oscillates between positive and negative values, the threshold 

is instead applied to the positive-valued energy waveform, which is typically calculated 

using the squared energy function. However, the squared energy function is unsuitable 

for thresholding here because it increases the energy separation between medium and 

high amplitude inputs significantly since its slope is directly proportional to amplitude. In 

contrast, the Shannon energy (SE) is minimized at small and large amplitudes but 

maximized at medium amplitudes: 

𝑆𝐸(𝑥) = 𝑥2 log 𝑥2 
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This is optimal for thresholding because the medium amplitude heart sounds are 

compressed into a smaller energy range, but not attenuated, while the low amplitude 

murmurs are assigned a low energy value. This creates an adequate separation between 

heart sounds and attenuated murmurs for simple thresholding. The Shannon energy and 

squared energy curves are compared in Figure 4-4 to demonstrate how the Shannon 

energy is maximized near the medium amplitudes while the squared energy continuously 

increases throughout the amplitude range. 

 
Figure 4-4: Shannon energy vs squared energy [energy_functions.m]. 

In order to prevent high amplitudes from being assigned low energy values less than 

the threshold, the Shannon energy waveform is obtained through a sliding window 

operation. The window averages the energy over a range of samples to reduce the effect 

of large-amplitude spikes in heart sound segments, and it “slides” or advances by one 

sample at a time to produce a large overlap that smooths the resulting energy waveform. 
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Two separate thresholding operations are applied to the energy signal to zero the 

murmur samples. The first is the peak peeling algorithm adapted from [10], which zeroes 

the low energy samples between groups of contiguous higher energy samples, or peaks, 

through an iterative thresholding process demonstrated in Figure 4-5. The peak peeling 

function: 

peaks = peak_peel(x, STC, show, Fs) 

begins by applying a standard deviation threshold to the input signal x, and then stores 

the results in the peak signal and the rejected signal. The peak signal is a copy of the input 

except that sample values less than or equal to the threshold are zeroed (the blue portion 

of the waveform in subplot-1). After each iteration, the peak signal is added to a global 

output, in which the final output is a sum of all iterations’ peaks (subplot-2). In contrast, 

the rejected signal is a copy of the input signal except that sample values greater than the 

threshold are zeroed (the red portion of the waveform in subplot-1). The rejected signal, 

as its name implies, is not added to the output like the peak signal but is instead the next 

iteration’s input. The process only advances to the next iteration if the error, or absolute 

difference, between the mean square of the rejected signal and the mean square of the 

input signal is greater than the stopping condition given by STC (typically much less than 

one). Since the next iteration’s input is always smaller than the current iteration’s input, 

the error is reduced after each iteration and approaches the stopping condition. Thus, 

peak peeling adaptively determines an appropriate threshold for removing low energy 

samples. 

 



74 
 

 

 
Figure 4-5: Two peak peeling iterations. Subplot-1 separates the input signal into the peak signal 

(blue) and the rejected signal (red). Subplot-2 displays the current output signal, which 
is a sum of the peaks from the current and previous iterations [chp4_seg.m]. 
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The second threshold is a constant rather than an iterative algorithm and, unlike peak 

peeling, is applied to the maximum energy of each segment rather than the individual 

samples. Thus, the peaks acquired from peak peeling are segmented, and the segments 

with maximum energies less than the constant threshold are removed. The murmur 

attenuation operations are shown in Figure 4-6, which includes subplots for the PCG, 

wavelet reconstructed PCG, and peak peeled Shannon energy. In subplot-3, the segment 

that has a maximum energy less than the threshold is removed but nonetheless displayed 

on the plot to demonstrate the inadequacies of peak peeling and the necessity of the 

constant threshold. In addition to removing low energy segments, segments narrower than 

the minimum heart sound segment duration specified by sscope.min_HS_dur are also 

removed. The procedure for segmenting heart sounds is summarized in the list below: 

1. Calculate the PCG’s Shannon energy waveform 

2. Peak peel the Shannon energy 

3. Segment the Shannon energy peaks 

4. Remove low energy segments 

5. Remove short duration segments 
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Figure 4-6: PCG (subplot-1), wavelet reconstructed PCG (subplot-2), and peak peeled Shannon 

energy with overlaid constant threshold (subplot-3) [chp4_seg.m]. 

4.2.2 Removing Murmurs from Heart Sound Segments 

As can be seen in subplot-3 of Figure 4-6, incomplete murmur attenuation is 

problematic when murmur segments are connected to heart sound segments after peak 

peeling. However, there is typically a trough between the connected segments that can 
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be used to reposition the segment boundaries and remove any murmur samples from the 

heart sound segments. The local function: 

[new_HS, TR_LOC, thresh_lines] = trim_HS(HS, env, rel_thresh) 

uses the PCG’s envelope, env, to attempt to find the first trough to the left and to the right 

of the heart sound peak within each segment, and then it “trims” the HS segment 

boundaries at these trough locations. A heart sound peak is identified because its 

amplitude exceeds its containing segment’s threshold given by rel_thresh, which is 

specified as a fraction of the segment’s maximum amplitude. For segments containing 

multiple heart sound peaks, such as split heart sounds, only the envelope to the left of the 

leftmost peak and to the right of the rightmost peak is searched for troughs, so that troughs 

between heart sounds are not inadvertently marked. Within trim_HS(), the troughs are 

found using the function findpeaks() from the MATLAB signal processing toolbox. The 

modified segments are stored in new_HS, the trough locations are stored in TR_LOC, and 

information that can be used to plot the threshold lines is stored in thresh_lines. 

The segment trimming process is illustrated in subplot-2 of Figure 4-7, where the heart 

sound segment boundaries obtained from peak peeling and constant thresholding are 

overlaid on the smoothed PCG envelope. The red vertical lines are placed on the segment 

boundaries, the horizontal magenta lines represent the peak threshold, and the yellow 

markers are placed on the detected trough locations. There are at most two troughs per 

segment, but each segment in Figure 4-7 only contains one because the attached 

murmurs are located to the right of the heart sounds. 
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Figure 4-7: Final heart cycle and heart sound segment boundaries overlaid on the original PCG 

(subplot-1), troughs and thresholds for removing murmur samples from heart sound 
segments (subplot-2), murmur samples removed from heart sound segments 
(subplot-3), and segmented murmurs (subplot-4) [chp4_seg.m]. 
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4.2.3 Separating Split Heart Sounds 

After the heart sound segment boundaries are repositioned so as not to include any 

murmur samples, the heart sound segments containing split sounds must be divided into 

their split sound components. Split heart sounds are identified when the PCG envelope 

has two peaks of a sufficient height within a single heart sound segment. The function: 

[HS, TR_LOC, PK_LOC] = split_HS(HS, env, min_dist, min_height) 

uses the PCG envelope, env, to find the two largest peaks in each heart sound segment 

that are separated by at least min_dist samples (typically set to sscope.min_HS_dur) and 

that exceed the magnitude min_height. After the peaks are located, the deepest trough 

between the two peaks is located, which is where the heart sound segment is split. 

In subplot-2 of Figure 4-8, the split sound components are not marked by trim_HS() 

because they lie between two heart sound peaks. For split_HS() In subplot-3, the 

horizontal magenta line represents the trough threshold, red markers are placed on the 

peaks, yellow markers are placed on the troughs between the peaks, and red vertical lines 

denote the new segment boundaries. 
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Figure 4-8: A heart sound segment containing split heart sounds is separated into its component 

segments (subplot-3) [chp4_seg.m]. 
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4.2.4 Heart Cycle Segmentation 

All heart sound segments obtained so far are stored in a single segment array but 

must eventually be classified and stored in separate arrays corresponding to a specific 

type (S1, S2, etc.). However, it is only possible to accurately classify and sort the heart 

sound segments after the heart cycles boundaries are known. The function: 

cyc_bnds = find_heart_cycles(HS, PCG, min_dist, show, Fs) 

uses periodic spikes in the autocorrelation of the PCG’s envelope to locate the heart cycle 

boundaries. The autocorrelation compares two copies of the PCG at different time offsets, 

or lags, to discover periodicity in the signal; and it is applied to the PCG’s envelope so as 

to prevent lulls in the output for lags where the PCG’s oscillations are out of phase. As an 

error check, the spikes must be spaced apart by at least the minimum heart cycle duration 

min_dist, which is typically twice the minimum systole duration given by 

sscope.min_syst_dur. 

In the autocorrelation waveform, the beginning of the first cycle is located at zero lag 

while the end of the first cycle is located at the first spike, which is the largest peak. Since 

the remaining spikes decrease in magnitude for increasing lags, and the two waveforms 

have little overlap for large lags, the last cycle boundary typically does not have a 

characteristic spike. Therefore, only the first cycle’s boundary is placed on a spike, while 

the remaining boundaries are placed at integer multiples of the first spike’s location. This 

process is illustrated in subplot-1 of Figure 4-9, where red markers lie on the detected 

peaks, and red vertical lines intersect the cycle boundaries. 

Even though the spacing between heart cycle boundaries is consistent, the 

boundaries must be repositioned so that they align with the heart sound segments’ start 

indices, as can be seen in subplot-2 of Figure 4-9. The cycle boundaries are shifted to the 
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right by a duration equal to the offset of the first heart sound segment because the 

autocorrelation waveform only provides information about the relative, rather than the 

absolute, cycle boundaries. This shift places the first boundary on the first heart sound 

segment’s start index, but the other boundaries do not necessarily lie on heart sound 

segment start indices. As a result, these boundaries are moved to the closest segment 

start index, and any boundaries shifted beyond the limits of the PCG are removed. To 

prevent cycle boundaries from being placed between split heart sound segments, 

segments spaced within min_dist samples of each other should be combined prior to 

calling find_heart_cycles(). 



83 
 

 
Figure 4-9: The heart cycle boundary locations are approximated from spikes in the 

autocorrelation of the PCG’s envelope (subplot-1). Afterwards, the cycle boundaries 
are shifted right and aligned with the nearest heart sound segment start indices 
(subplot-2) [chp4_seg.m]. 

4.2.5 Murmur Segmentation 

Since the heart sounds serve as the boundaries between which murmurs are 

detected, murmurs must be segmented after heart sounds. Murmur segmentation is 

similar to heart sound segmentation because a positive-valued waveform is peak peeled 

to detect the segment boundaries. However, the fractal dimension of the original PCG, 

rather than the energy waveform of the filtered PCG, is peak peeled because the fractal 
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dimension attenuates noise to a greater extent. Thus, subplot-3 in Figure 4-6 is analogous 

to subplot-4 in Figure 4-7, as both contain a peak peeled waveform that is used to segment 

certain sounds. As with heart sounds, peak peeling is necessary to zero the low intensity 

samples in order to extract the sound segment boundaries, but the constant threshold is 

unnecessary here because murmurs do not have a minimum required amplitude or 

energy. After peeling, the murmur peaks are segmented, and any segments with durations 

less than sscope.min_murm_dur are removed. 

4.2.6 Heart Sound and Murmur Classification 

Only after segmenting the heart sounds, murmurs, and heart cycle boundaries is it 

possible to classify and store the segments in separate arrays corresponding to specific 

sound types. However, sound segment classification requires that no more than two 

normal heart sound segments representing S1 and S2 are present in each heart cycle. 

This total does not include split sound segments, as adjacent segments separated by less 

than the minimum systole duration (sscope.min_syst_dur) are considered split sound 

components and grouped together for the purpose of identifying S1 and S2 segments. 

Thus, no more than two normal heart sound segments, or two groups of combined split 

sound segments, separated by at least the minimum systole duration may exist in a single 

cycle. The function: 

[HS, cHS, cyc_bnds] = limit_HS(HS, cHS, cyc_bnds, E) 

discards any normal heart sound segments other than the two in each cycle that have the 

greatest maximum energy by referencing the energy waveform E. The HS segment array 

may contain split sounds since those are combined in the cHS array. Also, if the start index 

of a discarded segment lied on a heart cycle boundary, this function will shift the cycle 

boundary to the next segment’s start index. Limiting each heart cycle to no more than two 

normal heart sound segments is essential for identifying systole and diastole, which are 
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used to classify systolic and diastolic murmurs as well as the extra heart sounds S3, S4, 

and summation gallops. 

After removing the excess heart sound segments, the function: 

[S1, M1, T1, … 
S2, A2, P2, … 
S3, S4, sum_gallop, … 
syst_murm, diast_murm] = lbl_sounds(HS, cHS, cyc_bnds, extra_HS, murm) 

classifies the normal heart sounds, extra heart sounds, and murmurs; and transfers 

segments from the input arrays HS, extra_HS, and murm to the output arrays that 

correspond to specific sounds. Classification operates on a single heart cycle at a time 

because the process is dependent on the total number of normal heart sound segments 

in each heart cycle. When a cycle contains two normal heart sound segments, the duration 

between the stop index of the first segment and start index of the second segment is 

compared to the duration between the stop index of the second segment and the end of 

the heart cycle. Since these two durations represent either systole or diastole, the shorter 

duration is systole and the longer duration is diastole. If both durations are the same, the 

first is assumed to be systole and the second is assumed to be diastole. The normal heart 

sound segments can therefore be identified because S1 precedes systole and S2 

precedes diastole. When a cycle only contains one normal heart sound segment, the 

segment is assumed to be S1, and the duration between the S1 stop index and the end 

of the heart cycle is assumed to be diastole.  

After identifying the S1 and S2 segments, the local function: 

[C1, C2] = lbl_split(HS, S) 

searches for split sound segments within the boundaries of a heart sound segment (S). If 

two segments are found, then the first is stored in C1 and the second is stored in C2; if S 
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does not contain two segments, then C1 and C2 are uninitialized segments. This function 

searches S1 for M1 and T1 and S2 for A2 and P2: 

[M1, T1] = lbl_split(HS, S1) 
[A2, P2] = lbl_split(HS, S2) 

The systole and diastole segments are then used to classify the murmur segments. 

The local function: 

murm_type = lbl_murm(murm, sil) 

searches for murmur segments within the boundaries of a silent segment (sil), and 

recovered murmur segments are stored in the variable length segment array murm_type. 

This function searches for both systolic and diastolic murmurs: 

syst_murm = lbl_murm(murm, syst) 
diast_murm = lbl_murm(murm, diast) 

Finally, the extra heart sound segments are classified by their locations in diastole. 

The local function: 

[S3, S4, sum_gallop] = lbl_extra(extra, diast) 

searches for extra heart sound segments within the boundaries of a diastole segment 

(diast). The murmur segments are classified by their locations relative to the center of 

diastole; in particular, S3 segments are located to the left of center, and S4 segments are 

located to the right of center. Summation gallops, being the superposition of S3 and S4, 

contain the center of diastole within their segment boundaries. In order to prevent 

erroneous detection, the number of segments in diastole limits sound classification 

behavior. When one segment is present in diastole, it may be classified as either an S3, 

an S4, or a summation gallop. When two segments are present, the first segment is S3, 

and the second segment is S4. If neither of these configurations are detected, an empty 

array is returned rather than an error. 
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Unfortunately, dwt_segment() does not possess the ability to distinguish normal heart 

sounds from extra heart sounds, so the extra segment array passed to lbl_sounds() will 

be empty. Nonetheless, lbl_extra() is described here because it is a general technique 

that is also used in simplicity-based segmentation, as its inputs are segment arrays and 

cycle boundaries instead of implementation-specific waveforms 

4.3 Simplicity-based Segmentation 

The function: 

sscope = simpl_segment(sscope, varargin)  

utilizes the simplicity transform to segment heart sounds and murmurs as an alternative 

to wavelet-based segmentation. Many of the methods and concepts from wavelet-based 

segmentation are reused, but new techniques are developed as well. However, the 

primary factor that distinguishes simplicity from wavelet-based segmentation is that the 

heart sounds and murmurs are segmented in a single operation, which reduces overall 

complexity and improves the accuracy of the segment boundaries. 

4.3.1 Simplicity Waveform Filtering 

An ideal piecewise constant (PWC) function is composed of a series of constant levels 

separated by instantaneous transitions at the jump locations. For the simplicity waveform, 

the segment boundaries are located at the jump locations, and the value of each 

segment’s constant simplicity level distinguishes heart sounds from murmurs. 

Unfortunately, the raw simplicity waveform acquired from sscope.filt_PCG is only an 

approximate PWC function that must be modified before it can be segmented in this way. 

This non-ideal behavior is primarily due to the intrinsic simplicity variation within sound 

segments but is also a result of the ripple generated from the sliding window that is used 

to obtain the waveform. Furthermore, the raw simplicity values in the silent segments or 
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non-sound segments is often comparable to, or greater than, the simplicity values in the 

heart sound and murmur segments. This is a result of sscope.filt_PCG being 

reconstructed from a high level approximation coefficient (low frequency band), which has 

the effect of both attenuating and smoothing high frequency noise. Since the silent 

segments do not contain discernible sounds, the attenuated noise is the primary 

determinant of the simplicity in these segments. Even though the smoothing effect on the 

noise is hardly noticeable after filtering, the simplicity within the silent segments is 

nonetheless high because simplicity is amplitude-invariant (subplot-3 of Figure 4-10). 

Therefore, the simplicity within the non-sound segments is set to zero by peak peeling the 

PCG’s fractal dimension and then zeroing the same samples in the simplicity waveform 

that are zero in the peak peeled fractal dimension (subplot-4 of Figure 4-10). This is similar 

to wavelet-based segmentation except that a second, constant threshold for removing low 

energy segments is unnecessary here. For efficiency, it is possible to avoid the zeroing 

operation (and therefore subplot-3) by only computing the simplicity waveform within the 

boundaries of the peaks acquired from peak peeling. The only reason this is not 

implemented here is to illustrate the non-ideal behavior of the simplicity waveform outside 

of the sound segments. 

4.3.2 Piecewise Constant Approximation 

After zeroing the silent segments’ simplicity, the simplicity waveform must be 

converted to an ideal PWC function. For segments that only contain one sound, the 

average simplicity is sufficient for determining the simplicity level; but for segments that 

contain multiple sounds, a PWC approximation is required to determine the optimal jump 

locations and levels for each sound. Since this is a computationally intensive operation, 

and the non-sound segments have zero-value levels, a separate PWC approximation is 

performed on each segment rather than the entire waveform (subplot-5 of Figure 4-10). 
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The L2 Potts minimization function from the MATLAB Pottslab toolbox is used to 

determine the optimal PWC approximation: 

PWC = minL2Potts(signal, gamma) 

The gamma constant here is proportional to the output’s coarseness, where a small 

gamma closely tracks the input signal, and a large gamma ignores small deviations. The 

simplicity waveform’s PWC approximation can be seen in subplot-5 of Figure 4-10, where 

the S1, S2, and the holosystolic murmurs that were merged in a single segment even after 

peak peeling (subplot-2) can now be individually segmented using the levels and jump 

locations in the PWC approximation. The steps required for transforming the raw simplicity 

waveform into an ideal PWC function are summarized below: 

1. Calculate the PCG’s fractal dimension 

2. Peak peel the fractal dimension 

3. Calculate the PCG’s simplicity 

4. Zero the simplicity in the silent segments 

5. PWC approximate the simplicity within each segment 
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Figure 4-10: The peak peeled fractal dimension extracts the sound peaks from the background 

noise (subplot-2), which are used to zero the non-sound segments in the raw 
simplicity waveform (subplot-4) [chp4_seg.m]. 
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4.3.3 Heart Sound and Murmur Segmentation 

After obtaining the simplicity waveform’s optimal PWC representation, the function: 

seg = levels2seg(PWC) 

generates a segment for each constant level situated between two jump locations, so that 

normal heart sounds, extra heart sounds, and murmurs can be identified by simple 

thresholding. The first threshold separates murmurs and heart sounds because murmurs 

have lower simplicity due to their complex and irregular shape, whereas heart sounds 

have higher simplicity due to their sinusoidal shape. Thus, unlike wavelet-based 

segmentation, heart sounds and murmurs are segmented here with a single waveform; 

and since the jump locations are the optimal segment boundaries, trim_HS() is not needed 

for removing murmur pieces from heart sounds. The second threshold separates normal 

and extra heart sounds, which is typically difficult through auscultation alone because both 

of these sound types are similar. Furthermore, extra heart sounds are often soft enough 

to be inaudible. As a result, the simplicity allows for the extra heart sounds S3, S4, and 

summation gallops to be properly identified when their simplicity levels are greater than 

those of normal heart sounds (including split sounds). In contrast, wavelet-based 

segmentation is incapable of distinguishing normal and extra heart sounds. Both 

thresholding operations can be seen in subplot-2 of Figure 4-11. 
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Figure 4-11: Threshold the normal heart sounds, extra heart sounds, and murmur segments by 

their simplicity levels (subplot-2) [chp4_seg.m]. 

4.3.4 Split Sound Detection, Heart Cycle Segmentation, and Sound Segment 

Classification 

The methods used to segment normal heart sounds, extra heart sounds, and 

murmurs are unique to each segmentation function, but the remaining steps required to 
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fully classify the segments are nearly identical regardless of the chosen technique. The 

first of these is separating heart sound segments that contain split sounds by applying 

split_HS() to the PCG’s envelope. The heart cycle boundaries are then obtained with 

find_heart_cycles(), and the normal heart sound segments (excluding split sounds) are 

restricted to two segments per cycle with limit_HS(). Finally, the normal heart sounds, 

extra heart sounds, and murmurs are classified and stored in segments arrays 

corresponding to specific sound types with lbl_sounds(). 
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5 Segmentation Results 

5.1 Introduction 

5.1.1 Sound File Datasets 

The sound files used for testing the segmentation functions are taken from two 

common auscultation training datasets: the Littmann [33] and the University of Michigan 

[34] heart sound libraries. 

5.1.2 Segmentation Errors and Detection Rates 

The primary purpose of PCG segmentation is to detect murmurs because their 

presence indicates an unhealthy heart. Normal heart sounds must also be detected 

because they are used to locate the heart cycle boundaries and to classify the sound 

segment types within each heart cycle. Thus, faulty segmentation is primarily caused by 

the incorrect detection of normal heart sounds and murmurs. In particular, this can occur 

when heart sounds are misidentified as murmurs and vice versa, or when heart sounds 

and murmurs are not detected at all. The detection of split heart sounds and extra heart 

sounds is also desirable but not an absolute requirement for diagnosing heart health, as 

it is often challenging even through auscultation to distinguish extra sounds from split 

sound components. Therefore, successful segmentation here only requires the proper 

detection of normal heart sounds and murmurs. 

The performance of the wavelet and simplicity-based segmentation methods, as it 

relates to medical diagnosis, is evaluated with the false negative detection rate (FNDR) 

and the false positive detection rate (FPDR). A false negative occurs when no murmurs 

are detected in a murmur-containing heart cycle, which is typically caused by murmurs 

being misidentified as heart sounds (false heart sounds). Conversely, a false positive 

occurs when a murmur is detected in a murmur-free heart cycle, which is caused by a 
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heart sound being misidentified as a murmur (false murmur). The false negative and false 

positive detection rates are defined below: 

FNDR = # of murmur-containing heart cycles without detected murmurs / total # of 

murmur-containing heart cycles 

FPDR = # of murmur-free heart cycles with detected false murmurs / total # of 

murmur-free heart cycles 

These two metrics indicate the effectiveness of murmur detection by the two 

segmentation methods when considering a complete heart sound cycle (composed of one 

systole and one diastole segment) as the fundamental unit in which murmurs should be 

detected if present. This is similar to when a medical clinician evaluates heart function 

during auscultation, as the primary focus is on determining whether or not a murmur is 

detected in each heart cycle. 

The FNDR and FPDR are sufficient statistics for clinicians, but the true murmur 

detection rate (TMDR) and false murmur detection rate (FMDR) are also necessary to fully 

evaluate the performance of the two methods. These rates are defined below: 

TMDR = # of detected true murmurs / total # of murmurs 

FMDR = # of heart cycles with detected false murmurs / total # of heart cycles 

For the TMDR, the murmurs are defined as either murmur-containing systole or diastole 

segments, so even multiple murmur segments within a systole or diastole segment are 

counted as a single murmur. Therefore, the true murmurs are defined as the number of 

properly detected and classified murmur-containing systole or diastole segments rather 

than individual murmur segments. For the FMDR, the heart cycles include both the 
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murmur-free and murmur-containing heart cycles, so it is a more general rate than the 

FPDR, which only considers the murmur-free heart cycles. 

Even though the TMDR and FNDR have different evaluative purposes, they are 

inversely related. This is because an increase in the number of detected true murmurs 

tends to decrease the number of false negative heart cycles. For example, if each heart 

cycle contains a systolic murmur, then each additional detected systolic murmur increases 

the TMDR and decreases the FNDR. 

The underlying causes for the false positives, false negatives, and false murmurs are 

discussed and illustrated with examples in sections 5.2 and 5.3. 

5.1.3 False Negative and False Positive Detection Rates 

The dataset sound files are separated into those that do and do not contain murmurs. 

Since false negatives can only occur in murmur-containing cycles, and false positives can 

only occur in murmur-free cycles, the FNDR only applies to the sound files that contain 

murmurs, and the FPDR only applies to the sound files that do not contain murmurs. 

For both wavelet and simplicity-based segmentation, the false negatives are 

enumerated in Table 5-1 (Michigan) and Table 5-3 (Littmann), and the false positives are 

enumerated in Table 5-2 (Michigan) and Table 5-4 (Littmann). All heart cycles in the false 

negative tables contain murmurs, while none of the heart cycles in the false positive tables 

contain murmurs. The false negative and false positive data is then used to determine the 

FNDR in Table 5-5 and the FPDR in Table 5-6, and both of these detection rates are 

compared in Table 5-7. 
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Table 5-1: False negatives (Michigan). 

Filename 
Murmur-containing 

cycles 

Murmur-containing cycles 
without detected murmurs 

Wavelet Simplicity 

early dias murm 5 2 5 

ejection click & syst 
eject murm & single S2 

4 0 0 

mid sys click 5 0 0 

OS & dias murm 5 0 1 

S3 & holosys murm 6 1 0 

S4 & mid sys murm 5 0 0 

sys click & late sys 
murm 

5 0 0 

sys murm & absent S2 6 0 0 

sys & dias murm 6 0 0 

sys eject murm & split 
S2 trans 

6 0 0 

sys eject murm & split 
S2 pers 

5 0 0 

Total 58 3 6 

 
Table 5-2: False positives (Michigan). 

Filename Murmur-free cycles 

Murmur-free cycles with detected 
false murmurs 

Wavelet Simplicity 

normal 1 5 0 0 

normal 2 5 4 0 

S3 5 5 0 

S4 5 5 0 

single S2 5 0 0 

split S1 pers 6 0 0 

split S2 pers 6 0 0 

split S2 trans 6 0 0 

Total 43 14 0 
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Table 5-3: False negatives (Littmann). 

File Name 
Murmur-containing 

cycles 

Murmur-containing cycles 
without detected murmurs 

Wavelet Simplicity 

AP 0 0 0 

AR 4 0 0 

AS 3 0 0 

ASD 2 0 0 

COA 2 0 0 

EA 3 0 0 

eject click 2 0 0 

eject click & AS 
moderate & AR mild 

2 0 0 

innocent murmur 2 0 0 

late sys click 4 0 0 

mid sys click 3 0 0 

MR severe 2 0 0 

MS moderate 3 1 3 

MVP 4 0 0 

OS 2 0 0 

PDA 2 0 0 

S4 & AS severe 2 0 0 

TR severe 2 0 0 

VSD 2 0 0 

Total 46 1 3 

 
Table 5-4: False positives (Littmann). 

Filename Murmur-free cycles 

Murmur-free cycles with 
detected false murmurs 

Wavelet Simplicity 

normal 2 0 0 

S3 & S4 3 0 0 

S3 abnormal 3 0 0 

S3 physio 2 0 0 

S4 2 0 0 

sum gallop 6 2 0 

split S2 fixed 4 0 0 

split S2 physio 4 0 0 

split S1 4 0 0 

Total 30 2 0 
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Table 5-5: False negative detection rates (FNDR). 

Dataset 
Murmur-

containing 
cycles 

Murmur-containing 
cycles without 

detected murmurs 
FNDR 

Wavelet Simplicity Wavelet Simplicity 

Michigan 58 3 6 5% 10% 

Littmann 46 1 3 2% 7% 

Total 104 4 9 4% 9% 

 
Table 5-6: False positive detection rates (FPDR). 

Dataset 
Murmur-free 

Cycles 

Murmur-free cycles 
with detected false 

murmurs 
FPDR 

Wavelet Simplicity Wavelet Simplicity 

Michigan 43 14 0 33% 0% 

Littmann 30 2 0 7% 0% 

Total 73 16 0 22% 0% 

 
Table 5-7: FNDR and FPDR comparison for wavelet and simplicity-based segmentation. 

Technique FNDR FPDR 

Wavelet 4% 22% 

Simplicity 9% 0% 

 

5.2 Wavelet-Based Segmentation 

5.2.1 Wavelet Constants 

The constants for wavelet-based segmentation, which consist of window lengths, 

peak peeling stopping conditions, thresholds, and wavelet filter-specific values, are listed 

in Table 5-8. All constants can be changed from their defaults using name-value pair 

arguments passed to dwt_segment() (except for lvl, which is an optional positional 

argument). Also, the HS_thresh constant has two values listed for each dataset: 0.1 for 

the Michigan dataset (default value) and 0.05 for the Littmann dataset. 



100 
 

Table 5-8: Wavelet constants. 

Constant Value Description 

lvl 5 
Wavelet decomposition level for attenuating murmurs in 
the PCG 

wavef ‘db6’ Wavelet function 

W 20 ms Fractal dimension and energy waveform window lengths 

STCW 10-4 Peak peeling stopping condition  for the wavelet-filtered 
PCG 

HS_thresh 
0.1 
0.05 

Minimum allowable energy for heart sound segments 

WS 20 ms PCG smoothing window length 

max_tr 0.5 
rel_thresh argument for trim_HS() that specifies the 
segment thresholds as a fraction of their maximum 
amplitudes 

min_pk 0.2 
min_height argument for split_HS() that specifies the 
minimum peak height for a split sound component 

STCF 10-4 Peak peeling stopping condition for the fractal dimension 
waveform 

 

5.2.2 Wavelet Errors 

The most common wavelet-based segmentation errors occur while thresholding the 

energy waveform of the wavelet-filtered PCG. Heart sound segments, including normal, 

extra, and split sounds, are mistaken for murmurs when their maximum energies are less 

than the energy threshold, while murmur segments are mistaken for heart sounds when 

their maximum energies are greater than the energy threshold. 

Figure 5-1 and Figure 5-2 illustrate how a normal heart sound can be misidentified as 

a murmur when its maximum energy is less than the energy threshold, occurring in a 

sound file with an extra S3 sound. As can be seen in subplot-3 of Figure 5-1, the first S1 

segment’s maximum energy is less than the threshold, whereas the second S1 segment’s 

maximum energy is slightly greater than the threshold. Thus, the first S1 is misidentified 
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as a murmur, but the second S1 is properly identified (subplot-4 of Figure 5-2). As a result, 

the first heart cycle’s start boundary is placed on the start index of the S2 instead of the 

S1 segment, which shortens the heart cycle’s duration, removes the systolic murmur from 

the heart cycle, and causes S2 to be erroneously classified as S1 (subplot-1 of Figure 

5-2). In addition, the S2 and S3 segments in both cycles are misidentified as split 

components due to their close proximities and the lack of extra heart sound discrimination 

for wavelet-based segmentation. In particular, the S2 and S3 segments in the first cycle 

are considered split S1 components, but the S2 and S3 segments in the second cycle are 

more appropriately considered split S2 components. Classifying extra heart sounds as 

split components is not considered an error per se because the extra sounds resemble 

split sounds and are typically located near S1 or S2. Therefore, only a split S2 is detected 

in the first cycle as opposed to the S1, systolic murmur, and split S2 detected in the second 

cycle. 
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Figure 5-1: The first S1 is mistaken for a murmur because its maximum energy is less than the 

energy threshold (subplot-3) [dwt_michigan.m]. 
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Figure 5-2: The first S1 segment is misidentified as a murmur, but the second S1 segment is 

properly identified (subplot-4). As a result, the first heart cycle’s start boundary is 
moved from S1 to the nearest S2 (subplot-1) [dwt_michigan.m]. 
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Figure 5-3 and Figure 5-4 illustrate how an S4 segment can be misidentified as a 

murmur when its maximum energy is less than the heart sound threshold. As can be seen 

in subplot-3 of Figure 5-3, similar to the previous example, the first S4 segment’s maximum 

energy is less than the threshold, while the second S4 segment’s maximum energy is 

greater than the threshold. As a result, the first S4 is misidentified as a murmur, but the 

second S4 is acceptably classified as a split S1 component give its proximity to S1 

(subplot-4 of Figure 5-4). However, unlike the previous example, the cycle boundaries 

here are correctly located since neither S1 nor S2 is removed during segmentation 

(subplot-1 of Figure 5-4). 
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Figure 5-3: The first S4 is misidentified as a murmur because its maximum energy is less than the 

energy threshold (subplot-3) [dwt_littmann.m]. 
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Figure 5-4: The first S4 is misidentified as a murmur, but the second S4 is acceptably 

misidentified as a split sound component (subplot-4). The cycle boundary locations 
are correct because S1 and S2 are properly identified (subplot-1) [dwt_littmann.m]. 
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Figure 5-5 illustrates how a murmur can be misidentified as a heart sound when its 

maximum energy is greater than the heart sound threshold. The first heart cycle in this 

example contains both a systolic and a diastolic murmur (subplot-1). The high-frequency 

systolic murmurs in the first and second cycles are attenuated sufficiently after wavelet 

filtering, but the diastolic murmur in the first cycle is largely unaffected by filtering due to 

its low frequency content and its resemblance of a heart sound (subplot-2). As a result, 

the diastolic murmur is misidentified as a heart sound because its maximum energy is 

greater than the threshold (subplot-3). 
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Figure 5-5: The diastolic murmur is misidentified as a heart sound because its maximum energy 

is greater than the threshold (subplot-3) [dwt_littmann.m]. 
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The function trim_HS() is a common source of errors for wavelet-based segmentation 

due to its reliance on thresholding the PCG’s envelope to remove murmur samples from 

the heart sound segments. Erroneous results are caused by three situations in particular. 

The first error occurs when two heart sounds reside in a single segment, and trim_HS() 

repositions the segment boundaries to remove one of the sounds because its peak is 

below the segment’s threshold. As a result, the heart sound is misidentified as a murmur. 

The second error occurs when a murmur and a heart sound reside in the same segment, 

but the murmur is not removed because its peak is above the segment’s threshold. As a 

result, the murmur is misidentified as a split sound component. Finally, the third error 

occurs when a heart sound segment’s boundaries are repositioned by trim_HS() despite 

the lack of murmurs in the segment. This is typically caused by a disturbance in the heart 

sound that manifests as a small trough in the PCG’s envelope, which is mistaken for a 

junction between a heart sound and a murmur. 

Figure 5-6 illustrates the first type of error caused by trim_HS(). Here, each S4 and 

S1 pair resides in a single heart sound segment because they were not separated during 

peak peeling. Since the S4 peaks are below their respective segment thresholds, 

trim_HS() removes S4 from the heart sound segments (subplot-2). After the segment 

boundaries are repositioned, the S4 are misidentified as murmurs (subplot-4). 
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Figure 5-6: The S4 peaks are below the segment thresholds (subplot-2) and are therefore 

misidentified as murmurs (subplot-4) [dwt_michigan.m]. 
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Figure 5-7 illustrates the second and third type of error caused by trim_HS(). In the 

first segment of the first heart cycle, which contains an S2 and an opening snap murmur, 

the murmur is exempt from removal because its peak is above the threshold (subplot-2). 

As a result, the murmur is misidentified as a split S2 component (subplot-3). In the second 

segment of the first cycle, which contains an S1 and a late diastolic murmur, the murmur 

is successfully removed because trim_HS() repositions the segment’s left boundary 

(subplot-2). However, the segment’s right boundary is also repositioned even though a 

systolic murmur does not exist within that segment. As a result, the portion of S1 that is 

removed is misidentified as a murmur (subplot-4). 
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Figure 5-7: The opening snap murmur is misidentified as a split S2 component because the 

murmur’s peak is above the threshold (subplot-2). Also, the right boundary of S1 is 
repositioned despite the lack of a systolic murmur, and the remaining piece is 
misidentified as a murmur [dwt_michigan.m]. 
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Figure 5-8 illustrates an error that is unrelated to either energy thresholding or the 

trim_HS() function. Here, find_heart_cycles() determines an incorrect distance between 

cycle boundaries (subplot-1). This is because the PCG has a large amount of activity, so 

the autocorrelation waveform is jagged, and a peak is detected near zero lag. This peak’s 

magnitude is greater than the first spike located at a lag of one second, so it is misidentified 

as the first heart cycle boundary. Segmentation therefore fails because the cycle durations 

are too short. 

 
Figure 5-8: The cycle durations are too short because a peak near zero lag is misidentified as a 

heart cycle boundary [“AP.mp3”, dwt_littmann.m]. 
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5.2.3 Wavelet Results 

The wavelet-based segmentation errors described in the previous section are labeled 

and summarized in Table 5-9. All of the murmur-containing sound files, as well as the 

murmur-free sound files with detected errors, are listed in Table 5-10 (Michigan) and Table 

5-11 (Littmann). For each sound file, the number of actual murmurs, detected true 

murmurs, and heart cycles with detected false murmurs are listed; and the sound files are 

labeled with their detected errors. This data is used to determine the TMDR in Table 5-12 

and the FMDR in Table 5-13. Most of the sound files with detected errors either lower the 

TMDR or increase the FMDR, or both, but certain sound files with detected errors do not 

actually result in undetected true murmurs or detected false murmurs and therefore do not 

affect those rates. 

Table 5-9: Wavelet-based segmentation error labels and descriptions. 

Error Process Description 

E1-A 

Energy thresholding 

S1/S2 < HS threshold 

E1-B S3/S4 < HS threshold 

E1-C Murmur > HS threshold 

E2-A 

trim_HS() 

HS peak < segment threshold 

E2-B Murmur peak > segment threshold 

E2-C 
Trough is identified as a junction 
between HS and murmur 

E3 find_heart_cycles() 
Incorrect peak detected in the 
autocorrelation signal 
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Table 5-10: Wavelet-based segmentation results (Michigan). 

Filename Error 
Total 

Murmurs 
Detected true 

murmurs 

Heart cycles with 
detected false 

murmurs 

early dias murm E1-A 5 0 3 

ejection click & syst 
eject murm & single S2 

 4 4 0 

mid sys click  5 5 0 

OS & dias murm 
E2-B 
E2-C 

5 5 1 

S3 & holosys murm E1-A 6 5 2 

S4 & mid sys murm  5 5 0 

sys click & late sys 
murm 

 5 5 0 

sys murm & absent S2  6 6 0 

sys & dias murm  6 6 0 

sys eject murm & split 
S2 trans 

E1-B 6 6 1 

sys eject murm & split 
S2 pers 

 5 5 0 

normal 2 E1-A 0 0 4 

S3 E2-A 0 0 5 

S4 E2-A 0 0 5 

Total 58 52 21 
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Table 5-11: Wavelet-based segmentation results (Littmann). 

Filename Errors 
Total 

Murmurs 
Detected true 

murmurs 

Heart cycles 
with detected 
false murmurs 

AP E3 4 0 0 

AR  4 4 0 

AS  3 3 0 

ASD E1-C 4 2 0 

COA  4 4 0 

EA  6 6 0 

eject click  2 2 0 

eject click & AS 
moderate & AR mild 

E2-B 4 4 0 

innocent murmur  2 2 0 

late sys click  4 4 0 

mid sys click  3 3 0 

MR severe E1-C 4 0 0 

MS moderate E1-C 3 2 0 

MVP  4 4 0 

OS  2 2 0 

PDA E1-A 4 2 0 

S4 & AS severe  2 2 0 

TR severe  4 4 0 

VSD E1-C 4 2 0 

S4 E1-B 0 0 0 

sum gallop E1-B 0 0 2 

Total 67 52 2 

 
Table 5-12: Wavelet-based segmentation true murmur detection rate (TMDR). 

Dataset Murmurs Detected true murmurs TMDR 

Michigan 58 52 90% 

Littmann 67 52 78% 

Total 125 104 83% 

 
Table 5-13: Wavelet-based segmentation false murmur detection rate (FMDR). 

Dataset 
Heart 

Cycles 
Heart cycles with  

detected false murmurs 
FMDR 

Michigan 101 21 21% 

Littmann 76 2 3% 

Total 177 23 13% 
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5.3 Simplicity-Based Segmentation 

5.3.1 Simplicity Constants 

The constants for simplicity-based segmentation, which consist of window lengths, 

the peak peeling stopping condition, thresholds, and simplicity-specific values, are listed 

in Table 5-14. All constants can be changed from their defaults using name-value pair 

arguments passed to simpl_segment(). 

Table 5-14: Simplicity-based segmentation constants. 

Constant Value Description 

W 20 ms 
Fractal dimension and energy waveform window 
lengths 

STC 10-4 Peak peeling stopping condition 

N 10 ms Simplicity window length 

m 2 ms Simplicity delay vector length 

gamma 0.8 Coarseness of the PWC simplicity waveform 

HS_thresh 0.6 Simplicity heart sound threshold 

extra_HS_thresh 0.8 Simplicity extra heart sound threshold 

WS 20 ms PCG smoothing window length 

min_pk 0.2 
min_height argument for split_HS() that specifies the 
minimum peak height for a split sound component 

 

5.3.2 Simplicity Errors 

Simplicity thresholding for simplicity-based segmentation is the functional equivalent 

of energy thresholding for wavelet-based segmentation, except that the heart sound and 

murmur segments are identified by their levels simplicity rather than their maximum 

energies. As such, heart sound segments are misidentified as murmurs when their levels 
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are less than the heart sound threshold, and murmur segments are misidentified as heart 

sounds when their levels are greater than the heart sound threshold. 

Figure 5-9 illustrates how murmur segments can be misidentified as heart sounds 

when their simplicity levels are greater than the normal heart sound threshold. This is the 

same example used in Figure 5-5 for wavelet-based segmentation, so like before, the two 

high-frequency systolic murmurs resemble typical murmurs, whereas the diastolic murmur 

has low frequency content and resembles a heart sound (subplot-1). As a result, both of 

the systolic murmurs are properly identified because their levels are less than the 

threshold, but the diastolic murmur pieces are misidentified as heart sounds because their 

levels are greater than the threshold (subplot-2). 
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Figure 5-9: The diastolic murmur is misidentified as a heart sound because its simplicity levels 

are greater than the HS threshold (subplot-2) [simpl_littmann.m]. 
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Figure 5-10 illustrates how at least one heart sound segment is required for 

segmentation. Since all the segments’ levels are less than the normal heart sound 

threshold, no heart sounds are detected (subplot-5). This is the same example used in 

Figure 5-8 for wavelet-based segmentation, except that the error here occurs prior to 

find_heart_cycles(), as heart cycle segmentation requires at least one heart sound 

segment. Therefore, even though the segment levels are less than the threshold, the heart 

sounds are not misidentified as murmurs because segmentation fails before sound 

classification can occur. 
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Figure 5-10: No heart sounds are detected because all segment levels are less than the HS 

threshold (subplot-5) [simpl_littmann.m]. 
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The purpose of peak peeling for segmentation is to zero the low-amplitude noise 

within the silent segments, so that the heart sounds and murmurs can be segmented. 

Unfortunately, low amplitude murmurs may be inadvertently zeroed as well. In subplot-1 

of Figure 5-11, a very low intensity diastolic murmur is not visible on the plot but can be 

heard as a soft “wooshing” sound with headphones. Further proof of the murmur’s 

existence can be seen in the simplicity waveform in subplot-3. The high simplicity values 

in systole are typical of the attenuated and smoothed noise in the silent segments, but the 

moderate simplicity values in diastole, which are lower than those in S1 and S2, are 

characteristic of murmurs. Since the murmurs here are so soft, their time-domain values 

are not transformed into fractal values of sufficient amplitude, so they are zeroed during 

peak peeling (subplot-2). The zero-valued samples in the peak peeled fractal dimension 

are then used to zero the corresponding samples in the simplicity waveform (subplot-4). 

As a result, the murmurs cannot be segmented because their simplicity levels are set to 

zero. This is a rare error because most heart sounds are loud enough to be transformed 

into a suitable fractal value (and to also be visible on the plot) and are therefore not 

removed during peak peeling. Nonetheless, this example demonstrates how the 

amplitude-invariant simplicity transform can be limited by the fractal dimension. 
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Figure 5-11: The low amplitude diastolic murmurs (not visible) are undetected because they were 

zeroed while peak peeling the fractal dimension (subplot-2). The corresponding 
simplicity values are zeroed (subplot-4), so the murmurs are not segmented (subplot-
5) [simpl_michigan.m]. 
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Even though distinguishing extra heart sounds from split sound components is not a 

requirement for successful segmentation, misidentifying extra heart sounds can affect the 

segmentation of normal heart sounds in certain scenarios. This is illustrated in Figure 5-12, 

where the simplicity levels of the summation gallops are greater than the S1 and S2 levels 

but are nonetheless less than the extra heart sound threshold. As a result, the summation 

gallops are misidentified as normal heart sounds (subplot-2), and since S2 and the 

summation gallop are separated by less than sscope.min_syst_dur samples, they are 

further misidentified as split sound components. Unfortunately, the distance separating 

the “split” sounds from S1 is less than the distance separating S1 from S2, so systole and 

diastole, and therefore S1 and S2, are switched. 
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Figure 5-12: The summation gallops are misidentified as split sound components because their 

simplicity levels are less than the extra HS threshold (subplot-2). This causes systole 
and diastole, and therefore S1 and S2, to be switched (subplot-1) [simpl_littmann.m]. 
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5.3.3 Simplicity Error Tables 

The simplicity-based segmentation errors described in the previous section are 

labeled and summarized in Table 5-15. All the murmur-containing sound files, as well as 

the murmur-free sound files with detected errors, are listed in Table 5-16 (Michigan) and 

Table 5-17 (Littmann). For each sound file, the number of actual murmurs, detected true 

murmurs, and cycles with detected false murmurs are listed; and the sound files are 

labeled with their detected errors. This data is used to determine the TMDR in Table 5-18 

and the FMDR in Table 5-19. Most sound files with detected errors either lower the TMDR 

or increase the FMDR, or both, but certain sound files with detected errors do not actually 

cause undetected true murmurs or detected false murmurs and therefore do not affect 

those rates at all. 

Table 5-15: Simplicity-based segmentation error labels and descriptions. 

Error Process Description 

E1-A 

Simplicity thresholding 

S1/S2 < normal HS threshold 

E1-B Murmur > normal HS threshold 

E1-C S3/S4 < extra HS threshold 

E2 Peak peeling Soft murmurs are removed 
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Table 5-16: Simplicity-based segmentation results (Michigan). 

Filename Errors Murmurs 
Detected true 

murmurs 

Cycles with 
detected false 

murmurs 

early dias murm E2 5 0 0 

ejection click & syst 
eject murm & single 
S2 

 4 4 0 

mid sys click  5 5 0 

OS & dias murm E1-B 5 4 0 

S3 & holosys murm  6 6 0 

S4 & mid sys murm  5 5 0 

sys click & late sys 
murm 

 5 5 0 

sys murm & absent 
S2 

 6 6 0 

sys & dias murm  6 6 0 

sys eject murm & 
split S2 trans 

 6 6 0 

sys eject murm & 
split S2 pers 

 5 5 0 

Total 58 52 0 
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Table 5-17: Simplicity-based segmentation results (Littmann). 

Filename Errors Murmurs 
Detected 

true 
murmurs 

Cycles with 
detected false 

murmurs 

AP E1-A 4 0 0 

AR  4 4 0 

AS  3 3 0 

ASD E1-B 4 2 0 

COA  4 4 0 

EA  6 6 0 

eject click  2 2 0 

eject click & AS 
moderate & AR mild 

 4 4 0 

innocent murmur  2 2 0 

late sys click  4 4 0 

mid sys click  3 3 0 

MR severe E1-B 4 2 0 

MS moderate E1-B 3 0 0 

MVP  4 4 0 

OS  2 2 0 

PDA E1-A 4 2 0 

S4 & AS severe  2 2 0 

TR severe  4 4 0 

VSD E1-B 4 2 0 

sum gallop E1-C 0 0 0 

Total 67 52 0 

 
Table 5-18: Simplicity true murmur detection rate (TMDR). 

Dataset Murmurs 
Detected true 

murmurs 
TMDR 

Michigan 58 52 90% 

Littmann 67 52 78% 

Total 125 104 83% 

 
Table 5-19: Simplicity false murmur detection rate (FMDR). 

Dataset Cycles 
Cycles with  detected 

false murmurs 
FMDR 

Michigan 101 0 0% 

Littmann 76 0 0% 

Total 177 0 0% 
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5.4 Comparison of Segmentation Error Performance for the Two Methods 

The various detection rates for wavelet and simplicity-based segmentation are 

compared in Table 5-20 and discussed below. In addition, the errors types described in 

Table 5-9 (wavelet-based segmentation) and Table 5-15 (simplicity-based segmentation) 

are compared among sounds files in Table 5-21 (Michigan datest) and Table 5-22 

(Littmann dataset). 

Table 5-20: Wavelet and simplicity-based segmentation performance comparison. 

Method FNDR FPDR TMDR FMDR 

Wavelet 4% 22% 83% 13% 

Simplicity 9% 0% 83% 0% 

 
The TMDR is the same for both wavelet and simplicity-based segmentation because 

the incidence of detecting true murmurs is lowered by the detection of false heart sounds 

(murmurs misclassified as heart sounds). For wavelet-based segmentation, murmurs are 

typically loud enough to be greater than the energy threshold and are misclassified as 

heart sounds when the wavelet filter is incapable of attenuating the murmurs. For 

simplicity-based segmentation, the same murmurs that cannot be attenuated by the 

wavelet filter tend to also have high simplicity and are likewise misclassified as murmurs. 

This common susceptibility for errors is due to the simplicity and wavelet transforms’ 

dependence on waveform morphology. In fact, most of the sound files with detected false 

heart sounds are common to both wavelet-based segmentation (E1-C) and simplicity-

based segmentation (E1-B). 

The FNDR is low for both segmentation methods due to its inverse relationship with 

the TMDR. However, the primary reason the FNDR for wavelet-based segmentation is 

less than the FNDR for simplicity-based segmentation is that the FMDR is non-zero for 

wavelet-based segmentation. This is because detecting false murmurs in murmur-

containing cycles that lack detected true murmurs will artificially decrease the number of 
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false negative cycles. This is aptly demonstrated in the sound file early dias murm from 

the Michigan dataset. For simplicity-based segmentation, all five cycles are false 

negatives because the soft murmurs were zeroed through peak peeling (E2). For wavelet-

based segmentation, the same murmurs were also zeroed through peak peeling; however, 

only two of the cycles are false negatives because false murmurs were detected in the 

other three cycles. Therefore, the FNDR is suitable for clinical evaluations, but a full 

performance evaluation of the two methods can only be achieved by comparing the TMDR 

and FMDR. As a result, simplicity-based segmentation, despite having the same TMDR 

as wavelet-based segmentation, is superior in this regard because its FMDR is zero. 

The FMDR is non-zero for wavelet-based segmentation because heart sounds are 

often soft enough to be less than the heart sound energy threshold and therefore 

misclassified as murmurs (E1-A and E1-B). Furthermore, trim_HS() is prone to splitting 

heart sound segments and creating unnecessary murmurs (E2-A and E2-C). In contrast, 

the FMDR is zero for simplicity-based segmentation because the simplicity waveform is 

amplitude invariant. Since heart sounds have relatively high simplicity, it is rare for them 

to be misclassified as murmurs or noise (low simplicity). In addition, the gamma constant 

for the L2 Potts minimization function is the equivalent of trim_HS() for simplicity-based 

segmentation because both are used to determine the optimal boundaries between 

merged heart sounds and murmurs. Nonetheless, the two are hardly equivalent in 

outcome because locating the segment boundaries using the piecewise constant 

approximation function on the simplicity waveform is a far more accurate and less error 

prone method than is using energy thresholding and trim_HS(). 

The FPDR, as a subset of the FMDR, is likewise non-zero for wavelet-based 

segmentation but zero for simplicity-based segmentation. The only reason the FPDR is 
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greater than the FMDR, at least for these datasets, is that a higher proportion of false 

murmurs are detected in the murmur-free cycles than are detected in all cycles.  

Table 5-21: Wavelet and simplicity-based segmentation error comparisons (Michigan). 

Filename Wavelet Simplicity 

early dias murm E1-A E2 

ejection click & syst eject 
murm & single S2 

  

mid sys click   

OS & dias murm 
E2-B 
E2-C 

E1-B 

S3 & holosys murm E1-A  

S4 & mid sys murm   

sys click & late sys murm  E2 

sys murm & absent S2   

sys & dias murm   

sys eject murm & split 
S2 trans 

E1-B  

sys eject murm & split 
S2 pers 

  

normal 1   

normal 2 E1-A  

S3 E2-A  

S4 E2-A  

single S2   

split S1 pers   

split S2 pers   

split S2 trans   
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Table 5-22: Wavelet and simplicity-based segmentation error comparisons (Littmann) 

File Name Wavelet Simplicity 

AP E3 E1-A 

AR   

AS   

ASD E1-C E1-B 

COA   

EA   

eject click   

eject click & AS 
moderate & AR mild 

E2-B  

innocent murmur   

late sys click   

mid sys click   

MR severe E1-C E1-B 

MS moderate E1-C E1-B 

MVP   

OS   

PDA E1-A E1-A 

S4 & AS severe   

TR severe   

VSD E1-C E1-B 

normal   

S3 & S4   

S3 abnormal   

S3 physio   

S4 E1-B  

sum gallop E1-B E1-C 

split S2 fixed   

split S2 physio   

split S1   
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6 Conclusions and Future Work 

The results from Chapter 5 demonstrate how simplicity-based segmentation is 

superior to wavelet-based segmentation. This is because the simplicity transform is 

amplitude invariant and, in combination with Pottslab’s piecewise constant denoising 

algorithm, is able to determine each sound segment’s optimal boundaries, assign a single 

simplicity value to each segment, and then classify the sound segments according to their 

simplicity levels. This is in contrast to wavelet-based segmentation, which must attenuate 

the murmurs to segment the heart sounds, remove non-attenuated or partially attenuated 

murmur segments by energy thresholding, and use the PCG waveform to remove any 

murmurs merged with heart sounds. As a result, the incidence of false murmurs, and 

therefore false positives, is significant. Despite the comparable false negative and true 

murmur detection rates for both methods, simplicity-based segmentation is ultimately 

preferable due to its zero false positive and false murmur detection rates. 

Even though both segmentation methods are adequate for detecting and classifying 

murmurs, certain aspects of the system could be improved. One improvement could be 

applied to the heart cycle segmentation function, find_heart_cycles(). This function 

determines the heart cycle boundaries by locating the largest peak in the autocorrelation 

waveform, which should resemble a spike and be located on the first heart cycle’s stop 

boundary,  and then places the remaining heart cycle boundaries at integer multiples of 

the first peak’s location. Unfortunately, this function is currently incapable of verifying 

whether or not the largest peak is a prominent spike rather than a small fluctuation. This 

could be improved by setting a minimum acceptable peak prominence, or height relative 

to surrounding troughs, by using the ‘MinPeakProminence’ option for findpeaks(), which 

is only available in MATLAB 2015. 
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Another suggested improvement would replace the simple thresholds used during 

simplicity-based segmentation with a clustering algorithm. Rather than manually choosing 

an optimal threshold, sound segment features such as pitch, location, shape, and duration 

could be placed in a feature vector, and the algorithm would use these features to classify 

each sound segment as either a normal heart sound, extra heart sound, or murmur. 

Finally, even though the purpose of this system is to detect and classify murmurs as either 

systolic or diastolic, it is also desirable to further categorize the murmurs by their specific 

types, such as aortic stenosis, mitral regurgitation, atrial septal defect, etc. This could be 

achieved by reusing the feature vector from the clustering operation as an input to an 

artificial neural network. This would require training the network with a select dataset of 

PCG’s, so that murmur segments from clinical PCG’s could be completely and accurately 

classified. 
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A. Scripts 

A.1 Examples 

A.1.1 chp4_seg.m 

clear; clc; close all 
 
lvl1 = 2; 
lvl2 = 5; 
 
%% Split S2 (persistent) 
close all 
stethoscope('michigan', 'split S2 pers.mp3', lvl1, 'show_filt', true); 
 
%% Systolic ejection murmur & split S2 (persistent) 
close all 
sscope = stethoscope('michigan', 'sys eject murm & split S2 pers.mp3', lvl1); 
sscope = dwt_segment(sscope, lvl2, 'show', 'seg'); 
plot(sscope) 
 
%% Systolic murmur & absent S2 
close all 
sscope = stethoscope('michigan', 'sys murm & absent S2.mp3', lvl1); 
dwt_segment(sscope, lvl2, 'show', { 
    'seg'%, ... 
%     'peak_peel', ... 
%     'find_cyc' 
}); 
 
%% Split S2 (fixed) 
close all 
sscope = stethoscope('littmann', 'split S2 fixed.mp3', lvl1); 
dwt_segment(sscope, lvl2, 'show', 'seg'); 
 
%% S3 & holosystolic murmur 
close all 
sscope = stethoscope('michigan', 'S3 & holosys murm.mp3', lvl1); 
simpl_segment(sscope, 'show', 'seg'); 

A.1.2 energy_functions.m 

% Shannon energy vs squared energy curves 
clear; close all; clc 
 
x = linspace(0, 1, 101); 
shannon = x.^2 .* log(x.^2); 
squared = x.^2; 
 
figure('color','w') 
hold on 
plot(x, squared) 
plot(x, -shannon, 'm') 
grid on 
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box on 
ylabel('E(x)') 
xlabel('x') 
legend('Squared energy - x^2', 'Shannon energy - x^2log(x^2)', ... 
  'Location', 'northwest') 
title('Energy functions') 

A.1.3 heart_sounds.m 

clear; clc; close all 
folder = fullfile('PCG', 'michigan'); 
 
max_dur = 3; 
ds = 'dyadic'; 
Fs_min = 4e3; 
 
yl = [-1, 1]; 
xlbl = 't (s)'; 
ylbl = 'Amplitude'; 
 
%% Split S2 
close all 
path = fullfile(folder, 'split S2 pers.mp3'); 
[split_S2, Fs] = load_PCG(path, max_dur, ds, Fs_min); 
t = time(split_S2, Fs); 
 
figure 
plot(t, split_S2) 
ylim(yl) 
xlabel(xlbl) 
ylabel(ylbl) 
title('Split S2 Example') 
plot_style(gca) 
 
%% S3 
close all 
path = fullfile(folder, 'S3.mp3'); 
[S3, Fs] = load_PCG(path, max_dur, ds, Fs_min); 
t = time(S3, Fs); 
 
figure 
plot(t, S3) 
ylim(yl) 
xlabel(xlbl) 
ylabel(ylbl) 
title('S3 Example') 
plot_style(gca) 
 
%% S4 
close all 
path = fullfile(folder, 'S4.mp3'); 
[S4, Fs] = load_PCG(path, max_dur, ds, Fs_min); 
t = time(S4, Fs); 
 
figure 
plot(t, S4) 
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ylim(yl) 
xlabel(xlbl) 
ylabel(ylbl) 
title('S4 Example') 
plot_style(gca) 
 
%% Normal 
close all 
path = fullfile(folder, 'normal 2.mp3'); 
[normal, Fs] = load_PCG(path, max_dur, ds, Fs_min); 
t = time(normal, Fs); 
 
figure 
plot(t, normal) 
ylim(yl) 
xlabel(xlbl) 
ylabel(ylbl) 
title('Normal Heart Sound Example') 
plot_style(gca) 

A.1.4 PCG_FFT.m 

% Compare the spectra of S1, S2, and murmur. 
clc; close all; clear 
 
% Load the PCG 
file = 'sys eject murm & split S2 pers.mp3'; 
path = fullfile('PCG', 'michigan', file); 
lim = [1.9, 2.6]; 
[PCG, Fs, offset] = load_PCG(path, lim, 4e3, 'dyadic'); 
 
% Set segment boundaries 
bnds = [1.98, 2.06, 2.3, 2.38, 2.49]*Fs - offset + 1; 
S1 = segment(bnds(1), bnds(2)); 
murm = segment(S1.stop+1, bnds(3)); 
A2 = segment(murm.stop+1, bnds(4)); 
P2 = segment(A2.stop+1, bnds(5)); 
 
% FFT 
[S1_resp, S1_freq] = nfft(PCG(S1.rng)); 
[murm_resp, murm_freq] = nfft(PCG(murm.rng)); 
[A2_resp, A2_freq] = nfft(PCG(A2.rng)); 
[P2_resp, P2_freq] = nfft(PCG(P2.rng)); 
 
% Plot 
figure 
[t, xl] = time(PCG, Fs, lim(1)); 
 
ax(1) = subplot(211); 
plot(t, PCG) 
xlim(xl) 
xlabel('t (s)') 
ylabel('Amplitude') 
title(pcg_descr(file, Fs)) 
 
ax(2) = subplot(212); 
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hold on 
plot(S1_freq*Fs, abs(S1_resp), 'b') 
plot(A2_freq*Fs, abs(A2_resp), 'r') 
plot(P2_freq*Fs, abs(P2_resp), 'm') 
plot(murm_freq*Fs, abs(murm_resp), 'g') 
xlim([0, 500]) 
legend('S1', 'A2', 'P2', 'Murmur') 
xlabel('f (Hz)') 
ylabel('Magnitude') 
title('FFT - Magnitude Response') 
 
plot_style(ax) 

A.1.5 PCG_simpl.m 

% Demonstrate the simplicity transform of a PCG. 
clear; clc; close all 
 
% Load the PCG 
file = 'normal 1.mp3'; 
path = fullfile('PCG', 'michigan', file); 
lim = [0.3, 1.8]; 
[PCG, Fs] = load_PCG(path, lim, 4e3, 'dyadic'); 
 
% Simplicity 
N = 10e-3*Fs; 
m = 2e-3*Fs; 
simpl = st(PCG, m, N); 
 
% Plot 
figure 
[t, xl] = time(PCG, Fs, lim(1)); 
 
ax(1) = subplot(211); 
plot(t, PCG) 
xlabel('t (s)') 
ylabel('Amplitude') 
title(pcg_descr(file, Fs)) 
 
ax(2) = subplot(212); 
plot(t, simpl) 
xlabel('t (s)') 
ylabel('Simplicity') 
title('Simplicity transform') 
 
plot_style(ax, xl) 

A.1.6 rect_sinc.m 

% Compare rect(t) and its Fourier transform sinc(f). 
clc; close all; clear 
 
npts = 1000; 
% time axis 
t1 = -1; 
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t2 = 1; 
t = linspace(t1, t2, npts); 
% freq axis 
f1 = -4; 
f2 = 4; 
f = linspace(f1, f2, npts); 
nodes = [(f1:-1), (1:f2)]; % zero crossings 
 
% Plot 
figure 
yl = [-0.5, 1.5]; 
 
ax(1) = subplot(211); 
plot(t, rect(t, 0.5)) 
ylim(yl) 
set(gca, 'XTick', t1:0.5:t2) 
xlabel('t') 
ylabel('x(t)') 
title('rect(t)') 
 
ax(2) = subplot(212); 
hold on 
plot(f, sinc(f)) 
plot(nodes, sinc(nodes), 'o', 'color', 'red'); 
ylim(yl) 
set(gca, 'XTick', f1:f2) 
xlabel('f') 
ylabel('|X(f)|') 
title('sinc(f)') 
 
plot_style(ax) 

A.1.7 singular_spectra.m 

% Compare the singular spectra of sinc and white gaussian noise. 
clc; close all; clear 
 
npts = 1000; 
t = linspace(-10, 10, npts).'; 
% noise = "complex" 
pwr = 0; 
load = 50; 
noise = wgn(npts, 1, pwr, load, 'dBm'); 
% sinc = "simple" 
sinc = sinc(t); 
 
% singular spectra 
m = 10; 
[~, D_noise] = st(noise, m); 
[~, D_sinc] = st(sinc, m); 
 
% Plot 
figure 
 
% Signals 
ax(1) = subplot(221); 
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plot(t, noise) 
xlabel('t (s)') 
ylabel('Amplitude') 
title(sprintf('White Gaussian Noise (%d dBm, %d \\Omega)', pwr, load)) 
 
ax(3) = subplot(223); 
plot(t, sinc) 
ylim([-0.4, 1.2]) 
xlabel('t (s)') 
ylabel('Amplitude') 
title('sinc(t)') 
 
% Singular spectra 
xl = [0, numel(D_sinc)+1]; 
yl = [0, 1]; 
 
ax(2) = subplot(222); 
stem(D_noise) 
xlim(xl) 
ylim(yl) 
xlabel('Index') 
ylabel('Eigenvalue') 
title('Singular spectrum (noise)') 
 
ax(4) = subplot(224); 
stem(D_sinc) 
xlim(xl) 
ylim(yl) 
xlabel('Index') 
ylabel('Eigenvalue') 
title('Singular spectrum (sinc)') 
 
set([ax(2), ax(4)], 'YTick', 0:0.2:1); 
plot_style(ax) 

A.2 Results 

A.2.1 batch.m 

% Batch segment all sound files 
clear; close all; clc 
 
root = 'C:\Users\Josh\Google Drive\thesis\matlab'; 
lvl1 = 2; 
lvl2 = 5; 
 
%% DWT 
% Michigan 
dwt = @(s) dwt_segment(s, lvl2); 
batch_segment(dwt, root, 'michigan', lvl1) 
% Littmann 
dwt = @(s) dwt_segment(s, lvl2, 'HS_thresh', 0.05); 
batch_segment(dwt, root, 'littmann', lvl1) 
 
%% Simplicity 
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% Michigan 
simpl = @(s) simpl_segment(s); 
batch_segment(simpl, root, 'michigan', lvl1) 
% Littmann 
simpl = @(s) simpl_segment(s); 
batch_segment(simpl, root, 'littmann', lvl1) 

A.2.2 beamforming.m 

% Plot the directivity pattern of a non-uniformly spaced planar stethoscope 
% array after beamforming. 
clear; clc; close all 
 
dir = 'C:\Users\Josh\Google Drive\thesis\matlab\figures\chp2\'; 
fmt = 'epsc'; 
store = false; 
 
%% Specify stethoscope locations 
% Relative to the origin (inches) 
x = [-2.11, -2.03, 1.91, 2.25, 0]; 
y = [-0.938, 1.29, 0.887, -1.23, 0]; 
z = zeros(size(y)); 
% Convert to meters 
r = [x; y; z]*0.0254; 
 
%% Plot stethoscope locations 
fig = figure('color', 'white'); 
plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor', 'b') 
xlabel('x') 
ylabel('y') 
title('Relative stethoscope positions (meters)') 
grid on 
box on 
% Save 
if ~isempty(dir) 
    set(fig, 'PaperUnits', 'inches', 'PaperPosition', [0, 0, 6, 4]) 
    saveas(gcf, fullfile(dir, 'stethoscope_locations'), fmt) 
end 
 
%% Beamform 
% Average speed of sound in tissue (m/s) 
v = 1540; 
% Frequencies of interest 
freq(1) = 500; % innside heart murmur range 
freq(2) = 7e3; % outside of heart murmur range (no spatial aliasing) 
freq(3) = 20e3; % outside of heart murmur range (spatial aliasing) 
% Target angles 
theta_t = pi/2; 
phi_t = (0:1/6:1) * pi; 
% Resolution 
npts = 500; 
 
% Sweep 
for f = freq 
    fprintf('Frequency = %.0e Hz\n', f) 
    isAliased(r, f, v, 'm', 3); % check for spatial aliasing 
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    fprintf('\n') 
    for i = 1:numel(phi_t) 
        beam_pattern(r, f, v, theta_t, phi_t(i), npts) 
        % Save 
        if store 
            fig = gcf; 
            set(fig, 'PaperUnits', 'inches', 'PaperPosition', [0, 0, 6, 2]) 
            fn = sprintf('%.0eHz_%d', f, i); 
            saveas(fig, fullfile(dir, fn), fmt) 
            close 
        end 
    end 
end 

A.2.3 dwt_michigan.m 

clear; close all; clc 
 
file = [ 
% MURMURS 
% 'early dias murm.mp3'                                         % E1A 
% 'eject click & sys eject murm & single S2.mp3' 
% 'mid sys click.mp3' 
% 'OS & dias murm.mp3'                                          % E2B, E2C 
% 'S3 & holosys murm.mp3'                                       % E1A 
% 'S4 & mid sys murm.mp3' 
% 'sys click & late sys mur.mp3' 
% 'sys murm & absent S2.mp3' 
% 'sys & dias murm.mp3' 
% 'sys eject murm & split S2 trans.mp3'                         % E1B 
% 'sys eject murm & split S2 pers.mp3' 
 
% NO MURMURS 
% 'normal 1.mp3' 
% 'normal 2.mp3'                                                % E1A 
% 'S3.mp3'                                                      % E2A 
% 'S4.mp3'                                                      % E2A 
% 'single S2.mp3' 
% 'split S1 pers.mp3' 
% 'split S2 pers.mp3' 
% 'split S2 trans.mp3' 
]; 
 
sscope = stethoscope('michigan', file, 2); 
sscope = dwt_segment(sscope, 5, 'show', 'seg'); 
 
print(sscope) 
% plot(sscope) 

A.2.4 dwt_littmann.m 

clear; close all; clc 
 
file = [ 
% MURMURS 
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% 'AP.mp3'                                                    % E4 
% 'AR.mp3' 
% 'AS.mp3' 
% 'ASD.mp3'                                                   % E1C 
% 'COA.mp3' 
% 'EA.mp3' 
% 'eject click.mp3' 
% 'eject click & AS moderate & AR mild.mp3'                   % E2B 
% 'innocent murmur.mp3' 
% 'late sys click.mp3' 
% 'mid sys click.mp3' 
% 'MR severe.mp3'                                             % E1C 
% 'MS moderate.mp3'                                           % E1C 
% 'MVP.mp3' 
% 'OS.mp3' 
% 'PDA.mp3'                                                   % E1A 
% 'S4 & AS severe.mp3' 
% 'TR severe.mp3' 
% 'VSD.mp3'                                                   % E1C 
 
% NO MURMURS 
% 'normal.mp3' 
% 'S3 & S4.mp3' 
% 'S3 abnormal.mp3' 
% 'S3 physio.mp3' 
% 'S4.mp3'                                                    % E1B 
% 'sum gallop.mp3'                                            % E1B 
% 'split S2 fixed.mp3' 
% 'split S2 physio.mp3' 
% 'split S1.mp3' 
]; 
 
sscope = stethoscope('littmann', file, 2); 
sscope = dwt_segment(sscope, 5, 'HS_thresh', 0.05, 'show', 'seg'); 
 
print(sscope) 
% plot(sscope) 

A.2.5 simpl_michigan.m 

clear; close all; clc 
 
file = [ 
% MURMURS 
% 'early dias murm.mp3'                                     % E2 
% 'eject click & sys eject murm & single S2.mp3' 
% 'mid sys click.mp3' 
% 'OS & dias murm.mp3'                                      % E1B 
% 'S3 & holosys murm.mp3' 
% 'S4 & mid sys murm.mp3' 
% 'sys click & late sys mur.mp3' 
% 'sys murm & absent S2.mp3' 
% 'sys & dias murm.mp3' 
% 'sys eject murm & split S2 trans.mp3' 
% 'sys eject murm & split S2 pers.mp3' 
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% NO MURMURS 
% 'normal 1.mp3' 
% 'normal 2.mp3' 
% 'S3.mp3' 
% 'S4.mp3' 
% 'single S2.mp3' 
% 'split S1 pers.mp3' 
% 'split S2 pers.mp3' 
% 'split S2 trans.mp3' 
]; 
 
sscope = stethoscope('michigan', file, 2); 
sscope = simpl_segment(sscope, 'show', 'seg'); 
 
print(sscope) 
% plot(sscope) 

A.2.6 simpl_littmann.m 

clear; close all; clc 
 
file = [ 
% MURMURS 
% 'AP.mp3'                                              % E1A 
% 'AR.mp3' 
% 'AS.mp3' 
% 'ASD.mp3'                                             % E1B 
% 'COA.mp3' 
% 'EA.mp3' 
% 'eject click.mp3' 
% 'eject click & AS moderate & AR mild.mp3' 
% 'innocent murmur.mp3' 
% 'late sys click.mp3' 
% 'mid sys click.mp3' 
% 'MR severe.mp3'                                       % E1B 
% 'MS moderate.mp3'                                     % E1B 
% 'MVP.mp3' 
% 'OS.mp3' 
% 'PDA.mp3'                                             % E1A 
% 'S4 & AS severe.mp3' 
% 'TR severe.mp3' 
% 'VSD.mp3'                                             % E1B 
 
% NO MURMURS 
% 'normal.mp3' 
% 'S3 & S4.mp3' 
% 'S3 abnormal.mp3' 
% 'S3 physio.mp3' 
% 'S4.mp3' 
% 'sum gallop.mp3'                                      % A 
% 'split S2 fixed.mp3' 
% 'split S2 physio.mp3' 
% 'split S1.mp3' 
]; 
 
sscope = stethoscope('littmann', file, 2); 
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sscope = simpl_segment(sscope, 'show', 'seg'); 
 
print(sscope) 
% plot(sscope) 
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B. Functions 

B.1 Beamforming 

B.1.1 beam_pattern.m 

% BEAM_PATTERN(r, f, v, theta_t, phi_t, npts) 
% 
% Plot the beam pattern after steering it towards the target angles. 
% 
% Args: 
% r: position matrix [x_vec; y_vec; z_vec] 
% f: frequency of interest 
% v: wave velocity 
% theta_t: target theta 
% phi_t: target phi 
% npts: # of points for theta and phi vectors 
function beam_pattern(r, f, v, theta_t, phi_t, npts) 
    [D, theta, phi] = beamform(r, f, v, theta_t, phi_t, npts); 
    % Separate theta and phi axes 
    theta_vec = theta(1,:); % any row 
    phi_vec = phi(:,1); % any col 
 
    % D vs (target theta, phi) 
    i = closest(theta_vec, theta_t); 
    D_phi = abs(D(:,i)); % fix theta 
    % phi @ maximum intensity 
    [~, i] = max(D_phi); 
    max_phi = phi_vec(i); 
 
    % D vs (theta, target phi) 
    i = closest(phi_vec, phi_t); 
    D_theta = abs(D(i,:)); % fix phi 
    % theta @ maximum intensity 
    [~, i] = max(D_theta); 
    max_theta = theta_vec(i); 
 
    % Convert angles to strings 
    phi_str = pi2ratstr(phi_t); 
    theta_str = pi2ratstr(theta_t); 
 
    % Plot 
    figure('color', 'white') 
 
    % 2D polar plot vs phi @ target theta 
    subplot(121) 
    polar(phi_vec, D_phi); 
    xlabel('\phi') 
    str = sprintf('\\phi_{target} = %s, \\theta = %s', phi_str, theta_str); 
    title(str) 
    % Arrow pointing to target phi 
    hold on 
    compass(cos(max_phi), sin(max_phi), 'r'); 
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    % 2D polar plot vs theta @ target phi 
    subplot(122) 
    polar(theta_vec, D_theta) 
    xlabel('\theta') 
    str = sprintf('\\theta_{target} = %s, \\phi = %s', theta_str, phi_str); 
    title(str) 
    % Arrow pointing to target theta 
    hold on 
    compass(cos(max_theta), sin(max_theta), 'r'); 
end 
 
function str = pi2ratstr(x) 
    % Factor out pi from numerator 
    [N, D] = rat(x / pi); 
    % Convert to LaTex interpreted string 
    if N > 1 
        num = sprintf('%d%s', N, '\pi'); 
    elseif N == 1 
        num = '\pi'; 
    else 
        str = '0'; 
        return 
    end 
    if D > 1 
        str = sprintf('%s/%d', num, D); 
    else 
        str = sprintf('%s', num); 
    end 
end 

B.1.2 beamform.m 

% [D, theta, phi] = BEAMFORM(r, f, v, theta_t, phi_t, npts) 
% 
% Steer the beam pattern towards the target angles by applying an angular 
% dependent phase weight to each sensor. 
% 
% Args: 
% r: position matrix [x_vec; y_vec; z_vec] 
% f: frequency of interest 
% v: wave velocity 
% theta_t: target theta 
% phi_t: target phi 
% npts: # of points for theta and phi vectors 
% 
% Returns: 
% D: directivity pattern (matrix) 
% theta: polar angles (matrix) 
% phi: azimuthal angles (matrix) 
function [D, theta, phi] = beamform(r, f, v, theta_t, phi_t, npts) 
    f = abs(f); 
    v = abs(v); 
 
    % theta = row, phi = column 
    gv = linspace(0, 2*pi, npts); 
    [theta, phi] = meshgrid(gv); 
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    % d(x,y,z) = beta(x,y,z) - beta'(x,y,z) 
    dx = sin(theta) .* cos(phi) - sin(theta_t) .* cos(phi_t); 
    dy = sin(theta) .* sin(phi) - sin(theta_t) .* sin(phi_t); 
    dz = cos(theta) - cos(theta_t); 
    % Calculate the array's directivity pattern 
    D = zeros(size(theta)); 
    omega = 2*pi * f; 
    N = size(r,2); % # of sensors 
    for n = 1:N 
        dot_prod = (r(1,n) .* dx) + (r(2,n) .* dy) + (r(3,n) .* dz); 
        D = D + exp(-1j .* omega ./ v .* dot_prod); 
    end 
    D = D / N; % normalize 
end 

B.1.3 dist_mat.m 

% dist = DIST_MAT(r) 
% 
% Calculate the distance between all possible pairs of points in the position 
% matrix r = [x_vec; y_vec; z_vec], and store these distances in a matrix that 
% only has non-zero elements to the right of the diagonal to avoid duplicate 
% entries. 
function dist = dist_mat(r) 
    N = size(r,2); % # of points 
    dist = zeros(N); 
    for i = 1:N-1 
        for j = i+1:N 
            dist(i,j) = sqrt(sum((r(:,i) - r(:,j)) .^ 2)); 
        end 
    end 
end 

B.1.4 isAliased.m 

% yes = ISALIASED(r, f, v, units, sig_fig) 
% 
% Check for spatial aliasing in the sensor array. 
% 
% Args: 
% r = position matrix [x_vec; y_vec; z_vec] 
% f = frequency of interest 
% v = wave velocity 
% units = string that specifices the units 
% sig_fid = 3: # of signficant figures for printing distances 
% 
% Returns: 
% yes: true if aliased, false otherwise 
function yes = isAliased(r, f, v, units, sig_fig) 
    f = abs(f); 
    v = abs(v); 
    if nargin < 5 
        sig_fig = 3; 
    end 
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    half_wavelen = 0.5 * v / f; 
    snsr_dist = dist_mat(r); 
    min_dist = min(snsr_dist(snsr_dist > 0)); 
    max_dist = max(snsr_dist(:)); 
 
    fprintf('Half wavelength = %.*g %s\n', sig_fig, half_wavelen, units) 
    min_str = sprintf('Minimum sensor spacing = %.*g %s\n', sig_fig, ... 
      min_dist, units); 
    max_str = sprintf('Maximum sensor spacing = %.*g %s\n', sig_fig, ... 
      max_dist, units); 
 
    if min_dist > half_wavelen 
        fprintf(min_str) 
        fprintf('Minimum sensor spacing > half wavelength\n') 
        fprintf('.: Aliasing\n') 
        yes = true; 
    elseif max_dist > half_wavelen 
        fprintf(min_str) 
        fprintf(max_str) 
        fprintf('Minimum sensor spacing <= half wavelength\n') 
        fprintf('Maximum sensor spacing > half wavelength\n') 
        fprintf('.: Aliasing\n') 
        yes = true; 
    else 
        fprintf(max_str) 
        fprintf('Maximum sensor spacing <= half wavelength\n') 
        fprintf('.: No aliasing\n') 
        yes = false; 
    end 
end 

B.2 DWT 

B.2.1 coef_plot.m 

% COEF_PLOT(Fs, C, L, wavef, levels) 
% 
% Plot the detail and approximation coefficients up to the specified level. 
function coef_plot(Fs, C, L, wavef, levels) 
    figure 
    j = 1; 
    M = length(levels); 
    for i=levels 
        A = appcoef(C, L, wavef, i); 
        D = detcoef(C, L, i); 
        t = 2^i*time(A, Fs); 
        % Apprx coef 
        ax(j) = subplot(M, 2, j); 
        plot(t, A) 
        axis tight 
        title(sprintf('A%d (%s)', i, coef_rng(Fs, i, 'apprx'))) 
        % Detail coef 
        ax(j+1) = subplot(M, 2, j+1); 
        hold on 
        plot(t, D) 
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        axis tight 
        title(sprintf('D%d (%s)', i, coef_rng(Fs, i, 'detail'))) 
        % Iterate subplot 
        j = j + 2; 
    end 
    linkaxes(ax,'x') 
    plot_style(ax,[t(1), t(end)]) 
end 

B.2.2 coef_rng.m 

% varargout = COEF_RNG(Fs, level, str) 
% 
% Calculate the approximation and detail coefficient frequency ranges for 
% the given level. If str is 'apprx' or 'coef', return a string 
% stating the range. If str is not passed, return the lower and upper 
% detail coefficient frequencies. 
function varargout = coef_rng(Fs, level, str) 
    nargoutchk(1, 2) 
 
    % lower limit of detail coef / upper limit of apprx coef 
    lower = Fs / 2^(level+1); 
    % upper limit of detail ceof 
    upper = Fs / 2^level; 
 
    if nargout == 1 % string 
        if strcmp(str, 'apprx') 
            varargout{1} = sprintf('0 - %.f Hz', lower); 
        elseif strcmp(str, 'detail') 
            varargout{1} = sprintf('%.f - %.f Hz', lower, upper); 
        else 
            error('str must be either "apprx" or "detail"') 
        end 
    elseif nargout == 2 % numbers 
        varargout{1} = lower; 
        varargout{2} = upper; 
    end 
end 

B.3 Main 

B.3.1 batch_segment.m 

% BATCH_SEGMENT(seg_func, root, folder, varargin) 
% 
% Segment all sound files in /root/PCG/folder with the segmentation function 
% seg_func. The varargins are inputs to the @stethoscope constructor. 
function batch_segment(seg_func, root, folder, varargin) 
    pdir = fullfile(root, 'PCG', folder); 
    list = dir(pdir); 
    files = {list(3:end).name}; 
 
    for i = 1:numel(files) 
        file = files{i}; 
        sscope = stethoscope(folder, file, varargin{:}); 
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        try 
            sscope = seg_func(sscope); 
        catch 
            fprintf('FAIL %s/%s\n', folder, file); 
            continue 
        end 
        method = sscope.seg_method; 
        [~, fname] = fileparts(file); 
        result = fullfile(root, 'results', method, folder, fname); 
        save(result, 'sscope') 
        fprintf('%s: %s/%s\n', method, folder, fname); 
    end 
    fprintf('\n'); 
end 

B.3.2 find_heart_cycles.m 

% cyc_bnds = FIND_HEART_CYCLES(HS, PCG, min_dist, show, Fs) 
% 
% Locate the heart cycle boundaries from peaks in the PCG envelope's 
% autocorrelation waveform. 
% 
% Args: 
% * HS: heart sound segments 
% * PCG 
% * min_dist: minimum distance between heart cycles, which is typically twice 
% the minimum systole duration 
% * show = false: show the plots if true 
% * Fs = 1: sampling rate for plotting 
function cyc_bnds = find_heart_cycles(HS, PCG, min_dist, show, Fs) 
    if isempty(HS) 
        error('At least one heart sound segment is required.') 
    end 
    min_dist = abs(min_dist); 
    if nargin < 4 
        show = false; 
    end 
    if nargin < 5 
        Fs = 1; 
    else 
        Fs = abs(Fs); 
    end 
 
    % Retrieve relative cycle bounds (N bounds = N cycles here) 
    [cyc_bnds, ax] = find_cycles(PCG, min_dist, show, Fs); 
    if isempty(cyc_bnds) 
        error('No cycle boundaries detected.') 
    end 
 
    % Move the bounds near HS.strt 
    % Add another bound at the 1st HS and shift the other bounds accordingly 
    offset = HS(1).strt; 
    cyc_bnds = [offset, offset + cyc_bnds]; 
    % Remove any bounds that now exceed the PCG duration 
    cyc_bnds(cyc_bnds > length(PCG)) = []; 
    if length(cyc_bnds) < 2 
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        error('The minimum of 1 cycle requires 2 cycle bounds.') 
    end 
 
    % Place bounds on HS.strt 
    strt = [HS.strt]; 
    stop = [HS.stop]; 
    % 1st bound is already on HS(1).strt 
    % Each cycle bound is between a HS.strt and a HS.stop 
    % Reposition bound onto the HS.strt 
    for i = 2:length(cyc_bnds) 
        % HS(j).stop < cyc_bnd 
        left = stop(stop < cyc_bnds(i)); 
        left = left(end); 
        % cyc_bnd = HS(j+1).strt 
        right = strt(left < strt); 
        if isempty(right) 
            break % don't adjust remaining cycles (if any) 
        end 
        cyc_bnds(i) = right(1); 
    end 
    if any(diff(cyc_bnds) <= 0) 
        error('Cycle bounds must be monotonically increasing.') 
    end 
 
    % Plot 
    if show 
        axes(ax(2)) 
        hold on 
        vert_line(cyc_bnds / Fs, ylim.', 'color', 'r') 
        legend('PCG', 'Cycle bounds') 
    end 
end 
 
% Locate relative cycle boundaries 
function [cyc_bnds, ax] = find_cycles(x, min_dist, show, Fs) 
    % Autocorrelate the signal's envelope 
    [A, lags] = xcorr(env(x), 'coeff'); 
    % Normalized positive lags 
    A = A(lags >= 0) / A(lags == 0); 
    % Largest peak is at the end of the 1st cycle 
    [~, pk_locs] = findpeaks(A, ... 
      'MINPEAKDISTANCE', min_dist, ... 
      'SORTSTR', 'descend'); 
    cyc_dur = pk_locs(1); 
    % Determine the # of cycles from the first cycle's duration 
    N = floor(length(x) / cyc_dur); 
    % Cycle bounds are multiples of the first cycle's duration 
    cyc_bnds = (1:N) * cyc_dur; 
 
    % Plot 
    ax = []; 
    if show 
        [t, xl] = time(x, Fs); 
        figure 
 
        ax(1) = subplot(211); 
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        hold on 
        plot(t, A); 
        plot(pk_locs/Fs, A(pk_locs), '^', 'MarkerFaceColor', 'r') 
        vert_line(cyc_bnds/Fs, ylim.', 'color', 'r') 
        xlim(xl) 
        legend('Autocorrelation', 'Peaks', 'Cycle bounds') 
        ylabel('Correlation coefficient') 
        title('Autocorrelation') 
 
        ax(2) = subplot(212); 
        plot(t, x) 
        xlim(xl) 
        xlabel('t (sec)') 
        ylabel('Amplitude') 
        title('PCG') 
 
        linkaxes(ax, 'x'); 
        plot_style(ax) 
    end 
end 

B.3.3 katz_fd.m 

% fd = KATZ_FD(x, W) 
% 
% Acquire the fractal dimension from Katz's definition: 
%   log10(W) / (log10(d / L) + log10(W)) 
% where d = absolute distance, W = window length, and L = curve length. 
% 
% By default, the output is a scalar because the window length W is the same as 
% the signal length L. If W < L, then the output has the same dimensions as the 
% input. 
function fd = katz_fd(x, W) 
    L = numel(x); 
    if nargin < 2 
        W = L; 
    end 
    if W == L 
        fd = 1; 
        offset = 1; 
    elseif W < L 
        W = floor(abs(W)); 
        if W <= 0 
            error('Window length must be > 0.') 
        end 
        fd = ones(size(x)); 
        offset = ceil(W/2); 
    else 
        error('Window length must be <= signal length.') 
    end 
 
    for i=0:L-W 
      dr = zeros(1,W-1); 
      da = dr; 
      for j=1:W-1 
        % "Relative" distance between adjacent samples 
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        dr(j) = sqrt( (x(i+j+1) - x(i+j))^2 + 1 ); 
        % "Absolute" distance between 1st and current sample 
        da(j) = sqrt( (x(i+j+1) - x(i+1))^2 + j^2 ); 
      end 
      % Curve length 
      L = sum(dr); 
      % Maximum absolute distance 
      d = max(da); 
      % d <= L: 
      % d == L -> lowest complexity 
      % d < L -> higher complexity 
      fd(i+offset) = log10(W-1) / (log10(d / L) + log10(W-1)); 
    end 
end 

B.3.4 lbl_sounds.m 

% [S1, M1, T1, ... 
% S2, A2, P2, ... 
% S3, S4, sum_gallop, ... 
% syst_murm, diast_murm] = LBL_SOUNDS(HS, cHS, cyc_bnds, extra_HS, murm) 
% 
% Classify the normal heart sounds, extra heart sounds, and murmurs as specific 
% sound types. 
% 
% The systole and diastole segments are identified by their relative durations 
% within each cycle (systole is shorter than diastole), which makes it possible 
% to classify the normal heart sounds as S1 or S2. Then, S1 and S2 are searched 
% for split sound segments, systole and diastole are searched for murmurs, and 
% diastole is also searched for extra heart sounds. Finally, each segment is 
% stored in an array that corresponds to its specific sound type, namely: S1 or 
% S2 for normal heart sounds; M1 or T1 for split S1 components; A2 or P2 for 
% split S2 components; S3, S4, or sum_gallop for extra heart sounds; and 
% syst_murm for systolic murmurs and diast_murm for diastolic murmurs. 
% 
% Args: 
% * HS: normal heart sound segments 
% * cHS: normal heart sound segments except split sound segments are combined 
% * cyc_bnds: heart cycle boundaries 
% * extra_HS = segment.empty: S3, S4, or summation gallop segments 
% * murm = segment.empty: murmur segments 
% 
% Returns: 
% * S1 ... sum_gallop: segment array [1, # heart cycles] 
% * syst_murm, diast_murm: cell array [1, # heart cycles], where each cell 
% contains a variable length segment array since there can be multiple murmur 
% segments in systole or diastole 
function [S1, M1, T1, S2, A2, P2, S3, S4, sum_gallop, syst_murm, diast_murm] = lbl_sounds(... 
  HS, cHS, cyc_bnds, extra_HS, murm) 
    cyc_bnds = floor(abs(cyc_bnds)); 
    if nargin < 4 
        extra_HS = segment.empty; 
    end 
    if nargin < 5 
        murm = segment.empty; 
    end 
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    num_cyc = numel(cyc_bnds) - 1; 
    if num_cyc < 1 
        error('A minimum of one heart cycle requires two cycle bounds.') 
    end 
 
    % Allocate arrays 
    [S1, M1, T1, S2, A2, P2, S3, S4, sum_gallop] = alloc_seg(1,num_cyc); 
    syst_murm = cell(1,num_cyc); 
    diast_murm = cell(1,num_cyc); 
 
    for i = 1:num_cyc 
        % At least 1 sample must separate HS.stop and the cycle's right boundary 
        ind = find(cHS, cyc_bnds(i), cyc_bnds(i+1) - 2); 
        switch numel(ind) 
            case 1 % S1 & absent S2 -> no discernible systole 
                S1(i) = cHS(ind); 
                diast = segment(cHS(ind).stop + 1, cyc_bnds(i+1) - 1); 
                % Split sounds 
                [M1(i), T1(i)] = lbl_split(HS, S1(i)); 
                % Murmurs 
                if ~isempty(murm) 
                    diast_murm{i} = lbl_murm(murm, diast); 
                end 
                % Extra HS 
                if ~isempty(extra_HS) 
                    [S3(i), S4(i), sum_gallop(i)] = lbl_extra(extra_HS, diast); 
                end 
            case 2 % S1 & S2 
                j = ind(1); 
                k = ind(2); 
                sil(1) = segment(cHS(j).stop + 1, cHS(k).strt - 1); 
                sil(2) = segment(cHS(k).stop + 1, cyc_bnds(i+1) - 1); 
                if sil(1).dur <= sil(2).dur 
                    % S1, S2 
                    S1(i) = cHS(j); 
                    syst = sil(1); 
                    S2(i) = cHS(k); 
                    diast = sil(2); 
                else 
                    % S2, S1 
                    S2(i) = cHS(j); 
                    diast = sil(1); 
                    S1(i) = cHS(k); 
                    syst = sil(2); 
                end 
                % Split sounds 
                [M1(i), T1(i)] = lbl_split(HS, S1(i)); 
                [A2(i), P2(i)] = lbl_split(HS, S2(i)); 
                % Murmurs 
                if ~isempty(murm) 
                    syst_murm{i} = lbl_murm(murm, syst); 
                    diast_murm{i} = lbl_murm(murm, diast); 
                end 
                % Extra HS 
                if ~isempty(extra_HS) 
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                    [S3(i), S4(i), sum_gallop(i)] = lbl_extra(extra_HS, diast); 
                end 
        end 
    end 
end 
 
% C1 = 1st split component (M1 or T1) 
% C2 = 2nd split component (A2 or P2) 
function [C1, C2] = lbl_split(HS, S) 
    C1 = segment; 
    C2 = segment; 
 
    ind = find(HS, S.strt, S.stop); 
    if numel(ind) == 2 
        C1 = HS(ind(1)); 
        C2 = HS(ind(2)); 
    end 
end 
 
% sil = systole or diastole segment 
function murm_type = lbl_murm(murm, sil) 
    murm_type = []; 
 
    ind = find(murm, sil.strt, sil.stop); 
    if ~isempty(ind) 
        murm_type = murm(ind); 
    end 
end 
 
function [S3, S4, sum_gallop] = lbl_extra(extra, diast) 
    S3 = segment; 
    S4 = segment; 
    sum_gallop = segment; 
 
    half = diast.strt + ceil(diast.dur/2) - 1; % middle of diastole 
    ind = find(extra, diast.strt, diast.stop); 
    switch numel(ind) 
        case 1 % S3, S4, or sum gallop 
            i = ind; 
            if extra(i).stop < half 
                S3 = extra(i); 
            elseif extra(i).strt <= half && half <= extra(i).stop 
                sum_gallop = extra(i); 
            else 
                S4 = extra(i); 
            end 
        case 2 % S3 & S4 
            i = ind(1); 
            k = ind(2); 
            if extra(i).stop < half 
                S3 = extra(i); 
            end 
            if extra(k).strt >= half 
                S4 = extra(k); 
            end 
    end 
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end 
 
% M, N = dim(seg) 
function varargout = alloc_seg(M, N) 
    varargout = cell(1,nargout); 
    seg(M,N) = segment; 
    for i = 1:nargout 
        varargout{i} = seg; 
    end 
end 

B.3.5 levels2seg.m 

% seg = LEVELS2SEG(pwc) 
% 
% Segment the non-zero levels of a piecewise constant function (pwc). 
% 
% The segment start and stop indices are located at the instantaneous 
% transitions between levels, or jump locations, and the segment magnitudes are 
% the values of the constant levels. The 1st segment must start on a rising 
% edge, and the last segment must end on a falling edge, but any jump location 
% in-between can mark either the beginning or end of a segment. 
function seg = levels2seg(pwc) 
    pwc = abs(pwc(:)); 
    seg = segment.empty; 
     
    edges = sign(diff(pwc)); 
    % Rising and falling edge indices 
    rising = find(edges == 1); 
    falling = find(edges == -1); 
    % Remove falling edges before the 1st rising edge 
    if ~isempty(rising) 
        falling(falling < rising(1)) = []; 
    else 
        return 
    end 
    % Remove rising edges after the last falling edge 
    if ~isempty(falling) 
        rising(falling(end) < rising) = []; 
    else 
        return 
    end 
    % Combine and sort edges 
    both = sort([rising; falling]); 
    % Create segments 
    for i = 1:numel(both)-1 
        % Start on rising edge or after falling edge 
        strt = both(i) + 1; 
        % Stop on falling edge or before rising edge 
        stop = both(i+1); 
        mag = pwc(strt); 
        seg(i) = segment(strt, stop, mag); 
    end 
    % Remove segments with zero magnitude 
    seg(~[seg.mag]) = []; 
end 
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B.3.6 limit_HS.m 

% [HS, cHS, cyc_bnds] = LIMIT_HS(HS, cHS, cyc_bnds, E) 
% 
% Only keep the two highest-energy normal heart sound segments per heart cycle. 
% 
% The maximum energy for each HS segment HS is determined from the energy 
% waveform E. Adjacent HS segments close enough to be split sound components are 
% combined, and the maximum energy for each cHS is determined from the maximum 
% HS energies. Afterwards, any cHS other the two allowed per heart cycle are 
% removed. If the first cHS in a cycle is removed, then the cycle's left 
% boundary is repositioned to the next cHS.strt. 
% 
% Args: 
% * HS: normal HS segments 
% * cHS: normal HS segments except split sound segments are combined 
% * cyc_bnds: cycle boundaries 
% * E: energy waveform 
function [HS, cHS, cyc_bnds] = limit_HS(HS, cHS, cyc_bnds, E) 
    cyc_bnds = floor(abs(cyc_bnds)); 
    E = abs(E); 
 
    % Max energy in each HS 
    max_e = zeros(size(HS)); 
    for i=1:numel(HS) 
        max_e(i) = max(E(HS(i).rng)); 
    end 
    % Max energy in each cHS 
    max_E = zeros(size(cHS)); 
    for i=1:numel(cHS) 
        % Indices of HS contained within current cHS 
        ind = find(HS, cHS(i).strt, cHS(i).stop); 
        max_E(i) = max(max_e(ind)); 
    end 
 
    % Mark cHS for removal 
    IND1 = []; 
    for i = 1:numel(cyc_bnds)-1 
        ind = find(cHS, cyc_bnds(i), cyc_bnds(i+1) - 1); 
        % At least 2 cHS in current cycle 
        if numel(ind) > 2 
            j = ind(1); 
            [~, ind] = sort(max_E(ind)); 
            % Exclude 2 highest intensity cHS from removal 
            rmv = ind(1:end-2); 
            % Mark others for removal 
            rmv = sort(rmv); 
            IND1 = [IND1 j+rmv-1]; 
            % Reposition left cycle bound if it is no longer on HS.strt 
            if rmv(1) == 1 
                % Locate 1st remaining cHS (a contiguous group may have been 
                % removed from the beginning of the cycle) 
                % For example: if 5 cHS in cycle, and 1st, 2nd, and 4th cHS are 
                % removed, then only the 3rd and 5th remain. Therefore, the left 
                % cycle bound is repositioned to the 3rd cHS. 
                ind = find(diff([0 rmv 0]) ~= 1); 
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                ind = ind(1); 
                % Reposition left cycle bound 
                cyc_bnds(i) = cHS(j+ind-1).strt; 
            end 
        end 
    end 
    % Mark HS within marked cHS for removal 
    IND2 = []; 
    for i = IND1 
        ind = find(HS, cHS(i).strt, cHS(i).stop); 
        IND2 = [IND2 ind]; 
    end 
    % Remove HS and cHS 
    cHS(IND1) = []; 
    HS(IND2) = []; 
end 

B.3.7 load_PCG.m 

% [PCG, Fs, r] = LOAD_PCG(path, max_dur, Fs_min, ds_type, min_dur) 
% 
% Load a PCG from the filesystem. 
% 
% A maximum duration (max_dur), a minimum sampling rate (min_Fs), and a minimum 
% duration (min_dur) can be set. Sound files that do not meet the min_Fs or 
% min_dur are rejected, while sound files longer than max_dur are simply 
% truncated. Furthermore, dyadic or integer downsampling can be applied by 
% setting ds_type. 
% 
% Args: 
% * path: sound file path 
% * lim = inf: allowable range (sec) can be specified as just a maximum duration 
% which is internally represented as [1 max_dur], or as a maximum and minimum 
% specified as [min_dur max_dur] 
% * Fs_min = 0: minimum allowable sampling rate (Hz) 
% * ds_type = '': 'dyadic' or 'integer' 
% * min_dur = 0: minimum allowable duration (sec) 
% 
% Returns: 
% * PCG: DC offset removed and normalized to the range [-1, 1] 
% * Fs: sampling rate (after downsampling) (Hz) 
% * strt: index of loaded PCG's 1st sample relative to original PCG (in case of 
% truncation by min_dur) 
% * r: downsampling factor 
function [PCG, Fs, strt, r] = load_PCG(path, lim, Fs_min, ds_type, min_dur) 
    if nargin < 2 
        lim = inf; 
    else 
        lim = abs(lim); 
    end 
    if nargin < 3 
        Fs_min = 0; 
    else 
        Fs_min = abs(Fs_min); 
    end 
    if nargin < 4 
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        ds_type = ''; 
    end 
    if nargin < 5 
        min_dur = 0; 
    else 
        min_dur = abs(min_dur); 
    end 
 
    % Load PCG 
    [PCG, Fs] = audioread(path); 
    % Only keep the 1st channel 
    PCG = PCG(:,1); 
    % Reject PCG with low sampling freq 
    if Fs < Fs_min 
        error('Fs = %e Hz < minimum allowable Fs = %e Hz', Fs, Fs_min); 
    end 
    % Reject short PCG 
    dur = numel(PCG); 
    if dur < min_dur * Fs 
        error('PCG duration of %f sec is less than the required duration of %f sec.', ... 
          dur / Fs, min_dur) 
    end 
    % Determine the downsampling factor so that the downsampled Fs is as close 
    % as possible to, but not less than, the minimum allowable Fs 
    switch ds_type 
        case 'dyadic' 
            % Fs/2^k >= Fs_min 
            k = floor(log2(Fs / Fs_min)); 
            r = 2 ^ k; 
        case 'integer' 
            % Fs/r >= Fs_min 
            r = floor(Fs / Fs_min); 
        otherwise 
            r = 1; 
    end 
    % Downsample 
    if r > 1 
        PCG = downsample(PCG, r); 
        Fs = Fs / r; 
    end 
    % Truncate signal length 
    lim = round(lim * Fs); 
    len = numel(PCG); 
    if length(lim) > 1 
        if lim(1) < len 
            strt = lim(1); 
        else 
            strt = len; 
        end 
    else 
        strt = 1; 
    end 
    if lim(end) < len 
        stop = lim(end); 
    else 
        stop = len; 



166 
 

    end 
    PCG = PCG(strt:stop); 
    % Remove mean offset and normalize 
    PCG = normalize(PCG - mean(PCG)); 
end 

B.3.8 peak_peel.m 

% peaks = PEAK_PEEL(x, STC, show, Fs) 
% 
% Detect the peaks of nonstationary events. 
% 
% This is an implementation of the peak peeling algorithm from 
% "Detection of Explosive Lung and Bowel Sounds by Means of Fractal Dimension" 
% [Hadjileontiadis & Rekanos]. 
% 
% Peak peeling applies a standard deviation threshold to the input, where the 
% portion of the signal greater than the threshold is added to the output, and 
% the portion of the signal less than the threshold is the input to the next 
% iteration. The process iterates if the mean square error between the two 
% signals produced by thresholding is greater than the stopping condition (STC); 
% the process stops if the error is less than the STC. The final output, 
% therefore, is the sum of the peaks from each iteration. 
% 
% Typically, the input is a positive-valued waveform with peaks representing 
% certain segments (such as the fractal dimension). Peak peeling can then be 
% used to zero any low amplitude samples regardless of their amplitude in the 
% time domain. 
% 
% Args: 
% * x = signal 
% * STC = stopping condition 
% * show = false: show the plots if true 
% * Fs = 1: sampling rate for plotting 
function peaks = peak_peel(x, STC, show, Fs) 
    STC = abs(STC); 
    if STC == 0 || STC >= 1 
        error('0 < STC < 1.') 
    end 
    if nargin < 3 
        show = false; 
    end 
    if nargin < 4 
        Fs = 1; 
    else 
        Fs = abs(Fs); 
    end 
 
    y = zeros(size(x)); 
    peaks = zeros(size(x)); 
    x = x(:); 
    i = 0; 
    err = 1; 
    while err > STC 
        i = i + 1; 
        thresh = std(x); 
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        % Peak signal 
        pass = abs(x) > thresh; 
        y(pass) = x(pass); 
        y(~pass) = 0; 
        % Add to output 
        peaks = peaks + y; 
        % Rejected signal 
        z = x - y(:); 
        % Error between input and rejected signal 
        err = abs(mean(x.^2) - mean(z.^2)); 
        % Plot 
        if show 
            yy = y; 
            yy(~pass) = NaN; 
            zz = z; 
            zz(pass) = NaN; 
            [t, xl] = time(x, Fs); 
 
            figure 
            % Input 
            ax(1) = subplot(211); 
            hold on 
            plot(t, yy) 
            plot(t, zz, 'r') 
            xlim(xl) 
            horiz_line(xl.', thresh, 'color', 'r', 'linestyle', '--') 
            legend('Above threshold', 'Below threshold') 
            ylabel('Magnitude') 
            title(sprintf('Input (err = %.2e)', err)) 
            % Peaks 
            ax(2) = subplot(212); 
            plot(t, peaks) 
            xlim(xl) 
            ylabel('Magnitude') 
            xlabel('t (s)') 
            title(sprintf('Reconstructed peaks (iteration %d)', i)) 
 
            linkaxes(ax, 'x') 
            plot_style(ax) 
        end 
        % Next input = rejected signal 
        x = z; 
    end 
end 

B.3.9 split_HS.m 

% [HS, TR_LOC, PK_LOC] = SPLIT_HS(HS, env, min_dist, min_height) 
% 
% Separate heart sound segments that contain split sound components. 
% 
% The PCG's envelope is used to find the peaks above a certain threshold in each 
% segment. Multiple peaks in a segment indicate split sounds, so the segments 
% are separated at the deepest trough between the two tallest peaks. 
% 
% Args: 
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% * HS: heart sound segments 
% * env: smoothed PCG envelope (positive-valued) 
% * min_dist: minimum allowable # of samples between peaks 
% * min_height: minimum allowable peak height 
% 
% Returns: 
% * HS: heart sound segments split at the trough locations 
% * TR_LOC: all trough locations 
% * PK_LOC: all peak locations 
function [HS, TR_LOC, PK_LOC] = split_HS(HS, env, min_dist, min_height) 
    env = abs(env); 
    min_dist = floor(abs(min_dist)); 
    if min_dist >= numel(env) 
        error('Minimum allowable distance between peaks must be < signal duration') 
    end 
    min_height = abs(min_height); 
    if min_height > max(env) 
        error('Minimum allowable peak height must be <= max(envelope)') 
    end 
 
    TR_LOC = []; 
    PK_LOC = []; 
    for i = 1:numel(HS) 
        x = env(HS(i).rng); 
        if all(x < min_height) || numel(x) <= min_dist 
            continue 
        end 
        % Peaks are ordered by descending height 
        [pk, pk_loc] = findpeaks(x, ... 
            'MINPEAKDISTANCE', min_dist, ... 
            'MINPEAKHEIGHT', min_height, ... 
            'SORTSTR', 'descend'); 
        % Find trough between peaks 
        if numel(pk_loc) > 1 
            % Proceed if 2 largest peaks > threshold 
            if any(pk(1:2) < min_height) 
                continue 
            end 
            % Keep 2 largest peaks 
            pk_loc = pk_loc(1:2); 
            % Trough is between and below peaks 
            pk_loc = sort(pk_loc); % sort by location 
            left = pk_loc(1); 
            right = pk_loc(2); 
            x = x(left:right); 
            % Trough location is relative to left peak 
            [~, tr_loc] = findpeaks(-x, ... 
              'MINPEAKHEIGHT', -pk(2), ... % trough <= smallest peak 
              'SORTSTR', 'descend'); 
            if ~isempty(tr_loc) 
                % Save peak and trough locations relative to original signal 
                PK_LOC(end+1) = HS(i).strt + left - 1; % left peak 
                TR_LOC(end+1) = PK_LOC(end) + tr_loc(1) - 1; % deepest trough 
                PK_LOC(end+1) = HS(i).strt + right - 1; % right peak 
            end 
        end 
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    end 
    % Split the segments @ the trough locations 
    HS = split(HS, TR_LOC); 
end 

B.3.10 st.m 

% [simpl, D, H] = ST(x, m, W) 
% 
% Generate a signal that represents time domain complexity. 
% 
% This is an implementation of the simplicity transform described in "Accessing 
% Heart Dynamics to Estimate Durations of Heart Sounds" [Nigam & Priemer]. 
% 
% The goal is to estimate the system's state space dimension, which is 
% proportional to system complexity. The initial step is the "method of delays" 
% adapted from Taken's embedding theorem, in which a trajectory matrix composed 
% of delay vectors is constructed. A delay vector is a window of length m that 
% contains a contiguous groups of samples from the time domain signal. The delay 
% vector is shifted one sample at a time and stored in the rows of the 
% trajectory matrix until the vector reaches the end of the signal. The 
% trajectory matrix is then cross correlated with itself to form the correlation 
% matrix. Next, the eigenvalues of the correlation matrix, or the singular 
% spectrum, are arranged in descending order. Complex signals tend to have many 
% small-magnitude, eenly distributied eigenvalues, while simple signals tend to 
% have only one or two large-magnitude eigenvalues. This is analogous to the 
% relationship between entropy and the probability mass function (pmf) of a 
% random experiment. Uncertain outcomes tend to have high entropy and evenly 
% distributed pmf's, while certain outcomes tend to have low entropy and skewed 
% pmf's. Since the entropy is an estimate of the number of bits required to 
% represent an outcome, the entropy is likewise an estimate of the number of 
% dimensions required to represent the system in state space. Therefore, the 
% entropy of the singular spectrum is proportional to signal complexity, and 
% simplicity is just the inverse of complexity. 
% 
% By default, the output is a scalar because the window length W is the same as 
% the signal length L. If W < L, then the output has the same dimensions as the 
% input. 
% 
% Args: 
% * m = delay vector length 
% * W = window length 
% 
% Returns: 
% * simpl: simplicity 
% * D: each column is the singular spectrum for a window (eigenvalues are 
%   arranged in descending order) 
% * H: entropy 
function [simpl, D, H] = st(x, m, W) 
    L = numel(x); 
    if nargin < 3 
        W = L; 
    end 
    if W == L 
        simpl = 0; 
        offset = 1; 



170 
 

    elseif W < L 
        W = floor(abs(W)); 
        if W <= 0 
            error('Window length must be > 0.') 
        end 
        simpl = zeros(size(x)); 
        offset = ceil(W/2); 
    else 
        error('Window length must be <= signal length.') 
    end 
 
    m = floor(abs(m)); 
    if m == 0 
        error('Delay vector length must be > 0.') 
    elseif m > W 
        error('Delay vector length must be <= window length.') 
    end 
 
    N = L - W + 1; % # of windows 
    P = W - m + 1; % # of delay vectors per window 
 
    D = zeros(m,N); % singular spectra 
    H = zeros(1,N); % entropy 
 
    for i = 1:N 
        % Trajectory matrix 
        X = zeros(P,m); 
        for j = 1:P 
            % Each delay vector is indexed by its time delay 
            k = i + j - 2; 
            X(j,:) = x(k+1:k+m); 
        end 
        X = X ./ sqrt(P); 
        % Correlation matrix 
        C = X.' * X; % slow! 
        % Singular spectrum 
        D(:,i) = eig(C); 
        % Normalize eigenvalues 
        D(:,i) = D(:,i) ./ sum(D(:,i)); 
        % Shannon entropy 
        H(i) = -D(:,i).' * log2(D(:,i)); 
        % Simplicity 
        complx = 2^abs(H(i)); 
        simpl(i-1+offset) = complx^-1; 
    end 
    simpl(isnan(simpl)) = 0; 
    D = sort(D, 'descend'); 
end 

B.4 Miscellaneous 

B.4.1 closest.m 

% i = CLOSEST(vals, val) 
% 
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% Locate the index i of the element from the array vals closest in value to the 
% desired value val. 
function [i, cval] = closest(vals, val) 
    diff = abs(vals(:) - val); 
    [~, i] = min(diff); 
end 

B.4.2 energy.m 

% E = ENERGY(x, W) 
% 
% Get the squared energy using a sliding window of length W 
% 
% By default, the output is a scalar because the window length W is the same as 
% the signal length L. If W < L, then the output is an array that has the same 
% dimensions as the input. 
function E = energy(x, W) 
    L = numel(x); 
    if nargin < 2 
        W = L; 
    end 
    if W == L 
        E = 0; 
        offset = 1; 
    elseif W < L 
        W = floor(abs(W)); 
        if W <= 0 
            error('Window length must be > 0.') 
        end 
        E = zeros(size(x)); 
        offset = ceil(W/2); 
    else 
        error('Window length must be <= signal length.') 
    end 
 
    x = x(:); 
    for i = 0:L-W 
        E(i+offset) = mean(x(i+1:i+W).^2); 
    end 
    E(isnan(E)) = 0; 
end 

B.4.3 env.m 

% y = ENV(x) 
% 
% Get the absolute value of the signal's Hilbert envelope. 
function y = env(x) 
    y = abs(hilbert(x)); 
end 

B.4.4 nfft.m 

% [Y, f] = NFFT(x) 
% 
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% Call fft() after zero padding the signal to the closest power of two length. 
% The transformed signal Y has a digital frequency range f of [0,0.5). 
function [Y, f] = nfft(x) 
    L = length(x); 
    % Efficient transform length 
    N = pow2(nextpow2(L)); 
    Y = fft(x, N); 
    % Elimiate upper half of the spectrum (mirror image) 
    Y = Y(1:N/2); 
    f = (0:N/2-1) / N; 
end 

B.4.5 normalize.m 

% y = NORMALIZE(x) 
% 
% Normalize the signal to the range [-1, 1]. 
function y = normalize(x) 
    lim = max(abs(x(:))); 
    if lim == 1 
        y = x; 
    else 
        y = x ./ lim; 
    end 
end 

B.4.6 pcg_descr.m 

% str = PCG_DESCR(file, Fs) 
% 
% Formatted title of the PCG file 
function str = pcg_descr(file, Fs) 
    str = sprintf('%s (Fs ~ %.f Hz)', file, Fs); 
end 

B.4.7 rect.m 

% y = RECT(x, half, cntr, mag) 
% 
% Create a rectangle of width 2*half, centered at x = cntr, with a magnitude of 
% mag. By default, cntr = 0 and mag = 1. 
function y = rect(x, half, cntr, mag) 
    half = abs(half); 
    if nargin < 3 
        cntr = 0; 
    end 
    if nargin < 4 
        mag = 1; 
    end 
 
    y = zeros(size(x)); 
    y(x >= cntr - half & x <= cntr + half) = mag; 
end 

B.4.8 shannon_energy.m 
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% E = SHANNON_ENERGY(x, W) 
% 
% Get the Shannon energy: 
%   E = x^2 * log(x^2) 
% by sliding a window of length W over the input. 
% 
% By default, the output is a scalar because the window length W is the same as 
% the signal length L. If W < L, then the output is an array that has the same 
% dimensions as the input. 
function E = shannon_energy(x, W) 
    L = numel(x); 
    if nargin < 2 
        W = L; 
    end 
    if W == L 
        E = 0; 
        offset = 1; 
    elseif W < L 
        W = floor(abs(W)); 
        if W <= 0 
            error('Window length must be > 0.') 
        end 
        E = zeros(size(x)); 
        offset = ceil(W/2); 
    else 
        error('Window length must be <= signal length.') 
    end 
 
    x = x(:); 
    for i = 0:L-W 
        y = x(i+1:i+W); 
        E(i+offset) = (y.').^2 * log(y.^2) / -W; 
    end 
    E(isnan(E)) = 0; 
end 

B.4.9 smooth.m 

% z = SMOOTH(x, W) 
% 
% Apply a moving average filter with window length W to the signal x. 
function z = smooth(x, W) 
    L = numel(x); 
    if W <= 0 || W > L 
        error('Window length must be positive and <= signal length.') 
    end 
    W = floor(W); 
 
    z = zeros(size(x)); 
    offset = ceil(W/2); 
    for i = 0:L-W 
        y = x(i+1:i+W); 
        z(i+offset) = mean(y); 
    end 
end 
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B.4.10 time.m 

% [t, xl] = TIME(x, Fs, offset) 
% 
% Create a time vector t from the signal x and its sampling rate Fs, and 
% determine the x-limits xl of the time vector. In addition, an optional offset 
% can be applied to the time vector. 
function [t, xl] = time(x, Fs, offset) 
    Fs = abs(Fs); 
    if nargin < 3 
        offset = 0; 
    end 
 
    n = 0:numel(x)-1; 
    t = n ./ Fs + offset; 
    xl = [t(1), t(end)]; 
end 

B.5 Plotting 

B.5.1 fmt_line_arg.m 

% [loc, lim] = FMT_LINE_ARG(loc, lim) 
% 
% Parse vert_line() and horiz_line() input arguments into a format compatible 
% with line(). 
% 
% Args: 
% loc = 1xN line locations 
% lim = 2x1 - if same line limits 
%       2xN - if unique line limits 
% 
% Returns; 
% new_loc = 2xN - identical rows 
% new_lim = 2xN - identical columns if same line limits 
%           2xN - unchanged if unique line limits 
function [loc, lim] = fmt_line_arg(loc, lim) 
    arg1 = inputname(1); 
    arg2 = inputname(2); 
    % Check input dimensions 
    if size(loc,1) ~= 1 
        error('%s must be either a scalar or 1xN vector', arg1) 
    end 
    if size(lim,1) ~= 2 
        error('%s must be either a 2x1 or 2xN vector', arg2) 
    end 
    % Format arguments 
    nlines = size(loc,2); 
    nlim = size(lim,2); 
    if nlines > nlim && nlim == 1 % same limits for all lines 
        lim = repmat(lim, 1, nlines); 
    elseif nlim == nlines % unique limits for each line 
    else 
        error('The # of pairs of %s does not equal the # of pairs of %s', ... 
          arg1, arg2) 
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    end 
    loc = [loc; loc]; 
end 

B.5.2 horiz_line.m 

% HORIZ_LINE(x, y, varargin) 
% 
% Plot a horizontal line 
% 
% Args: 
% x = line limits (2xN) 
% y = line locations (1xN) 
% varargs = LineSpec 
function horiz_line(x, y, varargin) 
    [y, x] = fmt_line_arg(y, x); 
    line(x, y, varargin{:}) 
end 

B.5.3 plot_style.m 

% PLOT_STYLE(ax, xl) 
% 
% Set the plot style 
function plot_style(ax, xl) 
    fig = gcf; 
    % set(fig, 'units', 'inches', 'position', [3 3 6 8]) 
    set(fig, 'color', 'w') 
    set(pan(fig), 'Motion', 'horizontal') 
    set(zoom(fig), 'Motion', 'horizontal', 'Enable', 'on') 
 
    for i=1:numel(ax) 
        grid(ax(i), 'on') 
        box(ax(i), 'on') 
        if nargin == 2 
            xlim(ax(i), xl) 
        end 
    end 
end 

B.5.4 vert_line.m 

% VERT_LINE(x, y, varargin) 
% 
% Make it easier to plot a vertical line 
% 
% Args: 
% x = line locations (1xN) 
% y = line limits (2xN) 
% varargs = LineSpec 
function vert_line(x, y, varargin) 
    [x, y] = fmt_line_arg(x, y); 
    line(x, y, varargin{:}) 
end 
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C. Class Definitions and Methods 

C.1 @segment 

C.1.1 combine.m 

% cmbn_seg = COMBINE(seg, max_dur) 
% 
% Combine adjacent segments within max_dur samples of each other. If no duration 
% is specified, then combine touching segments. Also, the magnitude of all 
% segments is reset to 1. 
function cmbn_seg = combine(seg, max_dur) 
    if isempty(seg) 
        cmbn_seg = seg; 
        return 
    end 
    if nargin < 2 
        max_dur = 0; 
    else 
        max_dur = floor(abs(max_dur)); 
    end 
 
    strt = [seg.strt]; 
    stop = [seg.stop]; 
    % Check for overlapping segments 
    if numel(seg) > 1 && any(strt(2:end) < stop(1:end-1)) 
        error('Segments cannot overlap.') 
    end 
 
    % Create new strt/stop indices for groups of adjacent segments within 
    % max_dur samples of each other 
    while numel(strt) > 1 
        % [strt(i), stop(i)], [strt(i+1), stop(i+1)] 
        % dur between adjacent segments = strt(i+1) - stop(i) - 1 
        dur = strt(2:end) - stop(1:end-1) - 1; 
        mask = (dur <= max_dur); 
        if ~mask % none are < max_dur 
            break 
        end 
        % Remove strt/stop indices between pairs of segments 
        % Combined segment indices = [strt(i) stop(i+1)] 
        stop(mask) = []; % remove stop(i) 
        strt(find(mask) + 1) = []; % remove strt(i+1) 
    end 
 
    % Combine segments 
    N = numel(strt); 
    cmbn_seg(N) = segment; 
    for i=1:N 
        cmbn_seg(i) = segment(strt(i), stop(i)); 
    end 
end 

C.1.2 find.m 
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% ind = FIND(seg, left, right) 
% 
% Find the segments located between the left and right indices (inclusive). 
function ind = find(seg, left, right) 
    left = floor(abs(left)); 
    right = floor(abs(right)); 
    if right < left 
        error('Left index must be <= right index.') 
    end 
 
    ind = find(left <= [seg.strt] & [seg.stop] <= right); 
end 

C.1.3 levels.m 

% levels = LEVELS(seg, sz) 
% 
% Convert the segments to a PWC signal of dimensions sz by setting the 
% constant-value levels to the segment magnitudes (non-segment magnitudes = 0) 
function levels = levels(seg, sz) 
    if any([seg.stop] > max(sz)) 
        error('The signal must be long enough to contain all segments.') 
    end 
 
    levels = zeros(sz); 
    for i=1:numel(seg) 
        levels(seg(i).rng) = seg(i).mag; 
    end 
end 

C.1.4 mask.m 

% function mask = MASK(seg, sz, lvl) 
% 
% Convert the segments to a binary signal of dimensions sz, where the "on" 
% magnitude is specified by lvl (default = 1). 
function mask = mask(seg, sz, lvl) 
    if any([seg.stop] > max(sz)) 
        error('The signal must be long enough to contain all segments.') 
    end 
    if nargin < 3 
        lvl = 1; 
    end 
 
    mask = zeros(sz); 
    for i=1:numel(seg) 
        mask(seg(i).rng) = lvl; 
    end 
end 

C.1.5 segment.m 

classdef segment 
    properties 
        mag 
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    end 
    properties (SetAccess = private) 
        strt, stop 
    end 
    properties (Dependent) 
        dur, rng 
    end 
    methods 
        function seg = segment(strt, stop, mag) 
            if nargin > 0 
                strt = floor(abs(strt)); 
                stop = floor(abs(stop)); 
                if stop < strt 
                    error('Start index must be <= stop index.') 
                end 
                seg.strt = strt; 
                seg.stop = stop; 
                if nargin < 3 
                    seg.mag = 1; 
                else 
                    seg.mag = mag; 
                end 
            end 
        end 
        % Methods 
        seg = combine(seg, max_dur) 
        seg = split(seg, loc) 
        ind = find(seg, left, right) 
        mask = mask(seg, sz, lvl) 
        levels = levels(seg, sz) 
        sig = signal(seg, ref, zero) 
        % Get 
        function rng = get.rng(seg) 
            rng = seg.strt:seg.stop; 
        end 
        function dur = get.dur(seg) 
            dur = seg.stop - seg.strt + 1; 
        end 
    end 
end 

C.1.6 signal.m 

% sig = SIGNAL(seg, ref, zero) 
% 
% Set the reference signal's non-segment sample values to the specified zero 
% value (default = 0) 
function sig = signal(seg, ref, zero) 
    if nargin < 3 
        zero = 0; 
    end 
 
    m = mask(seg, size(ref)); 
    sig = ref; 
    sig(~m) = zero; 
end 
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C.1.7 split.m 

% splt_seg = SPLIT(seg, loc) 
% 
% Split the segments apart at the given sample locations, so that the split 
% segments are separated by 1 sample (the segment magnitudes are preserved). 
function splt_seg = split(seg, loc) 
    if isempty(seg) || isempty(loc) 
        splt_seg = seg; 
        return 
    end 
    loc = floor(abs(loc)); 
 
    % Make sure split locations are inside, rather than between, segments 
    strt = [seg.strt, Inf]; 
    stop = [0, seg.stop]; 
    for i=1:numel(seg)+1 
        if any(stop(i) <= loc & loc <= strt(i)) 
            error('Split locations must be inside segment boundaries.') 
        end 
    end 
 
    % Separate split segments 
    left = loc - 1; 
    right = loc + 1; 
    splt_seg = segment.empty; 
    for i=1:numel(seg) 
        ind = find(seg(i).strt < loc & loc < seg(i).stop); 
        strt = [seg(i).strt, right(ind)]; 
        stop = [left(ind), seg(i).stop]; 
        mag = seg(i).mag; 
        for j=1:numel(strt) 
            splt_seg(end+1) = segment(strt(j), stop(j), mag); 
        end 
    end 
end 

C.2 @stethoscope 

C.2.1 cmp_PCG.m 

% CMP_PCG(sscope) 
% 
% Plot the original vs filtered PCG. 
function cmp_PCG(sscope) 
    [t, xl] = time(sscope.PCG, sscope.Fs); 
    yl = [-1, 1]; 
 
    figure 
    % Original 
    ax(1) = subplot(211); 
    ylim(yl) 
    plot(t, sscope.PCG) 
    title(sscope) 
    % Filtered 
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    ax(2) = subplot(212); 
    ylim(yl) 
    plot(t, sscope.filt_PCG); 
    A_rng = coef_rng(sscope.Fs, sscope.lvl, 'apprx'); 
    title(sprintf('PCG reconstructed from A%d (%s)', sscope.lvl, A_rng)) 
 
    linkaxes(ax, 'x') 
    plot_style(ax, xl) 
end 

C.2.2 dwt_filt.m 

% sscope = DWT_FILT(sscope) 
% 
% Low pass filter the PCG by reconstructing it from its approximation 
% coefficient at the level specified by sscope.level. 
function sscope = dwt_filt(sscope) 
    [C, L] = wavedec(sscope.PCG, sscope.lvl + 1, sscope.wavef); 
    filt_PCG = wrcoef('a', C, L, sscope.wavef, sscope.lvl); 
    sscope.filt_PCG = normalize(filt_PCG); 
    if sscope.show_filt 
        coef_plot(sscope.Fs, C, L, sscope.wavef, 1:sscope.lvl+1) 
        cmp_PCG(sscope) 
    end 
end 

C.2.3 dwt_segment.m 

% sscope = DWT_SEGMENT(sscope, lvl, params) 
% 
% Attenuate the murmurs by applying the discrete wavelet transform to the PCG. 
% Obtain the filtered PCG's Shannon energy waveform, and then peak peel this 
% waveform to segment the heart sounds. Remove any remaining low energy segments 
% with a constant threshold. Look for troughs that might indicate merged peaks, 
% and then separate the merged peaks if present. Peak peel the original PCG's 
% fractal dimension to segment the murmurs. Finally, classify the segments as 
% specific sound types (S1, M1, T1, S2, A2, P2, S3, S4, systolic murmur, 
% diastolic murmur). 
% 
% Args: 
% * lvl: DWT apprx coef level for filtering murmurs and high freq noise (must be 
% > sscope.lvl) 
% 
% Args (name-value): 
% * show = {char}:  cell array of strings that specifies which operations should 
% be plotted 
%   'seg' - primary segmentation operations 
%   'peak_peel' - peak peeling iterations 
%   'find_cyc' - heart cycle segmentation 
% * wavef = sscope.wavef: wavelet function 
% * W = 20 ms: fractal and energy window lengths 
% * STCW = 1e-4: peak peeling stopping condition for energy waveform 
% * HS_thresh = 0.1: minimum HS Shannon energy 
% * WS = 20 ms: smoothing window length for PCG 
% * max_tr = 0.5: maximum relative trough height for trimming segments 
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% * min_pk = 0.2: minimum peak height for finding split HS 
% * STCF = 1e-4: peak peeling stopping condition for fractal dimension 
function sscope = dwt_segment(sscope, lvl, varargin) 
    PCG1 = sscope.filt_PCG; 
    Fs = sscope.Fs; 
    sz = size(PCG1); 
 
    min_HS_dur = sscope.min_HS_dur; 
    max_HS_dur = sscope.max_HS_dur; 
    min_syst_dur = sscope.min_syst_dur; 
    min_murm_dur = sscope.min_murm_dur; 
    max_split_dur = min_syst_dur - 1; 
 
    if lvl <= sscope.lvl 
        error('lvl must be > sscope.lvl') 
    end 
 
    % Parse varargs 
    p = inputParser; 
    params = { 
        'show', {char}; 
        'wavef', sscope.wavef; 
        'W', 20e-3; 
        'STCW', 1e-4; 
        'HS_thresh', 0.1; 
        'WS', 20e-3; 
        'max_tr', 0.5; 
        'min_pk', 0.2; 
        'STCF', 1e-4; 
    }; 
    for i=1:size(params,1) 
        addParameter(p, params{i,:}) 
    end 
    parse(p, varargin{:}) 
    args = p.Results; 
    % Save varargs 
    show = args.show; 
    wavef = args.wavef; 
    W = floor(args.W*Fs); 
    STCW = args.STCW; 
    HS_thresh = abs(args.HS_thresh); 
    WS = floor(args.WS*Fs); 
    max_tr = abs(args.max_tr); 
    min_pk = abs(args.min_pk); 
    STCF = args.STCF; 
 
    % Check window lengths 
    err_str = '%s length must be > 0 samples'; 
    if W == 0 
        error(err_str, 'W') 
    end 
    if WS == 0 
        error(err_str, 'WS') 
    end 
    % Check if should plot 
    show = @(str) any(strcmp(str, show)); 
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    % Filter out murmurs 
    [C, L] = wavedec(sscope.PCG, lvl, wavef); 
    PCG2 = wrcoef('a', C, L, wavef, lvl); 
    PCG2 = normalize(PCG2); 
    % Extract HS peaks 
    SE = shannon_energy(normalize(env(PCG2)), W); 
    SEPP = peak_peel(SE, STCW, show('peak_peel'), Fs); 
 
    % Fig 1 
    if show('seg') 
        figure 
        [t, xl] = time(PCG1, Fs); 
 
        ax1(1) = subplot(311); 
        ylim([-1, 1]) 
        plot(t, PCG1) 
        ylabel('Amplitude') 
        title(sscope) 
 
        ax1(2) = subplot(312); 
        ylim([-1, 1]) 
        plot(t, PCG2) 
        ylabel('Amplitude') 
        A_rng = coef_rng(Fs, lvl, 'apprx'); 
        title(sprintf('PCG reconstructed from A%d (%s)', lvl, A_rng)) 
 
        ax1(3) = subplot(313); 
        hold on 
        plot(t, SEPP) 
        horiz_line(xl.', HS_thresh, 'color', 'r', 'Linestyle', '--') 
        axis tight 
        legend('Peaks', 'HS thresh') 
        ylabel('Energy') 
        title('Peak peeled Shannon energy (reconstructed PCG)') 
 
        xlabel('t (s)') 
        plot_style(ax1, xl) 
        linkaxes(ax1, 'x') 
    end 
 
    % Segment HS 
    seg = levels2seg(SEPP > 0); 
    % Remove narrow & low energy HS 
    seg(max_in(seg, SEPP) < HS_thresh | [seg.dur] < min_HS_dur) = []; 
    % Remove murmur samples from HS 
    senv = normalize(smooth(env(PCG1), WS)); 
    [HS, tr_loc.trim, thr_lines] = trim_HS(seg, senv, max_tr); 
    % Separate split HS 
    [HS, tr_loc.split, pk_loc] = split_HS(HS, senv, min_HS_dur, min_pk); 
    % Remove wide HS 
    HS([HS.dur] > max_HS_dur) = []; 
    % Combine split HS 
    cHS = combine(HS, max_split_dur); 
    % Extract peaks from noise 
    FD = normalize(katz_fd(PCG1, W) - 1); 
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    FDPP = peak_peel(FD, STCF, show('peak_peel'), Fs); 
    % Segment murmurs 
    murm_mask = FDPP & ~mask(cHS, sz); 
    murm = levels2seg(murm_mask); 
    % Remove narrrow murmurs 
    murm([murm.dur] < min_murm_dur) = []; 
    % Segment heart cycles 
    cyc_bnds = find_heart_cycles(cHS, PCG1, 2*min_syst_dur, ... 
        show('find_cyc'), Fs); 
 
    % Fig 2 (sp2-4) 
    if show('seg') 
        figure 
 
        ax2(1) = subplot(411); 
 
        ax2(2) = subplot(412); 
        hold on 
        ylim([0, 1]) 
        plot(t, senv) 
        plot(t, mask(seg,sz), 'r') 
        plot(t, thr_lines, 'm') 
        lgnd = {'PCG envelope', 'Segment gates', 'Peak thresh'}; 
        if ~isempty(tr_loc.trim) 
            plot(tr_loc.trim / Fs, senv(tr_loc.trim), ... 
                '^', 'markerfacecolor', 'y'); 
            lgnd{end+1} = 'Troughs'; 
        end 
        legend(lgnd) 
        ylabel('Amplitude') 
        title('Trim segments') 
 
        ax2(3) = subplot(413); 
        hold on 
        ylim([0, 1]) 
        plot(t, senv) 
        plot(t, mask(HS, sz), 'r') 
        lgnd = {'PCG envelope', 'HS gates'}; 
        if ~isempty(tr_loc.split) 
            plot(pk_loc/Fs, senv(pk_loc), ... 
                '^', 'markerfacecolor', 'r') 
            plot(tr_loc.split/Fs, senv(tr_loc.split), ... 
                '^', 'markerfacecolor', 'y') 
            horiz_line(xl.', min_pk, 'color', 'm', 'Linestyle', '--') 
            lgnd = [lgnd, 'Peaks', 'Troughs', 'Peak thresh']; 
        end 
        legend(lgnd) 
        ylabel('Amplitude') 
        title('Separate split heart sounds') 
 
        ax2(4) = subplot(414); 
        hold on 
        plot(t, FDPP) 
        plot(t, mask(cHS, sz, max(FDPP)), 'r') 
        lgnd = {'Peaks', 'cHS gates'}; 
        if ~isempty(murm) 



184 
 

            for i=1:numel(murm) 
                murm(i).mag = max(FDPP(murm(i).rng)); 
            end 
            plot(t, levels(murm, sz), 'm') 
            lgnd{end+1} = 'Murmur gates'; 
        end 
        axis tight 
        legend(lgnd) 
        ylabel('FD') 
        title('Peak peeled fractal dimension (original PCG)') 
 
        xlabel('t (s)') 
        plot_style(ax2, xl) 
        linkaxes([ax1, ax2], 'x') 
    end 
 
    % Classify segments 
    E = energy(PCG1, W); 
    [HS, cHS, cyc_bnds] = limit_HS(HS, cHS, cyc_bnds, E); 
    [S1, M1, T1, ... 
     S2, A2, P2, ... 
     S3, S4, sum_gallop, ... 
     syst_murm, diast_murm] = lbl_sounds(... 
        HS, cHS, cyc_bnds, segment.empty, murm); 
 
    % Fig 2 (sp1) 
    if show('seg') 
        axes(ax2(1)) 
        hold on 
        ylim([-1, 1]) 
        plot(t, PCG1) 
        plot(t, mask(cHS, sz), 'r') 
        vert_line(cyc_bnds/Fs, ylim.', 'color', 'r') 
        legend('PCG', 'cHS gates', 'Cycle bounds') 
        ylabel('Amplitude') 
        title(sscope) 
    end 
 
    % Save to object 
    sscope.seg_method = 'dwt'; 
    sscope = save_prop(sscope, ... 
        cyc_bnds, ... 
        S1, M1, T1, ... 
        S2, A2, P2, ... 
        S3, S4, sum_gallop, ... 
        syst_murm,diast_murm); 
end 
 
function y = max_in(seg, x) 
    y = zeros(size(seg)); 
    for i=1:numel(seg) 
        y(i) = max(x(seg(i).rng)); 
    end 
end 
 
% Search for troughs to the left and right of the main peaks. Main peaks > 
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% thresh and do not begin or end on the contaning segment edges. Troughs 
% between main peaks are excluded from the search. 
% 
% Args: 
% * env = PCG envelope 
% * rel_thresh = peak thresh as a fraction of each segment's maximum intensity 
function [new_HS, TR_LOC, thresh_lines] = trim_HS(HS, env, rel_thresh) 
    N = length(HS); 
    TR_LOC = []; 
    thresh = zeros(1,N); 
    new_HS(N) = segment; 
    for i=1:N 
        x = env(HS(i).rng); 
        thresh(i) = rel_thresh .* max(x); % trough threshold 
        peaks = levels2seg(x > thresh(i)); % main peak segments 
        if ~isempty(peaks) 
            % Segment's outer edges 
            strt = HS(i).strt; 
            stop = HS(i).stop; 
            % Find troughs to the left and right of the main peaks' outer edges 
            left = peaks(1).strt; 
            right = peaks(end).stop; 
            [~, tr_loc] = findpeaks(-x, 'MINPEAKHEIGHT', -thresh(i)); 
            tr_loc_left = tr_loc(tr_loc < left); 
            tr_loc_right = tr_loc(right < tr_loc); 
            % Shrink segment to 1st trough to the left and to the right of the 
            % main peaks' outer edges 
            if ~isempty(tr_loc_left) % strt -> tr_loc_left 
                strt = HS(i).strt + tr_loc_left(end) - 1; 
                TR_LOC = [TR_LOC; strt]; 
            end 
            if ~isempty(tr_loc_right) % tr_loc_right <- stop 
                stop = HS(i).strt + tr_loc_right(1) - 1; 
                TR_LOC = [TR_LOC; stop]; 
            end 
            new_HS(i) = segment(strt, stop, 1); 
        else 
            new_HS(i) = HS(i); 
        end 
    end 
 
    % Convert thresh to lines for plotting 
    thresh_lines = NaN(size(env)); 
    for i=1:N 
        thresh_lines(HS(i).rng) = thresh(i); 
    end 
end 

C.2.4 plot.m 

% PLOT(sscope) 
% 
% Plot the PCG with color coded segments. 
function plot(sscope) 
    PCG = sscope.PCG; 
    Fs = sscope.Fs; 
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    [t, xl] = time(PCG, Fs); 
 
    %% Generate PCG layers 
    sig = nan(7,numel(PCG)); 
    % Heart sounds 
    sig(1,:) = signal(sscope.S1, PCG, NaN); 
    sig(2,:) = signal(sscope.S2, PCG, NaN); 
    sig(3,:) = signal(sscope.S3, PCG, NaN); 
    sig(4,:) = signal(sscope.S4, PCG, NaN); 
    sig(5,:) = signal(sscope.sum_gallop, PCG, NaN); 
    % Murmurs (convert to segment arrays 1st) 
    syst_murm = segment.empty; 
    diast_murm = segment.empty; 
    for i=1:sscope.num_cyc 
        syst_murm = [syst_murm, sscope.syst_murm{i}]; 
        diast_murm = [diast_murm, sscope.diast_murm{i}]; 
    end 
    sig(6,:) = signal(syst_murm, PCG, NaN); 
    sig(7,:) = signal(diast_murm, PCG, NaN); 
    %Split sounds 
    split1 = center(sscope.M1, sscope.T1); 
    split2 = center(sscope.A2, sscope.P2); 
 
    %% Plot 
    names = { 
      'S1', 'S2', ... 
      'S3', 'S4', 'Summation Gallop', ... 
      'Systolic Murmur', 'Diastolic Murmur', ... 
    }; 
    colors = { 
      'b','r', ... 
      [.541, .169, .886],'g', 'k', ... 
      'm', 'm', ... 
    }; 
 
    figure 
    yl = [-1, 1]; 
 
    % Original PCG 
    ax(1) = subplot(211); 
    hold on 
    ylim(yl) 
    plot(t, PCG) 
    vert_line(sscope.cyc_bnds / Fs, yl.', 'color', 'r') 
    legend('PCG', 'Cycle Bounds') 
    ylabel('Amplitude') 
    xlabel('t (s)') 
    title(sscope) 
 
    % Color coded PCG 
    ax(2) = subplot(212); 
    hold on 
    ylim(yl) 
    lgnd = {}; 
    for i=1:7 
        if isnan(sig(i,:)) 
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            continue 
        end 
        plot(t, sig(i,:), 'color', colors{i}) 
        lgnd{end+1} = names{i}; 
    end 
    if ~isempty(split1) 
        vert_line(split1 / Fs, yl.' , 'color', 'r') 
        plot(split1 / Fs, 0, '^', 'markerfacecolor', 'r'); 
    end 
    if ~isempty(split2) 
        vert_line(split2 / Fs, yl.', 'color', 'b') 
        plot(split2 / Fs, 0, '^', 'markerfacecolor', 'b'); 
    end 
    if ~isempty(lgnd) 
        legend(lgnd) 
    end 
    ylabel('Amplitude') 
    xlabel('t (s)') 
    title(sscope.short_list) 
 
    linkaxes(ax, 'x') 
    plot_style(ax, xl) 
end 
 
% Find the center sample between 2 segments 
function loc = center(seg1, seg2) 
    loc = []; 
    for i=1:numel(seg1) 
        if ~isempty(seg1(i).strt) 
            strt = seg1(i).stop; 
            stop = seg2(i).strt; 
            loc = [loc, floor((strt + stop) / 2)]; 
        end 
    end 
end 

C.2.5 print.m 

% PRINT(sscope) 
% 
% Print the segmentation results to the console. 
% 
% 1. Total # of heart cycles 
% 2. # heart cycles that: 
%    - contain murmurs 
%    - do not contain murmurs 
% 3. # heart cycles that: 
%    - contain systolic murmurs 
%    - contain diastolic murmurs 
function print(sscope) 
    cond = sscope.conditions; 
    keyset = keys(cond); 
 
    murm = zeros(1,sscope.num_cyc); 
    syst = murm; 
    diast = murm; 
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    key = 'sm'; 
    if any(strcmp(keyset, key)) 
        syst = logical(cond(key)); 
    end 
    key = 'dm'; 
    if any(strcmp(keyset, key)) 
        diast = logical(cond(key)); 
    end 
    murm = syst | diast; 
 
    fprintf('%s\n\n', sscope.file) 
    fw = 20; 
 
    fprintf('%*s: %d\n', fw, 'Heart cycles', sscope.num_cyc); 
    fprintf('%*s: %d\n', fw, 'with murmurs', sum(murm)); 
    fprintf('%*s: %d\n\n', fw, 'without murmurs', sum(~murm)); 
 
    fprintf('%*s: %d\n', fw, 'Heart cycles', sscope.num_cyc); 
    fprintf('%*s: %d\n', fw, 'syst murmurs', sum(syst)); 
    fprintf('%*s: %d\n', fw, 'diast murmurs', sum(diast)); 
    fprintf('%*s: %d\n\n', fw, 'syst + diast murmurs', sum(syst + diast)); 
end 

C.2.6 simpl_segment.m 

% sscope = SIMPL_SEGMENT(sscope, params) 
% 
% Peak peel the original PCG's fractal dimension, and then use it to select 
% peaks in the simplicity waveform. Piecewise constant approximate the 
% simplicity peaks, and then segment the PWC function. Distinguish between heart 
% sounds, murmurs, and extra heart sounds with simple thresholds applied to the 
% segments' constant simplicity levels. Finally, classify the segments as 
% specific sound types (S1, M1, T1, S2, A2, P2, S3, S4, systolic murmur, 
% diastolic murmur). 
% 
% Args (name-value): 
% * show = {char}: cell array of strings that specifies which operations should 
% be plotted 
%   'seg' - primary segmentation operations 
%   'peak_peel' - peak peeling iterations 
%   'find_cyc' - heart cycle segmentation 
% * W = 20 ms: fractal and energy window length 
% * STC = 1e-4: peak peeling stopping condition 
% * N = 10 ms: simplicity window length 
% * m = 2 ms: simplicity delay vector length 
% * gamma = 0.8: PWC coarseness 
% * HS_thresh = 0.6: minimum HS simplicity value 
% * extra_HS_thresh = 0.8: minimum extra HS simplicity value 
% * WS = 20 ms: smoothing window length for PCG 
% * min_pk = 0.2: minimum peak height for finding split HS 
function sscope = simpl_segment(sscope, varargin) 
    PCG = sscope.filt_PCG; 
    Fs = sscope.Fs; 
    sz = size(PCG); 
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    min_HS_dur = sscope.min_HS_dur; 
    max_HS_dur = sscope.max_HS_dur; 
    min_syst_dur = sscope.min_syst_dur; 
    min_murm_dur = sscope.min_murm_dur; 
    max_split_dur = min_syst_dur - 1; 
 
    % Parse varargs 
    p = inputParser; 
    params = { 
        'show', {char}; 
        'W', 20e-3; 
        'STC', 1e-4; 
        'N', 10e-3; 
        'm', 2e-3; 
        'gamma', 0.8; 
        'HS_thresh', 0.6; 
        'extra_HS_thresh', 0.8; 
        'WS', 20e-3; 
        'min_pk', 0.2; 
    }; 
    for i=1:size(params,1) 
        addParameter(p, params{i,:}) 
    end 
    parse(p, varargin{:}) 
    args = p.Results; 
    % Save args 
    show = args.show; 
    W = ceil(args.W*Fs); 
    STC = args.STC; 
    N = ceil(args.N*Fs); 
    m = ceil(args.m*Fs); 
    gamma = args.gamma; 
    HS_thresh = args.HS_thresh; 
    extra_HS_thresh = args.extra_HS_thresh; 
    WS = ceil(args.WS*Fs); 
    min_pk = args.min_pk; 
 
    if HS_thresh > extra_HS_thresh 
        error('HS_thresh must be <= extra_HS_thresh.') 
    end 
    % Check window lengths 
    err_str = '%s length must be > 0 samples'; 
    if W == 0 
        error(err_str, 'W') 
    end 
    if N == 0 
        error(err_str, 'N') 
    end 
    % Check if should plot 
    show = @(str) any(strcmp(show, str)); 
 
    % Extract peaks from noise 
    FD = normalize(katz_fd(PCG, W) - 1); 
    FDPP = peak_peel(FD, STC, show('peak_peel'), Fs); 
    % Segment the peaks 
    seg = levels2seg(FDPP > 0); 
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    % PWC approximation of each segment's simplicity 
    simpl = st(PCG, m, N); 
    PWC = zeros(sz); 
    for i=1:numel(seg) 
        rng = seg(i).rng; 
        PWC(rng) = minL2Potts(simpl(rng), gamma); 
    end 
 
    % Fig 1 
    if show('seg') 
        figure 
        [t, xl] = time(PCG, Fs); 
 
        ax1(1) = subplot(511); 
        ylim([-1, 1]) 
        plot(t, PCG) 
        ylabel('Amplitude') 
        title(sscope) 
 
        ax1(2) = subplot(512); 
        ylim([0, 1]) 
        plot(t, FDPP) 
        ylabel('FD') 
        title('Peak peeled fractal dimension') 
 
        ax1(3) = subplot(513); 
        ylim([0, 1]) 
        plot(t, simpl) 
        ylabel('Simplicity') 
        title('Raw simplicity') 
 
        ax1(4) = subplot(514); 
        ylim([0, 1]) 
        simpl_peaks = simpl; 
        simpl_peaks(~FDPP) = 0; 
        plot(t, simpl_peaks) 
        ylabel('Simplicity') 
        title('Simplicity peaks') 
 
        ax1(5) = subplot(515); 
        hold on 
        ylim([0, 1]) 
        plot(t, PWC) 
        horiz_line(xl.', HS_thresh, 'color', 'r', 'LineStyle', '--') 
        legend('PWC', 'HS thresh') 
        ylabel('Simplicity') 
        title('PWC simplicity approximation') 
 
        xlabel('t (s)') 
        plot_style(ax1, xl) 
        linkaxes(ax1, 'x') 
    end 
 
    % Segment heart sounds and murmurs 
    seg = levels2seg(PWC); 
    % Segments -> normal HS, extra HS, and murmurs 
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    mag = [seg.mag]; 
    dur = [seg.dur]; 
    HS = seg(HS_thresh <= mag & mag < extra_HS_thresh & dur >= min_HS_dur); 
    extra_HS = seg(mag >= extra_HS_thresh & ... 
        min_HS_dur <= dur & dur <= max_HS_dur); 
    murm = seg(mag < HS_thresh & dur >= min_murm_dur); 
    % Separate HS containing split heart sounds 
    senv = normalize(smooth(env(PCG), WS)); 
    [HS, tr_loc, pk_loc] = split_HS(HS, senv, min_HS_dur, min_pk); 
    % Remove wide HS 
    HS([HS.dur] > max_HS_dur) = []; 
    % Combine split heart sounds 
    cHS = combine(HS, max_split_dur); 
    % Segment heart cycles 
    cyc_bnds = find_heart_cycles(cHS, PCG, 2*min_syst_dur, ... 
        show('find_cyc'), Fs); 
 
    % Fig 2 (sp2-4) 
    if show('seg') 
        figure 
 
        ax2(1) = subplot(311); 
 
        ax2(2) = subplot(312); 
        hold on 
        ylim([0, 1]) 
        % Normal HS 
        plot(t, levels(HS, sz)) 
        lgnd = {'Normal HS'}; 
        % Extra HS 
        if ~isempty(extra_HS) 
            plot(t, levels(extra_HS, sz), 'g') 
            lgnd{end+1} = 'Extra HS'; 
        end 
        % Murmurs 
        if ~isempty(murm) 
            plot(t, levels(murm, sz), 'r') 
            lgnd{end+1} = 'Murmurs'; 
        end 
        % Thresholds 
        horiz_line(xl.', HS_thresh, 'color', 'r', 'LineStyle', '--') 
        lgnd{end+1} = 'HS thresh'; 
        horiz_line(xl.', extra_HS_thresh, 'color', 'm', 'LineStyle', '--') 
        lgnd{end+1} = 'Extra HS thresh'; 
        legend(lgnd) 
        ylabel('Simplicity') 
        title('Threshold segments') 
 
        ax2(3) = subplot(313); 
        hold on 
        ylim([0, 1]) 
        plot(t, senv) 
        plot(t, mask(HS, sz), 'r') 
        lgnd = {'PCG envelope', 'HS gates'}; 
        if ~isempty(tr_loc) 
            plot(pk_loc/Fs, senv(pk_loc), '^', 'markerfacecolor', 'r') 
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            plot(tr_loc/Fs, senv(tr_loc), '^', 'markerfacecolor', 'y') 
            horiz_line(xl.', min_pk, 'color', 'm', 'Linestyle', '--') 
            lgnd = [lgnd, 'Peaks', 'Troughs', 'Peak thresh']; 
        end 
        legend(lgnd) 
        ylabel('Amplitude') 
        title('Separate split heart sounds') 
 
        xlabel('t (s)') 
        plot_style(ax2, xl) 
        linkaxes([ax1, ax2], 'x') 
    end 
 
    % Classify segments 
    E = energy(PCG, W); 
    [HS, cHS, cyc_bnds] = limit_HS(HS, cHS, cyc_bnds, E); 
    [S1, M1, T1,... 
     S2, A2, P2,... 
     S3, S4, sum_gallop,... 
     syst_murm, diast_murm] = lbl_sounds(HS, cHS, cyc_bnds, extra_HS, murm); 
 
    % Fig 2 (sp1) 
    if show('seg') 
        axes(ax2(1)); 
        hold on 
        ylim([-1, 1]) 
        plot(t, PCG) 
        plot(t, mask(cHS, sz), 'r') 
        vert_line(cyc_bnds/Fs, ylim.', 'color', 'r') 
        legend('PCG', 'Murmur gates', 'cHS gates', 'Cycle bounds') 
        ylabel('Amplitude') 
        title(sscope) 
    end 
 
    % Save to object 
    sscope.seg_method = 'simpl'; 
    sscope = save_prop(sscope, ... 
        cyc_bnds, ... 
        S1, M1, T1, ... 
        S2, A2, P2, ... 
        S3, S4, sum_gallop, ... 
        syst_murm, diast_murm); 
end 

C.2.7 stethoscope.m 

classdef stethoscope 
    properties (SetAccess = immutable) % PCG retrieval 
        folder, file, path 
        max_PCG_dur = 5 
        min_PCG_dur = 0 
        Fs_min = 4e3 
        ds_type = 'dyadic' % 'dyadic', 'integer', or empty 
    end 
    properties % DWT filt 
        show_filt = false 
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        wavef = 'db6' 
        lvl = 0 % don't filter by default 
    end 
    properties % segmentation 
        show_results = true; 
        max_HS_dur = 500e-3 
        min_HS_dur = 20e-3 
        min_syst_dur = 100e-3 
        min_murm_dur = 20e-3 
    end 
    properties (SetAccess = private, Transient) 
        PCG, Fs, r 
        filt_PCG 
    end 
    properties (SetAccess = private, Dependent) 
        downsampled 
        conditions 
        short_list 
        num_cyc 
        results 
    end 
    properties (SetAccess = private) % results 
        seg_method 
        cyc_bnds 
        S1, M1, T1 
        S2, A2, P2 
        S3, S4, sum_gallop 
        syst_murm, diast_murm 
    end 
    methods 
        function sscope = stethoscope(folder, file, varargin) 
            if nargin > 0 
                sscope.folder = folder; 
                sscope.file = file; 
                sscope.path = fullfile(sscope.folder, sscope.file); 
                % Parse varargs 
                p = inputParser; 
                addOptional(p, 'lvl', sscope.lvl); 
                % Immutable 
                addParameter(p, 'max_PCG_dur', sscope.max_PCG_dur) 
                addParameter(p, 'min_PCG_dur', sscope.min_PCG_dur) 
                addParameter(p, 'Fs_min', sscope.Fs_min) 
                addParameter(p, 'ds_type', sscope.ds_type) 
                % Mutable 
                addParameter(p, 'show_filt', sscope.show_filt) 
                addParameter(p, 'wavef', sscope.wavef) 
                addParameter(p, 'show_results', sscope.show_results) 
                addParameter(p, 'max_HS_dur', sscope.max_HS_dur) 
                addParameter(p, 'min_HS_dur', sscope.min_HS_dur) 
                addParameter(p, 'min_syst_dur', sscope.min_HS_dur) 
                addParameter(p, 'min_murm_dur', sscope.min_murm_dur) 
                % Save varargs 
                parse(p, varargin{:}) 
                prop = setxor(p.UsingDefaults, p.Parameters); 
                for i=1:numel(prop) 
                    sscope.(prop{i}) = p.Results.(prop{i}); 
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                end 
                % Acquire and optionally filter the PCG 
                sscope = load_PCG(sscope); 
                if sscope.lvl 
                    sscope = dwt_filt(sscope); 
                else 
                    sscope.filt_PCG = sscope.PCG; 
                end 
            end 
        end 
        function sscope = load_PCG(sscope) 
            [sscope.PCG, ... 
             sscope.Fs, ~, ... 
             sscope.r] = load_PCG(... 
                sscope.path, ... 
                sscope.max_PCG_dur, ... 
                sscope.Fs_min, ... 
                sscope.ds_type, ... 
                sscope.min_PCG_dur); 
        end 
        sscope = dwt_filt(sscope) 
        sscope = dwt_segment(sscope, lvl, varargin) 
        sscope = simpl_segment(sscope, varargin) 
        cmp_PCG(sscope) 
        print(sscope) 
        plot(sscope) 
        title(sscope) 
        % Return the # of samples instead of time 
        function dur = get.max_HS_dur(sscope) 
            dur = ceil(sscope.max_HS_dur * sscope.Fs); 
        end 
        function dur = get.min_HS_dur(sscope) 
            dur = ceil(sscope.min_HS_dur * sscope.Fs); 
        end 
        function dur = get.min_syst_dur(sscope) 
            dur = ceil(sscope.min_syst_dur * sscope.Fs); 
        end 
        function dur = get.min_murm_dur(sscope) 
            dur = ceil(sscope.min_murm_dur * sscope.Fs); 
        end 
        % Dependent 
        function num = get.num_cyc(sscope) 
            num = length(sscope.cyc_bnds) - 1; 
        end 
        function ds = get.downsampled(sscope) 
            if sscope.r > 1 
                ds = true; 
            else 
                ds = false; 
            end 
        end 
        % Map object that summarizes #, location, and type of sound segments 
        function cond = get.conditions(sscope) 
            num_cyc = sscope.num_cyc; 
            cond = containers.Map; 
            val = zeros(9,num_cyc); 
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            for i=1:num_cyc 
                % Logical array 
                val(1,i) = isempty(sscope.S1(i).strt); %absent S1 
                val(2,i) = isempty(sscope.S2(i).strt); %absent S2 
                val(3,i) = ~isempty(sscope.M1(i).strt); %split S1 
                val(4,i) = ~isempty(sscope.A2(i).strt); %split S2 
                val(5,i) = ~isempty(sscope.S3(i).strt); 
                val(6,i) = ~isempty(sscope.S4(i).strt); 
                val(7,i) = ~isempty(sscope.sum_gallop(i).strt); 
                % Numeric array with # of murmurs / cycle 
                val(8,i) = length(sscope.syst_murm{i}); 
                val(9,i) = length(sscope.diast_murm{i}); 
            end 
            keyset = { 
              'as1', 'as2', ... 
              'ss1', 'ss2', ... 
              's3', 's4', 'sg', ... 
              'sm', 'dm', ... 
            }; 
            % Store key/val if at least 1 cycle contains the segment 
            for i=1:9 
                if any(val(i,:)) 
                    cond(keyset{i}) = val(i,:); 
                end 
            end 
        end 
        % Compact list of heart conditions 
        function str = get.short_list(sscope) 
            cond = sscope.conditions; 
            if isempty(cond) 
                str = 'hh'; 
                return 
            end 
            keyset = keys(cond); 
            str = keyset{1}; 
            for i=2:length(cond) 
                buf = sprintf(', %s', keyset{i}); 
                str = [str, buf]; 
            end 
        end 
    end 
    methods (Access = private) 
        function sscope = save_prop(sscope, varargin) 
            N = nargin - 1; 
            for i=1:N 
                arg = inputname(i+1); 
                sscope.(arg) = varargin{i}; 
            end 
        end 
    end 
    methods (Static) 
        function sscope = loadobj(sscope) 
            sscope = load_PCG(sscope); 
            if sscope.show_results 
                print(sscope) 
                plot(sscope) 
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            end 
            fprintf(sscope.short_list) 
        end 
    end 
end 

C.2.8 title.m 

% TITLE(sscope, ax) 
% 
% Generate a title for the loaded PCG in the current axis that displays its file 
% name, sampling frequency, and whether or not it is downsampled. Optionally 
% specify another axis with ax. 
function title(sscope, ax) 
    if nargin < 2 
        ax = gca; 
    end 
    file = sscope.file; 
    Fs = sscope.Fs; 
 
    if sscope.downsampled 
        h = title(ax, sprintf('%s (downsampled Fs ~ %.f Hz)', file, Fs)); 
    else 
        h = title(ax, sprintf('%s (Fs ~ %.f Hz)', file, Fs)); 
    end 
    set(h, 'interpreter', 'none') 
end 


