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ABSTRACT

SKEWER: Sentiment Knowledge Extraction With Entity Recognition

Christopher Wu

The California state legislature introduces approximately 5,000 new bills each leg-

islative session. While the legislative hearings are recorded on video, the recordings

are not easily accessible to the public. The lack of official transcripts or summaries

also increases the effort required to gain meaningful insight from those recordings.

Therefore, the news media and the general population are largely oblivious to what

transpires during legislative sessions.

Digital Democracy, a project started by the Cal Poly Institute for Advanced Tech-

nology and Public Policy, is an online platform created to bring transparency to the

California legislature. It features a searchable database of state legislative committee

hearings, with each hearing accompanied by a transcript that was generated by an

internal transcription tool.

This thesis presents SKEWER, a pipeline for building a spoken-word knowledge

graph from those transcripts. SKEWER utilizes a number of natural language pro-

cessing tools to extract named entities, phrases, and sentiments from the transcript

texts and aggregates the results of those tools into a graph database. The resulting

graph can be queried to discover knowledge regarding the positions of legislators, lob-

byists, and the general public towards specific bills or topics, and how those positions

are expressed in committee hearings. Several case studies are presented to illustrate

the new knowledge that can be acquired from the knowledge graph.
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Chapter 1

INTRODUCTION

Legislative hearings within the federal government are readily available to the general

public through network channels like C-SPAN. The same cannot be said for the

equally important hearings in state governments, whose laws have as much of an

impact on citizens as federal laws. The record-keeping for state legislative hearings

consists of raw video recordings that are not easily accessible to the general public.

Also missing from these recordings is supplemental data so that the public can readily

understand what is happening in these recordings. This results in a harmful lack of

awareness regarding the state legislature. Virtually all aspects of the state legislature,

from laws to representatives’ dealings, are lost to the general public.

The Institute for Advanced Technology and Public Policy (IATPP), founded in

2012 by former California State Senator Sam Blakeslee, was created to remedy this

problem. It has garnered the formal support of several distinguished individuals

including the Honorable Gavin Newsom, former Secretary of State George Schultz,

and Silicon Valley Leadership Group CEO Carl Guardino. Its purpose is to use

advanced technology to inform and advance public policy, and create solutions for

publically relevant societal issues.

One of IATPP’s goals is to create online resources for American citizens to view

and understand the proceedings of their state legislatures. The efforts to achieve this

goal include outlining state legislative bills, surfacing relevant information on elected

members of the state legislature as well as third-party influencers likes lobbyists,

and providing transcripts for the aforementioned video recordings so viewers know

exactly what is being said at any desired timestamp in a hearing and who is saying

it. These transcripts in particular are an entirely new dataset previously unavailable
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to the public. The progress of these efforts is seen in the IATPP’s Digital Democracy

website (http://www.digitaldemocracy.org).

The Digital Democracy website is a searchable database of the California state

legislature’s committee hearings, with search capabilities on keywords, topics, speak-

ers, organizations, and dates. When a user queries a desired committee hearing, the

website displays its video recording, transcript, and additional data regarding the

hearing such as the legislative bills on its agenda, as shown in Figure 1.1.

Figure 1.1: Screenshot of a committee hearing page on the Digital Democ-
racy website.

The website also contains information on individual legislators, lobbyists, and any

person that has testified in a committee hearing. These speakers can be queried by

a name search or by links in a committee hearing transcript. When a user queries a

legislator, the website surfaces a breadth of information including biographical data,

committee memberships, legislative bill authorships, testimonies, and received dona-
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tions, as shown in Figure 1.2. When a user queries a lobbyist, the website surfaces a

list of his employers and clients, and his testimonies, as shown in Figure 1.3.

Figure 1.2: Screenshot of a legislator page on the Digital Democracy web-
site.

The Digital Democracy project obtains data on the state legislature from a variety

of public sources. Video recordings of committee hearings, information on legislative

bills, information on legislators and lobbyists, and records of political contributions

are all obtained from official public databases and websites. Transcripts and addi-

tional metadata, such as positions of speakers and organizations on specific bills, are

created by a suite of internal tools.

Aside from the video transcriptions, these efforts in their current state are focused

on surfacing information that was not readily understandable or popular, but was

already accessible through public sources. In this thesis, we extend on the success
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Figure 1.3: Screenshot of a lobbyist page on the Digital Democracy web-
site.

of the video transcriptions by creating and surfacing new semantic knowledge from

the IATPP’s transcripts. This process is done in three stages. First, we analyze

the transcripts of committee hearings using NLP tools such as AlchemyAPI’s entity

extraction system, locating and annotating important named entities in the transcript

text[6]. Types of entities include, but are not limited to, person names, organizations,

locations, legislative bills, and monetary figures. Additionally, the text is processed

through a sentiment analysis engine to identify the emotion of spoken words and

sentences[67]. These annotations are formatted alongside the raw transcript text and

speaker names into XML documents for the next stage of analysis.

The second stage of this process involves organizing the annotations. Each an-

notation contains a speaker’s name and a sequence of entities that reflect actions,

statements, and questions from that speaker. Each annotation represents a simple
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sentence of knowledge about a particular speaker. The complete set of annotations

regarding one individual speaker provides a summary of his or her major contributions

to the legislative process. These annotations are populated into a knowledge graph

using the popular Neo4j graph database system[63], interconnecting the annotated

entities and providing a basis for generating new semantic knowledge.

To display the usefulness of the knowledge graph, we conduct several case studies,

querying the graph on specific bills, speakers, and topics. These case studies provide

validation of the knowledge graph’s capability to surface information not readily ob-

tained from the raw transcript text or from the existing Digital Democracy database.

Finally, we provide a prototype client interface for users to easily access the new

information from this knowledge graph. In addition to the information already gath-

ered from public sources on speakers, organizations, and bills, users can view novel

knowledge regarding those parties and unknown to and unobtainable from any other

source.

The system presented in this thesis was designed and implemented specifically

for the Digital Democracy initiative, but can be easily adaptable for many other

use cases, including any dataset that includes text transcriptions of audio or video

recordings, or any formal proceeding documented by transcribers. Court proceedings

are a viable use case for this system.

The contributions of this thesis are the following:

• A method for annotating Digital Democracy’s textual transcripts into

XML documents using NLP tools: The transcripts from Digital Democ-

racy are currently unstructured data that are only represented as supplemental

information for committee hearings. This thesis presents a pipeline for running

a combination of NLP tools on the individual sentences of these transcripts to

extract named entities, noun phrases, and emotions, and outputs these results

5



as XML documents.

• A method for populating a knowledge graph from annotated tran-

script XML documents: This thesis presents the design and population of

a knowledge graph from the newly created annotations of the Digital Democ-

racy transcripts. This knowledge graph represents the testimonies spoken by

legislators, lobbyists, and the general population.

• Case studies using the knowledge graph to generate insights regard-

ing committee hearing testimonies: This thesis presents a number of case

studies for which the knowledge graph is queried to provide analysis. This thesis

presents the following case studies:

– Locations of residency for members of the general population opposed to

vaccination requirements.

– Sentiments of legislators toward Bay Area companies and cities.

– Sentiments of legislators with regards to line item budgets.

– General sentiments of legislators along party lines.

• Prototype client for querying the knowledge graph by person name

or topic: Finally, this thesis presents a prototype client for users to analyze

sentiment values for a particular person or topic.

Further background on the IATPP and the Digital Democracy initiative is pro-

vided in Chapter 2. Chapters 3 and 4 describe the design and implementation of

the knowledge graph pipeline, respectively. Validation and the prototype client are

discussed in Chapter 5. Chapter 6 provides areas of future work and concludes this

thesis.
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Chapter 2

BACKGROUND

2.1 The California State Legistature

The 2015–2016 enacted budget for the State of California is $167.6 billion dollars[13].

This budget is put into use by 120 full-time lawmakers spread over 130 committees,

supplemented by over 2,000 full-time staff, and influenced by 1,100 state-registered

lobbyists[62]. These politicians introduce approximately 5,000 bills each legislative

session, each bill affecting California’s population of 38 million[62, 43].

However, the general population and the news media have little to no awareness

of the state’s legislative proceedings. The government does not produce transcripts

or meeting minutes for any of its sessions. All legislative hearings are recorded and

publicly accessible, however their lack of accessibility and searchability render them all

but useless to the public and to the media. Therefore, the only easily obtainable data

consists of bill texts, committee recommendations, and vote counts, which only gives a

trivial outline of what actually transpires in the legislative process. There is no public

access to more nuanced information such as who attached amendments to bills, the

language and revisions of those amendments, how debates and negotiations unfolded,

whether or not committee members have been influenced by lobbyists, or any number

of other factors that define the legislative system. All this adds to a jarring lack of

transparency, and more disturbingly, lack of accountability, for a state government

which oversees the eight largest economy in the world at $2.3 trillion[62, 19].

The Ralph M. Brown Act was passed in 1953 with the intention to create trans-

parency in the California government by declaring the right of public access to meet-

ings held by public servants[15]. Since its creation, the 686-word text has grown to
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its current word count of 12,845. The problem lies in enforcement of this text. Unless

a court intervenes directly, public servants can virtually ignore this law. Even the

Brown Act’s minimal standard of meeting minutes goes unnoticed. It is clear that

the government alone cannot be relied on to provide transparency and accessibility

for its proceedings[62, 15].

2.2 Digital Democracy

One of the IATTP’s initiatives is the Digital Democracy online platform. Digital

Democracy provides a database of California’s state legislative committee hearings,

with commitee recordings searchable by keyword, topic, speaker, or date. Its novel

contribution is the transcription of every committee hearing. Users can read a hear-

ing’s transcript while following along with the video recording, and they can use the

transcript to jump to its associated timestamp in the video. Metadata attached to

the transcripts enables easy analysis of trends and relationships regarding the speak-

ers and committee members. Users can explore individual participants’ testimony,

committee positions, and donation and gift histories[62, 26].

The Digital Democracy platform also provides access to campaign contribution

data to reveal the exchange of money between special interests and lawmakers as

legislation is crafted and voted on. This financial data is pulled in from trusted

organizations such as MapLight, the National Institute on Money in State Politics,

the SunLight Foundation, state databases of registered lobbyists, and government

ethics agencies[62].

The focus of the Digital Democracy project is not just to provide access to this

information, but to present data such that it can be meaningfully interpreted and

acted upon. Users can use built-in clipping tools to save selected portions of com-

mmittee hearing videos. These clips can be shared on social media platforms and
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utilized by grassroots organizations, media outlets, bloggers, and other organizations

for their own purposes. These tools are designed to be simple enough to be used by

the general population yet sosphicated enough for journalists, researchers, and other

professionals[62].

2.2.1 Target Users

Lawmakers and their staff can use Digital Democracy to track their activities and

those of their colleagues in committee hearings and floor sessions, as well as analyze

the work of individual committees and legislative bodies on specific issues. Digi-

tal Democracy benefits lawmakers by enabling them to keep their colleagues honest.

The committee hearing transcripts and metadata can be used to ensure commit-

ments made during negotiations are kept. Lawmakers are also empowered to discover

misrepresentations and dishonest dealings. When discussing Digital Democracy, Dr.

Blakeslee recalled several occasions during his tenure as State Senator where he was

asked to oppose a bill because the author had broken a commitment to add certain

language and he was unable to find out where and when this commitment was made,

as well as the specific wording of the commitment. The Digital Democracy project

encourages public servants to ensure that their peers act in good faith[62, 26].

Community organizations represent crucial but understated constituencies

such as foster children, seniors, the disabled, and the homeless. These organizations

do not have the resources to fully voice themselves in Sacramento, and do not enjoy

the special access and privileges given to corporate special interest groups. Digital

Democracy seeks to balance the scales by providing public access into all committees.

These community orgazniations can easily monitor arguments made by legislators

and stakeholders and keep up to date with the drafing and editing of bills[62].

Smaller media outlets currently have to piggyback on larger outlets for news
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on state issues because they face a similar problem as the community organizations:

fewer resources. Eighty-six percent of local TV news stations and over two-thirds

of U.S. newspapers don’t even assign a single reporter to the state capitol. Digital

Democracy allows these media organizations to research specific committee hearings,

the histories of legislative bills, and the involvement of special interest groups. Digital

Democracy revitalizes investigative journalism, enabling quicker discovery of news-

worthy moments[62, 28].

Organizations such as MapLight, California Common Sense, SunLight Founda-

tion, and National Institute for Money in State Politics are developing increasingly

sophisticated databases and visualization tools that provide better access and insight

into the legislative process. Digital Democracy introduces a new dataset in the form

of committee hearing transcripts, helping these organizations provide more data on

the wide range of factors influencing policy decisions[62].

2.2.2 Data

The Digital Democracy platform integrates and surfaces its own uniquely generated

data along with data from a number of publicly accessible sources. The datasets

unique to the Digital Democracy platform are listed below[28]:

• Videos of California Legislature committee hearings. These videos are accessible

outside of Digital Democracy, but a nontrivial amount of effort is required to

access and obtain actionable data from them.

• Transcripts of California Legislature committee hearings. These transcripts are

annotated with attribution of all direct speech to individual speakers. They are

divided into “utterances”, which are individual statements of thought given by

a particular speaker. These utterances range from a single sentence to a short

paragraph, but are usually no more than a few sentences.
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Figure 2.1: Screenshot of the Digital Democracy website displaying a com-
mittee hearing video and transcript.

By incorporating data from public sources, Digital Democracy is able to surface

contextual information on these committee hearings, including metadata on individ-

ual legislators and other speakers, analysis of legislative bills and their histories, and

publicly available information on third-party organizations, lobbyists, and campaign

contributions. Digital Democracy incorporates the following public data sources[28]:

• LegInfo — As the official website for the California state legislature, LegInfo

contains information on the California State Senate and the State Assembly.

Digital Democracy imports the following data from LegInfo[20]:
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– Information on the individual members of the State Senate and State As-

sembly, including past and current biographical text and contact informa-

tion.

– Information on the State Senate and State Assembly committee leadership

and membership for current and prior legislative terms.

– Information on legislative bills, including their text, authorship, revisions,

the committee hearings and floor sessions they are discussed in, and the

committee and floor votes on those bills.

An example of LegInfo data surfaced on the Digital Democracy website is shown

in Figure 2.1.

• California Secretary of State database of registered lobbyists — All registered lob-

byists are recorded by the office of the California Secretary of State. Digital

Democracy uses this database to gather information on individual lobbyists,

lobbying firms, and their employments with other organizations. These lobby-

ists can then be identified in the committee hearings that they testify in[45].

An example of this data surfaced on the Digital Democracy website is shown in

Figure 2.2.

• MapLight — The MapLight website contains information on political dona-

tions to Presidential, Congressional, and State Legislative candidates. Digital

Democracy uses MapLight’s California site to gather information on donations

to political and electoral campaigns, including but not limited to those of Cal-

ifornia’s State Senate and Assembly members[37]. An example of MapLight

data surfaced on the Digital Democracy website is shown in Figure 2.3.

The Digital Democracy platform collects and stores this data in a single relational

database. This database is automatically updated with new data by a number of
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Figure 2.2: Screenshot of the Digital Democracy website displaying infor-
mation on Reed Addis from the California database of lobbyists.

Figure 2.3: Screenshot of the Digital Democracy website displaying politi-
cal donations and gifts given to State Senator Richard Pan. Data obtained
from MapLight.

scripts that query the above public datasources. The tables relevant to this thesis are

outlined in Table 2.1.
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Table 2.1: Relevant Digital Democracy SQL tables

Table Name(s) Content

Person Name of every person who has spoken in a

committee hearing or floor session, includ-

ing state legislators, lobbyists, and mem-

bers of the general public.

servesOn Committee membership, including rank,

for every state legislator.

Committee Name and type of every committee in the

state legislature.

Bill Name, current legislative status, and

other metadata on every bill.

BillVersion Subject, text, and status of every version

of very bill.

BillVoteDetail, BillVoteSummary Record of every vote cast by a state legis-

lator for a given bill at a given committee

hearing or floor session.

Organizations Name of every company and third-party

organization that has contributed to the

legislative process, from testifying at a

hearing through lobbyists to contributing

financially to a legislator.

Lobbyist Identifier for every person in the “Person”

table that is registered as a lobbyist.
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LobbyistRepresentation Record of every instance where a lobby-

ist has representated an organization at a

committee hearing.

CommitteeHearings, Hearing Every committee hearing and floor ses-

sion.

Video Metadata for every video recording of a

committee hearing or floor session.

BillDiscussion Start and end video timestamps during

which a given bill is discussed.

Utterance Every utterance spoken in every commit-

tee hearing and floor session, the times-

tamp of the utterance in the correspond-

ing video recording, and the speaker’s po-

sition on the bill being discussed.

2.3 Graph Databases

After running a suite of NLP libraries to annotate the committee hearing transcripts,

SKEWER aggregates the resulting annotations into a graph database, creating edges

connecting individual speakers to the entities they mentioned.

2.3.1 Graph Database Model

A graph database model uses graphs to represent data and/or the schema of said

data[11]. The degree to which graphs are used varies on the model in question. The

data model of GraphDB, intended for modeling graphs in object-oriented databases,

represents the entire database as a single graph[23]. The hypernode model uses a
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labeled directed graph as the single underlying data structure, called a hypernode,

and the database consists of a single directed graph of hypernodes. This model allows

for the representation of much more complex objects and entities than data models

like GraphDB can usually accommodate[34]. The Gram data model uses a directed

weakly connected labeled multigraph as a schema, in which each node is labeled with

a type, and each type is associated with a domain of values. Similarly, each edge

has a label representing a relation between two types. The database in this model is

simply an instance of this schema[8]. An example of a Gram database is shown in

Figure 2.4.

Figure 2.4: A small family tree represented using the Gram data model[11].

Data manipulation in a graph database model can be expressed by graph transfor-

mations, as demonstrated in the Graph-Oriented Object Database Model (GOOD)[11].

Queries and data manipulation can also be expressed by operations whose main prim-

itives are on graph features like paths, neighborhoods, subgraphs, graph patterns,

connectivity, and statistical values like diameter and centrality[24]. The GraphDB

model uses a small number of powerful graph manipulation primitives to express all

possible queries. For example, Figure 2.5 shows a GraphDB query to find the titles

of all books written by Hopcroft in 1983.
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on person wrote book

where person.name = “Hopcroft” and book.year = 1983

derive book.title

Figure 2.5: A sample GraphDB query to find book titles for a given author
and year of writing

The first clause states that each pair of person and book nodes connected by a

wrote edge should be considered. This combination of two nodes with a connecting

edge is called a “triple”. This collection of triples is filtered using the two equality

comparison statements in the where-clause. Finally, derive-clause creates a result

object for each selected triple, where each object as a single attribute title whose

value is taken from the attribute title of the book object in the triple[23].

To ensure data consistency, graph database models enforce integrity constraints.

Constraints can be categorized into schema-instance consistency, identity and refer-

ential integrity, and functional and inclusion dependencies[11]. Common constraints

are labels with unique names, typing constraints on nodes, functional dependencies

similar to those of relational data models, and domain and range of properties like in

Resource Description Frameworks (RDFs)[21, 33, 31, 32].

2.3.2 Advantages

Graph data models are often used in applications where information about data

interconnectivity and/or topology is as important, if not more important, than the

data itself. These applications usually give equal value to data and relations among

data. Graph models give a layer of abstraction that allows for a more natural modeling

of this type of data, and also allow a more natural of handling or querying such

data[11, 10]. Graphs are able to store all information about an entity in a single
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node, while related information is shown by edges connected to that node[47]. Graph

structures can also explicitly define portions of a larger database, as demonstrated in

the hypernode model, allowing encapsulation and context definition[11, 34].

Specially designed query languages and operators allow for direct querying of these

graph structures. Query languages can include complex graph-specific operations,

such as finding shortest paths and retrieving subgraphs in GraphDB[23]. The high

level of abstraction given by these query languages relieves the burden on the user to

have full knowledge of the underlying graph structures[11].

When compared to traditional relational database models, graph models enjoy

greater flexibility and extensibility. The relational model favors simple record-type

data, where the data structures are static and known in advance. The modification or

expansion of a relation schema is often a major undertaking. Additionally, relational

query languages are not well-suited for traversing the implicit graph of relationships

among the different relational tables[11].

Graph database models are now grouped into the broader category of non-relational

models, termed NoSQL database models. The other types of NoSQL models—key-

value stores, column stores, and document stores—store data as sets of disconnected

aggregates, which are difficult to use for connected data and graphs. The common

way of representing data relations in these models is to embed an aggregate’s unique

identifier as a field in another aggregate, essentially creating a foreign key. However,

this requires that the aggregates be joined at the application layer rather than the

database layer, which easily becomes an expensive operation[52]. Graph database

models naturally represent data relationships as edges, so the joining of objects is

done at the database layer and without the need of additional object properties.

18



2.3.3 Complex Networks

A set of data that naturally takes the form of a graph can be called a network. There

has been a major shift in research with regard to these networks, in large part due to

the availability of computers and communication networks that allow researchers to

collect and analyze data on a massive scale. Whereas early research used networks

with tens or hundreds of vertices and mainly studied the properties of individual

vertices and edges, today’s researchers analyze networks with millions or billions of

vertices and focus on the large-scale statistical properties of these networks. The size

of these networks is such that humans cannot simply “eyeball” graph visualizations

to gain meaningful insights. Such networks are coined “complex networks”, and are

the perfect use-case for graph database models[42, 3, 17].

Complex networks can be divided into four categories[11, 42]:

• Social networks — Nodes represent people or groups, and edges show relation-

ships among nodes. Examples of social networks include personal relationships

like Facebook, business relationships like LinkedIn, research networks showing

collaboration and coauthorship, communication records such as telephone calls

and emails, computer networks, and networks for national security[55].

• Information networks — These networks model relations representing the flow

of information. Examples are citations among academic papers, the World Wide

Web, and peer-to-peer networks.

• Technological networks — These man-made networks facilitate distribution of a

commodity or resource. Examples are the Internet, electric power grids, airline

routes, telephone networks, mail delivery networks, and geographic information

systems.
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• Biological networks — These networks represent biological data whose volume,

management, and analysis has grown beyond the traditional scope due to the

recent automation of data gathering. Examples include networks in the field of

genetics, food webs, and biological neural networks.

2.4 Knowledge Graphs

Explicit knowledge—knowledge that has been formulated and can be readily retrieved

and articulated—can be represented in several ways. Among the oldest forms of ex-

plicit knowledge are written or recited texts, which can be obscure. It is uncommon

for a written text to present the entire problem area or full scope of knowledge,

so the reader does not get a complete overview. Knowledge that is structured in

schemes, such as hierarchical tree structures and arrow diagrams, can present a com-

plete overview[49]. However, two problems are still prevalent. First, language is

largely ambiguous, resulting in a variety of ways to interpret any single concept[48].

Second, knowledge is dynamic, while text is a static representation of knowledge.

The discovery of new knowledge or modification of existing knowledge requires the

corresponding text to be rewritten[49].

The two high-level approaches to knowledge representation are logical formal-

ism and structured representation[50]. Predicate logic is an example of logical for-

malism. Semantic networks—graph structures for representing knowledge through

labeled nodes and edges—are an example of structured representation[57]. A knowl-

edge graph is a type of semantic network that only uses a small number of relationship

types, and allows for the addition of new knowledge which can be integrated with the

graph’s existing knowledge[27].

The first step to building a knowledge graph is text analysis, which is the extrac-

tion of information from texts. Text analysis results in a list of concepts. A concept
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is the basic unit for the content of what it refers to[48]. An “author graph” is con-

structed with each node corresponding to a specific concept, and with each link of

one of the allowed relationship types[29]. The specific techniques for marking con-

cepts include classic text mining techniques like named-entity recognition, while NLP

techniques such as coreferencing and part-of-speech tagging help identify the links.

The most important type of link between concepts is the causal relation[49].

The next step is concept identification, or the compilation of the author graphs

into a single graph by combining their corresponding nodes. Due to the ambiguity

of language, nodes with different labels may represent synonyms for a single concept.

To remove this ambiguity, neighborhoods of nodes are compared to identify poten-

tially identical pairs. A similar technique is also used to distinguish homonyms, such

as a chair that someone sits in, versus a committee chair or chair of a department.

The resulting graph is free of linguistic ambiguities. This graph is further refined by

alternating between concept integration, in which interesting substructures are iden-

tified, and link integration, in which new links are inferred for the existing ones. This

now “integrated graph” can be further refined with additional iterations of concept

integration and link integration[29].

Originally, only three relation types were allowed—CAU (causal relation), PAR

(is part of), and AKO (is a kind of). Some early research allows the related inverse

relations as well: CBY (is caused by), HAK (has as kind), and HAP (has as part)[60].

Current research defines two types of concepts: tokens and types. Tokens are like

variables in logic, while types are generic concepts determined by their attribute

sets, and can be thought of as schema information. For example, “dog” is a type,

and “Pluto” is a token. The only relation between token and type is ALI (alike),

while there are seven relations between types. In addition to the original three,

relations between types also include ORD (ordering), ASS (symmetric association),

EQU (equal or symmetric), and DIS (distinct)[49].
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2.5 Named-Entity Recognition

Named-entity recognition (NER), also referred to as entity identification or entity

extraction, is a subtask of text analysis that locates and classifies “named entities”,

or units of information, in a, typically unstructured, text. Types of named entities

include, but are not limited to, names of physical concepts including persons, organi-

zations, and geographical locations, and numerical expressions including times, dates,

monetary figures, and percentages. The input of a typical NER system is a text, and

the output consists of the locations and types of named entities found in the text[41].

The accuracy of an NER system is measured by its F1 score, also referred to

as F-measure in this thesis. In the field of information retrieval, “precision” for a

given input is defined as the fraction of results that are correct, or the ratio of true

positives (tp) to all predicted positives (tp + fp). “Recall” is defined as the fraction

of an input’s actual results that are found by the system, or the ratio of true positives

to all actual positives (tp + fn). The F1 score, shown in equation 2.3, is the harmonic

mean of the precision and recall, with a ceiling of 1 and a floor of 0.

p = tp

tp + fp
(2.1)

r = tp

tp + fn
(2.2)

F1 = 2 pr

p + r
(2.3)

The most accurate form of NER is manual annotation. The highest F-measure

from a human annotator at the seventh Message Understanding Conference (MUC-

7) in 1997 was 0.9760, with both precision and recall at 0.98[38]. However, because
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human labor is involved, this technique does not scale well into large numbers of text

documents or texts of nontrivial length. Computerized NER systems can be classified

based on their high-level machine-learning styles, or lack thereof. Handmade rule-

based systems use rules given by expert linguists in their processing model. Systems

based on supervised learning train themselves on a set of fully labeled input data to

improve their accuracy[14, 41]. Such systems often use Conditional Random Fields

(CRFs) in their statistical modeling. In 2012, Tkachenko and Simanovsky developed

a CRF-based supervised learning NER system that achieved an F-measure of 0.9102

on the popular CoNLL 2003 dataset[65]. Both handmade rule-based systems and

supervised learning systems require the input training data to be manually labeled

by human experts, which limits the effectiveness and usability of large-scale NER

systems[41].

Systems based on unsupervised learning base their rulesets on the data struc-

tures deduced from the input data, without the use of pre-labeled items or external

resources[14, 41]. Because unsupervised NER systems do not require human labor,

they are only limited in scale by their implementations. Recent research has produced

unsupervised learning systems that can achieve F-measures above 0.8. In 2012, Munro

and Manning developed an unsupervised system that jointly learns to identify entities

in parallel text.1 This system achieved an F-measure of 0.8610 on the CoNLL 2003

dataset[40].

Semi-supervised learning systems use a combination of labeled and unlabeled

data. By requiring only a small amount of labeled data, these systems avoid the

labor costs of manually creating large labeled datasets. More effort is often needed

to design effective models and similarity functions. Because labeled data is so scarce,

especially in comparison to unlabeled data, semi-supervised learning methods make

strong model assumptions. Bad matching of problem structure with model assump-
1Parallel text is a text formatted alongside one or more of its translations.
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tion can non-trivially reduce system performance and accuracy[69, 16]. However,

when done correctly, semi-supervised learning systems can achieve an accuracy com-

parable to supervised systems. These systems are therefore better suited than fully

supervised systems for most real world applications, which often don’t allow for the

time or resources to acquire such large amounts of labeled training data. Ando and

Zhang developed a semi-supervised system that achieved an F-measure of 0.8931 on

the CoNLL 2003 dataset from a labeled dataset of 204K words and 27M unlabeled

words[9]. Suzuki and Isozaki created a similar system that achieved an F-measure of

0.8992 on the CoNLL dataset from the same amount of labeled data as Ando and

Zhang’s and from one billion words of unlabeled data[61].

2.6 Natural Language Processing Tools

The NLP tools used in the annotation of committee hearing transcripts are discussed

in detail in Chapter 4. AlchemyAPI is a SaaS-based collection of cognitive APIs

developed by IBM and is a subset of the Watson Developer Cloud[4]. spaCy is an

industrial-strength NLP library featuring word tokenization, part-of-speech tagging,

NER, and syntactic dependency parsing[58]. TONGS (TLDR; Online Narrative Gen-

erating System) uses the Natural Language Toolkit to determine the emotional value

of sentences[67]. Finally, the Stanford Parser is a probabilistic natural language parser

used for calculating the grammatical structure of sentences[22].
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Chapter 3

DESIGN

The transcripts of committee hearings are a new set of unstructured textual data.

They serve not only as a companion to the user for watching legislative committee

hearings, but also as a searchable index into the raw spoken word of every single

legislator and speaker that has ever testified in any of those hearings. However, it is

difficult to analyze the transcripts in their given state for pattern identification and

insight, due to the sheer amount of text. The ultimate goal of this thesis is to provide

a method for modeling the textual data to allow queries of various targets—person,

company, legislative topic, etc.—for the discovery of new knowledge and insight re-

garding the parties involved in the state legislative process. The method proposed

by this thesis uses natural language processing tools to parse and annotate the tran-

scripts, and collects the annotation results into a knowledge graph.

The knowledge graph proposed by this thesis incorporates data from the relational

MySQL database with the new data generated from the named entity recognition and

sentiment pipeline described later in this thesis. Section 3.1 describes the data model

of the imported MySQL data in the knowledge graph. Section 3.2 describes the model

of the data created through the named entity recognition pipeline.

The goal of the knowledge graph is to provide new semantic information based

on the transcriptions of committee hearings that reveals interesting statistics and

patterns regarding testimonies from all parties involved in the legislative process.

The graph should contain sufficient data to accomplish this goal without requiring

the user to make supplemental queries to the existing MySQL database. However,

the graph should also not contain an abundance of extraneous data, which inevitably

consumes both memory and disk space and slows the performance of graph queries,
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especially as the Digital Democracy platform expands to include other states.

3.1 Existing Data

3.1.1 Node Types

The backbone of the knowledge graph is the Person node. A Person node represents a

single person and has four node properties: a unique integer uid, first name, last name,

and an optional middle name. Each node is also one of three subtypes: Legislator,

Lobbyist, or Public. The Legislator subtype designates the person as a member of

the California state legislature. Each Legislator node is also one of two sub-subtypes—

Senator or Assemblymember—designating the house that the legislator is a member

of. The Lobbyist subtype indicates that the person is a state-registered lobbyist.

The Public subtype indicates that the person is a member of the general public and

has testified in one or more committee hearings.

A Committee node represents a Senate or Assembly committee. In addition to

a unique integer cid, each Committee node has four other required properties. The

house property indicates the legislative house of the committee—either “Senate” or

“Assembly”. The type property indicates the official type of the committee: Stand-

ing, Sub, Select, Joint, Extraordinary, or Other. The name property indicates the

name of the committee, and is usually of the form “<house> <type> Committee on

<Topic>”, where <Topic> is a legislative issue like “Agriculture” or “Education”.

There also exists a Committee node to represent the entire Senate body, and likewise

for the entire Assembly body.

A Hearing node represents a committee hearing or floor session. Each node has

an unique integer hid and a string date property.

A Bill node represents a proposed piece of legislation that is currently being or
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has been considered by the legislature. Each node has a unique bid, a billState, a

subject, and a name property, where the name contains a acronym and a number,

such as “SB 277”. The billState property indicates the current status of the bill.

Examples of billStates are “Proposed”, “Amended”, and “Vetoed”.

An Organization node represents a company or other organization that has par-

ticipated in the legislative political process, whether by contributing to a legislator or

testifying in a committee hearing. Each node as a unique oid and a name property.

3.1.2 Edge Types

An edge from a Legislator node to a Committee node indicates that the legislator is

a member of that committee. These edges are one of two types—Chair or Member—

indicating the legislator’s position on that committee. Each edge has a year property

indicating the year for which the legislator was on that committee. Each Committee

node can have multiple inbound Member edges, but only one Chair edge for any given

year.

A HeldHearing edge from a Committee node to a Hearing node indicates that

that committee was the organizer of that hearing. These edges have no other prop-

erties.

A Vote edge from a Legislator node to a Bill node represents the legislator’s

vote for the given bill. The result property of the edge indicates the vote selection:

AYE (yes), NOE (no), or ABS (abstain). Because a bill can go through any number

of committees and revisions, a legislator may vote on a single bill multiple times. For

simplicity, only the most recent, or final, vote from a legislator for a bill is represented

in the knowledge graph. This also has the benefit of clearly establishing the legislator’s

current or final position on the bill, as a legislator may switch sides any number of

times as the bill goes through the legislative process.
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A LobbiesFor edge from a Lobbyist node to an Organization node indicates

the lobbyist is or has been employed by that organization, possibly through an inter-

mediary lobbying firm. Each edge has a bid property, indicating the bill for which

the lobbyist was testifying on behalf of the target organization.

A Testified edge from a Person node to a Hearing node indicates that the

person testified at the given committee hearing. These edges have no other properties.

Figure 3.1 shows a diagram of the edges described in this section and their start

and end nodes.

P

Person:Legislator:Senator

Q

Person:Legislator:Senator

C
Committee

H Hearing
B
Bill

L
Person:Lobbyist

O
Organization

U
Person:Public

Chair

Member

HeldHearing

Testified

Vote

Testified

LobbiesFor

Testified

Vote

Figure 3.1: Sample diagram of knowledge graph edges created from exist-
ing relational data.

3.2 New Data

The nodes and edges described in this section are created from the transcript utterance

annotations and sentiment values outputted by the tools introduced in Section 2.6.

28



3.2.1 Node Types

Named entities are represented as nodes in the knowledge graph. Each node has

a name property, representing the textual name of the “thing” represented by that

node. The type of the node indicates the classification of the represented named

entity. The most common types are listed below, in alphabetical order:

• City

• Event

• Facility (a physical building)

• JobTitle

• Location

• Money

• Norp (Nationality or religious or political group)

• Organization (company or other business)

• Percent

• PersonName

• Religious

• Time (includes dates)

• Topic

A noun phrase is a word or group of words that functions in a sentence as a subject,

object, or prepositional object[1]. Noun phrases are represented in the knowledge
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graph as Phrase nodes. Each Phrase node has a name property, similar to named

entity nodes, representing the text of the phrase.

3.2.2 Edge Types

A Said edge from a Person node to a named entity node or a Phrase node indicates

that the person has said that entity or phrase at least once in a committee hearing or

floor session. The edge’s bid property is the integer id of the legislative bill that was

being discussed at the time, and can be used to query the corresponding Bill node.

The sentiment property is a numerical value representing the sentiment score of the

utterance in which the entity or phrase was spoken. Positive values indicate positive

sentiments, and negative values indicate negative sentiments. The words property

is a list of words in the utterance that contributed, positively or negatively, to the

numerical sentiment value. The optional align property indicates whether the person

was determined to be “for” or “against” that bill based on the utterance in which the

entity or phrase was spoken.

A Said edge can also connect two Person nodes, indicating that the person rep-

resented by the edge’s source node said the name of the person represented by the

edge’s destination node. If the mentioned person’s name is unknown to the graph, a

PersonName named entity node is used as the edge’s destination.

A Sentiment edge from a Person node to a Bill node represents the sentiment

of a single utterance spoken by the person about that bill. The val property is

a numerical value representing the sentiment score. The words property is a list

of words in the utterance that contributed to the numerical sentiment value. The

optional align property indicates whether the person is “for” or “against” that bill

based on the utterance. These properties are identical to those of Said edges, but

the purpose of Said edges is to gain information on a person’s opinion towards an

30



entity such as a company, city, or another person. The purpose of sentiment edges

is to gain information on a person’s opinion towards a legislative bill.

Figure 3.2 shows a diagram of the edges described in this section and their start

and end nodes.

N
Person

Q
Person

E

Entity

P
Phrase

B
Bill

Said

Said

Said

Sentiment

Figure 3.2: Sample diagram of knowledge graph edges created from the
knowledge graph population pipeline.
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Chapter 4

IMPLEMENTATION

This thesis uses Neo4j, a highly scalable, enterprise-strength, ACID compliant, native

graph database as its knowledge graph implementation[63]. Further discussion of

Neo4j’s capabilities is in Section 4.1.

The first step of the Digital Democracy knowledge graph pipeline is the pre-

population of data from the existing MySQL database to create the nodes and edges

of the knowledge graph as described in Section 3.1. Second is the annotation of

committee hearing transcripts. These hearing transcripts are formatted into XML

files, with named entities tagged as elements based on their classification. Finally,

the XML files are processed to create the nodes and edges of the knowledge graph as

described in Section 3.2.

4.1 Neo4j

Neo4j is the world’s most popular graph database according to Forrester Research

and the only graph database on Gartner’s Magic Quadrant for Operational Database

Management Systems, as seen in Figure 4.1[2, 18]. It has 200 enterprise subscription

customers, including at least fifty in Forbes’s Global 2000 list of public companies.

The International Consortium of Investigative Journalists used Neo4j to model and

analyze the data from the Panama Papers leak in 2016[25].

Neo4j implements a native labeled property graph model. The property graph

contains connected nodes, which can hold any number of key-value pair attributes,

or properties. Nodes can also be marked with labels representing their various roles

in the domain of the graph. Relationships, or edges, can have properties and labels
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Figure 4.1: Gartner’s Magic Quadrant for Operational Database Manage-
ment Systems[18]. Neo4j (Neo Technology) is the only graph database to
be included.

as well. While all relationships are directed, they can be navigated in both directions

without affecting performance. The number of relationships between two nodes also

does not affect performance. Uniqueness constraints can be used to enforce data in-

tegrity on node properties, and enterprise Neo4j versions can create property existence

constraints on both nodes and relationships.

Neo4j utilizes index-free adjacency, where each node maintains direct references

to its adjacent nodes. Each node acts as an index of other nearby nodes, which

not only consumes less disk space than global indexes, but also means that query

performance is not proportional to the total size of the graph. To support index-free

adjacency, Neo4j uses native graph storage. The graph data is stored in a number

of store files, where each store contains data for a specific component of the graph:

nodes, relationships, labels, and properties. Each node record in the node store file

contains pointers to its related data in the other store files, supporting extremely
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fast traversals. Similarly, each relationship record in the relationship store file stores

pointers to the next and previous relationship records for both its start and end nodes.

Both stores use fixed-size records, so the location of a node or relationship is easily

computed[52].

The declarative graph query language used in Neo4j is called Cypher. It is a

SQL-like language designed for efficient querying and updating of the graph store,

and builds upon a number of established practices in related fields. For instance,

many Cypher keywords are inspired by SQL, and Cypher’s pattern matching syntax

is inspired by SPARQL expressions[64]. Figure 4.2 shows an example Cypher query

that creates an edge between two nodes.

MATCH (p:Object {id:100}), (q:Object {id:101})

CREATE (p)-[:related {property1:’value’, property2:3.5}]->(q)

Figure 4.2: Example Neo4j Cypher query to create an edge between 2
nodes

4.2 Knowledge Graph Pre-population from Relational Database

The first task of creating the knowledge graph is inserting data from the existing

Digital Democracy relational database. The steps to this task are outlined in Figure

4.3.

Person nodes are the first nodes inserted into the knowledge graph. The servesOn

and Lobbyist SQL tables are queried to identify which persons are legislators and

lobbyists, respectively. Then for each record in the Person table, a node with first,

middle, and last name properties is inserted into the knowledge graph. Each node

has a minimum of two labels, one being a Person label. The second label is either
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1. Create Legislator, Lobbyist, and Public nodes.

2. Create Committee and Hearing nodes.

3. Create Chair and Member edges from Legislator nodes to Committee nodes.

4. Create Bill nodes.

5. Create Vote edges from Legislator nodes to Bill nodes.

6. Create Organization nodes.

7. Create LobbiesFor edges from Lobbyist nodes to Organization nodes.

Figure 4.3: Outline of knowledge graph pre-population from Digital
Democracy database

Legislator, Lobbyist, or Public, depending on the records of the servesOn and

Lobbyist tables. If the node has a Legislator label, it also has a third label, either

Senator or Assemblymember, as determined from the servesOn table.

Next, legislative committees and their hearings are inserted into the knowledge

graph. Each record in the Committee table is translated into a Committee-labeled

node, with the corresponding properties as described in Section 3.1, in the knowledge

graph. The CommitteeHearings table is then queried to identify which committee is

responsible for each hearing in the Hearing table. These two tables are translated into

Hearing-labeled nodes and HeldHearing-labeled edges from the Committee nodes to

those Hearing nodes.

The servesOn table is queried to identify committee memberships in the graph.

Each record in servesOn is translated into either a Chair-labeled or Member-labeled

edge from a Legislator node to a Committee node. If the position column in the

table is NULL for a particular row, it is assumed that a Member-labeled edge should
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be created.

The Bill and BillVersion tables is queried to create the corresponding Bill

nodes in the graph. The node properties are described in Section 3.1.

The BillVoteSummary and BillVoteDetail tables are translated into Vote-labeled

edges in the graph. For each record in BillVoteDetail, a Vote edge from the cor-

responding Legislator node to the target Bill node is either created or updated. If

the edge already exists, its result property is updated to the result column value of

the BillVoteDetail row. The rows are sorted by ascending date, so that when all

the rows have been processed, each Vote edge represents the legislators’ final votes

for the corresponding bills.

The Organization table is translated into Organization-labeled nodes in the

graph. Similarly to the Bill table-node translation, nothing noteworthy is involved

in this step.

The BillDiscussion and LobbyistRepresentation tables are queried to create

LobbiesFor-labeled edges in the graph. The BillDiscussion table is used to fill in

the bid properties of the edges.

The pid and bid properties of Person nodes and Bill nodes, respectively, are

indexed to improve graph query performance. Specific bills are often the main targets

of queries directed at the knowledge graph, so indexing by their unique identifiers

decreases the time to locate a targeted Bill node in the graph. While it possible for

specific persons to be targeted by user queries, the main reasoning behind indexing

pids in Person nodes is to reduce the runtime of creating the edges described in

Section 3.2. All of those edges have Person nodes as their sources, so by indexing on

pid, the time to locate those nodes is reduced significantly.
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4.3 Transcript Annotation

The transcript annotation pipeline incorporates four major third-party tools: Alche-

myAPI and spaCy for named entity recognition, the Stanford Shift-Reduce Con-

stituency Parser for noun-phrase extraction, and the TONGS Amazon Review an-

alyzer for sentiment analysis. These tools are discussed in detail in the following

subsections.

4.3.1 AlchemyAPI

AlchemyAPI is an IBM-based company that provides NLP services for processing un-

structured textual and image data into information[4]. Its main service is Alchemy-

Language, a set of 12 API functions for different forms of text analysis[5]. This thesis

uses the Entity Extraction function for identifying people, companies, organizations,

cities, geographic features, and other typed named entities from the transcripts[7].

Although AlchemyAPI does not provide any accuracy analysis for its Entity Ex-

traction function, outside researchers have tested its accuracy with mixed results.

Using Holocaust survivor testimonies as well as newsletters written for the crew of

the H.M.S. Kelly in 1939 as input data, and targeting only person names, organiza-

tions, and locations, the Entity Extraction function performed with a F-measure of

0.48[53]. Using news articles from BBC, CNN, The New York Times, and Yahoo!

News as input data, the Entity Extraction function performed with a precision of

0.74[51].

The use of AlchemyAPI’s services requires a paid license. Our license allows a

maximum of 30,000 requests per day. This means that AlchemyAPI may not always

be a usable resource for this thesis.
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4.3.2 spaCy

spaCy is an open-source commercial Python NLP library featuring a high performance

tokenizer, part-of-speech tagger, named entity recognizer, and a syntactic dependency

parser[58]. It is released under the MIT license and purposed for production use[59].

This thesis uses spaCy to complement AlchemyAPI for named entity recognition.

spaCy claims an NER “accuracy” of 82.6% on the OntoNotes 5 corpus, although the

data behind that claim is not public[59]. Our own anecdotal analysis finds spaCy to

be on par with AlchemyAPI for the most common types of entities—people, organi-

zations, and locations—and performs better than AlchemyAPI for certain numerical

expressions such as percentages. Additionally, because spaCy is a library and not

a paid API, it does not have the rate limitations that AlchemyAPI has and can be

considered a viable backup solution if AlchemyAPI is no longer available to us in the

future.

4.3.3 Stanford Parser

A natural language parser is an application that determines the grammatical structure

of sentences, such as which words comprise phrases and which words are subjects or

objects of verbs. A probabilistic natural language parser uses knowledge from a set of

hand-parsed sentences to produce the most likely analysis of new input sentences[22].

The Stanford Natural Language Processing Group has developed a number of

probabilistic natural language parsers. Its featured version is a lexicalized parser

that implements a factored product model of an unlexicalized PCFG parser and a

lexicalized dependency parser, combining their preferences by efficient exact inference

using an A* algorithm. This model achieved an F-measure of 0.867 on the Penn

Treebank parsing test[30, 44]. In 2013, Stanford also released a Compositional Vector

Grammar parser with an F-measure of 0.904 while running 20% faster than the PCFG
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parser[56] For this thesis, we are only concerned with the parser’s constituency output.

Figure 4.4 shows the constituency tree output of the parser given in the input sentence:

“My dog also likes eating sausage.”

Figure 4.4: Tree-structured output of the Stanford lexical parser

In 2014, the Stanford NLP Group released a shift-reduce constituency parser that

achieved an F-measure of 0.913 on Wall Street Journal articles from the TIPSTER

corpus—better than the lexicalized version—while running several orders of magni-

tude faster than any other parser, including the 2007 state-of-the-art Berkeley parser

and the Stanford PCFG parser. The shift-reduce parser works by keeping a state

of the current parsed tree, with the sentence’s words in a queue and partially com-

pleted trees on a stack. It applies transitions—shift, unary reduce, binary reduce, or

finalize—to the state until the queue is empty and the stack contains only the finished

tree[68]. This thesis uses the shift-reduce parser to parse the phrase structure trees

of transcript sentences.

4.3.4 TONGS

TONGS[67] is an Amazon review analysis system that builds upon the SPORK text

summarization pipeline[36]. After summarizing Amazon reviews through an opti-
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mized version of SPORK, TONGS uses the NLTK Python module to determine their

overall sentiment, thus allowing users to quickly make purchasing decisions on the

reviewed products. This thesis uses the sentiment engine of TONGS to determine

the sentiment of testimonies in committee hearings[67, 36].

Unlike other sentiment engines, TONGS outputs a numerical sentiment value for

each word in a sentence that it tokenizes, and if the sentence has been negated by

words such as “not”, “don’t”, and “won’t”. It uses a sentiment dictionary containing

lists of positive words and negative words given by Dr. Bing Liu of the University

of Illinois at Chicago[35]. Users can also override this default dictionary with their

own[67].

The final output of TONGS’s sentiment engine for a single sentence is the following[67]:

• The part-of-speech for each word

• The numerical sentiment value of each word

• Highest word sentiment value in the sentence

• Lowest word sentiment value in the sentence

• Overall sentiment value of the sentence

• Whether or not the sentence is negated

This detailed output helps users determine if TONGS is calculating results cor-

rectly.

4.3.5 Annotation Pipeline

The previous four subsections described the natural language processing tools used

in this thesis to analyze committee hearing transcripts. This section describes how
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those tools are incorporated into the annotation pipeline that processes unstructured

transcript text into XML documents with annotated elements that will be populated

into the knowledge graph. Figure 4.5 shows an architecture diagram of the annotation

pipeline.

Utterance

TONGS

Stanford Parser

AlchemyLanguage

spaCy

XML

Figure 4.5: Diagram of the annotation pipeline.

To understand the annotation pipeline, consider a single hearing H. This hearing

is associated with a sequence of utterances that were spoken during that hearing.

Each utterance includes a unique identifier uid, a pid that refers to the id of the

speaker in the Person table in the DDDB, the spoken text itself, and an optional

alignment enum indicating whether the speaker supports or opposes the bill being

discussed at the hearing.

The annotation pipeline first queries the Hearing table for H and creates a root
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XML element tagged “hearing”. Three attributes are added to the root element: a

unique identifier hid corresponding to the hid from the SQL table, the date of the

hearing in the format “YYYY-MM-DD”, and the name of the hearing in the format

“<house> <type> Committee on <topic>”.

The utterances associated with H are then queried from the Utterance SQL table

and sorted by ascending timestamp. Consider a single utterance U. A corresponding

child element E, tagged “utterance”, is added to the root XML element. The unique

identifier uid, the speaker’s Person identifier pid, the id of the legislative bill being

discussed, and the name of the speaker are added as attributes to the child element.

The text of U is copied as the text of E.

U is then processed through TONGS for sentiment analysis. U can contain multi-

ple sentences, so TONGS parses U’s text into individual sentences. For each sentence,

TONGS outputs an integer sentiment value, S, and a list of words in the sentence, W,

that contributed to the sentiment value. Figure 4.6 shows the output of TONGS for

a sentence in an utterance spoken by Senator Carol Liu. Two additional attributes,

sentiment and words, are added to E. The sentiment attribute is a list of S’s for the

given utterance, and the words attribute is a list of W’s for the given utterance, i.e.

a list of word lists. If for a given sentence, W is empty, S and W are not added to

the sentiment and words attributes. However, if W contains at least one word, even

if S is 0, those values are represented in the attributes.

Each sentence in U is also processed through the Stanford Shift-Reduce parser.

The resulting phrase structure tree is analyzed to find noun phrases in the sentence.

If a noun phrase contains a proper noun, an adjective, or a cardinal expression, the

phrase is considered as important. Figure 4.7 shows the phrases detected by the

parser for a different sentence in the same utterance used in Figure 4.6. The list of
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Input: So, I wholeheartedly recommend that you approve and send his appointment

to the Senate Floor for confirmation.

Output: Sentiment: 3

Words: [’wholeheartedly’, ’recommend’, ’approve’]

Figure 4.6: TONGS output for a given sentence

important phrases for all the sentences in U is added as a phrases attribute to E.

Input: Obviously, he has earned the respect of his Board of Governors Colleagues

who elected him recently as Vice Chair.

Output: the respect of his Board of Governors Colleagues who elected him recently

as Vice Chair

Figure 4.7: Noun phrase detected by the Stanford Shift-Reduce parser for
a given sentence

While this thesis is almost exclusively implemented in Python, the Shift-Reduce

parser is only available in Java. It also takes a nontrivial amount of time to load

the parser model, approximately 10 seconds on a 2013 Macbook Pro with a 2.3

GHz Core i7. Therefore, the annotation pipeline starts the Java Shift-Reduce parser

process upon startup and allows it time to load the parser and tagger models. The

annotation pipeline keeps the process running as it goes through each hearing, using

the Python subprocess module to input sentences into the parser and retrieve the

resulting phrase structure trees. The parser process is shut down when the pipeline

has finished annotating its final hearing.

The utterance text is then run through the named entity recognizers. When a

named entity is identified, the word or words comprising the entity are tagged as a

child element of E, where the tag name is the classification of the entity as listed in
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Section 3.2. First, the pipeline itself looks for and tags legislative bill names and reli-

gious keywords. The religious keywords are scraped from the Association of Religion

Data Archives[12]. Next, the utterance is processed through AlchemyLanguage using

code written by Carmen Dang, and finally the spaCy named entity recognizer. Some

entities may be tagged twice, once by Alchemy and once by spaCy. This is acceptable,

since the knowledge graph population pipeline will only consider the outermost tags.

Figure 4.8 shows the named entities found by Alchemy and spaCy for the utterance

used in the previous two examples. At this point, the utterance XML element E is

finished, and the pipeline can go to the next utterance. Once all the utterances associ-

ated with H have been annotated, H has finished the annotation pipeline and its root

XML element can be written to file. Figure 4.9 shows the final XML of an annotated

hearing with a single utterance, the same one used in the previous examples.

Input: Obviously, he has earned the respect of his Board of Governors Colleagues

who elected him recently as Vice Chair. So, I wholeheartedly recommend that you

approve and send his appointment to the Senate Floor for confirmation.

Output: Board of Governors – Organization

Vice Chair – JobTitle

Figure 4.8: Named entities detected by AlchemyLanguage and spaCy for
an example utterance.

As mentioned in Section 4.3.1, our key for AlchemyAPI has a rate limit of 30,000

requests per day. A single hearing usually has at least 1,000 utterances. So if one API

call is made per utterance, only thirty hearings at most can be processed per day.

Given the number of hearings in the SQL database, at least eight hundred as of this

thesis’s writing, this is an unacceptable stopgap. The solution is to concatenate the

text of several utterances and make one API call per utterance group. The pipeline

combines utterances into groups of 25, an arbitrarily chosen number.
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<hearing hid ="1" name =" Senate Standing Committee on Senate

Standing Committee on Rules" date ="2015 -01 -07" >

<utterance pid ="63" bid =" CA_201520160AB717 " name =" Carol

Liu" uid ="73" sentiment ="[0 , 3]" words ="[[ ’ respect ’, ’

Vice ’], [’ wholeheartedly ’, ’recommend ’, ’approve ’]]"

phrases ="[’ the respect of his Board of Governors

Colleagues who elected him recently as Vice Chair ’, ’

the Senate Floor for confirmation ’]" > Obviously , he has

earned the respect of his <Organization >Board of

Governors </ Organization > Colleagues who elected him

recently as <JobTitle >Vice Chair </ JobTitle >. So , I

wholeheartedly recommend that you approve and send his

appointment to <Organization >the Senate Floor </

Organization > for confirmation . Thank you for your

consideration .</ utterance >

</hearing >

Figure 4.9: An annotated hearing XML document with a single utterance.

4.3.6 Limitations

The initial design of the annotation pipeline included the use of Python’s multipro-

cessing module. The plan was to spawn multiple concurrent processes, with each

process annotating a different hearing. However, this module breaks when used in

conjunction with the NLTK module, which is used by TONGS, and the urllib module,

which is used to query AlchemyAPI. This issue has been acknowledged by NLTK’s au-

thors for over a year, but there has been no apparent progress to fixing this issue[46].

The current implementation of the annotation pipeline is limited to serial execution.
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4.4 Knowledge Graph Population

Once a transcript has been fully processed by the annotation pipeline, the population

pipeline can read it to populate the knowledge graph with new information. The

population pipeline’s first step is to gather the pids of all the speakers who testified

in that hearing and create the corresponding Testified edges from Person nodes to

the Hearing node.

Now the population pipeline can process the annotated utterances one by one.

Consider a single child XML element E, representing utterance U in hearing H. Re-

call the attributes of E produced from TONGS: sentiment and words. Also recall

that E has a pid attribute identifying the speaker, a bid attribute identifying the bill

being discussed, and an align attribute representing the speaker’s position on the bill

being discussed. Using these attributes, the pipeline creates a Sentiment edge from

the Person node representing the speaker to the discussed Bill node. The Cypher

query to create this edge is shown in Figure 4.10.

MATCH (n:Person {pid:|pid|}), (b:Bill {bid:|bid|})

CREATE (n)-[:sentiment {val:|sentiment|, words:|words|, align:|align|}]->(b)

Figure 4.10: Neo4j Cypher query to create a Sentiment edge

After the Sentiment edge for E is created, the population pipeline looks for tagged

child elements, the named entities, in E’s text. For each entity, the pipeline creates

a Said edge from the Person node representing the speaker to the node representing

that entity, creating the latter node if it does not already exist, and using the same

attributes of E that were used to create Sentiment edges. The same is done for

noun phrases in E’s phrases attribute. If a named entity is the name of a person,
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the pipeline instead tries to find the corresponding Person node in the graph, and if

found, uses that node as the target node for the edge. Figure 4.11 shows the corre-

sponding Cypher query for creating a Said edge to a named entity.

MERGE (e:|entityTag| {name:|entity|})

MATCH (n:Person {pid:|pid|}), (e:|entityTag| {name:|entity|})

CREATE (n)-[r:said {align:|align|, bid:|bid|, sentiment:|sentiment|,

words:|words|}]->(e)

Figure 4.11: Neo4j Cypher query to create a Said edge for a named entity
or noun phrase
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Chapter 5

VALIDATION

Validation of this thesis is done in two stages. The first stage evaluates the turnaround

time of creating and updating the knowledge graph. We measure the performance of

the knowledge graph pre-population, the annotation of all the transcripts from the

existing database, and the population of the knowledge graph from those annotations.

We then examine the overall structure of the graph, counting the numbers of each

node and edge type. Finally, we evaluate the turnaround time of annotating a single

day’s worth of hearings and updating the knowledge graph from those results.

In the second stage of validation, we conduct several case studies to demonstrate

the type of information that can be retrieved from the knowledge graph. A case study

consists of an analytical question involving the testimonies in committee hearings, and

the data that is queried from the knowledge graph to answer this question. For each

case study, we show the specific Neo4j Cypher statement used to query the knowledge

graph, measure the performance time of that query, and format the data in a chart

or image.1 Our case studies cover a variety of speakers and topics, and cannot be

answered from just the existing relational database. Similarly, the knowledge graph

data queried for these case studies is not present in the relational database. We

present the following case studies:

• Locations of residency for members of the general population opposed to vac-

cination requirements. We gather the cities of origin for individuals in the

anti-vaccine community and plot the results on a map of California.

• Sentiments of legislators toward Bay Area companies and cities. We plot
1These images were made in color; information may be lost when printed in black and white.
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the sentiment scores of individual companies and cities per legislator onto a

heatmap.

• Sentiments of legislators with regards to line item budgets. We plot the senti-

ment scores of legislators discussing line item budgets regarding a specific topic

onto a bar chart.

• General sentiments of legislators along party lines. We plot the overall sentiment

of each legislator given everything he’s ever said in a committee hearing onto a

bar chart.

5.1 Environment

The tests in this section were run on a Google Compute Engine virtual machine

running Debian 8 with 2 vCPUs, 16 GB of RAM, and a 15 GB SSD. Neo4j was

given 2 GB of heap space and 2GB of page cache memory for mapping the store files

discussed in Section 4.1.

5.2 Turnaround Time

In this section, we analyze the turnaround time of creating the knowledge graph

from scratch and of updating the knowledge graph with one day of new committee

hearings. The results of this evaluation are summarized in Table 5.1. The graph pre-

population from the existing database only takes one minute and sixteen seconds. The

most time-consuming step is the transcript annotation. When this evaluation was

run, the Digital Democracy database contained 1009 committee hearings spanning

from the beginning of 2015 to April 19, 2016. The total time to process all 1009

hearings into annotated XML documents is 246 minutes 27 seconds, or just over 4

hours. This means each hearing takes, on average, 14.65 seconds to be annotated.
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Table 5.1: Turnaround time for creating the knowledge graph from scratch

Step Time (min)

Pre-population 1.26

Transcript Annotation 246.46

Population 54.30

Total 302.02

The graph population from all the transcripts took 54 minutes 18 seconds, or 3.23

seconds per hearing. These processing times add up to just over 5 hours. This means

the knowledge graph can be easily created from scratch overnight.

This evaluation is important because of the many possible reasons for re-annotating

the hearing transcripts. NLP libraries such as AlchemyLanguage and spaCy may be

frequently updated, and major updates may significantly affect their output, and by

extension, the named entities that are found. Depending on the importance of the

update, this may require a full reprocessing of all transcripts, and therefore a complete

rebuilding of the knowledge graph. The 5 hour turnaround time makes it feasible for

the knowledge graph to be completely rebuilt from scratch overnight.

Once the knowledge graph is populated, we can gather some statistical data re-

garding the nodes and edges of the graph. Table 5.2 and 5.3 show the numbers of

nodes and edges in the graph. The final size of the knowledge graph on disk is 1.3

GB.

A single day in the California state legislature usually holds a single-digit number

of committee hearings. The highest number of hearings held in a day during 2015

was 12. Using the processing times above 12 hearings takes 175.8 seconds, or just

under 3 minutes. Populating the graph with those hearings takes 38.76 seconds. This

leads to a total turnaround time of approximately 3.5 minutes for a day’s worth of
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Table 5.2: Number of nodes in the knowledge graph by type. Node counts
for named entity types that are less than 1000 are not shown, but included
in the Total count.

Node Type Count

Public 16166

Committee 346

Assemblymember 240

City 3374

Phrase 819180

JobTitle 4218

Hearing 1124

PersonName 16169

Topic 2075

Senator 112

Location 2865

Quantity 3140

Facility 3339

GeographicFeature 1386

Organization 44975

Lobbyist 2669

Money 5045

Time 11554

Bill 31649

Total 975085
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Table 5.3: Number of edges in the knowledge graph by type.

Edge Type Count

HeldHearing 1124

Sentiment 206158

LobbiesFor 2895

CoChair 2

ViceChair 18

Testified 43481

Vote 274410

Member 3033

Chair 172

Said 1471463

Total 2002855

hearings. These results are summarized in table 5.4.

Note that 12 was the highest number of hearings for a single day in 2015. The

average number of hearings per day is 5, leading to a total turnaround time of 89.4

seconds. This means the day-to-day updating of the knowledge graph can be incorpo-

rated into the daily Digital Democracy update system without significantly increasing

its turnaround time.

Table 5.4: Turnaround time for updating the knowledge graph with a
single day of committee hearings.

Step Time (s)

Transcript Annotation 175.80

Population 38.76

Total 214.56
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5.3 Case Studies

To determine if the knowledge graph provides useful information, we performed a

number of case studies targeting various persons, bills, and topics.

5.3.1 Legislative Bill SB 277

In 2015, the California State Senate passed SB 277, a bill that removed the personal

belief exemption for vaccination requirements required by public schools and daycare

centers. When the bill was in committee, the anti-vaccine community of California

traveled to Sacramento to voice their opposition. Individuals were required to state

their name, where they are from, and whether they support or oppose the bill. Those

names and locations are annotated and populated into the knowledge graph, so we

can retrieve those locations using the Cypher query in Figure 5.1, which took 1536

ms to execute. These locations are then converted into a geographical heatmap of

California, shown in Figure 5.2. As expected, most of the represented anti-vaccine

community came from large urban cities like San Francisco and Los Angeles.

MATCH (n:Public)-[r:said {bid:’CA_201520160SB277’, align:’against’}]->(e)

WHERE e:City or e:Location

RETURN e.name

Figure 5.1: Neo4j Cypher query to retrieve the places of origin of the
general population opposed to SB 277

In this case study, we analyzed the testimony of the general public with regards to

a controversial vaccination bill and extracted the names of the cities that individual

testifying speakers reside in, and plotted those cities onto a geographical heatmap.
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This pattern analysis can be altered to target any desired bill.

Figure 5.2: Heatmap of places of origin of the general population opposed
to SB 277
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5.3.2 Sentiments of legislators toward Bay Area cities

MATCH (n:Legislator)-[r:said]->(e:City {name:|cityname|})

RETURN n.first, n.last, e.name, r.sentiment

Figure 5.3: Neo4j Cypher query to retrieve the sentiments of legislators
toward a given city

This case study analyzes the sentiments of legislators towards cities in the Bay Area.

The Cypher query in Figure 5.3 is run for each Bay Area city, with each query

taking approximately 800-1000 ms to execute, and the results are aggregated into the

heatmap shown in Figure 5.4. A small sample of the heatmap is shown in Figure

5.5. Green slashed squares represent positive sentiments, and red squares with x’s

represent negative sentiments.
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Figure 5.4: Heatmap of sentiments of legislators towards Bay Area cities
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Figure 5.5: A small sample of the heatmap of legislator sentiments towards
Bay Area cities

While this case study was meant to provide insight into the sentiments individual

legislators, it also provides insight to into overall sentiments toward specific cities.

For example, the sentiment toward San Bruno is largely negative. By querying the

noun phrases spoken by these legislators towards San Bruno, we see that they were

talking about the 2010 San Bruno PG&E pipeline explosion. Figure 5.6 and Table

5.5 show the Cypher query and results for Senator Jerry Hill’s sentiment towards San

Bruno.

MATCH (n:Senator {pid:66})-[r:said]->(e:Phrase)

WHERE e.name contains ’San Bruno’

RETURN r.sentiment, e.name

Figure 5.6: Neo4j Cypher query to retrieve the noun phrases spoken by
Senator Jerry Hill regarding the city of San Bruno.
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Table 5.5: Phrases spoken by Senator Jerry Hill regarding San Bruno.

Sentiment Phrase

-2 the 2010 natural gas explosion in the city of San Bruno

-3 the grandfather clause concerning how to set a maxi-

mum pipeline pressure more than four years after the

San Bruno disaster

-1 the 2010 natural gas explosion in my district in San

Bruno

-1 a safety policy after the San Bruno explosion

1 the San Bruno explosion

1 the 2010 gas pipeline explosion in San Bruno

-2 the 2010 explosion in San Bruno that killed eight

1 the incineration of eight individuals living in San Bruno

-3 if the Franchise Tax Board attempts to deny PG and

E’s deduction of the San Bruno penalty, PG and E

2 the explosion in San Bruno

Each square in the heatmap is the sum of the sentiments of all utterances spoken

by a legislator that contain the given city. Therefore, darker shades of green and

red can either mean that the legislator has spoken multiple times about the city in

question, or the legislator has spoken very strongly about that city. This ambiguity

reduces the confidence of this case study, and perhaps averages would have resulted

in a more accurate analysis instead of summations. Nevertheless, the heatmap is

evidence of useful, actionable data retrieved from the knowledge graph.
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5.3.3 Sentiments of legislators toward Bay Area companies

This case study is very similar to the previous case study, except instead of targeting

cities, it targets companies. The resulting heatmap is shown in Figure 5.7 and 5.8.

While the heatmap suggests that the overall sentiment towards Bay Area companies is

largely positive, further analysis shows that this isn’t the case. The heatmap says that

Mike McGuire has a very positive sentiment towards Airbnb, however Mr. McGuire

has actually been advancing legislation to require Airbnb and similar vacation-rental

companies to pay their fair share of taxes and abide by local ordinances[54]. This

suggests that some of the sentiment values given by TONGS in this case may be

inaccurate.
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Figure 5.7: Heatmap of sentiments of legislators towards Bay Area com-
panies
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Figure 5.8: Heatmap sample of sentiments of legislators towards Bay Area
companies

5.3.4 Prototype Client

Figure 5.9: Screenshot of first section of prototype client

For the following case studies, we created a prototype web client that queried the

knowledge graph using parameters set by the user and displayed results in either a
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heatmap, a line graph, or plain text, depending on the query.

The client is split into two sections. The first section, shown in Figure 5.9, takes

the following inputs:

• Which type of speaker to query: legislators, lobbyists, etc.

• Types of bills to query: AB for Assembly bills, SB for Senate bills, etc.

• Bill topics to query: Housing, University, etc. The client looks at the subject

property of Bill nodes for these topics.

• Optional list of entities, or keywords, to look for: San Jose, John Smith, etc.

Once the user fills in those inputs and clicks Submit, the client first queries the

graph for the bills with the specified bill types and topics. Figure 5.10 shows the

Cypher query for retrieving bills with the type AB or SB and with the topics Univer-

sity or Education. Then, the client queries for Said edges whose destination nodes

are entities with names matching the entities specified by the user. Figure 5.11 shows

an example with the entities ’Ford’ and ’Tesla’. Once the edges are retrieved, the

client processes only the edges with a bid property that was found in the first query,

in Figure 5.10. Sentiment values are summed and organized by speaker and entity.

MATCH (b:Bill)

WHERE (b.name starts with ’AB’ OR b.name starts with ’SB’)

and (b.subject contains ’University’ or b.subject contains ’Education’)

RETURN b

Figure 5.10: Neo4j Cypher query used by first section of client to retrieve
bills
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MATCH (n:Senator)-[r:said]->(e)

WHERE not e:Phrase and e.name in [’Ford’, ’Tesla’]

RETURN n, r, e

Figure 5.11: Neo4j Cypher query used by first section of client to retrieve
speaker sentiments toward given entities

Finally, the client displays the results in a heatmap similar to those in the Bay

Area case studies. When the mouse is hovered over a square, the client displays

the words from the corresponding utterances that contributed to the sentiment value.

Figure 5.12 shows a portion of a heatmap generated for legislator’s sentiments toward

Los Angeles, Anaheim, and San Diego. The use of summations instead of averages

or another aggregation formula reduces the confidence of these results, just like in

Section 5.3.2.
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Figure 5.12: Screenshot of a heatmap presented by the client for senti-
ments towards Southern California cities

If the user did not specify any entities, the client instead queries for Sentiment

edges, as shown in Figure 5.13. The client processes only the edges whose destina-

tion nodes were found in the first query for retrieving bills. The sentiment values

aggregated and grouped by speaker, using averages instead of sums. The results are

displayed in a bar chart, with the left-most x values representing Democrats and the

right-most x values representing Republicans. Hovering the mouse over a bar displays

the name of the speaker corresponding to that sentiment value. The client also logs

the utterance words that contributed to the sentiment values in the web debugging

console. An example of the client’s bar chart functionality is shown in Section 5.3.5.
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MATCH (n:Senator)-[r:sentiment]->(b:Bill)

RETURN n, r, b

Figure 5.13: Neo4j Cypher query used by first section of client to retrieve
speaker sentiments when discussing bills

The second section, shown in Figure 5.14, takes one of the following inputs:

• The name of a speaker

• A named entity

Figure 5.14: Screenshot of second section of prototype client

If the user inputs a speaker name, the client performs the query in Figure 5.15

to retrieve Said edges whose start nodes match the inputted speaker name. The

sentiment values of those edges are aggregated by named entity using averages, and

sorted from highest positive value to lowest negative value. The client then outputs

the pairs with the three highest sentiment values, and the pairs with the three lowest

values, along with the words from the corresponding utterances that contributed to

those sentiment values.
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MATCH (n:Person {first:|firstname|, last:|lastname|})-[r:said]->(e)

WHERE not e:Phrase and not e:Ordinal and not e:Time

RETURN r, e

Figure 5.15: Neo4j Cypher query used by second section of client to re-
trieve the named entities spoken by a given person

These results are good candidates for integration into the Digital Democracy web-

site. Each speaker page can include a section showing the topics that the speaker

likes the most, and topics that the speaker dislikes the most. Figure 5.16 shows the

client’s output for Senator Richard Pan. Notice the entities with the highest senti-

ments all have the same sentiment words, suggesting that the entities all came from

a single utterance. In this case, Senator Pan is honoring a rabbi. The entities with

the lowest sentiments mostly relate to health, suggesting that he has strong opinions

on health-related issues.

Figure 5.16: Screenshot from second section of the client showing the
entities that Senator Richard Pan likes and dislikes the most
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If the user inputs a named entity, the client performs the query in Figure 5.17 to

retrieve Said edges whose destination nodes match the inputted entity. The senti-

ment values of those edges are aggregated by named entity using averages, and sorted

from highest positive value to lowest negative value. The client then outputs the pairs

with the three highest sentiment values, and the pairs with the three lowest values,

along with the words from the corresponding utterances that contributed to those

sentiment values.

MATCH (n:Person)-[r:said]->(e {name:|name|})

WHERE not e:Phrase

RETURN n, r

Figure 5.17: Neo4j Cypher query used by second section of client to re-
trieve the speakers who spoken a given entity

This output represents the speakers who like the entity the most, and the speakers

who dislike it the most. Figure 5.18 shows the client’s output for the entity Apple,

suggesting a largely positive sentiment towards the company.
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Figure 5.18: Screenshot from second section of the client showing the
speaker sentiments towards the company Apple
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5.3.5 Sentiments of legislators towards line item budgets

Figure 5.19: Bar chart representing the sentiments of legislators when
discussing the line item budget for California State University

This case study uses the bar chart functionality of the client to chart legislator senti-

ments towards line item budgets by topic. Figure 5.19 shows the graph representing

the average sentiment of each legislator when discussing the line item budgets for the

California State University system. The Cypher query to retrieve the relevant bills

took 69 ms to execute, and the query for retrieving the sentiment values and pro-

cessing its results took 4458 ms to execute. Figure 5.20 shows the graph representing

average sentiments for transportation and high-speed rail authorities. The Cypher

query to retrieve the relevant bills took 94 ms to execute, and the query for retrieving

the sentiment values and processing its results took 4956 ms to execute. These bar

charts provide actionable data by surfacing the speakers that should be investigated

further by looking at the Digital Democracy website’s speaker pages and committee
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hearing transcripts, or by querying the knowledge graph for phrases relating to the

line item budgets that were said by those speakers.

Figure 5.20: Bar chart representing the sentiments of legislators when
discussing the line item budgets for transportation and rail authorities
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5.3.6 General sentiments of legislators along party lines

Figure 5.21: Bar chart representing the sentiments of Senators

This case study uses the bar chart functionality of the client to chart legislator senti-

ments across all Assembly bills, Senate bills, and budget line items. Figure 5.21 shows

the graph representing the average sentiments of Senators, and Figure 5.22 shows the

graph representing the average sentiments of Assemblymembers. The time to query

the sentiment values from the knowledge graph and process the results took 64.2 sec-

onds for Senators and 57.2 seconds for Assemblymembers. Interestingly, Republican

Senator Bob Huff is the only legislator with a negative average sentiment at -0.02.

This can serve as a starting point for users to look into more detail at Senator Huff’s

arguments in committee hearings.
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Figure 5.22: Bar chart representing the sentiments of Assemblymembers

5.4 Comparison With Other Knowledge Representation Methods

Table 5.6 outlines the advantages of representing the transcript annotation data in

a Neo4j-backed knowledge graph as compared to more traditional knowledge repre-

sentation methods. The use of a graph database to form a knowledge graph means

that relations between speakers and entities have as much priority as the speakers

and entities themselves, without needing additional steps such as foreign keys which

add complexity to both the data schema and data retrieval. The graph data model

intuitively fits the SKEWER problem domain of storing person-said-thing triples.

By comparison, the rigid schema of a relational database would require multiple im-

plicit connections between various tables to relate speakers with their spoken entities

and sentiment values. Both relational models and NoSQL models such as key-value

stores and column-oriented stores would also require full scans of their respective data
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Table 5.6: Comparison of Neo4j-backed Knowledge Graph (KG) method
with other knowledge representation methods for SKEWER data.

Feature Neo4j KG KG NoSQL Relational

Intuitive Data Model Yes Yes No No

Flexible Data Model Yes Yes Yes No

Ease of Data Addition Yes Yes Yes No

Fast Data Access Yes No No No

Simple Query Language Yes No No No

Expressive Query Language Yes No No No

structures to look for specific entities or bills.

Neo4j also brings advantages to SKEWER not offered by other graph databases.

Index-free adjacency allows Neo4j graph traversal speed to be unaffected by the size

of the graph itself. Therefore, the speed of analysis of speakers, sentiments, and

entities is not affected by the addition of new committee hearings into the graph. The

declarative Cypher query language combines the familiarity of SQL with the intuitive

node-edge-node graph traversal pattern, allowing users of various backgrounds to

quickly understand the data model of SKEWER and make simple yet powerful graph

queries. The simplicity of the graph queries also means that the input parameters in

a potential client user interface, such as bill names, speaker names, and entity names,

directly match the parameters used in those graph queries with only minor additional

query syntax required.
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Chapter 6

CONCLUSION

This thesis presents a method for creating a knowledge graph from legislative com-

mittee hearing transcripts using a suite of NLP tools to annotate named entities and

provide sentiment values, allowing Digital Democracy users to gain information re-

garding the opinions of various individuals towards specific bills, topics, and other

people.

The contributions of this thesis are the following:

• A method for annotating Digital Democracy’s textual transcripts into

XML documents using NLP tools: The transcripts from Digital Democ-

racy are currently unstructured data that are only represented as supplemental

information for committee hearings. This thesis presented a pipeline for running

a combination of NLP tools on the individual sentences of these transcripts to

extract named entities, noun phrases, and emotions, and outputs these results

as XML documents.

• A method for populating a knowledge graph from annotated tran-

script XML documents: This thesis presented the design and population of

a knowledge graph from the newly created annotations of the Digital Democ-

racy transcripts. This knowledge graph represents the testimonies spoken by

legislators, lobbyists, and the general population.

• Case studies using the knowledge graph to generate insights regarding

committee hearing testimonies: This thesis presented a number of case

studies for which the knowledge graph is queried to provide analysis.

74



• Prototype client for querying the knowledge graph by person name

or topic: Finally, this thesis presented a prototype client for users to analyze

sentiment values for a particular person or topic.

6.1 Future Work

There are several areas of future work, including improvement of results from the

NLP libraries and an interface for querying the knowledge graph from the Digital

Democracy website.

6.1.1 Sentiment Analysis

As seen in Section 5.3, the sentiment values are not always accurate. This is not just

a problem with TONGS, but with sentiment analysis in general, and much research

is still be done on this topic.

This thesis did not define a concrete algorithm for aggregating multiple sentiment

values for a given speaker and topic into a final value. Sums were used in some

case studies, while averages were used in others. A tested formula will improve the

confidence of every case study in this thesis as well as the overall accuracy of the

knowledge graph.

6.1.2 Exploration of other NLP Libraries

The limitations of AlchemyAPI have been discussed in Section 4.3.6. As research into

named-entity recognition and NLP in general progresses, other libraries may be better

served for this thesis than AlchemyAPI and spaCy. Investigating these libraries and

possibly replacing one or more of the libraries used in this thesis may improve the

quality of the entities annotated, and therefore the accuracy of the knowledge graph.
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6.1.3 Case Studies Involving Lobbyists

The case studies presented in this thesis revolved around legislators or the general

public. The knowledge graph also contains data on the utterances spoken by lobbyists

and also the organizations represented by those lobbyists. A case study analyzing the

opinions of companies towards certain bills and how strongly those opinions are voiced

through their lobbyists would be very interesting.

6.1.4 Client for Digital Democracy

The case studies and prototype client presented in this thesis assume that the user

is an internal member of the Digital Democracy project with access to the existing

Digital Democracy database. This setting does not apply to users of the Digital

Democracy website. An external client for website users to query the knowledge

graph would be a great benefit.
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