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ABSTRACT 

ISM S-Band CubeSat Radio designed for the PolySat System Board 

Craig Lee Francis 

 

Cal Poly’s PolySat CubeSat satellites have begun to conduct more complex and 

scientifically significant experiments. The large data products generated by these 

missions demonstrate the necessity for higher data rate communication than currently 

provided by the PolySat UHF radio. This thesis leverages the proliferation of consumer 

wireless monolithic transceivers to develop a 250kbps to 2000kbps, 2W CubeSat radio 

operating within the 2.45GHz Industrial, Scientific, and Medical (ISM) radio band.  

Estimating a link budget for a realistic CubeSat leads to the conclusion that this 

system will require a large deployable CubeSat antenna, large earth station satellite dish, 

and a fine-pointing attitude control system. Noise floor measurements of a CubeSat 

ground station demonstrate that terrestrial ISM interference can be minimized to below 

the thermal noise floor by carefully choosing the operating frequency.  

The radio is specifically designed as a daughter board for the PolySat System 

Board with a direct interface to the embedded Linux microprocessor. A state-of-the-art 

ZigBee transceiver evaluation board is measured to confirm its suitability for a CubeSat 

radio. A schematic is developed, which integrates the transceiver, power amplifier, low 

noise amplifier, amplifier protection circuitry, switching regulators, and RF power 

measurement into a single printed circuit board assembly (PCBA). The circuitry is then 

squeezed into a high-density, 1.4” x 3.3” layout. The PCBA is then manufactured, 

troubleshot, tuned, and characterized.  
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1 Introduction 

1.1 PolySat/CubeSat Laboratory Background 

PolySat is a multi-disciplinary graduate and undergraduate engineering team that 

focuses on custom CubeSat satellite development. The PolySat lab currently resides in 

Building 192, room 101 and within the Advanced Technology Laboratory on the campus 

of California Polytechnic State University, San Luis Obispo. Instead of purchasing off-

the-shelf CubeSat kits, the PolySat team designs custom electronics, structures, and 

software. Within a span of approximately three years, a PolySat member will typically 

design, build, test, and operate a full CubeSat satellite mission on a multidisciplinary 

team of mechanical, electrical, computer, aerospace, and software engineering students. 

Within the same lab as the PolySat team, the CubeSat team maintains the 

worldwide CubeSat standard cofounded by CubeSat’s principal investigator, Dr. Jordi 

Puig-Suari. CubeSat performs integration and testing services for the launch of CubeSat 

missions. CubeSats “piggyback" on launch vehicles for conventional satellites already 

being launched by other organizations, such as NASA or the NRO. The CubeSat team 

maintains the design for the Poly Picosatellite Orbital Deployer (P-POD) which is a 

spring-loaded box that deploys CubeSats from the launch vehicle after reaching orbit.   

Since its founding in 2000, PolySat has launched eight CubeSat missions.  

PolySat’s missions are generally scientific or experimental pursuits funded by outside 

entities. The recently launched IPEX satellite is a great example of a PolySat mission. 

The IPEX mission was a joint effort between PolySat and the NASA Jet Propulsion 

Laboratory (JPL) and was funded by NASA’s Earth Science Technology Office (ESTO). 

IPEX is a 1U CubeSat, the smallest size in the CubeSat standard, corresponding to 

dimensions of 10x10x10cm in volume and 1kg in weight. A picture of IPEX is shown in 

Figure 1. IPEX houses five cell phone cameras on five different faces of the CubeSat for 
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capturing pictures of Earth; the low-resolution cameras are placeholders for actual 

science instruments on future NASA missions. A secondary payload processor is loaded 

with specialized onboard planning software developed by JPL to validate autonomous 

payload operations for the NASA HYperSPectral Infra-Red Instrument (HyspIRI) mission. 

[1] IPEX was launched in December 2013 and successfully completed all mission 

objectives within its six month mission life span before becoming unresponsive after one 

year of operation. Not shown in the picture is IPEX’s deployable monopole antenna 

tuned for 437MHz; this antenna is deployed automatically after ejection into space. All 

communication and data downlink for the mission was through this simple antenna at a 

data rate of 9.6kbps. 

 

Figure 1: IPEX, PolySat 1U CubeSat (10x10x11cm) [1] 

 CubeSats are low earth orbit (LEO) satellites generally between 300km and 

1000km in altitude and travel at approximately 8 km/s. The satellites circle the Earth 

approximately every 90 minutes and are within line-of-sight of a single point on Earth 

approximately 5 times a day for less than 15 minutes as they fly horizon to horizon. As 

the satellites fly overhead, they are communicated with by actively pointing a high-gain 

antenna across the sky following the satellite’s path. All data is transmitted between the 
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satellite and earth station during these short passes. Figure 2 is a picture of the PolySat 

“Friis” 437MHz earth station antenna, which is an array of four Yagi-Uda antennas 

combined as a phased array to behave as a single antenna with high gain. This antenna 

is located on the roof of Building 192 on the Cal Poly campus. 

 

Figure 2: PolySat Earth Station, 437MHz Yagi Antenna Array 

1.2 CubeSat Communication Frequencies  

Cal Poly and PolySat alumnus Bryan Klofas maintains a table of CubeSat 

communication systems along with his published papers and presentations on his 

website: klofas.com. [2] According to the website, as of March 2015, 256 CubeSats have 

deployed into space; the communication details of each CubeSat are published in his 
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table including: satellite size, radio, frequency, satellite service, protocol, data rate, 

funding source, and life time. A snippet of the chart is shown in Figure 3. [3] 

 

Figure 3: CubeSat Communication Systems Table Snippet, Bryan Klofas [3] 

 In February 2014, Klofas presented a presentation titled “CubeSat Radios: From 

kilobits to Megabits,” in which he totaled the CubeSat transmit frequencies, satellite 

service, and maximum data rates in the diagrams shown in Figure 4, Figure 5, and 

Figure 6.  

 

Figure 4: CubeSat Transmit Frequencies (2003 to 2014), Bryan Klofas [4]  
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Figure 5: CubeSat Satellite Service Licenses, (2003 to 2014), Bryan Klofas [4] 

 

Figure 6: CubeSat Data Rates, (2003 to 2014), Bryan Klofas [4] 

As of March 2015, 31 of 256 CubeSats have data rates greater than 9.6kbps and 

11 CubeSats have been capable of data rates greater than 1000kbps. The first CubeSat 

capable of communication above 1000kbps launched in 2010.  The majority of CubeSats 

have operated in the Amateur 70cm satellite band of 435MHz to 438MHz at data rates of 

1.2kbps or 9.6kbps, including the latest Cal Poly PolySat satellites which communicate 

at a data rate of 9.6kbps at 437MHz. After one year of operation, the PolySat IPEX 

mission downlinked greater than 20MBs of data and imagery; this is the current data 

record for the PolySat lab and is roughly equivalent to the size of five mp3 song files. 
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1.3 Motivation and Objectives of the S-Band Radio 

The motivation of an S-Band radio is simply to increase the data downlink 

capability for future PolySat missions requiring high data throughput. The radio will be 

designed to consume minimal power and volume within the spacecraft. The radio will be 

designed to fit within the current PolySat HyperCube bus architecture as a daughter 

board for the System Board at a PCBA size of 1.4” x 3.3”. Another desired feature 

described in “5.5 Amplifier Protection and RF Power Measurement,” is to protect the 

radio amplifiers from open/short load conditions and excessive power input during 

satellite development. The general high-level objectives of the S-Band radio are listed 

below.  

S-Band radio high level objectives: 

 Increase satellite downlink and uplink data rate 

o Data Rate > 100kbps  

 Conform to PolySat System Board, daughter board B dimensions 

o Size < 1.4” x 3.3” 

 Minimize power consumption 

o Receive mode power consumption <200mW 

 Power and low noise amplifier protection 

o Protection from excessive VSWR and excessive input power 

 

  



7 

 

2 Summary of UHF Communication System 

The primary radio for PolySat’s CP8 (IPEX), CP9, and CP10 (ExoCube) spacecraft 

is the UHF radio board designed by Austin Williams in his thesis:  A Compact, 

Reconfigurable UHF Communication System Design for use with PolySat’s Embedded 

Linux Platform. [5] The UHF board is tuned for the 70cm band, specifically for the 

amateur satellite band 435-438 MHz; most CubeSat UHF communications are allocated 

within this 3MHz bandwidth. The UHF board supports FSK, GFSK, MSK, GMSK, BPSK, 

and OQPSK modulation, data rates from 1.2kbps to 600kbps, and 1W of transmit power. 

[5] 

Although the UHF board can technically support up to a 600kbps data rate, the 

actual data rate is limited by satellite and earth station antenna gains, noise floor, 

sensitivity, and transmit power. The UHF radio is used as the primary beacon and 

command radio, therefore it is desirable to have a low-gain, omnidirectional antenna. 

Low-gain, omnidirectional antennas ideally transmit and receive radiation equally in all 

directions, which allow communication regardless of the satellite’s orientation with regard 

to the ground station. This is desirable for the satellite’s primary command and control 

radio link, because a robust link is required for mission critical commands and data 

gathering.  However, the low gain UHF antenna limits the data rate of the satellite. In 

PolySat’s current missions, the UHF board is being utilized at a 9.6kbps data rate, but 

further experimentation and optimization with the satellite and earth station may bring 

that data rate higher in the future.  

The highest practical data rate for the UHF link can be estimated by assuming a 

low-gain satellite antenna and a high-gain ground station, such as the PolySat “Friis” 

ground station. As described on the PolySat website, “The antennas consist of four 

phased 436CP42UG yagi antennas built by M2 Antenna Systems Inc. mounted on a 
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AlfaSpid rotor system. A LNA 435 MKII low noise amplifier as attached on the mast.” [6] 

According to the 436CP42UG antenna datasheet, the gain for each circularly-polarized 

antenna is 18.9dBi equating to a beam width of 21 degrees. [7] Four 436CP42UG 

antennas optimally phased together would theoretically result in a gain increase of 3dB 

per doubling of antenna [8]; with four antennas, this equates to 18.9dBi + 3dB + 3dB = 

24.9dBi. In practice, the gain of the antenna array would be less, but for this estimate we 

will assume optimal phasing. David Adamy’s “EW101, A First Course in Electronic 

Warfare,” is a great reference for calculating link budgets and general overview of RF. 

Page 14 presents the link equation: 

𝑷𝑹 = 𝑷𝑻 + 𝑮𝑻 − 𝑳 + 𝑮𝑹 

Where 𝑃𝑅= received power in dBm; 𝑃𝑇 = transmitter output power in dBm; 𝐺𝑇 = 

transmitting antenna gain; 𝐿 = link losses including path loss, pointing loss, and 

atmospheric loss; 𝐺𝑅= receiving antenna gain in dB. [9] 

The link loss 𝐿 can be broken down into four major components:  

𝑳 = 𝑳𝒔 + 𝑳𝒂 + 𝑳𝒑𝒐𝒊𝒏𝒕 + 𝑳𝒑𝒐𝒍 

Where  𝐿𝑠 = spreading loss dependent on distance and frequency; 𝐿𝑎= atmospheric loss 

dependent on frequency and angle which varies the distance traveled through earth’s 

atmosphere; 𝐿𝑝𝑜𝑖𝑛𝑡 = pointing loss due to misalignment of maximum gain boresights of 

the antennas; 𝐿𝑝𝑜𝑙 = polarization mismatch loss due to differences in polarization 

between antennas. For the UHF ground station, spreading loss is the most significant 

loss equal to 𝐿𝑠 = 32.4 + 20 log(𝑓) + 20log (𝑑). Where f = transmitted frequency in MHz 

and d = transmission distance in km. For UHF, the atmospheric loss is insignificant with 

worst-case loss of approximately 0.1dB at an elevation angle of 5 degrees from the 

horizon. [10] To keep our estimate as optimistic as possible, we will assume no 

misalignment between the ground station maximum gain boresight and the satellite with 
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𝐿𝑝𝑜𝑖𝑛𝑡 = 0. The satellite antenna is linearly polarized and the ground station is circularly 

polarized resulting in a polarization loss approximately equal to 3dB according to EW101. 

[9] 

Generally, the satellite transmit power is less than the ground station transmit 

power; this is true for the PolySat UHF link. The satellite transmits 1W (30dBm), 

whereas the ground station transmits up to 1kW (60dBm); therefore, assuming the 

ground station and satellite receive sensitivity are equal, the weakest period of the radio 

link is when the satellite is transmitting and ground station receiving. The Friis Cal Poly 

ground station uses the UHF radio developed in Austin Williams’ thesis for both the 

satellite and ground station radio. Williams measured the receive sensitivity of the radio 

at various data rates, reproduced in the figure below. [2] 
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Table 1: Sensitivity of PolySat UHF Radio, Williams [5] 
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For the link distance, we will use PolySat’s IPEX satellite’s maximum altitude of 

800km at an elevation angle of 15 degrees from the horizon. This is a real-world and 

typical scenario for a low-earth orbit satellite. Using the “AMSAT/IARU Annotated Link 

Model System” excel calculator, the 800km, 15 degree, link distance equates to 2033km. 

[11] 

 

Figure 7: IPEX (CP8) Link Distance Calculation 

For this calculation, an optimistic (theoretical maximum) gain of 2.15dBi will be assumed 

for the satellite dipole antenna. With the distance, frequency, losses, and antenna gains 

defined, the best-case receive power at the ground station can be calculated by inputting 

the numbers into the link equation. 

𝑷𝑹 = 𝑷𝑻 + 𝑮𝑻 − (𝟑𝟐. 𝟒 +  𝟐𝟎𝒍𝒐𝒈(𝒅) + 𝟐𝟎𝒍𝒐𝒈(𝒇)) − 𝑳𝒂 − 𝑳𝒑𝒐𝒊𝒏𝒕 − 𝑳𝒑𝒐𝒍 + 𝑮𝑹 

𝑷𝑹 = 𝟑𝟎𝒅𝑩𝒎 + 𝟐. 𝟏𝟓𝒅𝑩 − (𝟑𝟐. 𝟒 + 𝟐𝟎𝒍𝒐𝒈(𝟐𝟎𝟑𝟑) + 𝟐𝟎𝒍𝒐𝒈(𝟒𝟑𝟕))𝒅𝑩 − 𝟎 − 𝟎 − 𝟑𝒅𝑩 + 𝟐𝟒. 𝟗𝒅𝑩 

𝑷𝑹 = −𝟗𝟕. 𝟑𝒅𝑩𝒎  
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Looking at the receive sensitivity measurements from William’s thesis, it is 

theoretically possible to achieve a 100kbps link with a margin of -97.3dBm – (-108dBm) 

= 10.7dB in the absolute best case scenario. The UHF board’s Axsem AX5042 

transceiver can actually be configured up to a 600kbps data rate with a sensitivity of -

102dBm using PSK modulation according to the datasheet. [12] From Williams’ 

measurements, the UHF radio LNA increases the sensitivity by about 2dB; therefore a 

600kbps link is theoretically possible with a margin of 6.7dBm.  

In reality, satellite line losses, satellite antenna imperfections, pointing losses, 

elevated noise floor from spacecraft electronics, and ground station imperfections will 

reduce this receive downlink power. Even though the antenna would ideally be isotropic, 

the spacecraft dipole has a point of minimum gain called the null. If the spacecraft is 

tumbling or the ground station is not perfectly pointed at the satellite, the received power 

will be further reduced in the form of pointing loss; this is the largest source of additional 

loss. Williams’ thesis calculated the loss of a 5 degree pointing error, 10 degrees from 

the antenna null as -8.2dB. Williams also estimated additional losses from line loss and 

antenna imperfections to be -4dB. [2] In practice, the combination of these imperfections 

equates to between 10 and 20dB of signal strength decrease from the optimistic 

downlink power calculated before. Therefore, as a rule of thumb, the link budget should 

have more than 15dB of margin than the best case, no-loss, perfectly aligned scenario. It 

is simpler to calculate link budgets with idealized numbers and add margin than 

attempting to model unpredictable pointing and implementation losses. PolySat’s IPEX 

and Exocube (CP8 and CP10) satellites utilize the UHF radio at 9.6kbps. At 9.6kbps, the 

UHF radio has a receive sensitivity margin of -97.3 – (-117) = 19.7dB. The realistic 

receive power, including a 15dB margin is shown below: 
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𝑷𝑹 = 𝑷𝑻 + 𝑮𝑻 − (𝟑𝟐. 𝟒 +  𝟐𝟎𝒍𝒐𝒈(𝒅) + 𝟐𝟎𝒍𝒐𝒈(𝒇)) − 𝑳𝒂 − 𝑳𝒑𝒐𝒊𝒏𝒕 − 𝑳𝒑𝒐𝒍 + 𝑮𝑹 − 𝑴𝒂𝒓𝒈𝒊𝒏 

𝑷𝑹 = 𝟑𝟎𝒅𝑩𝒎 + 𝟐. 𝟏𝟓𝒅𝑩 − (𝟑𝟐. 𝟒 + 𝟐𝟎𝒍𝒐𝒈(𝟐𝟎𝟑𝟑) + 𝟐𝟎𝒍𝒐𝒈(𝟒𝟑𝟕))𝒅𝑩 − 𝟎 − 𝟎 − 𝟑𝒅𝑩

+ 𝟐𝟒. 𝟗𝒅𝑩 − 𝟏𝟓𝒅𝑩 

𝑷𝑹 = −𝟏𝟏𝟐𝒅𝑩𝒎  

Even accounting for pointing and unexpected losses with this 15dB margin, the 

IPEX mission still experienced spotty uplink at 9.6kbps. The receive sensitivity of IPEX 

was measured to be -105dBm in an idle state and -99dBm during high activity. This 12 

to 18dB reduction in spacecraft receive sensitivity was caused by spacecraft EMI 

radiated by the close-proximity, poorly-shielded electronics near the UHF antenna, which 

was mitigated but difficult to eliminate entirely due to the small form factor of CubeSats. 

However, IPEX’s reduced receive sensitivity was compensated by a 100W ground 

station amplifier which should have overcame the spacecraft noise floor with a total 

uplink margin of around 20dB. Unfortunately, the issue was confounded by aging ground 

station hardware and the bring-up and troubleshooting of the new ground station 

hardware and software, so the true cause of the poor uplink is unknown. Regardless, 

IPEX completed its mission successfully and the ground station successfully decoded 

more data than any other PolySat satellite to date (>20MBs). 
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3 Increasing Receive Signal Strength  

In order to investigate methods to increase downlink signal strength and thus 

higher data rate of future satellites, the link equation will be investigated:  

𝑷𝑹 = 𝑷𝑻 + 𝑮𝑻 − (𝟑𝟐. 𝟒 +  𝟐𝟎𝒍𝒐𝒈(𝒅) + 𝟐𝟎𝒍𝒐𝒈(𝒇)) − 𝑳𝒂 − 𝑳𝒑𝒐𝒊𝒏𝒕 − 𝑳𝒑𝒐𝒍 + 𝑮𝑹 

The antenna gain equation for a typical 55% efficient parabolic dish, according to 

EW101 [9]: 

𝑮 = −𝟒𝟐. 𝟐 + 𝟐𝟎𝒍𝒐𝒈(𝑫) + 𝟐𝟎𝒍𝒐𝒈(𝒇) 

Where 𝐷 = reflector diameter in meters and 𝑓 = frequency in MHz. 

Plugging the antenna gain equation into the link equation reveals: 

𝑷𝑹 = 𝑷𝑻 − 𝟒𝟐. 𝟐 + 𝟐𝟎𝒍𝒐𝒈(𝑫𝒔𝒂𝒕) + 𝟐𝟎𝒍𝒐𝒈(𝒇) − (𝟑𝟐. 𝟒 +  𝟐𝟎𝒍𝒐𝒈(𝒅) + 𝟐𝟎𝒍𝒐𝒈(𝒇)) − 𝑳𝒂 − 𝑳𝒑𝒐𝒊𝒏𝒕

− 𝑳𝒑𝒐𝒍 − 𝟒𝟐. 𝟐 + 𝟐𝟎𝒍𝒐𝒈(𝑫𝒈𝒓𝒐𝒖𝒏𝒅) + 𝟐𝟎𝒍𝒐𝒈(𝒇) 

Reducing and simplifying gives: 

𝑷𝑹 = 𝑷𝑻 + 𝟐𝟎𝒍𝒐𝒈(𝑫𝒔𝒂𝒕) + 𝟐𝟎𝒍𝒐𝒈(𝒇) − 𝟐𝟎𝒍𝒐𝒈(𝒅) − 𝑳𝒂 − 𝑳𝒑𝒐𝒊𝒏𝒕 − 𝑳𝒑𝒐𝒍 + 𝟐𝟎𝒍𝒐𝒈(𝑫𝒈𝒓𝒐𝒖𝒏𝒅) − 𝟏𝟏𝟔. 𝟖 

As tertiary payloads, CubeSats do not usually get to choose their orbit; therefore losses 

from distance and atmosphere are not in control of CubeSat engineers.  

The equation can be reduced to parameters controllable by CubeSat developers: 

𝑷𝑹 = 𝑷𝑻 + 𝟐𝟎𝒍𝒐𝒈(𝑫𝒔𝒂𝒕) +  𝟐𝟎𝒍𝒐𝒈(𝒇) + 𝟐𝟎𝒍𝒐𝒈(𝑫𝒈𝒓𝒐𝒖𝒏𝒅) − 𝑳 

Where L = link loss dependent on orbit, pointing accuracy, and additional losses not 

easily controlled by CubeSat hardware developers.  

Looking at the equation shows that doubling transmit power will increase receive 

signal strength by 3dB, however, due to the small size of a cubesat (3U cubesat = 10cm 

x 300cm), increasing the transmit power will quickly reach a limit due to thermal 

dissipation limits and limited solar input power.  A maximum practical cubesat transmit 

power is about 4W. Doubling satellite antenna size will increase receive signal strength 

by 6dB, but the small size of a CubeSat also limits the practical maximum size that can 
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be folded into its volume. Deployable dish antennas have been implemented by several 

CubeSat developers, for example the Aeneas 3U nanosatellite built by University of 

Southern California featured a 0.5m deployable dish. [13] 

Receive power increases with 20𝑙𝑜𝑔(𝑓)  and 20𝑙𝑜𝑔(𝐷𝑔𝑟𝑜𝑢𝑛𝑑), therefore receive 

signal strength increases by +6dB for each doubling of frequency or doubling of ground 

station antenna size. After a certain point, doubling the ground station dish size is no 

longer practical. After about 12m (~40ft), the antenna cost due to size becomes 

impractical for non-government entities.  

Therefore, several changes can be employed to increase data rates for PolySat 

satellites: transmit power from the satellite should be at least doubled to 2W for an 

additional 3dB, the radio frequency should be increased, satellite antenna size should be 

increased, and ground station antenna size should be increased. A large change in any 

one of these parameters is impractical, but a combination of increasing each parameter 

by a practical amount will result in a higher data rate system. 

Increased data rate is the primary motivation behind an S-Band communication 

system. The method of increasing the data rate is by changing the parameters of the link 

equation until economic or practical limits are reached, these changes are listed below: 

1. Increase the frequency from 400MHz to 2400MHz, resulting in increased 

antenna gain compared to physical size. Consumer-off-the-shelf (COTS) 

components and design literature are available for 2400MHz designs due to the 

proliferation of ISM communication devices. The next highest frequency with 

COTS component support would be 5.8GHz. However, at 5.8GHz more 

specialized design techniques are required due to the increased significance of 

PCB trace length, the requirement to move from lumped elements (surface 

mount inductors and capacitors) to distributed microstrip elements, and required 
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simulation software packages. Features longer than 1/20th of a wavelength are 

significant in RF design, at 2.4GHz this is 6.25mm and at 5.8GHz this is 3mm. 

Designing a 5.8GHz radio would require more time, money, and effort than 

designing a 2.4GHz radio, but moving to a higher frequency is unavoidable in the 

future. 

2. Adding a 4.5m dish to the PolySat ground station network. A 4.5m dish, under 

$15,000, seems practical and manageable for the PolySat lab. At 2.4GHz, a 

4.5m dish kit with a gain of 39.4dB can be purchased online from 

rfhamdesign.com. [14] 

3. Increase satellite transmit power to 2W (33dBm), resulting in a 3dB increase 

compared to 1W. 2.4GHz COTS amplifiers above 2W are not easily available 

and require more complex thermal management. 

4. Requiring a higher gain antenna on the satellite, either a patch or deployable dish. 

Realistically a deployable dish would be required to meet the link budget margin 

at the higher data rates. A high gain dish would also require more complex 

attitude control systems, such as the system designed for PolySat’s ExoCube 

mission, to steer and point the satellite at the ground station.  A 0.5m dish would 

provide around 17dBi of gain.  

The S-Band radio could also provide redundancy in the event of an UHF 

communications system failure, but with a high gain antenna, communication would be 

less robust. 
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4 ISM S-Band Radio System Requirements and Overview 

The derived requirements for the Intrepid S-Band ISM Radio (ISIR) are as follows: 
 

Table 2: Intrepid S-Band ISM Radio Derived Requirements 

ISIR Target Specifications 

Frequency Range 2400 – 2483.5 MHz (ISM Band) 

Maximum Transmit Power 2W (33dBm) 

Receive Mode Power Consumption 200mW 

Transmit Mode Power Consumption 8W 

Digital Interface SPI or UART 

Doppler Tolerance or Correction 
Capability 

+/- 70kHz 

Physical Dimensions Intrepid Daughter Board B, 1.4” x 3.3” 

Minimum Link Distance 2100 km 

Amplifier Protection PA and LNA 

 

The receive power draw was derived from the 130mW consumption of the UHF 

radio in receive mode with added margin. [2] The transmit power draw is derived from 

2W power amplifier operating at a saturated efficiency of 30% and powered from a 90% 

efficient power regulator with an added margin of 0.5W. The radio must be able to 

correct or tolerate a Doppler shift of approximately 50 kHz as described later in 4.5.2 

Evaluation Board Doppler Tolerance Measurement; a 20 kHz margin was added. The 

minimum link distance was taken from the IPEX orbit of 800km at an elevation angle of 

15 degrees, which seems like a typical CubeSat low-earth-orbit (LEO). The link distance 

will not only depend on the radio receive sensitivity, but also the ground station 

specifications such as antenna gain, transmit power, and noise floor.  

Figure 8 shows a conceptual diagram of the Intrepid S-Band ISM Radio (ISIR). 

The transceiver interfaces to the command and data handling (C&DH) processor 

through either SPI or UART. The RF output of the transceiver is switched between an 

external power amplifier (PA) and low noise amplifier (LNA) for transmit and receive. 

Circuits for amplifier protection are desirable to prevent damage during lab testing. 
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Transmit power measurement is desired for closed loop control of the power amplifier 

output power by the C&DH. The radio will interface to one or two directional antennas 

mounted on the satellite through coaxial connectors. Not shown in the picture are the 

power regulators, power sensors, temperature sensors, and additional glue circuitry.  

 

Figure 8: Intrepid S-Band ISM Radio (ISIR) Diagram 

4.1 Component Trade Studies 

Every RF component for the Intrepid S-Band ISM Radio was carefully selected by 

comparing commercially available components and choosing the component with the 

best figure of merits; this process is referred to as a component trade study. The most 

critical component in the radio design is the transceiver IC, which is the transducer 

between the satellite processor’s data interface and the RF signal. The transceiver is an 

RFIC microcontroller that filters, demodulates, decodes, and converts the RF signal onto 

a data bus interface supported by the satellite microprocessor, usually SPI or UART. 

The transceiver was selected based on the following criteria from most significant to 

least significant: temperature range, receive sensitivity, frequency range, power 

consumption, data rates, evaluation board availability, software availability, transmit 

power, modulation types, buffer size, forward error correction, and antenna interface. 
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Over 20 transceivers were researched online and compiled into an Excel table for easy 

comparison. The excel table is too large for this document, but a snap shot of a portion 

of the table is shown in Figure 9. 

 

Figure 9: Portion of Transceiver Trade Study Excel Sheet 

The Atmel AT86RF233 ZigBee transceiver was selected due to its high receive 

sensitivity, low power draw, variable frequencies and data rates, evaluation board 

availability, and sufficient software support. The Atmel AT86RF233 transceiver 

specifications are summarized in the bulleted list below: 

 Frequency: 2.322 to 2.527 GHz, 500kHz channel spacing 

 Channel Size: 2.3MHz (Spread-spectrum) 

 Modulation: O-QPSK 

 Protocol: ZigBee IEEE 802.15.4, supports FEC 

 Processor Interface: SPI bus, 128 FIFO SRAM buffer size.   

 Data Rates: 250kbps, 500kbps, 1000kbps, or 2000kbps. 

 Receive Sensitivity: varies with data rate  
o 250kbps: -101dBm  
o 500kbps: -96dBm 
o 1000kbps: -94dBm 
o 200kbps: -88dBm 

 Programmable Transmit Power: -17dBm to 4dBm 

 Power Consumption: 20mW RX, 46mW TX. 

 Antenna Interface: Differential 

 Temperature Range: -40C to +125C 

 Noise Figure: 6dB 

 Additional Features:  
o Antenna diversity algorithm 
o External amplifier control 
o RSSI and LQI measurement 
o AES 128-bit hardware encryption 
o Time and phase measurement support (ranging) 
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As the schematic was developed, trade studies were performed for each critical 

component in the design including the: transceiver, low noise amplifier, high power 

amplifier, bandpass filter, low pass filter, high power RF switch, low power RF switch, 

directional couplers, balun, oscillator, RF detectors, and power regulators. The power 

draw of the radio must be minimized, so power consumption is a significant specification 

when searching for components. The peak power generation of a 1U CubeSat with 2 

solar cells per side is approximately 2W while illuminated, but the average power 

depends on the orbit parameters and the resulting duty cycle of sunlight and eclipse. 

IPEX had periods of 1.2W average solar power due to the amount of time spent in the 

sunlight compared to the time spent in the shadow of the Earth. The radio is an 

important, but small part of the satellite mission. The radio power draw must be 

minimized so that the solar power can be utilized by the mission payload to meet 

mission objectives. 

Table 3 lists the figures of merit and power draw for the five most important 

components in the radio design: the transceiver, power amplifier, low noise amplifier, 

oscillator, and power regulator. 
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Table 3: Important Components and Figures of Merit 

Description Manufacturer 
Part 

Number 
Important Figures of Merit 

Power 
Draw 

Transceiver 
(XCVR) 

Atmel AT86RF233 

TX Power: -17dBm to 4dBm 
Noise Figure: 6dB 
Receive Sensitivity: -101dBm at 
250kbps 
Data Rates (kbps): 250, 500, 1000, 
2000 
Interface: SPI 
Modulation: O-QPSK 

20mW RX 
46mW TX 

Power 
Amplfiier 

(PA) 
RFMD RFPA2026 

Maximum TX Power: 34.5dBm 
Efficiency: 30% 
Gain: 37dB 
Noise Figure: 5.6dB 

6.8W TX 

Low Noise 
Amplifier 

(LNA) 
Maxim MAX2692 

NF: 1.1dB 
Gain: 18dB 
P1dB: -16dBm 

13.2mW 

Temperature 
Controlled 

Crystal 
Oscillator 

(TCXO) 

ECS 
ECS-

2532HS-
160-3-G 

Frequency Stability: +/-10ppm 30mW 

Power 
Regulator 

Texas 
Instruments 

TPS63020 
Efficiency: 90% 
Max Current: 3A 

- 

 

4.2 ISM Noise Floor 

The radio operates in the unlicensed 2.400 to 2.4835 GHz industrial, scientific, and 

medical (ISM) radio band. Twelve portions of the radio spectrum are allocated for the 

ISM band by the FCC with frequencies ranging from 6.78MHz up to 245.00 GHz. [15] 

ISM is reserved for non-communication applications such as heating, cooking, 

ultrasonics, cleaners, particle accelerators, radio astronomy, space research, and 

mechanical vibration. [15] ISM equipment is permitted to radiate unlimited energy within 

the ISM bands but the field strength level at specified distances is regulated by the FCC. 

[15] These non-communication applications of RF radiation are segregated into these 

ISM “junk” bands in order to isolate the high power noise generated by these 

applications from the sensitive communication services utilizing the remainder of the 

radio spectrum.  
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In 1985, the FCC approved unlicensed spread spectrum radio communication 

within the 915, 2450, and 5800 MHz ISM bands. [16] Allowing unlicensed devices to 

share these ISM bands for communication purposes facilitated the proliferation of 

consumer wireless devices such as cordless phones, wireless networking, garage door 

openers, and other low power, short distance communication standards such as 

Bluetooth, ZigBee, and WiFi. In order to share the unlicensed bands most effectively, the 

FCC limits the types of modulation and output power radiated in these ISM bands. The 

goal of these FCC limits is to maximize the number of devices successfully sharing the 

ISM band by reducing interface. Radio communication within the ISM bands must 

employ spread spectrum modulation techniques and are limited to a maximum of 1W 

output power. These spread spectrum techniques deliberately increase the bandwidth of 

a signal in order to reduce its susceptibility and contribution to interference to other 

devices sharing the band. 

The consumer ISM industry provides a vast supply of consumer-off-the-shelf 

components (COTS) for use in a 2.4GHz satellite radio design. ISM COTs components 

greatly reduce the cost, reduce design time, increase performance, and increase 

reliability of 2.4GHz transceivers by leveraging the billions of dollars and man hours 

already spent by companies to design, test, and improve ISM consumer devices. 

However, the popularity of unlicensed ISM devices is also a weakness for satellite 

communications due to the high interference levels produced by the ever-growing 

number of ISM devices transmitting in-band. The earth station must be capable of 

receiving a weak signal from an orbiting satellite greater than 1800km away through the 

sea of interference caused by unpredictable, high power, in-band ISM devices 

transmitting nearby. There are several potential fixes to this ISM interference issue: the 

earth station can be located in a remote area devoid of ISM transmitters, the earth 

station can employ filtering, shielding, or antenna design techniques to reduce terrestrial 
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ISM interference, the satellite frequency can be carefully chosen to occupy a “quieter” 

portion of the ISM band, the modulation of the signal can be modified to increase 

resistance to common ISM interference, and so forth.  

Traditional, government satellites utilize expensive, specialty designed radios for 

communicating in the quieter satellite S-Band spectrum: 2200 to 2300 MHz. However, 

CubeSats cannot afford the same luxuries as traditional satellites: low budgets and short 

schedules prevent CubeSat teams from obtaining government licenses in these satellite 

bands and acquiring cost effective radios for these frequencies. Also, this S-Band 

spectrum is reserved only for government-funded projects. The tradeoff of using a cheap, 

efficient, reliable COTS ISM transceiver for a satellite S-Band radio is that it must 

operate at lower data rates due to less specialized hardware and more in-band 

interference. 

In order to characterize the 2.4GHz noise floor of the earth station, the typical 

transmitters must be identified in terms of frequency and power. Typical 2.4GHz 

consumer communication devices in an urban environment include cordless phones, 

Bluetooth devices, 802.11b Wi-Fi wireless routers, wireless USB devices, phones, video 

game controllers, and ZigBee devices. The typical non-communication 2.4GHz device is 

the microwave oven. A man-made noise floor study in the S and L bands by NASA was 

conducted utilizing a feed horn antenna, spectrum analyzer, power supply, and 

computer called the L and S band Spectrum Measurement (LSSM) system shown in 

Figure 10. [17] Figure 11 shows the LSSM power spectrum measurement in the 2.4GHZ 

ISM band in downtown San Jose at ground level; the noise floor in the AT86RF233’s 

2.3MHz bandwidth would be around -78dBm which is 32dB higher than the thermal 

noise floor of -110dBm. Interference strength of -78dBm is unacceptable for a satellite 

earth station and the station would not be able to receive data from the satellite with this 
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amount of ISM interference; the satellite would have to increase its transmit power by 

three orders of magnitude to overcome this level of interference.  

 

 

Figure 10: NASA Measurements of Man-Made Noise Floor, L and S bands 

Spectrum Measurement System (LSSM) [17] 

 

Figure 11: LSSM 2.4GHz Noise Floor Measurements, Downtown San Jose, 0 

Degree Elevation [17] 
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However, the measurements made in this NASA study are taken from a 16dBi 

horn antenna rotated at 0 degree elevation at street level. This means the high gain 

antenna was pointed directly at the interfering transmitters, which maximizes the 

measured interference. These measurements are not directly applicable for high gain 

earth station antennas pointed into the sky and away from consumer ISM interference. 

Figure 12 shows measured interference power from the same study at a nature preserve 

as the antenna is held at 0 elevation ground level and azimuthally rotated. A -85dBm 

interference spike is shown at 120 degrees when the horn is directly pointed at an ISM 

transmitter. However, when horn is pointed away from the interference the power level 

drops to the thermal noise floor of -110dBm; this demonstrates that pointing a high gain 

antenna away from interference sources greatly reduces the interference.  Average 

power measurements of a high gain antenna pointed into the sky at varying elevation 

angles would be more useful for aerospace application, but such a study could not be 

found. It is surprising that NASA would only study the noise level at 0 degrees of 

elevation, when most of their applications are pointed toward the sky. 

 

Figure 12: LSSM 2.4GHz Noise Floor Measurements, Jasper Ridge Preserve, 0 

Degree Elevation, Azimuth Angle Varied 
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The Atmel AT86RF233 not only supports the standard 16 ZigBee channels defined 

in IEEE 802.15.4 but also any frequency from 2322MHz to 2527MHz with 500 kHz 

spacing. Because the satellite is not required to follow the ZigBee standard, this 

frequency selection flexibility allows the designer to select a frequency with the least 

interference within the 2.400 to 2.4835 GHz ISM range. Interference can be minimized 

by selecting a frequency outside or in between standard ISM channels.  

The FCC requires that ISM communication be spread spectrum, this is generally 

performed in two ways: frequency hop spread spectrum (FHSS) or direct sequence 

spread spectrum (DSSS). For example, Bluetooth is a FHSS standard that changes 

frequency 1600 times per seconds across pre-defined channels across the entire 

2.4GHz ISM band. On the other hand, Wi-Fi is a DSSS standard that directly modulates 

the carrier signal using a pseudo-random chipping code sequence which increases the 

bandwidth of the signal but minimizes the effect of narrow-band interference sources 

within the bandwidth while also rejecting signals with different pseudo random 

sequences. ZigBee is a DSSS standard, so interference from FHSS sources are less 

detrimental than interference from other DSSS sources; narrow band FHSS interference 

will be reduced after de-spreading and the interference will only be temporary.  

Figure 13 is a plot from an Atmel application note of ZigBee channels and the most 

commonly used 2.4GHz Wi-Fi channels: Channel 1, Channel 6, and Channel 11. [18]   

This figure shows that the satellite frequency can be chosen carefully by surveying the 

ISM channels in use around the ground station site and choosing a frequency with 

minimal overlap with those interference sources.  
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Figure 13: Wi-Fi and ZigBee Channel Frequencies and Spacing [18] 

To better understand the ISM interference problem, a rooftop interference survey 

was performed on a commercial building rooftop in Irvine, California. A 24dBi parabolic 

mesh antenna was purchased online for $45 and mounted on the pre-existing CubeSat 

antenna rotor system as shown in Figure 14.  

 

Figure 14: 2.4GHz, 24dBi Parabolic Antenna Mounted on Rotor System 
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A Mini-Circuits ZX60-272LN+ low-noise amplifier, with 14dB gain and 0.75 noise 

figure, was connected directly after the antenna as close to the antenna as possible to 

minimize the effects of cable loss and to increase the sensitivity of the spectrum 

analyzer; this mast-mounted low noise amplifier is typical for high-frequency antennas 

systems. Figure 15 shows the low-noise amplifier connected as close to the parabolic 

antenna as possible.   

 

Figure 15: Low Noise Amplifier Connected to Antenna as Close as Possible 

Figure 16 shows a diagram of the interference measurement setup. The antenna 

was pointed at various directions and elevations while taking measurements of 2.4GHz 

ISM activity. 
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Figure 16: Rooftop Interference Survey Diagram 

The antenna was pointed at the azimuth angle of 285° toward the most buildings 

and maximum ISM interference. Figure 17 and Figure 18 show the primary antenna 

azimuth pointing direction during the interference survey. The antenna was kept at this 

azimuth direction and the elevation of the antenna was varied between 0° and 90° while 

taking spectrum measurements. 

 

 

Figure 17: Antenna Side View 
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Figure 18: Antenna Pointing at 285 Degrees Azimuth, 15° Elevation, Toward 

Buildings, Interference Survey Direction 

Figure 20 shows a one minute max hold measurement of the ISM band at an 

elevation angle of 0 degrees. An elevation of 0 degrees produces that maximum 

terrestrial interference. Note that the ISM band is 2.400 GHz and 2.4835 GHz, which 

explains the low noise floor after 2.4835 GHz to the right of the measurement; this 

2.4835 to 2.500 GHz portion of the frequency spectrum is purchased and reserved for 

Globalstar satellite phone service. On the other side of the ISM band, 2.3325 to 2.345 

GHz is reserved for XM and Sirius satellite radio and 2.300 to 2.390 GHz is reserved for 

aeronautical mobile service telemetry.  

Figure 19 shows an average power measurement of a 50 Ohm load input to the 

low noise amplifier to characterize the measurement noise floor. Note that the spectrum 

analyzer figure numbers do not take into account the 14dB of gain from the mast-

mounted low noise amplifier, so 14dB needs to be subtracted from the numbers in the 

figures. Figure 21 shows the ISM band measured with a 50 point average to identify the 

most persistent ISM interference. The three humps are Channel 1, Channel 6, and 
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Channel 11 WiFi communication, which could be local or from the buildings on the 

horizon. Figure 22 and Figure 23 show the same measurements with the antenna 

pointed skyward at an elevation angle of 45 degrees; the ISM interference is reduced by 

7 to 15 dB compared to 0 degree elevation.  

 

Figure 19: 50 Ohm Load, 50 Point Average, Instrument Noise                      

(Subtract 14dB for External LNA) 
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Figure 20: ISM Interference Max Hold 1 Minute, Azimuth: 285°, Elevation 0° 

(Subtract 14dB for External LNA) 

 

Figure 21: ISM Interference 50 Point Average, Azimuth: 285°, Elevation 0° 

(Subtract 14dB for External LNA) 



33 

 

 

Figure 22: ISM Interference Max Hold 1 Minute, Azimuth: 285°, Elevation 45° 

(Subtract 14dB for External LNA) 

 

Figure 23: ISM Interference 50 Point Average, Azimuth: 285°, Elevation 45° 

(Subtract 14dB for External LNA) 
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The Wi-Fi interference is present at every elevation and azimuth angle which 

indicates that the interference is likely from Wi-Fi hot spots nearby and most likely within 

the building the antenna is mounted. In this sea of interference, points of little activity can 

still be located. Marker 4 in these figures is the measurement at 2.4820 GHz; this 

frequency is at the very edge of the ISM band and the edge of WiFi channel 11. The 

peak interference at 45 degrees is -114dBm at 100kHz bandwidth and the average level 

of interference at 2.4820GHz is below the noise floor of the measurement. 

The interference sources at 2.4820 GHz were observed to be frequency hopping 

FHSS signals that would minimally interfere with the DSSS radio receiver for short 

bursts causing minimal packet drops. Figure 24 shows a 1 minute max hold zoomed in 

at 2.482 GHz at an elevation of 0 degrees, which captured the peaks of the frequency 

hopping transmissions. Figure 25 shows the same measurement at 45 degree elevation 

showing that the interference sources are completely eliminated below the measurement 

noise floor by pointing the antenna toward the sky.  Based on these max hold and 

average power measurements, 2.482 GHz would be the best choice for the ISM satellite 

radio frequency at this ground station.  

Figure 26 and Figure 27 show channel power measurements at 2.482 GHz and 

also at 2.440 GHz for comparison. The AT86RF233 transceiver bandwidth is 2.3MHz, so 

interference power within a 2.3MHz bandwidth was measured with a 50 point average. 

The average interference at 2.482 GHz is more than 18dB less than the interference 

present at 2.440 GHz; any possible interference at 2.482 GHz is below the 

measurement noise floor at -109 dBm measured with a  50 Ohm load in Figure 28. Max 

Hold and average measurements of the ISM band were made at different azimuth 

angles as well, which confirmed low noise at 2.482 GHz in all directions; Figure 29 

shows the max hold measurement made at an azimuth of 180 degrees. 
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Figure 24: 1 Minute Max Hold 2.482 GHz, Azimuth: 285°, Elevation 0°, FHSS 

Interference (Subtract 14dB for External LNA) 

 

Figure 25: 1 Minute Max Hold 2.482 GHz, Azimuth: 285°, Elevation 45°, FHSS 

Interference Reduced (Subtract 14dB for External LNA) 
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Figure 26: Interference Channel Power 2.482 GHz, Azimuth: 285°, Elevation 45° 

(Subtract 14dB for External LNA) 

 

Figure 27: Interference Channel Power 2.440 GHz, Azimuth: 285°, Elevation 45° 

(Subtract 14dB for External LNA) 

 



37 

 

 

Figure 28: 50 Ohm Load Channel Power, Measurement Noise Floor            

(Subtract 14dB for External LNA) 

 

Figure 29: ISM Interference Max Hold 1 Minute, Azimuth: 180°, Elevation 15° 

(Subtract 14dB for External LNA) 
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Figure 30 shows a plot of the average noise within a 2.3MHz bandwidth at three 

frequencies in the ISM band as a function of antenna elevation angle. As discussed 

earlier, 2.482 GHz had the least interference while 2.440 GHz was located in a more 

active region of the band. The 2.440 GHz interference only decreases by 7dB when the 

antenna is pointed toward the sky, indicating the noise is most likely local to the ground 

station. The 2.450 GHz interference decreases by 16 dB at an elevation angles above 

45 degrees, which probably indicates the transmitter was miles away.  

 

Figure 30: Interference vs Antenna Angle Measurements 

The parabolic antenna used in this noise survey has 16dB less gain than the 5.8 

meter dish proposed for the final ISM S-Band ground station. The interference is 

expected to be reduced even further for the 4.5m dish while pointed skyward. These 

measurements demonstrate the importance of surveying the ground station location and 

carefully choosing the spacecraft communication frequency. However, even if 

unexpected noise does appear within the chosen frequency, the spacecraft could be 
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commanded to another ISM frequency over the UHF link. The process of determining 

and selecting a clear channel could be automated and coordinated between the satellite 

and ground station computer during a pass, providing additional interference mitigation. 

Also, if the satellite is communicating with a network of ground stations, each ground 

station could indicate its local clear channel.  

If pointing the dish toward the sky and carefully picking the satellite frequency is 

not enough to reduce ground ISM interference, another approach is to locate the ground 

station in a remote area with minimal ISM interference sources. For instance, a Cal Poly 

ISM earth station could be located in a field near the agricultural areas on campus and 

away from the library, dormitories, offices, labs, and class rooms.  

 

4.3 Frequency Licensing 

Even though the radio will operate in the internationally unlicensed ISM radio band, 

satellite transmitters are still required to obtain a license from the federal government. 

Non-federal missions are licensed with the FCC and federally-funded missions are 

licensed through the NTIA. If the CubeSat is utilizing the amateur bands, it must also 

coordinate with the International Amateur Radio Union (IARU). In 2013, the FCC 

released a public notice titled “Guidance on Obtaining Licenses for Small Satellites,” 

which recommends that CubeSats obtain a special license called an “experimental 

license,” for missions that involve experimental (scientific and research) operations. [19]  

Experimental licenses typically last for a few years and can be renewed regularly. 

Experimental licenses do not have explicit frequency restrictions and an application can 

be submitted for any frequency at any power. However, the acceptance of an application 

is entirely at the discretion of the FCC. The FCC reviews each application on a case-by-

case basis and will reject any applications that they believe infringes or interferes with 
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existing licenses and services. Additionally, the license can be canceled at any time and 

transmission must be immediately halted if operations cause interference to licensed 

users.  

The FCC posts all experimental licenses, correspondence, and supporting 

documents online with an accompanying search system. [20] By reviewing the accepted 

and rejected experimental licenses, one can determine the de-facto frequency bands 

allowed for CubeSat communication. Although the AT86RF233 transceiver is capable of 

communicating in the quiet areas outside the ISM band 2.322 to 2.400 GHz and 2.4835 

to 2.527 GHz, it is unlikely the FCC will approve a license utilizing those frequencies. 

Searching the experimental license database demonstrates that historically no CubeSat 

licenses have been approved for these frequencies. Applications that incorrectly 

requested the ISM band of 2.4 to 2.5 GHz were rejected because the ISM band 

technically ends at 2.483 GHz; this demonstrates that the FCC is deliberately limiting 

CubeSat S-Band communication to the ISM band. Many CubeSat licenses in the 

database are for the frequency range of 2400-2483.5 MHz, which does not restrict the 

mission to an exact frequency and allows the mission to change its frequency within the 

ISM band at will. 

Experimental licenses allow CubeSats to transmit at power levels greater than the 

general ISM 1W ERIP restriction. For example, Texas A&M was granted a CubeSat 

license for 2400-2483.5 MHz at a transmit power of 8W ERP. [21] This precedent is 

what allows the Intrepid ISM S-Band Radio to transmit above the ISM limit. 
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4.4 Link Budget Estimates 

4.4.1 Noise Floor Calculations 

EW 102, Chapter 7 is referenced for estimating the link budget of the ISM system. 

[22] The noise floor of the satellite and ground station will be estimated using the thermal 

noise equation: 

𝑷𝑵𝒐𝒊𝒔𝒆 = 𝒌𝑻𝑩 

The equation in decibel form: 

𝑷𝑵𝒐𝒊𝒔𝒆(𝒅𝑩𝒎) = 𝒌 + 𝟏𝟎𝑳𝑶𝑮(𝑻) + 𝟏𝟎𝑳𝑶𝑮(𝑩) 

Where 𝑃𝑁𝑜𝑖𝑠𝑒= Noise Power in dBm, k = Boltzmann’s Constant = -198.6dBm/HzK, T = 

system temperature in Kelvin, and B = Bandwidth in Hz.  

The system noise temperature is the sum of the equivalent receiver temperature 

and the equivalent temperatures of other noise sources in the system. The equation for 

system noise temperature is as follows: 

𝑻𝒔 = 𝑻𝑨𝑵𝑻 + 𝑻𝑹𝑪𝑽𝑹 + 𝑻𝑶𝑻𝑯𝑬𝑹 

Where 𝑇𝑠 = system noise temperature, 𝑇𝐴𝑁𝑇 = antenna noise temperature, 𝑇𝑅𝐶𝑉𝑅 = 

receiver noise temperature including line loss to antenna, and  𝑇𝑂𝑇𝐻𝐸𝑅 = equivalent 

temperature of in-band interference, such as overlapping ISM channels.   

The antenna noise temperature depends on what falls within the beam of the 

antenna. The earth is approximately 290K, the sky is 10K or lower, and the sun 

temperature is so high that the system is useless until the antenna is pointed away from 

the sun. If the antenna pattern partially includes the earth and the sky, then the weighted 

average of the temperatures estimates the antenna temperature. In the case of this 

CubeSat, a high gain antenna will be pointed at a ground station on earth, so the 

antenna noise temperature is 290K.   
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The receiver noise temperature is the fixed amount of noise the receiver adds to 

the signal which can be calculated from the receiver noise figure using the equation: 

𝑻𝑹𝑪𝑽𝑹 = (𝟏𝟎
𝑵𝑭
𝟏𝟎 − 𝟏) 𝑻𝟎 

Where F = noise figure in dB and 𝑇0 is the standard reference room temperature of 290K. 

The AT86RF233 transceiver has a noise figure of 6dB, but the addition of an LNA will 

reduce the system noise figure to approximately 4dB including the component and line 

losses before the LNA. The satellite will not have additional noise due to ISM 

interference due to its distance from ISM transmitters, so the additional temperature is 0.  

The satellite noise floor is calculated to be approximately -106dBm as shown in Table 4. 

Table 4: Estimated Satellite Noise Floor 

Description Value 

Antenna Temp, Pointed at Earth (K) 290 

Sat ReceiverTemp, NF = 4 (K) 438.4 

Other Noise (K) 0 

Total Temperature (K) 728.4 

Total Temperature (dBK) 28.6 

2.3MHz Channel Bandwidth (dBHz) 63.6 

Boltzman Constant -198.6 

Satellite Noise Floor (dBm) -106.4 

 

The ground station antenna beam will be pointed into the sky toward the satellite, 

so its antenna temperature will be approximately 30K. It is assumed that the ground 

station will have an additional LNA on its mast to decrease noise due to cable loss from 

the antenna to the receiver. The mast LNA will reduce the noise figure of the system; the 

ground station noise figure is approximated as 2dB. The ground station will have an 

increased noise floor due to nearby terrestrial ISM interference. Noise floor 

measurements shown earlier in Figure 30 demonstrates the importance of choosing a 

frequency with minimal terrestrial ISM interference. At the Irvine ground station surveyed, 

2.482 GHz was completely free of any interference above elevations of 15 degrees; the 
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interference power within the channel was below the -110dBm, 2.3MHz thermal noise 

floor. A margin of 3dB will be added for the ISM noise floor at the ground station to be an 

equivalent temperature of 631K which is an interfering signal level of -107dBm. Table 5 

shows the calculation of the ground station noise floor of -105.5dBm. 

Table 5: Estimated Ground Station Noise Floor 

Description Value 

Antenna Temp, 15 degrees elevation (K) 30 

GS ReceiverTemp, NF = 2.5 (K) 225.7 

ISM Interference, -107dBm (K) 631.0 

Total Temperature (K) 886.7 

Total Temperature (dBK) 29.5 

2.3MHz Channel Bandwidth (dBHz) 63.6 

Boltzman Constant -198.6 

Ground Noise Floor (dBm) -105.5 

 

Table 4 and Table 5 show that the satellite’s noise floor is dominated by its 

receiver noise figure, whereas the ground station noise floor will be dominated by 

terrestrial ISM interference. In this estimate, the ground station noise floor is increased 

by 4.5dB from ISM interference, which will reduce the total signal to noise ratio by 4.5dB.  

The signal to noise ratio of a received signal determines whether a receiver will 

successfully decode a signal. Higher signal to noise ratio links can support higher data 

rates. The required signal to noise ratio for the AT86RF233 receiver to decode a packet 

can be calculated from its datasheet values for “receive sensitivity”, noise figure, and 

signal bandwidth of 2.3MHz.  

It is important to note that the datasheet’s “receive sensitivity” measurement 

assumes a certain level of noise added to the signal. The receive sensitivity in the 

datasheet is measured in a laboratory setting with a transmitter transmitting directly to 

the receiver through a coaxial connection and attenuator. Therefore, the noise input into 

the receiver the thermal noise level at room temperature, which is 290K. The noise 
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figure of the transceiver indicates that the transceiver adds a fixed amount of additional 

noise to the signal before decoding it equal to the noise figure. The noise added to the 

signal is calculated by adding the thermal noise level to the noise figure noise:  

𝑷𝑵𝒐𝒊𝒔𝒆(𝒅𝑩𝒎) = −
𝟏𝟗𝟖. 𝟔𝐝𝐁𝐦

𝐇𝐳𝐊
+ 𝟏𝟎𝑳𝑶𝑮(𝟐𝟗𝟎𝑲) + 𝟏𝟎𝑳𝑶𝑮(𝟐. 𝟑𝑴𝑯𝒛) + 𝟔 =  −𝟏𝟎𝟒. 𝟒𝒅𝑩𝒎  

This -104.4dBm noise level will be subtracted from the receive sensitivity to 

calculate the corresponding signal to noise ratio. An external LNA is added in front of the 

transceiver, which reduces the overall noise figure so it is important to use the required 

signal to noise ratio instead of the datasheet receive sensitivity for link budgets. Table 6 

shows the required signal to noise ratio for the transceiver’s four data rates. 

Table 6: AT86RF233 Data Rate versus Required SNR 

Data Rate (kbps) Datasheet RX Sensitivity (dBm) Calc SNR (dB), NF = 6 

250 -101 3.4 

500 -96 8.4 

1000 -94 10.4 

2000 -88 16.4 
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4.4.2 Satellite with Patch Antenna 

A simple antenna for a CubeSat would be patch antenna mounted on one of its 

faces. Figure 31 shows a 3U CubeSat developed by Tyvak Nano-Satellite Systems with 

an S-Band patch antenna mounted in between solar cells. The practical gain of a patch 

antenna this size at 2.4GHz is approximately 6dBi, which is the number that will be used 

for this link budget. 

 

Figure 31: CubeSat with S-Band Patch Antenna, CPOD [23] 

The link equation is rewritten below: 

𝑷𝑹 = 𝑷𝑻 + 𝑮𝑻 − 𝑳 + 𝑮𝑹 

A link distance of 2100km corresponds to a satellite at an elevation of 800km with 

an elevation angle of 15 degrees to the ground station as shown in Figure 7. The ground 

station antenna gain of 39.4dBi was extrapolated from the specifications of a 4.5m mesh 

dish kit available for purchase from RF HAMDesign’s website. [14] A picture of the RF 

HAMDesign 4.5m dish with rotator and feed horn is shown in Figure 32. The rotor shown 

in the figure is single axis, but a two axis rotator would be required for the CubeSat 
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ground station. The ground station is assumed to have an external amplifier with 

transmit power of 10W, which is the power level of several Wi-Fi boosters that can be 

purchased online.  

 

Figure 32: RF HAMDesign 4.5m RF Mesh Dish Kit [14] 

Table 7 shows the uplink budget (ground station transmit to satellite) for a satellite 

with a patch antenna. The signal to noise ratio is 24dB, which corresponds to a 19.3dB 

margin for the 250kbps data rate, 14.3dB for 500kbps, 12.3dB for 1000kbps, and 6.3dB 

for 2000kbps. The margins greater than 15dB are colored green to indicate high 

possibility of successful link, yellow indicates lower than 15dB margin, and red indicates 

negative margin and no possible link.  This table shows that a satellite with a patch 

antenna and a ground station with a 4.5 meter dish would most likely support uplink at 

250kbps and might sometimes work at 500kbps, 1000kbps and 2000kbps. 
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Table 7: Patch Antenna: Uplink Budget 

GS TX, 10W (dBm) 40 

GS Gain, 4.5m dish (dB) 39.4 

Total Loss, 2100km (dB) -169.1 

Sat Gain, patch (dB) 6 

Sat RX (dBm) -83.7 

Sat Noise (dBm) -106.4 

Satellite SNR (dB) 22.7 

250kpbs Margin 19.3 

500kbps Margin 14.3 

1000kbps Margin 12.3 

2000kbps Margin 6.3 

 

Table 8: Patch Antenna: Downlink Budget 

Sat TX, 2W (dBm) 33 

Sat Gain, patch (dB) 6 

Total Loss, 2100km (dB) -169.1 

GS Gain, 4.5m dish (dB) 39.4 

Sat RX (dBm) -90.7 

GS Noise (dBm) -105.5 

GS SNR (dB) 14.8 

250kpbs Margin 11.4 

500kbps Margin 6.4 

1000kbps Margin 4.4 

2000kbps Margin -1.6 

 

Table 8 shows the downlink budget for a satellite with patch antenna where the 

satellite is transmitting and the ground station is receiving. The downlink is 7.9dB weaker 

than uplink at a signal to noise ratio of 14.8dB, which does not provide a 15dB margin for 

any data rate and definitely will not work for 2000kbps. The downlink is much weaker 

due to the low satellite transmit power and the elevated ISM terrestrial noise floor. The 

link might work intermittently at 250kbps with a margin of 11.4dB, but this shows that a 

satellite with patch antenna will not be sufficient for this mission and this ground station. 
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This link budget demonstrates that uplink to the satellite is the easier than 

downlink from the satellite due to higher ground station transmit power and absence of 

terrestrial ISM noise in space. 

4.4.3 Satellite with Deployable Dish 

A more complex CubeSat could incorporate a deployable satellite dish similar to 

the 0.5 meter dish shown in Figure 33. There are several CubeSat teams who have 

worked on or are working on deployable dishes for future missions. 

 

Figure 33: Deployable 0.5m Dish, Boeing Phantom Works [24] 

The directivity of the dish shown in Figure 33 was approximated as 18.6dBi, so a value 

of 17dBi will be used in the link budget estimates. [24] Table 9 shows the uplink budget 

for a CubeSat with dish and Table 10 shows the downlink budget. Once again, the uplink 

budget is strong with greater than 15dB margin up to 2000kbps, and the downlink 

budget shows sufficient margin up to 1000kbps. 2000kbps downlink could be possible, 

but would most likely be intermittent with a margin of 10.7dB. Note that these link 

budgets do not attempt to estimate pointing or implementation losses, so a margin of 

15dB is estimated as required for a successful link. 
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Table 9: Dish Antenna: Uplink Budget 

GS TX, 10W (dBm) 40 

GS Gain, 4.5m dish (dB) 39.4 

Total Loss, 2100km (dB) -169.1 

Sat Gain, Dish 0.5m (dB) 17.0 

Sat RX (dBm) -72.7 

Sat Noise (dBm) -106.4 

Satellite SNR (dB) 33.7 

250kpbs Margin 30.3 

500kbps Margin 25.3 

1000kbps Margin 23.3 

2000kbps Margin 17.3 

  

Table 10: Dish Antenna: Downlink Budget 

Sat TX, 2W (dBm) 33 

Sat Gain, Dish 0.5m (dB) 17.0 

Total Loss, 2100km (dB) -169.1 

GS Gain, 4.5m dish (dB) 39.4 

Sat RX (dBm) -79.7 

GS Noise (dBm) -105.5 

GS SNR (dB) 25.8 

250kpbs Margin 22.4 

500kbps Margin 17.4 

1000kbps Margin 15.4 

2000kbps Margin 9.4 

 

These link budgets demonstrate that a sizable antenna will be required on the 

CubeSat for data rates above 250kbps. With a 0.5m CubeSat dish, the link has sufficient 

margin up to 1000kbps and 2000kbps would be marginal. 

 

4.5 Evaluation Board Testing 

The Atmel AT86RF233 transceiver REB233SMAD-EK evaluation kit was 

purchased to confirm the transceiver specifications by measuring the receive sensitivity 

and Doppler sensitivity of the transceiver. The evaluation kit consists of two AT86RF233 

(REB233SMAD) transceiver PCBs, interfaced to two microcontroller boards (REB-CBB) 
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which provide battery power and interface to a microcontroller pre-loaded with evaluation 

software. A computer interfaces to the microcontroller through a terminal program such 

as Putty through a USB to serial converter. The evaluation software contains a packet 

error rate measurement program which transmits from one board to the other while 

measuring the number of packets successfully decoded. The frequency, transmit power, 

data rate, and various register settings can be changed through the terminal, allowing 

measurement of the radio link quality (receive sensitivity) while varying other factors. 

Each board has two SMA RF connectors for demonstrating the AT86RF233 antenna 

diversity feature. Hardware diagrams from the REB233SMAD-EK User Guide are shown 

in Figure 34 and Figure 35. [25] 

 

Figure 34: Atmel REB233SMAD-EK Evaluation Kit Hardware, 1 of 2 Modules [13] 
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Figure 35: Atmel REB233SMAD-EK Evaluation Kit Hardware Block Diagram [13] 

4.5.1 Evaluation Board Receive Sensitivity Measurements 

Measuring a receiver’s sensitivity seems simple in theory: a variable attenuator is 

inserted between a transmitter and receiver and the attenuation is varied until exceeding 

a certain error rate, then the power into the receiver is measured. The measured power 

is the receive sensitivity of the receiver.  However, in practice, the measurement is 

complicated by RF leakage between the two units as described in Ivan Bland’s thesis 

“Receive Sensitivity Characterization of the PolySat Satellite Communication System” 

[26] If the transmitter and receiver are simply placed on a benchtop with their output and 

input ports terminated with 50 ohm loads or with a variable attenuator at maximum 

attenuation, successful communication would still be achieved at 0% packet loss; this 

successful communication is due to RF leakage.  

The transmitter PCB radiates a miniscule amount of the RF signal from the 

components and copper on the PCB before the RF connector; this tiny amount of RF 

energy can be decoded by the receiver which will pick up the energy by the components 

and copper on its PCB. The AT86RF233 has a receive sensitivity of -101dBm at 

250kbps which equates to 79pW of power indicating it is a very sensitive receiver. The 

problem of RF leakage was confirmed and demonstrated to be the case for these 
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evaluation boards.  Therefore, the transmitter and receiver must be further isolated 

(shielded) from one another during receive sensitivity testing. RF leakage must be 

eliminated to obtain an accurate receive sensitivity measurement; a lot of time was spent 

attempting to eliminate RF leakage from spoiling the measurements.  

The faraday cage constructed in Bland’s thesis was utilized to shield RF leakage 

between the transmitter and receiver. The faraday cage must provide enough shielding 

to reduce the leakage RF below the noise floor of the receiver so the leakage RF does 

not falsely improve the measured receiver sensitivity. The faraday cage was found to be 

adequate by setting the variable attenuator between the two units to its maximum 

attenuation and then confirming no packets were received by the receiver during a 

packet error rate test.  

The evaluation board receive sensitivity test setup is shown in Figure 36 through 

Figure 41. The transmitter board resides in the faraday cage with 30dB attenuation in 

series; the receiver is connected to a variable attenuator which is then connected to the 

faraday cage output through direct coax. The test frequency of 2.330GHz was selected 

because low interference was measured at this frequency in the laboratory. The packet 

error rate program is repeated on the laptop while increasing the variable attenuator. 

Receive sensitivity was arbitrarily defined as a packet error rate of 5%, meaning 95% of 

the packets transmitted by the transmitter were successfully decoded by the receiver. 

Once the packet drop rate consistently reaches 5% or less, the receiver is disconnected 

from the variable attenuator and the spectrum analyzer is connected in its place.  

The evaluation software settings are listed below: 

 ACK Request = FALSE 

 TX Power = -17dBm 

 CSMA = FALSE 

 Number of Frames = 1000 

 Frame Length = 127 

 Frequency = 2330 MHz 
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Figure 36: Evaluation Board Receive Sensitivity Diagram, Packet Error Rate 

Threshold  

 

Figure 37: Evaluation Board Receive Sensitivity Diagram, Measurement 
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Figure 38: Evaluation Board Receive Sensitivity Test Setup, Packet Error Rate 

Threshold 

 

Figure 39: Evaluation Board Receive Sensitivity Test Setup, Measurement 
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Figure 40: Evaluation Board Receive Sensitivity Test Setup, Receiver 

 

Figure 41: Evaluation Board Receive Sensitivity Test Setup, Transmitter 

In this test, the faraday cage was only used for receiver and transmitter RF 

leakage isolation only.  The transmitter, instead of the receiver, was placed inside the 

faraday cage so the leakage path between the transmitter and spectrum analyzer would 

be reduced; if the transmitter were not shielded during the measurement, the signal 

leaking between from the transmitter, bypassing the attenuation, and into the spectrum 
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analyzer would increase the measured signal power, falsely increasing the receive 

sensitivity measurement. Ideally, the receiver would be shielded as well to reduce any 

laboratory in-band interference from raising its noise floor and thus decreasing its 

receive sensitivity; however, one shield on the transmitter and using the non-ISM 

2.330GHz frequency proved adequate for this test. 

The channel power measurement feature of the spectrum analyzer was utilized to 

measure the signal power within the 2.3MHz bandwidth of the signal; this measurement 

feature performs the integration necessary to calculate the power within the channel 

bandwidth and the measurement does not vary with change in resolution or visual 

bandwidth settings. Therefore, the resolution bandwidth was set to 100kHz to minimize 

the spectrum analyzer noise floor but still have an acceptable sweep rate. The spectrum 

analyzer was configured to display the average of 100 traces for both the signal and 

noise floor measurements. The preamplifier was enabled on the spectrum analyzer to 

decrease the noise floor further, however the 250kbps signal was still near the 

magnitude of the noise floor which introduced error to the measurement. To reduce this 

error, the measured noise power was subtracted from the measured signal power to 

calculate the actual signal power and eliminate error due to the addition of the spectrum 

analyzer’s noise power in the measurement. 

The spectrum analyzer settings are listed below: 

 Reference Level: -95dBm 

 Center Frequency: 2.330GHz 

 Span: 10MHz 

 Detection: RMS/AVG (log) 

 RBW: 100kHz, VBW: 100kHz 

 Averaging: 100 

 Input Attenuation: 0dB 

 Preamp: On 
 

The noise floor power of the spectrum analyzer within the 2.3MHz bandwidth 

measured at -101.5dBm as shown in Figure 42. The receive sensitivity measurement at 
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250kbps is shown in Figure 43. The measurements for 500kbps, 1000kbps, and 

2000kbps are tabulated in Table 11. The spectrum analyzer noise was subtracted from 

the signal power by converting from dBm to watts, then subtracting, and then converting 

back to dBm. The formula for this operation is 𝒔𝒊𝒈 = 𝟏𝟎 𝐥𝐨𝐠 (𝟏𝟎
𝒎𝒆𝒂𝒔

𝟏𝟎 − 𝟏𝟎
𝒏𝒐𝒊𝒔𝒆

𝟏𝟎 ), where sig 

= signal strength in dBm, meas = signal strength in dBm, and noise = spectrum analyzer 

noise floor in dBm. As the signal power becomes larger in magnitude compared to the 

spectrum analyzer noise floor (>8dB), the error introduced by the noise floor becomes 

negligible as illustrated by the 1000kbps and 2000kbps calculations.  

The variable attenuator switches in steps of 1dB and the differences in insertion 

loss between the receiver and spectrum analyzer are on the order of 0.2 to 0.5dB. 

Therefore, this test setup is assumed to be accurate to about 1dB and thus the final 

calculations are rounded to the nearest 1dBm. 

 

Figure 42: Evaluation Board Receive Sensitivity Test, Spectrum Analyzer Noise 

Floor (-101.5 dBm noise floor) 
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Figure 43: Evaluation Board Receive Sensitivity Test, 250kbps Receive Sensitivity 

 

Table 11: Evaluation Board Receive Sensitivity Test Results 

Data Rate 
(kbps) 

PER 
(%) 

Meas. Signal 
Power (dBm) 

Meas. SA 
Noise(dBm) 

Calc. RX 
Sens. (dBm) 

Datasheet RX 
Sens. (dBm) 

250 1% -98.2 -101.5 -101 -101 

500 6% -95.4 -101.5 -97 -96 

1000 4% -92.8 -101.5 -93 -94 

2000 5% -86.6 -101.5 -87 -88 

 

The evaluation board receive sensitivity measurements matched the datasheet 

specifications within 1dB, which was the assumed accuracy of the test setup. 

4.5.2 Evaluation Board Doppler Tolerance Measurement 

As a high velocity satellite travels above an earth station, its relative velocity 

toward the station changes during the duration of the pass. The satellite travels in an arc 

across the sky while the ground station actively points its antenna at the satellite in a 
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circular motion during the duration of the pass. At the beginning and end of the pass, 

while the satellite rises and falls at the horizon, the satellite’s relative velocity toward the 

ground station is at its maximum magnitude. During the middle of the pass, at the apex 

of the arc, the relative velocity component between the ground station and satellite is 

zero.  

 

Figure 44: Position and Velocity Vectors of Satellite and Earth Station [15] 

The change in relative velocity between the satellite and ground station during a 

pass causes a change in the observed communication frequency between the satellite 

and ground station due to the Doppler Effect. The Doppler Shift equation is: 

∆𝒇 =
∆𝒗

𝒄
𝒇𝟎 

Where ∆𝑓 = the observed change in frequency relative to the transmitted frequency, ∆𝑣 

= the relative velocity between transmitter and receiver, 𝑐 = speed of light, and 𝑓0 = 

transmitted frequency.  

A LEO satellite travels at a typical speed of 7.5 km/s, which equates a maximum 

Doppler shift of +/- 60kHz if the satellite’s velocity vector is pointing directly toward the 

ground station, which is never the case. If one were to calculate the practical Doppler 

shift using orbital mechanics, the satellites orbit, and the visible elevation angles when 

communication occurs, the actual maximum Doppler shift during the usable portion of 
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the pass is around 10kHz. [27] However, to keep things conservative, a Doppler shift of 

+/-60kHz will be assumed for this project. 

For a successful satellite link, the earth station must either dynamically correct for 

Doppler shift or must tolerate the Doppler shift during the pass. If the same AT86RF233 

transceiver is utilized for both the satellite and ground, as is the case with the PolySat 

Friis UHF earth station, the AT86RF233 must be able to compensate for the Doppler 

shift. However, unlike the AX5042 (UHF transceiver), the AT86RF233 can only change 

its frequency in discrete steps of 500kHz, which is too large to be useful for Doppler shift 

compensation. Therefore, the AT86RF233 must be able to tolerate the Doppler shift 

without any compensation. Unlike the AX5042 (UHF transceiver) with a signal bandwidth 

of 10kHz at 9.6kbps, the AT86RF233 transceiver transmits a spread spectrum signal of 

2.3MHz bandwidth; therefore the 60kHz Doppler shift is only 2.6% of the signal 

bandwidth. Therefore, intuitively, there is a good chance the receiver can tolerate this 

2.6% Doppler shift.  

The AT86RF233 datasheet states that the maximum “TX/RX carrier frequency 

offset (Sensitivity loss ≤ 2dB)” = +/- 300kHz (+/- 120 ppm). [28] Therefore, the 

transceiver most likely can tolerate Doppler shift of 60kHz without any dynamic 

correction on the ground. However, the maximum carrier frequency offset of +/-300kHz 

also includes the mismatch of the transmitter and receiver frequency sources; therefore 

the maximum Doppler shift tolerance is less than 300kHz and must be measured to 

confirm that if it is above 60kHz.  

The Doppler shift tolerance of the AT86RF233 evaluation boards can be measured 

using a Doppler shift simulator circuit described in a paper summarizing Stanford’s 

NarcisSat communication system [16]. A diagram of the Doppler shifter is shown in 

Figure 45. The Doppler shifter consists of two RF synthesizers with an output frequency 

difference equal to the desired frequency shift. First, the input signal is mixed down to an 
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intermediate frequency of 1.5GHz with the first synthesizer, mixer, and low-pass filter. 

The 1.5GHz intermediate signal is then mixed up with the second synthesizer to a center 

frequency equal to the sum of the input frequency and the Doppler shift. Finally, a band-

pass filter was added for additional filtering of the higher frequency output of the mixer 

as well as attenuating any leakage intermediate signals.  

The hardware to implement the Doppler shift circuit was purchased from Mini-

Circuits [29] and is listed in Table 12. 

 

Figure 45: Doppler Shifter Diagram 

 

Table 12: Doppler Shifter Circuit Components 

Mini-Circuits Part Number Description 

SLP-2400+ Low Pass Filter, DC – 2220MHz 

ZX05-83-S+ Frequency Mixer 1, 2300 – 8000 
MHz 

ZX05-83-S+ Frequency Mixer 2, 2300 – 8000 
MHz 

VBFZ-2340-S+ Band Pass Filter, 2020 – 2660 
MHz 

 

The common synthesizer frequency of 4.0GHz was chosen to provide a large 

enough frequency difference between the output signals of the first mixer to be filtered 

out by the low pass filter. If the 6.5GHz signal were not adequately filtered by the low-

pass filter, it would simply be mixed back down to 2.5GHz in the second mixer, 
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introducing no Doppler shift and corrupting the test.  Due to the small 60 kHz Doppler 

shift compared to the synthesizers’ common frequency of 4.0GHz, the test required 

synthesizers capable of matched frequencies to 15ppm (60kHz/4.0GHz). The 

synthesizers located in the PolySat lab had too large of a frequency drift; instead two 

synthesizers from the Cal Poly, Electrical Engineering RF Microwave Lab were borrowed 

for this test. However, the synthesizers still produced a maximum Doppler shift drift 

difference of 10kHz between the beginning and end of the receive sensitivity testing; this 

means the Doppler shift at the end of the test was measured to be 10kHz different than 

the Doppler shift at the beginning of the test due to the frequency drift between the two 

synthesizers over the duration of the test.  

The functionality of the Doppler shifter was verified by outputting an attenuated 

continuous wave (CW) signal from the AT86RF233 transmitter at 2.5GHz and measuring 

both the input and output of the Doppler shifter. A Doppler shift of 175.5kHz is shown in 

Figure 46. 

  

Figure 46: Doppler Tolerance Test Circuitry Input and Output Measurements 

After verifying functionality of the Doppler shifter, the Doppler shifter circuitry was simply 

added in line to the receive sensitivity test setup as shown in Figure 47 and Figure 48.  
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Figure 47: Receive Sensitivity Doppler Shift Tolerance Diagram, Packet Error Rate 

Threshold 

 

Figure 48: Receive Sensitivity Doppler Shift Tolerance Diagram, Measurement 

The receive sensitivity of the receiver was measured without the Doppler shift and 

then with the Doppler shift, the difference in receive sensitivity at a certain Doppler shift 

is used as a figure of merit. The receive sensitivity was measured for the four data rates: 

250kbps, 500kbps, 1000kbps, and 2000kbps. The simplified procedure was as follows:  

1. Measure the receive sensitivity without the Doppler shift circuitry (Figure 36 and 

Figure 37) 
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2. Add the Doppler shift circuitry in between the transmitter and spectrum analyzer 

(Figure 48) 

a. Configure the transmitter to transmit a continuous wave 

b. Set the desired Doppler shift  

c. Capture a screen shot of the initial Doppler shift frequency 

3. Disconnect the spectrum analyzer, place the receiver at the output (Figure 47) 

a. Vary the variable attenuator until a packet drop rate of 5% is consistently 

reached 

b. Remove the receiver, place the spectrum analyzer at the output 

c. Capture a screen shot of the Doppler receive sensitivity 

4. Configure the transmitter to transmit a continuous wave 

a. Capture a screen shot of the final Doppler shift frequency (frequency 

change due to synthesizer drift) 

The change in receive sensitivity with respect to Doppler shift was drastic after 

reaching a certain cutoff value. Similar to receive sensitivity, the packet error rate 

declined rapidly after the 5% cutoff; for instance at 250kbps, a Doppler shift of -188kHz 

produced a drop rate of 5%, whereas a shift of 267kHz produced a drop rate of 67%. 

The test setup is shown in Figure 49 and Figure 50 and test results in Table 13. 
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Figure 49: Doppler Tolerance Test Setup, Full View 

 

Figure 50: Doppler Tolerance Test Setup, Synthesizers and Spectrum Analyzer 
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Table 13: Doppler Tolerance, Receive Sensitivity Test Results 

Data Rate (kbps) 
Doppler Shift 

(kHz) 
PER 
(%) 

Receiver 
Desensitization (dB) 

250 145 5 3.6 

250 -188 5 2.4 

250 -38 3 0.0 

500 166 6 2.1 

500 -215 5 6.4 

1000 103 2 0.4 

1000 -93 2 0.3 

2000 108 7 0.8 

2000 -87 4 1.0 

 

The results demonstrate that the AT86RF233 can tolerate Doppler Shift below 100 kHz 

with a receiver desensitization of 2dB or less. 
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5 Schematic Development 

After testing the AT86RF233 transceiver evaluation board, the schematic for the 

Intrepid S-Band ISM Radio (ISIR) was developed. The schematic was developed using 

OrCAD Capture 16.6. The PCBA is designed to interface primarily as a daughter board 

for the PolySat “Intrepid” System Board shown in Figure 51, but it also has a connector 

to interface as a daughter board to the AT86RF233 evaluation processor board for 

testing. The PCBA interfaces the AT86RF233 transceiver to an external RF front-end for 

improved transmit power and receive sensitivity. There are two switching regulators that 

provide power to the circuitry from an unregulated 3.7V lithium ion supply. Amplifier 

protection circuitry was designed to protect the power amplifier from no load conditions 

and the low noise amplifier from high input power conditions. Additional logic was added 

for temperature sensing, power isolation, transmitted and reflected power measurements, 

and an EEPROM for board configuration values. 

The full schematic is provided in Appendix A: Intrepid S-Band ISM Radio R1 

Schematic. Sections of the schematic are explained in detail in the following sections. 

The ISIR conforms to the Intrepid System Board Daughter Board B specification in 

order to fit within the Intrepid CubeSat satellite bus shown in Figure 52.  

 

Figure 51: Intrepid System Board [30]  
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The satellite bus consists of a “top hat” which is a sandwich of five PCBAs 

mounted to the mechanical top hat shown in Figure 52. The System Board is at the 

center of the stackup which contains the primary command and data handling 

microprocessor of the satellite as well as the electrical power system, hardware 

watchdogs, and additional sensors and peripherals. Four connectors with spring 

contacts break out signals from the system board to Daughter Board A and Daughter 

Board B. The daughter boards simply have pads that press against the spring contacts 

on the System Board, minimizing stack height.  

Daughter Board A is utilized for the UHF Radio, so Daughter Board B was 

selected for the S-Band radio allowing both low data rate UHF and high data rate S-

Band radio communication on the same satellite. The system board has four additional 

high-density connectors on the bottom and top of the PCBA which break out the signals 

for the satellite payload interface board and the external –Z side panel. The Intrepid top 

hat occupies less than 1/4th of a 1U (10 cm x 10 cm x 13cm) CubeSat, providing use of 

the remainder of the volume for mission specific payloads. An example of a PolySat 

mission specific payload is shown in a preliminary CAD of IPEX in Figure 53 and Figure 

54. 

 

Figure 52: Intrepid Top Hat Stackup CAD 
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Figure 53: IPEX Preliminary CAD Model 

 

Figure 54: IPEX Preliminary Payload CAD Model without Top Hat 

5.1 Intrepid System Board Interface 

Figure 55 shows the schematic for the system board interface between the 

PolySat Intrepid System Board and the ISIR. J7 and J8 are simply pads on the PCBA 

that press against the System Board’s daughter board B spring contacts: Samtec SEI-

125-02-G-S-E-AT, shown in Figure 56. [31] FL1 and FL2 are low pass filters added in 

line with the SPI bus to reduce potential in-band interference from SPI bus activity. The 

resistors are simply pull-downs and pull-ups to define a signal’s logic state if the system 
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board is de-energized or the pins are placed in a high impedance mode.

 

Figure 55: System Board Daughter Board B Interface 

 

Figure 56: Samtec SEI-125-02-G-S-E-AT, System Board’s Daughterboard Spring 

Contacts 

The Daughter Board B connectors break out several interfaces from the Atmel 

AT91SAM9G20 microprocessor: one SPI bus, one I2C bus, one serial bus, unregulated 

battery power, the daughter board B regulator, and several GPIOs. The pinout and 

signal information was extracted from the Intrepid System Board User Guide [30] is 
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shown in Table 14. Only the SPI, I2C, unregulated power, and a few GPIOS are utilized 

by the ISIR. 

Table 14: System Board Daughterboard B Connectors Pinout Information [30] 
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Figure 57 shows the mechanical details of the Intrepid bus top hat. As 

recommended in the Intrepid user guide, the ISIR is a single-sided board (components 

only on one side) to allow clearance for the System Board’s components residing within 

the 1.65mm daughter board gap. The components on the daughterboard must fit within 

the remaining 5.75mm clearance on the side facing the Plus Z Payload Breakout Board. 

 

Figure 57: Intrepid Stackup Details [30] 

A board level shield for the RF portion of the ISIR was added to reduce potential 

interference emitted from other PCBAs within the top hat including oscillators, the 

microprocessor, RAM, switching regulators, and circuitry on other PCBAs. The board 

level shield must fit within the 5.75mm clearance allocated between the daughter board 

and the Plus Z Payload Breakout Board. The 3mm high Laird BMI-S-210-F shield was 

chosen based on this height restriction as well as the specified Daughter Board B 

dimensions. The schematic snippet for the board level shield is shown in Figure 58. The 

3mm height provides 2.75mm clearance for the components on the Plus Z Payload 

Breakout Board toward the ISIR.  

A rule of thumb for faraday shields is that the largest aperture in the shield shall be 

less than 1/20th of a wavelength at the frequency of interest; 1/20th of a wavelength at 

2.4GHz is 6.25mm. The largest gap size in the BMI-S-210-F shield is 2.2mm indicating 

that it will be effective at 2.4GHz. The 0.2mm shield thickness is well above the skin 
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depth at 2.4GHz. The board level shield will be solidly connected to the PCBA’s ground 

plan with vias at every pad; it is important to minimize the size of the gaps in the Faraday 

shield comprised by the PCBA’s ground plane and the board level shield. 

 

Figure 58: Board Level Shield  

Figure 59 and Figure 60 show the signal power isolation circuitry between the 

signals from the system board and the circuitry on the ISIR. These components are level 

translators with support for partial power down conditions. 

 

Figure 59: Signal Power Isolation 1 
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Figure 60: Signal Power Isolation 2 

A system with multiple power rails that can be enabled and disabled to conserve 

power is called a system with partial power down states. The ISIR allows partial power 

down by allowing the system board to control the enable signal to the regulators 

powering its circuitry. This introduces the situation where the System Board is powered 

and the ISIR is unpowered and therefore the System Board can drive signals (SPI, I2C, 

GPIOS) into the unpowered ICs on the ISIR.  

Typically, ICs cannot tolerate voltages on its input pins if the IC is unpowered due 

to the ESD and clamping structures on the device’s pins. For example, the AT86RF233 

transceiver cannot tolerate 3.3V logic on its SPI bus input pins when it is powered down; 

this is evident from the “Absolute Maximum Ratings” stated on the device’s datasheet 

highlighted in Figure 61. The AT86RF233 cannot tolerate voltages 0.3V above its power 

rail Vdd including when the device is powered down. This indicates that normal System 

Board 3.3V SPI bus activity present on an unpowered AT86RF233’s inputs will cause 
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excessive current draw that can damage the transceiver. This scenario would occur if 

the System Board powered down the ISIR to conserve power, but still communicated 

with other devices on the SPI bus. Further information about partial power down can be 

found in Texas Instruments Application Note: “Using High-Speed CMOS and Advanced 

CMOS Logic in Systems With Multiple Vcc Supplies or Partial Power Down.” [32] 

 

Figure 61: AT86RF233 Absolute Maximum Ratings [28] 

The FXMA2102L8X, SN74LVC2T45YZPR, and NLSV1T244MUTBG level 

translators all support partial power-down as highlighted in their respective datasheets. A 

snippet from the SN74LVC2T45YZPR datasheet [33] is shown in Figure 62. When either 

supply pin to the level translator is unpowered, the ports of the level translator are put 

into a high impedance state, preventing damage to the interfaced unpowered device. 

The level translators also buffer signals by providing additional drive strength and 

protects against possible logic failures if the System Board 3.3V supply changes voltage 

relative to the ISIR’s 3.3V supply due to a failure condition; however the primary 

motivation for these level translators is to allow partial power down of the system so the 

satellite can conserve energy when the ISIR is not in use. 
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Figure 62: TI SN74LVC2T45YZPR 2-Bit Transceiver, Partial Power Down 

Information [33] 

Series termination resistors are placed on the outputs of the level translators in an 

attempt to impedance match the driver to the micro strip transmission line; these 

resistors reduce signal ringing due to the mismatch between the drive impedance of the 

IC and the high impedance CMOS inputs the level translators are driving. The series 

termination resistors for U4 are shown in Figure 63. The theory behind a source-series 

termination is covered in most signal integrity books, such as Signal and Power Integrity 

authored by Dr. Eric Bogatin. [34] The sum of the IC’s drive impedance and the series 

termination value should equal to characteristic impedance of the copper trace in order 

to completely terminate and absorb the reflected signal from receiver’s CMOS high 

impedance input.  
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Figure 63: Series Termination Resistors on IC Outputs 

Figure 64 is an excerpt from Bogatin’s section on source-series termination. [34] 

Without the series termination, an underdamped waveform is observed on the receiver’s 

input due to the digital step waveform reflecting between the high impedance receiver 

input and the mismatched driver output. If the driver is matched to the transmission line, 

the signal is transmitted from the driver, reflects once from the receiver input, travels 

back down the transmission line, and then is completely absorbed by the matched 

termination on the driver side; this results in the clean (no-ringing) waveform shown in 

Figure 64. 

 

Figure 64: Voltage Signal of a Fast Edge, at the Far End of the Transmission 

Line with and without the Source Series Terminating Resistor [34] 
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There are two reasons for reducing the ringing on this SPI bus:  

1. Higher SPI Data Rate 

a. SPI does not have a formal standard and no maximum data rate. The 

maximum data rate is limited by the hardware; an unterminated trace 

limits the data rate of the bus by degrading the signal received at the 

receiver. 

2. Reduction of Potential EMI 

a. Ringing introduces higher frequency content on the trace, which may 

radiate and interfere with other circuitry or jam radios in-band with the 

EMI 

b. According to Bogatin, ringing can increase the magnitude of radiated 

emissions by a factor of 10. [34] 

Another question is whether we need the series termination at all for the relatively 

slow clock rate of the SPI bus (1 to 10MHz) and the short copper trace length on the 

PCBA; this question is also answered in signal integrity texts. First, the clock rate of the 

SPI bus is irrelevant to whether the line should be terminated; the important 

characteristic is the rise and fall time (slew rate) of the signal. The slew rate of the signal 

determines its frequency bandwidth, not the clock rate. The SPI bus clock may run at 

1MHz, but the signal slew rate is dependent on the drive strength of the IC which 

depends on how the IC was fabricated.  

According to Bogatin, IC fabricators use the same chip size and wafer process for 

all ICs regardless if the chip is to be used in a high or low speed application to save 

costs; therefore even though the chip may not need the faster rise time, the rise time will 

increase as IC fabricators upgrade their processes for the fastest ASICs being 

developed. [34] The switching characteristics from the SN74LVC2T45 datasheet are 
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shown in Figure 65; the highlighted numbers are the slew rates for the application at 

3.3V. The rise time of the level translator can be as fast as 0.7ns, which equates to a 

frequency bandwidth of approximately 500MHz using the rule of thumb from Bogatin: 

𝐵𝑊 =
0.35

𝑅𝑇
, where BW is the highest “significant” frequency of the signal and RT is the 

rise time of the signal; here significant is defined as the 3dB bandwidth (half-power point) 

of the signal. [34] The signal still has higher harmonics than this 3dB bandwidth that can 

still radiate or cause EMI problems which are further amplified by ringing.  

The result is that the slew rate of the level translator is overkill for this application 

which may degrade functionality if not properly terminated or filtered. The rule of thumb 

from Bogatin for the maximum length of an unterminated line is 1 inch per nanosecond 

rise time. [34] For example, a 1ns rise time signal requires termination if the trace is 

longer than one inch and a 0.5ns rise time signal requires termination if the trace is 

longer than half an inch; as rise times become faster, the minimum trace length before 

signal integrity problems occur becomes shorter. On this PCBA, the trace length may be 

longer than 0.7 inches indicating a need for the series termination resistor.  

 

Figure 65: SN74LVC2T45 Switching Characteristics, Datasheet Excerpt 



80 

 

The value of 10 Ohms was chosen arbitrarily without any analytical calculations; 

values between 10 to 40 Ohms are typically chosen because they have been found to 

resolve ringing issues in the past. No calculations were performed because the 

characteristic impedance of the digital signal lines are not tightly controlled on this PCBA 

and the trace width is the smallest allowed by the PCB fabricator, whereas future 

revisions of the board may have different stack ups or thinner traces. Also, test points, 

harnesses, IC pads, differences in trace impedance across boards, and other practical 

considerations will influence the ideal value of the series termination which reduces the 

value of an analytical calculation. However, the value can be fine-tuned with an 

oscilloscope and resistor kit during testing if problems occur due to imperfect termination 

on the line; the important thing is that the series resistor is there to be tuned if a problem 

occurs without requiring invasive cutting of traces on the PCB.  

In addition to the series terminations, long trace length lines have capacitive filters 

to reduce the frequency content of the signal. As a trace becomes longer, its potential to 

radiate does as well. The low pass filter on the SPI MISO signal is shown in Figure 66. 

The purpose of these filters is to reduce potential high frequency EMI by limiting signal 

bandwidth. In this application, the SPI bus will run at a maximum clock rate of 10MHz; 

this digital square wave signal requires a minimum bandwidth up to its 5th harmonic of 

50MHz for acceptable distortion. The lowest frequency of concern on the spacecraft is 

the UHF receiver tuned to 437MHz, so the filter needs to attenuate potential in-band EMI 

at 437MHz. The low pass frequency of 200MHz was chosen to attenuate components 

in-band with UHF at 437MHz but the low pass filter could be lowered to the minimum of 

50MHz for more attenuation if necessary. 
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Figure 66: Low Pas Filter on SPI MISO Signal 

Figure 67 is the schematic of the GPIO expander on the ISIR. The purpose of a 

GPIO expander is to reduce the required number of signals broken out from the satellite 

microprocessor. The GPIO expander interfaces to the microprocessor through its I2C 

bus. The microprocessor commands the GPIO expander to configure its pins as an input 

or output and can read and set values on the pins as fast as the I2C bus allows. I2C is a 

low speed (100 kHz) interface for connecting many ICs to a microprocessor using only 

two signals, SDA (data) and SCL (clock), each device on the bus is required to have a 

unique 7-bit address. I2C GPIO expanders are only used for low speed applications, 

because the speed of the GPIOs is limited by the speed of the I2C transactions; for 

instance, the GPIO expander pin toggling speed would be inadequate to drive another 

bus or high speed interrupt line.  

Most I2C devices have configurable addresses so multiple of the same device can 

be utilized on the same bus without conflict. The TCA9539 GPIO expander has 

configurable address pins and the hex address 0x75 was chosen by referencing the 

devices datasheet and pulling the A1 and A0 pins to the corresponding nets. The GPIO 

expander active low reset “/RST” pin is interfaced to the microprocessor’s “NRST” signal 

which goes low when the processor resets; this ensures that the GPIO expander is in a 

known default state when the microprocessor boots avoiding issues caused by 

undefined states. The transceiver is also interfaced to the NRST signal. 
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Figure 67: I2C GPIO Expander 

Figure 68 shows the board’s I2C temperature sensor with alert pin. The 

temperature sensor is located as close as possible to the board’s RF amplifier, which will 

be the highest temperature component on the board. The microprocessor can retrieve 

the temperature from this sensor and can cut transmission before the RF amplifier 

exceeds its absolute maximum ratings. The temperature sensor can be configured to 

issue an alert after exceeding a certain temperature value. The temperature alert signal 

is interfaced to the GPIO expander for monitoring by the microprocessor. 

 

Figure 68: I2C Temperature Sensor 

 

 

Figure 69: I2C EEPROM 

 

Figure 69 shows the board’s 128kbit EEPROM for use by the microprocessor for 

storing ISIR board calibration and identification information. 
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5.2 Transceiver and RF Front End 

Figure 70 shows the schematic for the AT86RF233 transceiver, balun, in-line test 

points, and low power RF TX/RX switch. U13 is simply a level translator which translates 

the transceiver’s antenna selection signals from 3.3V to the required 5.0V signal levels 

required by the antenna selection switch elsewhere on the schematic. 

 

Figure 70: AT86RF233 Transceiver, Test Points, and Low Power RF Switch 

The Anaren, BD2425N50100AHF balun, U11, transforms the transceiver’s 

balanced differential RF signal into a single-ended unbalanced signal. According to the 

AT86RF233 datasheet, the transceiver’s differential RF routing suppresses the switching 

noise of its internal digital signal processing blocks. [28] However, the spacecraft 
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antenna will connect to the PCBA through a typical single-ended coaxial cable, so the 

signal must be converted from differential to single ended at some point in the circuit. 

Most commercial RFICs are single-ended, so the decision was made to convert from 

differential to single-ended immediately after the transceiver. Following Atmel’s 

recommendation in its application note “Atmel AT02865: RF Layout with Microstrip,” the 

balun was chosen based on its pin pitch to match the pin spacing of the transceiver for 

better alignment and minimize impedance mismatch. [35] After selecting baluns with pin 

spacing matching the transceiver’s QFN package, the balun with the lowest insertion 

loss (0.6dB) was chosen to maximize transmitted signal strength and maximize received 

signal to noise ratio. 

 

Figure 71: Transceiver AT86RF233 QFN Package, 0.5mm Pin Pitch [28] 
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Figure 72: Balun BD2425N50100AHF Package, 0.51mm Pin Pitch [36] 

The HMC595E TX/RX switch, U15, switches the transceiver’s RF signal to the 

external transmit chain when the transceiver transmits and switches to the receive chain 

when the transceiver receives. The TX_SEL and TX_SEL/ signals controlling the low 

power TX/RX switch are automatically outputted by the transceiver during transmit and 

receive with appropriate delays between switching and transmitting. The HMC595E 

introduces a 0.4dB insertion loss to the RF chain. 

 

Figure 73: HMC595E, RF Switch Application Circuit [37] 
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Two Murata, MM8030-2600, coaxial test points were inserted between the balun 

and the switch to be utilized during testing, characterization, and tuning of the board. 

The MM8030-2600 connectors mate to a specialized probe that converts to a standard 

female SMA connector for use with external test equipment such as a spectrum analyzer 

or VNA. When the probe is inserted into the connector, the input signal is switched to the 

probe. When the probe is absent, the connector passes through the signal from input to 

output introducing a small 0.1dB insertion loss. By arranging two MM8030-2600 test 

points as shown in the schematic, external equipment can be added in series between 

the transceiver and RF switch. These test points allow measurement of the transmit 

chain’s gain, the receive chain’s gain and noise figure, and general troubleshooting.  

 

Figure 74: Murata MM8030-2600, RF Coaxial Connector / Test Point [38] 

 

Figure 75: Murata Measurement Probe for MM8030-2600 [39] 
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Coupling capacitors are required throughout the RF chain before and after 

switches and amplifiers to block DC currents while passing RF signals; the value, size, 

dielectric, and model of the coupling capacitor was chosen carefully. The size of the 

capacitor was chosen so that its width was closest to the width of the PCB micro-strip 

transmission line in order to best match characteristic impedance of the trace; a surface 

mount 0402 capacitor most closely matched the trace width. A high-Q, low-loss, NP0 

temperature coefficient ceramic capacitor with a tolerance of 2% was chosen so its 

behavior would remain consistent over frequency and temperature.  

 

Figure 76: 13pF AC Coupling Capacitors throughout the Schematic 

The goal of the ac coupling capacitor is to block DC currents and pass the 

frequencies of interest with minimal insertion loss. All capacitors block DC currents, but 

all capacitors do not provide the same insertion loss at the same frequency. A practical 

capacitor does not behave as an ideal capacitor at all frequencies; the first-order 

equivalent electrical model of a practical capacitor is a series RLC circuit as shown in 

Figure 77; the capacitor model is comprised of the capacitor’s capacitance, equivalent 

series inductance (ESL) , and equivalent series resistance (ESR). 
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Figure 77: Capacitor Equivalent Circuit [40] 

Equivalent series inductance and resistance does not only include the inductance 

inherent to the physical component stand-alone, but also the inductance and resistance 

introduced by the way the capacitor is mounted and its pads connected to other 

components on the PCBA. Figure 78 shows the frequency characteristics of the first 

order model of a practical capacitor. At low frequencies the highest impedance 

component of the circuit is the capacitance and the capacitor behaves as an ideal 

capacitor. As frequency increases, the positive reactance contributed by inductance 

increases while the negative reactance contributed by the capacitance decreases until at 

a certain frequency they become equal in magnitude and cancel each other out. This 

point is called self-resonance and the impedance of the capacitor is at its minimum value 

equal to its equivalent series resistance (ESR). After the self-resonant point, as 

frequency increases, the inductive reactance continues to increase while capacitive 

reactance continues to decrease which causes capacitor’s impedance to increase. 

Therefore, after self-resonance, a capacitor behaves as an ideal inductor with 

impedance that increases with frequency. 
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Figure 78: Capacitor Frequency Characteristics [40] 

The region with minimal insertion loss is the frequency range at which the 

capacitor is at self-resonance, therefore this is the optimal point to operate an AC 

coupling capacitor. However, because the ESL and ESR are dependent on layout of the 

PCBA, most application notes recommend using coupling capacitors below their series 

resonance so that the impedance can be accurately modeled and predicted and proceed 

with the assurance that the capacitor continues to “act as a capacitor.” However, in the 

pursuit for minimal insertion loss, the capacitor was chosen at its series resonance 

utilizing Murata’s online “SimSurfing” tool which simulates the characteristics of Murata 

passive components. [41] One Ohm was defined as the preferred impedance for the 

capacitor in the frequency band of interest, which is 2400 MHz to 2500MHz. The Murata, 

GJM1555C1H130GB01, 13pF capacitor shown in Figure 79 met the desired behavior 

and was chosen as the AC coupling capacitor used throughout the RF circuit. 
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Figure 79: Murata SimSurfing Capacitor Simulation Tool [41] 

 

Figure 80: 13pF Coupling Capacitor, Murata GJM1555C1H130GB01 Frequency 

Characteristics 

The transmit chain is shown in Figure 81. When the transceiver transmits, the 

signal passes through the external RF power amplifier (PA) U17 followed by the low 

pass filter (LPF) FL5 and then the directional coupler U19.  



91 

 

 

Figure 81: ISIR Transmit Chain: External Power Amplifier, Low Pass Filter, 

Directional Coupler 

The RFMD RFPA2026 power amplifier is a 3-stage, 2W amplifier within a 6.0 mm 

x 6.0 mm package for use in the 700MHz to 2700MHz frequency range. The datasheet 

for the RFPA2026 provides application schematics for 728MHz to 768MHz, 2.11GHz to 

2.17 GHz, and 2.58GHz to 2.69GHz, however none of these frequency ranges are the 

desired ISM 2.4GHz to 2.5GHz range. However, after contacting an RFMD application 

engineer, a circuit for the 2.3GHz to 2.7GHz range was provided as a modification to the 

datasheet’s 2.58GHz to 2.69GHz evaluation board as shown in Figure 82.  Additionally, 

measurements were provided for gain, output power, OIP3, ACPR, and S parameters. 
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Figure 82: RFMD RFPA2026, 2.58GHz to 2.69GHz Evaluation Board Modified for 

2.3GHz to 2.7GHz [42] 

The modified evaluation board picture and evaluation board design files were used 

to back out the values used by the RFMD application engineer and incorporated into the 

schematic. However, at 2.4GHz, the values of the components are extremely dependent 

on the PCBA layout, trace lengths, and component parasitics; therefore the intention 

was to use this evaluation board schematic as a starting point before fine-tuning the 

circuit component values. 

Figure 83 and Figure 84 show the gain and input power compared to the output 

power of the modified RFPA2026 evaluation board. These graphs show that the P1dB 

compression point occurs at 34dBm at 2400MHz with a gain of 37dB. The RF signal is 

modulated using OQPSK which allows use of a power amplifier at its compression point 

without significant degradation. According to the graphs, the RFPA2026 consumes a 

total 1.175A at 5V which equates to 5.9W while outputting 2.5W (34dBm); therefore the 
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amplifier is 42% efficient. This also indicates that 3.4W of the input power is converted 

into heat at the amplifier which indicates that heat sinking is required at the RFPA2026 

component. 

 

Figure 83: Gain vs Output Power of Modified RFPA2026 Evaluation Board [43] 
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Figure 84: Input Power vs Output Power of Modified RFPA2026 Evaluation Board 

[43] 

FL5 is the DEA102500LT-6307A1 2.45GHz low pass filter for the 2.4GHz ISM 

band. The purpose of the low pass filter is to suppress out of band spurs outputted by 

the power amplifier in order to reduce possible interference from the transmitter into 

higher frequency bands. FL5 reduces the 2nd and 3rd harmonics at 4800MHz and 

7200MHz by 25dB, as shown in Figure 85. Depending on the launch vehicle, mission, 

and program requirements the transmission profile of the satellite must attenuate out of 

band noise and satisfy radiated emission requirements. If the low pass filter is not 

required for the mission, it may be removed and bypassed with a 0 Ohm 0402 resistor. 
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Figure 85: TDK DEA102500LT-6307A1 Low Pass Filter, Attenuation Plot [44] 

The Skyworks DC25-73LF -17dB directional coupler, U19, is placed at the end of 

the transmit chain to sample the signal reflected back toward the power amplifier and 

provide this measurement to the amplifier protection circuitry and the C&DH. The DC25-

73LF is a directional coupler for 2.3GHz to 2.6GHz, the block diagram is shown in Figure 

86.  

Measuring the reflected power provides a way to estimate the VSWR of the 

antenna which can be utilized to protect of the power amplifier if the reflected power 

exceeds the amplifier’s rating. Typically, if an amplifier is operated into an open or short 

load (no antenna, or shorted antenna) the amplifier will become permanently damaged. 

Forgetting to install an antenna, accidently disconnecting an antenna, or forgetting to 

deploy a stowed antenna and transmitting was the most prevalent failure of the PolySat 

UHF radio, which resulted in excessive reworking and replacing of amplifier IC. 

Therefore, protection circuitry was added to the ISIR in order to prevent accidental 

damage to the power amplifier from transmitting into a mismatch load. 
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Figure 86: Skyworks DC25-73LF Directional Coupler, Block Diagram 

The receive chain for the ISIR is shown in Figure 87; it is comprised of a low noise 

amplifier (LNA), band pass filter (BPF), and directional coupler. 

 

 

Figure 87: ISIR Receive Chain: Low Noise Amplifier, Band Pass Filter, and 

Directional Coupler 

The received signal first enters the directional coupler which samples the receive 

signal so its signal strength can be measured. This sampled signal is fed into additional 

protection circuitry that disables the LNA if the signal strength is above the LNA’s 

maximum value so permanent damage does not occur. Excessive signal strength 

commonly occurs during benchtop testing when two radios are connected to each other 
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through coaxial cable without adequate attenuation. The absolute maximum input power 

into the LNA is 5dBm; therefore if a 2W (33dBm) radio directly transmitted into the LNA 

without protection circuitry, permanent damage would occur. The directional coupler is 

the same model as the one used within the transmit chain. 

The TDK DEA252450BT-2027A1 2.45GHz bandpass filter, FL4, is placed before 

the LNA in order to prevent saturation of the LNA from out of band sources; this situation 

could occur if another radio on the satellite such as the UHF radio were transmitting at 

the same time the ISIR is receiving; the LNA could conceivably become saturated and 

the 2.45GHz signal would be distorted. However, the ISIR LNA is tuned to the 2.45GHz 

band with low gain and high return loss in out of band frequencies. If the band pass filter 

is not needed, FL4 can be removed and bypassed with a 0805 resistor. The bandpass 

filter was chosen based on lowest insertion loss; however it still introduces a 1dB loss 

before the LNA which equates to 1dB degradation in signal to noise ratio of the received 

signal if the noise floor is limited by thermal noise. 

 

Figure 88: TDK DEA252450BT-2027A1, 2.45GHz Bandpass Filter Attenuation 

Profile [45] 
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U16 is the Maxim MAX2692 low noise amplifier for the 2.45GHz ISM band, the 

typical application circuit is shown in Figure 89. The MAX2692 was selected because it 

is low power and had the lowest noise figure and acceptable gain compared to 

competing options. The MAX2692 has an excellent noise figure of 1.1dB and gain of 

18dB. The purpose of the LNA is to increase the receive sensitivity of the radio by 

decreasing the overall noise figure of the radio.  

 

Figure 89: Maxim MAX2692 Low Noise Amplifier, Typical Operation Circuit [46] 

Let use the transceiver and its specifications to explore the concept of noise figure 

and the application of the LNA to improve receive sensitivity. The datasheet for the 

AT86RF233 transceiver states a receive sensitivity of -101dBm at 250kbps with a noise 

figure of 6dB. This means that in a thermal noise floor limited scenario (no external 

interference) at 290K, the AT86RF233 increases the noise floor by 6dB, which 

decreases the signal to noise ratio by 6dB and degrades the receive sensitivity by 6dB. 

The AT86RF233 always adds a fixed amount of noise into the signal which can be 

calculated the relation: 

𝑭 = 𝟏 +
𝑵𝒂𝒅𝒅𝒆𝒅

𝒌𝑻𝟎𝑩
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Where F = the Noise Factor (noise figure is noise factor in dB), 𝑵𝒂𝒅𝒅𝒆𝒅 = the noise 

added by the component, and is 𝒌𝑻𝟎𝑩 the thermal noise power within the specified 

bandwidth B at the standard temperature of 𝑻𝟎 = 25C using the Boltzmann constant k. 

Using the relation, the AT86RF233 with a noise figure of 6dB always adds a fixed 

27.3pW of noise to the signal which equates to -105.6dBm. The bandwidth of the 

transceiver is 2.3MHz, which contains inherent thermal noise of -110.4dBm (kTB). 

Adding the thermal noise with the noise from the AT86RF233 results in a noise floor of -

104.4dBm is 6 dB higher than the thermal noise, which is the noise figure. These 

numbers suggest that a standalone AT86RF233 can decode a 250kbps signal with a 

signal to noise ratio of 3.4dB (-101dm - (-104.4dBm)), whether that noise is thermal or 

from external interference, and the AT86RF233 always adds -105.6dBm (27.3pW) of its 

own noise on top of the input noise. If the AT86RF233 did not contribute additional noise, 

then the transceiver could theoretically receive signals as low as -107dBm at 250kbps.  

The LNA improves the receive sensitivity by amplifying both the signal and noise 

while introducing little noise itself. The LNA amplifies the input noise to the point that the 

AT86RF233’s 27.3pW of additional noise makes little to no difference to the overall 

signal to noise ratio. Suppose we receive a signal at -105dBm which is then combined 

with the PCB’s inherent thermal noise floor of -110.4dBm. The MAX2692 LNA amplifies 

the signal and noise by 18dB while adding 1.1dB of its own noise (-110.4 + 1.1 +18). 

The signal is now at -87dBm and the noise is at -91.3dBm which equates to a signal to 

noise ratio (SNR) of 4.3dB. The AT86RF233 transceiver then receives the signal and 

adds -105.6dBm of noise to the input noise, equating to -91.1dBm of total noise (only a 

0.2dB increase in noise). The SNR received by the AT86RF233 is still high at 4.1dB 

which exceeds the 3.4dB limit and is decodable by the AT86RF233. Without the LNA, 

the AT86RF233 would have only been able to decode a -101dBm signal, but with the 

LNA the radio could theoretically decode a -105.7dBm signal. 
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However, the components before the LNA appreciably degrade the SNR. To find 

the noise figure and gain for the complete receive chain, the equation for the noise figure 

of cascaded networks is used: 

𝑭 = 𝑭𝟏 +
𝑭𝟐 − 𝟏

𝑮𝟏
+

𝑭𝟑 − 𝟏

𝑮𝟏𝑮𝟐
+ ⋯ 

Where 𝑭𝟏= the noise figure of the 1st stage, 𝑮𝟏 = the gain of the first stage, 𝑭𝟐= the noise 

figure of the 2nd stage, 𝑮𝟐 = the gain of the 2nd stage, etc. 

Assuming a 0.1dB loss for each AC coupling cap and the insertion losses stated in 

the schematic, the calculation results in a total F = 3.64dB and G=14.2dB for the receive 

chain. This means the radio has a 2.36dB improvement of receive sensitivity compared 

to the standalone transceiver with a theoretical receive sensitivity of -103dBm.  

The receive sensitivity of the radio will also decrease when exposed to additional noise 

such as internally generated electromagnetic interference (EMI) from nearby electronics, 

in-band noise from external transmitters, or the antenna pattern intersecting with a hot 

object such as the sun.  

5.3 Power Regulation 

The Switching mode power supply circuits shown in Figure 90 and Figure 91 

provide efficient regulated power to the board. The 3.3V net provides power for the 

transceiver, digital logic, and the LNA. The 5.0V net provides power for the antenna RF 

switch, RF power detectors, and the power amplifier. The Texas Instruments TPS63020 

high efficiency buck-boost regulator IC was utilized for both power rails. The input to the 

regulators is the unregulated battery voltage from the satellite’s battery pack, which is 

typically multiple single lithium ion battery cells connected in parallel. The typical voltage 

range of a single lithium ion battery is 3.0V to 4.2V; therefore a buck/boost regulator was 

required for the 3.3V voltage rail because the input voltage can be below or above 3.3V.  
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Figure 90: 3.3V Switching Regulator Provides Power for Transceiver, Digital Logic, 

and LNA 

To keep things simple, the same regulator was used for both 3.3V and 5.0V; 

however, different regulators could have been chosen to reduce space on the PCBA. 

For instance, the 3.3V regulator only required an output current of 200mA whereas the 

5.0V regulator required a maximum output current of 2A so a smaller regulator could 

have been chosen for the 3.3V net. Because 5.0V is always above the battery voltage, a 

boost regulator could have been chosen instead of the buck/boost regulator. 
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Figure 91: 5.0V Switching Regulator Provides Power for RF Switches, RF Detector, 

and Power Amplifier  

The TPS63020 was chosen based on its efficiency, low external component count, 

output current and physical size. The efficiency of the TPS63020 is around 90% at the 

typical battery voltage of 3.7V. High efficiency regulators are required for CubeSats due 

to the limited solar input power and limited thermal dissipation. The average solar input 

power estimated for the 1U IPEX mission was 1.2W with 2 solar cells on each face of 

the satellite.  

Heat sinks and fans are not applicable for space applications, so thermal energy is 

primarily dissipated through radiation. The heat from the radio needs to be conducted 

from the PCBA through heat straps or the satellite structure to an external surface on the 

satellite where it is radiated from the system. Thermal dissipation through radiation is 

much less than provided by convection, heat sinks, and fans in terrestrial applications. 

An example of a CubeSat thermal radiator is shown in Figure 92, which is taken from a 

presentation for the CPOD mission designed by Tyvak Nano-Satellite Systems. [23] 
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CPOD’s thermal radiator is nearby the UHF antenna, which suggests that the radiator is 

designed to primarily dissipate heat from UHF radio internal to the satellite.  

 

 

Figure 92: Example of UHF Radio Thermal Radiator, Tyvak CPOD Mission [23] 

Switching regulators are typically not used for sensitive RF and analog circuitry 

due to high switching noise conducted into the power net. At a switching frequency of 

2.4MHz and an RF frequency range of 2.4GHz to 2.5GHz, the 1000th to 2084th harmonic 

of the switching frequency would be of concern for the RF band components, which 

would already be at very low power. The most sensitive circuitry would be the base band 

RF detector circuits internal to the transceiver. Typically low-noise, low-dropout (LDO) 

linear DC regulators are utilized for sensitive analog circuits. However, LDOs regulate 

their output voltage by dissipating power across a transistor proportional to the voltage 

drop across the device. The higher the voltage difference between the input and output 

of an LDO, the lower the efficiency as calculated with the simple equation: =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 . In 
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addition, LDOs can only output a voltage lower than the battery input voltage, so a 

switching regulator would need to be interfaced between the battery and input to an LDO.  

The LDO would also require a large power supply rejection ratio (PSRR) at the 

switching regulators frequency. Expensive LDOs can be purchased with significant 

PSRR up to about 10MHz, however this would only block up to the 4th harmonic of the 

TPS63020’s 2.4MHz switching frequency. Additionally, PSRR decreases with smaller 

voltage headroom and higher current draw, therefore efficiency is traded for higher 

PSRR. Therefore a custom low pass power filter would provide a better solution to 

mitigating switching noise affecting the RF circuitry.  

Not enough information is provided in the device datasheets to determine the 

center frequency and attenuation requirements of this power supply low pass filter. The 

decision was made to take the risk of using only switching regulators on the board with a 

feedthrough capacitor and additional bulk capacitors to reduce noise. If the switching 

regulators were still found to inject too much noise into the circuitry during testing, 

additional noise filtering would be designed into the second revision of the board with the 

solution determined empirically by physically modifying the first revision of the PCBA and 

measuring performance. 

Component values for the input/output capacitors, switching inductor, and 

feedback resistors were chosen based on the TPS63020 datasheet. [47] After the 

regulator, a TI INA219 I2C power monitor provides current and output voltage 

measurements for the satellite’s telemetry database.  The power monitor’s current sense 

resistor was sized for the maximum current expected from the regulator and the sense 

voltage range of the power monitor. The simplified schematic from the INA219’s 

datasheet is shown in Figure 93. The power monitor was chosen because of past design 

heritage and low power consumption when commanded into a one-shot measurement 
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low power mode. The INA219 integrates an amplifier, analog to digital converter (ADC), 

and an I2C interface into a single package. 

 

Figure 93: Texas Instruments INA219 Power Monitor Simplified Schematic [48] 

A feedthrough capacitor and additional bulk capacitors are placed after the power 

monitor to reduce switching noise on the power net and reduce droop introduced by the 

sense resistor’s impedance. The 499Ω resistors and NMOS transistors pull the voltage 

rail to ground when the regulator is disabled by discharging the power stored in the bulk 

capacitors and preventing a “floating” state. This discharge functionality is provided in 

some regulators, but not the TPS63020. Voltage rail discharge ensures that the circuitry 

is truly de-energized when the enable signal is de-asserted and not floating at an 

indeterminate voltage. In past experience, floating power rails have caused circuitry to 

be in an undefined state and exhibit unwanted behavior. 

The regulators were designed with standalone testing of the ISIR on the evaluation 

microprocessor board in mind. The regulators are enabled simply when power is 

supplied to the board, but DNP and 0Ω resistors allow the board to be hardware 

configured allowing the System Board to enable/disable the regulators and bypass the 

5.0V regulator entirely through its on-board regulator “VAR_PL_B.” 
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Figure 94: Board Input Power Sensor 

 

Figure 95: Additional Input Bulk 

Capacitors 

 

Figure 94 shows the power sensor for the entire board, U22. The board derives all 

of its power from the satellite battery voltage “VSUM,” therefore all power consumed by 

the board will be measured by U22. By measuring the power at the battery voltage, the 

actual power draw of the board can be characterized without assuming efficiencies for 

the regulators. Figure 95 shows additional bulk capacitors for the System Board voltages. 

R143 simply discharges the battery voltage net when the battery is disconnected. 
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5.4 Transceiver Frequency Source 

The AT86RF233 transceiver allows use of a crystal or oscillator as its 16MHz 

frequency source. According the evaluation board hardware user manual, the 

REB233SMAD transceiver evaluation board interfaces a Siward SX4025 crystal with two 

load capacitors of 10pF each to the AT86RF233 which is calibrated with the radio 

transceiver trim capacitors using the register XOSC_CTRL. The evaluation board user 

manual guarantees a tolerance within +20ppm and -5ppm. [25] However, the 

recommended operating range with the crystal is between -20 and 70C. The 

AT86RF233 also permits the usage of a temperature compensated crystal oscillator 

(TCXO) for its frequency source. A TCXO provides a more accurate frequency source 

across a larger temperature range, but will consume more power than using the crystal.  

Both a crystal and TCXO source are designed into the schematic as shown in 

Figure 96. The board is resistor configurable to select one of the two frequency sources. 

During testing of the first board revision, the performance of the radio can be compared 

between using either frequency reference source; however only the TCXO is expected 

to be required in future revisions. All of the internal frequencies of the AT86RF233 are 

derived from this frequency reference source; therefore the overall system performance 

is determined by the reference frequency accuracy. The AT86RF233 datasheet specifies 

a required reference frequency accuracy of +/-30ppm for correct functionality at 

2000kbps, as shown in Figure 97. [28] However, it is assumed a more accurate source 

is required due to tolerate additional Doppler shift between the transmitter and receiver. 
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Figure 96: Transceiver Frequency Reference Options 

 

Figure 97: AT86RF233 Required Frequency Accuracy [28] 

The AVX CX3225SB16000E0FPZ25, 16MHz crystal was chosen because it had 

the tightest frequency stability compared to other crystals at +/-10ppm. The crystal will 

operate within the -40 to 85C temperature range, but its frequency will vary an additional 

+/-16ppm. Similarly, the ECS Inc., ECS-2532HS-160-3-G TCXO was chosen due to its -

40 to 85C operating range and +/-10ppm frequency stability. The output of the TCXO is 

reduced from 3.3V to between 400mV and 500mV as required by the AT86RF233 using 

a resistive divider. 

The 12pF trim capacitors across the crystal were chosen carefully after consulting 

literature on the subject and referencing Atmel application notes; these capacitors can 

affect the frequency stability significantly and the AT86RF233 provides additional 
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internal trim capacitors to allow calibration of the reference frequency to correct for 

component tolerances as shown in Figure 98. [28] The 12pF value was calculated from 

a Microchip application note AN826, “Crystal Oscillator Basics and Crystal Selection…”. 

[49] The capacitor value is calculated using the oscillator’s effective load capacitance 

and crystal specification. 

 

Figure 98: AT86RF233 Datasheet Simplified XOSC Schematic with External 

Components [28] 

Kemet CBR02C120F3GAC 1% NPO capacitors were chosen for the 12pF 

capacitors to minimize frequency variations and drift due to the capacitor tolerance and 

temperature drift; these capacitors have a temperature stability of 30ppm which results 

in a total tolerance of 1.3% or 0.156pF across the -40C to 85C temperature range. 

Looking at the capacitor trim graph from the Atmel application note “Crystal 

Characterization for AVR RF,” shows that this 0.156pF tolerance results in 

approximately 1ppm variation. [50] 
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Figure 99: Trim Capacitor Graph from Atmel Application Note [50] 

5.5 Amplifier Protection and RF Power Measurement 

During development of several CubeSat missions in the PolySat lab, a common 

incident repetitively occurred: permanent damage to the UHF power amplifier due to 

transmitting without an antenna or load on the output of the UHF radio. During testing 

and troubleshooting, development satellites and “flatsats” are torn down, modified, and 

re-built; this happens hundreds of times during development of hardware for any given 

mission. Typically, the satellite software automatically transmits beacons when powered. 

If the person rebuilding the hardware forgets to place either a load or antenna on the 

output of the UHF radio, the power amplifier will overheat and become damaged from 

excessive reflected power into its output. This surface mount power amplifier then needs 

to be replaced with a new amplifier using a microscope and hot air gun soldering 

techniques.  

The power amplifier could also become damaged if transmitting while the antenna 

was stowed or an object shorting the antenna due to excessive load mismatch. Similarly, 

LNAs were becoming damaged from excessive input power into the radio during receive 
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testing from inadequate attenuation at the radio’s input. Needless to say, these common 

occurrences became irritating, time consuming, expensive, and provided motivation to 

design a protection circuit for radio amplifiers. 

 

Figure 100: UHF Radio PCBA, Commonly Damaged Power Amplifier Circled in Red 

[2] 

 

Figure 101: Removal of the UHF Power Amplifier (Microscope) 

Power amplifiers have maximum voltage standing wave ratio (VSWR) ratings. 

VSWR is a measure of the magnitude of power reflected from the load and back to the 

power amplifier’s input. A VSWR of 1:1 indicates a perfect match with no power 

reflecting and all output power dissipated in the load. A VSWR of 2.0:1 indicates minor 

mismatch with 33% of the signal reflected back to the amplifier. VSWR equal to 5.0:1 is 

67% reflection, 10.0:1 is 82% reflection, and infinity:1 is 100% reflection. A voltage 
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reflection increases the instantaneous voltage on the amplifier output and increases 

current draw in the amplifier. High power dissipation caused by high collector current 

draw increases the amplifier temperature past its absolute maximum ratings causing 

permanent damage. [51] Similarly, LNAs have an absolute maximum input power before 

permanent damage occurs.  

 

Figure 102: Power Amplifier Protection Circuit Block Diagram 

The block diagram for the power amplifier protection circuit is shown in Figure 102. 

The protection circuit consists of a directional coupler, RF detector, and digital logic to 

disable the amplifier before the reflected power exceeds the amplifier’s VSWR limit. The 

protection circuit is an active circuit that samples the reflected power, through a 

directional coupler and RF detector, and disables the power amplifier when the power 

reaches a resistor configurable limit. A comparator with hysteresis is utilized to detect 

when the sample exceeds the limit and a one-shot (mono-stable multi-vibrator) converts 

the comparator’s alert signal into signal that disables the amplifier for a defined duration.  

When the load exceeds the VSWR limit of the power amplifier and the amplifier 

transmits, then the protection circuit will disable the amplifier for a set amount of time, 
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allowing the component to cool down. When the disable time elapses, the amplifier will 

transmit again which will trigger the protection circuitry and disable the amplifier once 

again. The circuit will oscillate with the power amplifier transmitting for a short pulse and 

then becoming disabled for the long duration until the VSWR of the load changes to 

below the permissible limit or transmission halts. An analog to digital converter (ADC) is 

also added to the circuit to provide a measurement of the reflected power to the C&DH. 

The ADC has a register that stores the maximum value measured, which can be read 

and cleared by the C&DH for maximum VSWR measurements. The C&DH could act on 

this telemetry by alerting the user with the value or by reducing the power into the power 

amplifier.   

 

Figure 103: Low Noise Amplifier Protection Circuit Block Diagram 

The block diagram for the LNA protection circuit is shown in Figure 103. The 

protection circuit is identical to the power amplifier circuit, with the difference being that 

the circuit samples the input signal power level instead of a reflected signal power level. 
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Figure 104: RF Directional Coupler, DC25-73LF 

Figure 104 is the schematic snippet of the directional coupler used for both the 

power amplifier and LNA protection circuits. The coupler introduces an insertion loss of 

0.2dB to the RF chain and has a coupling factor of C = -17dB indicating the RF sample 

from the “COUPLED” output will be 17dB less than the RF signal incident on the “IN” 

input.  

 

 

Figure 105: Amplifier Protection Schematic: Detector, Level Translator, and ADC 

Figure 105 shows the first half of the amplifier protection schematic containing the 

RF detector, level translator, and ADC. The ADL5501 RMS 50MHz to 6GHz “TruPwr” 

detector manufactured by Analog Devices was chosen as the RF detector. In the pursuit 
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of simplicity, a design decision was made to use the same RF detector model for the PA 

and LNA power protection circuitry. The ADL5501 was chosen because of its low power 

draw, high input range allowing measurement of LNA input and PA output, high 

accuracy, and sufficient datasheet information and graphs. The Linear Technologies part 

LTC5505 was initially chosen due to its lower power consumption and higher input range, 

but the datasheet contained insufficient information regarding its accuracy and error 

variation with input voltage and temperature. The functional block diagram from the 

ADL5501 datasheet is shown in Figure 106. [52] 

 

Figure 106: Analog Devices ADL5501 Datasheet Functional Block Diagram [52] 

 

Figure 107: RFPA2026 Datasheet Absolute Maximum Ratings [42] 
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Figure 108: MAX2692 Datasheet Absolute Maximum Ratings [46] 

The trigger values for the circuit were decided based off the maximum ratings 

within the RFPA2026 PA and MAX2692 LNA datasheets shown in Figure 107 and 

Figure 108. [34, 39] Although not explicitly stated, the RFPA2026 maximum output 

VSWR was inferred to be 6:1; an engineering margin of 50% was added for a design 

limit VSWR of 3:1. The LNA maximum input was stated to be +5dBm, which was 

translated to a design limit of 3dBm with 2dB of engineering margin.  

Hysteresis is designed into the circuit to prevent oscillation during conditions near 

the limit of the circuit. The PA VSWR falling limit was chosen to be 1.8:1 and the LNA 

input power falling limit was chosen to be 0dBm. Therefore, the PA circuit will trigger 

when the load presents a 3:1 VSWR or higher and release when the load presents a 

1.8:1 VSWR or lower. Similarly, the LNA protection circuit will trigger at an input of 3dBm 

and release at 0dBm. The protection circuit design hysteresis plots are shown in Figure 

109 and Figure 110.  

 

Figure 109: PA Protection Circuit Design Hysteresis  
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Figure 110: LNA Protection Circuit Design Hysteresis 

 

Figure 111: ADL5501 Datasheet Output vs. Input Level [52]  

The RF detector was operated at a supply of 5V because the datasheet 

characteristics and graphs were measured with the component powered from a 5V 

supply. The RF detector datasheet input power versus output voltage plot is shown in 

Figure 111. [52] Figure 112 shows the linearity versus input level for the RF detector, 

which illustrates the usable input range of the device. An accuracy of 1dB was desired 

for the amplifier protection circuitry; therefore the RF detector must be accurate within 

1dB. The plot shows that inputs below -15dBm and above 7dBm produce excessive 

error therefore the usable range for the RF detector is between -15dBm and 7dBm. 

Additionally, the circuit should operate correctly over the PCBAs operating temperature 
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range of -40C to 85C (industrial). Figure 113 shows the error due to temperature drift; 

this plot indicates the detector will exhibit an error up to +/- 0.3dB at extreme 

temperatures compared to room temperature. The optimum point of operation is at the 

center of the input vs. output graph at -5dBm with the minimum error and highest 

linearity. Therefore, the power amplifier protection circuit was designed to operate near 

the -5dBm point.  

 

Figure 112: ADL5501 Datasheet Linearity Error [52] 
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Figure 113: ADL5501 Datasheet Temperature Drift [52] 

Considering the PA has a maximum output power of 34.5dBm, the insertion loss of 

the low pass filter, insertion and coupling factor of the coupler and the insertion loss of 

the RF switch, the maximum output of the coupler is 15.35dBm. Two attenuators with a 

combined attenuation of 16dB are added to the input of the PA protection RF detector to 

reduce the maximum input level to -0.65dBm. At the PA protection design limits of 

VSWR of 3:1 and 1.8:1 the input to the RF detector is approximately -3dBm and -

8.2dBm respectively; these inputs are centered around -5dBm where there is minimal 

error. The LNA RF detector does not require additional attenuation and an LNA input at 

3dBm and 0dBm corresponds to an RF detector input of -14dBm an -17dBm 

respectively; the -17dBm value is slightly out of the linear range for the detector, but not 

enough to warrant concern.  

To reduce error from visually interpreting the datasheet plots within the RF 

detector datasheet, an online plot digitizer tool “WebPlotDigitizer” created by Ankit 

Rohatgi was utilized to convert the input versus output plot at 2350MHz into a csv data 
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file which was imported into excel. [53] The WebPlotDigitizer online application is shown 

in Figure 114. 

 

Figure 114: Digitizing the ADL5501 Input vs Output Plot with WebPlotDigitizer [53] 

The input versus output plot shows a trace for 2350MHz; however the center design 

frequency for the protection circuitry is at 2450MHz. Digitizing the conversion gain plot 

from the datasheet provided the difference in gain between 2350MHz and 2450MHz; the 

difference in gain is 2% as shown in Figure 115 which isn’t too significant, but the factor 

of 0.98 to convert the 2350MHz plot to 2450MHz was used to reduce error. 
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Figure 115: Digitized RF Detector Conversion Gain Plot 

Figure 116 shows the digitized data from the input vs output plot at 2350MHz and 

the extrapolation calculation to 2450MHz. This data was used to plot the extrapolated 

input vs output plot in excel. A fourth-order polynomial trend line was fit to the data and 

equation displayed on the plot as shown in Figure 116. This equation was used within 

excel to calculate the expected output voltage of the RF detector at the five power levels 

of interest: maximum PA reflected power (1dBm) and the upper and lower hysteresis 

limits of the PA and LNA; these output voltages are shown in column “Fit Result 2 (V)”. 

The conversion gain was calculated at each power level to compare against using the 

flat linear gain of 4.98.  
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Figure 116: Resulting Data within Excel with Additional Calculations 

 

Figure 117: Excel Calculations for RF Detector Output at Amplifier Protection 

Limits 

Now that the voltages from the RF detector at the limits have been found, the 

optimum gain for the level-converting, operational amplifier (op-amp) can be found to 
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maximize the accuracy of the ADC measurements by utilizing its input range up to 3.3V. 

Also, the higher voltage levels are required for the comparator input used later in the 

circuit to keep the signal above the comparators internal 400mV reference. The 

maximum voltage level expected to be read by the ADC was calculated by assuming a 

full reflection at max power from the power amplifier with additional margin resulting in 

1dBm incident on the RF detector. 1dBm input results in 1.255V output which can be 

scaled up to 3.3V with a gain of 2.63 V/V. 

 As shown previously in Figure 105, an op-amp circuit in a non-inverting 

configuration is used to level convert the RF detector output voltage to higher voltage 

levels. The op-amp resistor values were calculated using the non-inverting gain 

equation: 𝐺 = 1 +
𝑅2

𝑅1
. The input resistor balances the op-amp to reduce error as 

described in the article “Design Balanced Op-Amp Circuits for Performance and 

Simplicity.” [54] The feedback capacitor attenuates high frequency noise above 1MHz by 

creating a low pass response which is described in Texas Instruments Amplifier 

WEBENCH webpage shown in Figure 118. [55]  

 

Figure 118: Texas Instruments WEBENCH Non-Inverting Amp Description [55] 
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The Texas Instruments ADC121C021 analog to digital converter (ADC) was 

selected to allow the C&DH microprocessor to read the power amplifier reflected power 

and LNA input power as well as the power amplifier transmitted power described later. 

The datasheet block diagram for the ADC121C021 is shown in Figure 119 [56] The ADC 

has a highest conversion and lowest conversion register which will store the maximum 

and minimum readings input to the ADC. The microprocessor can read and clear these 

registers and report the reflected power level to the user or act upon the level by either 

reducing input power to the power amplifier or disabling the protection circuitry. The alert 

pin from the ADC is also fed to the GPIO expander for read access by the 

microprocessor. 

 

Figure 119: Texas Instruments ADC121C021 ADC Block Diagram [56] 

Figure 120 shows the schematic for the remainder of the protection circuit. The 

amplified output of the RF detector is routed to the input of the Analog Devices 

ADCMP343 comparator. The comparator has an internal 400mV reference with 
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programmable hysteresis; the datasheet block diagram for the ADCMP343 is shown in 

Figure 121. [57] 

 

Figure 120: Amplifier Protection Schematic: Comparator, One-Shot, and 

Additional Logic 

 

Figure 121: Analog Devices ADCMP343 Datasheet Block Diagram [57] 

The resistor values for the comparator were chosen following the equations within the 

datasheet and the desired hysteresis values chosen previously. The result is that the 
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comparator will output a low signal (0V) when the upper limit is reached and a high 

signal (3.3V) when the input is lower than the lower limit.  

The output of the comparator is then routed to the input of a one-shot circuit 

designed using the SN74LVC1G123 mono-stable multi-vibrator. The external capacitor 

and resistor was chosen following the graph within the devices datasheet to output a 

high pulse for 1ms as shown in Figure 122. [58] After the one-shot is an inverter to 

convert the disable pulse from active high to active low. The active low disable signal is 

then fed to a 3-input logic AND gate with the transceivers TX/RX signal and GPIO 

signals allowing the C&DH to override and disable the PA or LNA independently. The 

transceiver TX/RX signal into the AND gate disables the LNA during transmit and 

disables the PA during receive.  

 

Figure 122: Texas Instruments SN74LVC1G123, One-Short Duration Graph [58] 

In addition to the reflected power from the power amplifier, the output power of the 

amplifier is also recorded by an additional ADC shown in Figure 123. The circuit uses 

the same ADC as the amplifier protection circuitry. The input to the ADC is supplied by 

an RF detector circuit internal to the RFPA2026. Measuring the power transmitted by the 

amplifier allows calculation of the VSWR of the antenna as well as allowing the C&DH to 
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monitor and control the output power of the power amplifier in a closed-loop fashion by 

varying the output power from the transceiver input to the power amplifier. The C&DH 

could compensate for gain drift of the amplifier due to temperature. 

 

Figure 123: Transmit Power Measurement ADC 

The RFPA2026 datasheet plot of “Detector Output versus Output Power” was digitized 

to find the output voltage at the maximum value of 36dBm. The ADC operates with a 

range to 3.3V, so the detector output was reduced with a resistive divider and buffered 

with a unity gain op-amp to the input of the ADC. 

 

Figure 124: Digitized RFPA2026 Detector Output vs Output Power Plot 

The protection circuitry and measurements of reflected, input, and output power 

would be useful during development, but may not be necessary or desired during flight. 

Therefore, the board has the provision to disable the protection circuitry through the 
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“AMP_PROTECT_ON” signal and command the ADCs into a shut-down state through 

I2C; disabling this circuitry would reduce the power consumption of the board. Therefore, 

the only down-side to the protection circuity and ADCs is the occupied area on the 

PCBA.  

5.6 Development Interface 

 

 

Figure 125: Evaluation Board Development Interface 

Figure 125 shows the schematic for the development headers and EEPROM on 

the board. These components are not used in flight and are only for development 

purposes. The Atmel evaluation daughter board connector permits the board to be 

installed into the Atmel microprocessor PCB shown in Figure 34. While installed into the 

Atmel microprocessor PCBA, the microprocessor evaluation software can be utilized to 

perform receive sensitivity and transmit power testing exactly as performed for the 

transceiver evaluation board. The EEPROM is necessary to store information about the 

board, such as MAC address and external amplifier information, used by the Atmel 

evaluation software. These interfaces allow standalone testing of the ISIR independent 

of the satellite System Board without additional embedded software development. 
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5.7 Receive and Transmit Power Draw Estimation 

The power draw of the radio during receive and transmit modes is estimated by 

consulting datasheets and totaling the current draw for each component at its expected 

operating state. Table 15 is a count of all the active components on the PCB and the 

expected power draw during receive mode. In receive mode, the power amplifier and 

power amplifier protection circuitry is disabled and the transceiver is commanded into 

high sensitivity listening mode. The temperature and power sensors are commanded 

into shutdown mode when not in use. The system processor will only probe the sensors 

every few minutes, which corresponds to an insignificant duty cycle and power draw.  

The most significant loads during receive are the transceiver (43mW), low noise 

amplifier (15mW), and temperature compensated crystal oscillator (37mW). The total 

power draw in receive mode is calculated to be 97mW assuming a regulator efficiency of 

90%. The design target was a receive power draw less than 200mW.  

Table 16 shows the power draw estimation during transmission. In transmit mode 

the power amplifier is powered and amplifying, the transceiver is transmitting, the LNA is 

disabled, and the power amplifier protection circuitry is powered. The transmit power 

draw is 6.9W which is below the design target of 8W. The power amplifier dominates the 

transmit power drawing 6.8W during 2W saturated transmit with a 30% efficiency. 0.68W 

of heat is dissipated in the 90% efficient switching regulator. The power amplifier current 

draw was taken from a graph provided by RFMD for an evaluation board modified for 

2.4GHz operation. 
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Table 15: Receive Power Draw Estimation 

Device Description 
Number 

of 
Devices 

Voltage 
(V) 

Current 
(mA) 

Power 
(mW) 

Notes 

AD7414 Temp Sensor 1 3.3 0.000003 0.0 

Software 
commanded 
power down 
mode 

AT24C128
C-MAHM-T 

EEPROM 1 3.3 0.006 0.0 
Normal Idle 
draw 

TCA9539R
TW 

GPIO 
Expander 

1 3.3 0.03 0.1 
Operating 
draw 

ECS-
2532HS-
160-3-G 

TCXO 1 3.3 10 36.7 
 

AT86RF23
3 

Zigbee XCVR 1 3.3 11.8 43.3 
RX Mode 
(Listen), High 
sensitivity 

RFPA2026 Transmit PA 1 5 0 0.0 
Not 
Transmitting 

MAX2692 Receive LNA 1 3.3 4 14.7 
 

INA219AID
CNR 

Power 
Monitor 

1 3.3 0.015 0.1 
Software 
commanded 
idle mode 

ADC121C0
21 

ADC 3 3.3 0.000002 0.0 
Software 
commanded 
idle mode 

ADL5501 RF detector 2 3.3 0.001 0.0 
Detector 
Disabled 
during receive 

HMC595E RF Switches 3 5 0.05 0.8 
 

OPA348AI
DBVR 

Op Amp 3 3.3 0.065 0.7 
 

ADCMP343 Comparator 1 3.3 0.007 0.0 
 

SN74LVC1
G123YZPR 

One-Shots 2 3.3 0.00002 0.0 
 

AT25010B-
MAHL-T 

Eval 
EEPROM 

1 3.3 0 0.0 
Remove from 
board for 
Intrepid use 

FXMA2102
L8X 

I2C Level 
Trans 

1 3.3 0.005 0.0 
 

SN74LVC2
T45YZPR 

2-Bit Level 
Trans 

3 3.3 0.004 0.0 
 

NLSV1T24
4MUTBG 

1-Bit Level 
Trans 

2 3.3 0.002 0.0 
 

SN74LVC2
G04YZPR 

Not Gate 2 3.3 0.01 0.1 
 

SN74LVC1
G11YZPR 

And Gate 2 3.3 0.01 0.1 
 

Regulator 
Efficiency: 0.9 

  

Total (mW) 
: 97 
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Table 16: Transmit Power Draw Estimation 

Device Description 
Number 

of 
Devices 

Voltage 
(V) 

Current 
(mA) 

Power 
(mW) 

Notes 

AD7414 Temp Sensor 1 3.3 0.000003 0.0 

Software 
commanded 
power down 
mode 

AT24C128
C-MAHM-T 

EEPROM 1 3.3 0.006 0.0 
Normal Idle 
draw 

TCA9539R
TW 

GPIO 
Expander 

1 3.3 0.03 0.1 
Operating 
draw 

ECS-
2532HS-
160-3-G 

TCXO 1 3.3 10 36.7 
 

AT86RF23
3 

Zigbee XCVR 1 3.3 13.8 50.6 
TX at max 
power 

RFPA2026 Transmit PA 1 5 1225 6805.6 
Transmitting at 
34.5dBm 

MAX2692 Receive LNA 1 3.3 0.01 0.0 
Off during 
transmit 

INA219AID
CNR 

Power 
Monitor 

1 3.3 0.015 0.1 
Software 
commanded 
idle mode 

ADC121C0
21 

ADC 3 3.3 0.000002 0.0 
Software 
commanded 
idle mode 

ADL5501 RF detector 2 3.3 1.5 11.0 
Detector with -
6dBm input 

HMC595E RF Switches 3 5 0.05 0.8  

OPA348AI
DBVR 

Op Amp 3 3.3 0.065 0.7 
 

ADCMP343 Comparator 1 3.3 0.007 0.0  

SN74LVC1
G123YZPR 

One-Shots 2 3.3 0.00002 0.0 
 

AT25010B-
MAHL-T 

Eval 
EEPROM 

1 3.3 0 0.0 
Remove from 
board for 
Intrepid use 

FXMA2102
L8X 

I2C Level 
Trans 

1 3.3 0.005 0.0 
 

SN74LVC2
T45YZPR 

2-Bit Level 
Trans 

3 3.3 0.004 0.0 
 

NLSV1T24
4MUTBG 

1-Bit Level 
Trans 

2 3.3 0.002 0.0 
 

SN74LVC2
G04YZPR 

Not Gate 2 3.3 0.01 0.1 
 

SN74LVC1
G11YZPR 

And Gate 2 3.3 0.01 0.1 
 

Regulator 
Efficiency: 0.9 

  

Total (mW) 
: 6906 
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6 Layout 

After creating a netlist from the schematic, layout of the ISIR was performed over 

several weeks utilizing OrCAD PCB Editor. In order to fit the design within the small, 

single-sided 1.4” x 3.3” area specified by the System Board requirements, SMT lead-less 

and BGA components were required. During the layout, many components that were 

initially SOT or leadless packages had to be replaced with BGA equivalents to fit all the 

components on the board. The small form factor and complexity of BGA components 

requires automated assembly of the board by a PCBA assembly house and therefore 

additional cost. The board was a self-funded student project, so cost was a primary 

concern.  

In order to reduce PCB fabrication cost, the board was designed with constraints 

adhering to PCB manufacturer Advanced Circuits’ 4-Layer PCB “$66 each” deal. The 

constraints of the $66 deal are outlined on the website and reproduced in Figure 126. 

The PCB stackup is also defined by the $66 deal as shown in Figure 127. Following the 

large drill and line/space requirements of the $66 deal design rules resulted in 

decreased component density and therefore less optimized PCB area. The board was 

fabricated at Advanced Circuits, but was shipped to a cheaper assembly house for pick 

and place assembly. To reduce cost, the boards were assembled with a long lead time; 

the assembled boards arrived about one month after the layout was completed. 
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Figure 126: Advanced Circuits 4-Layer $66 Each PCB Deal [59] 

 

Figure 127: Advanced Circuits Standard 4-Layer Stackup [59] 

A picture of the final, assembled PCBA without lid is shown in Figure 128. The final 

layout of the PCB and four layers are shown in Figure 129 through Figure 132. Due to 

minimal clearance with the Intrepid System Board, all of the components are mounted 

on the top side of the board; the single-sided assembly also reduced cost. The PCBA 

consists of 330 individual components, 841 connections, and 826 drilled holes for vias 

and mounting. A metal shield surrounds the RF components to reduce electromagnetic 

coupling into the sensitive RF circuitry. The switching regulator circuits for the board are 

placed outside this shield to minimize any coupling that might occur.  

The top layer consists of component footprints, digital signal, and RF routing. The 

second layer is a solid, uninterrupted ground plane to provide consistent impedance for 
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RF and digital signals as well as minimize EMI from the PCBA. The third layer is 

primarily power floods routing the battery, 3.3V, and 5.0V power nets using wide copper 

shapes to minimize power net impedance, reducing inductance and therefore reducing 

noise coupling and rail collapse. The power layer is placed next to the ground plane to 

reduce EMI and provide minor decoupling capacitance. The bottom layer simply consists 

of low frequency digital signal routing with no practical characteristic impedance 

requirements. 

 

Figure 128: Intrepid S-Band ISM Radio PCBA, Revision 1 (Shield Lid Removed) 

 

Figure 129: ISIR PCBA Layout Top, Signal and RF 
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Figure 130: ISIR PCBA Layout Layer2, Ground 

 

Figure 131: ISIR PCBA Layout Layer3, Power and Signal 

 

Figure 132: ISIR PCBA Layout Bottom, Power and Signal 
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Figure 133 shows the top layer with annotations calling out the location of the six 

important circuitry groups on the PCBA: power regulators, transceiver, low noise 

amplifier, power amplifier, antenna connectors, and development headers / test points. 

 

 

Figure 133: ISIR Annotated Top Layer 

The layout of a mixed-signal and RF PCBA is absolutely critical to its final performance; 

many routing guidelines must be properly executed to ensure functionality. The following 

is a list of considerations that were taken into account during layout of the PCB: 

 Power Distribution and IC Decoupling 

 Switching Regulator Layout 

 RF Layout and Characteristic Impedance 

 Oscillator Layout 

 PCB Layer Stack-Up 

 EMI Reduction 

Figure 134 shows the final layout for the TPS63020 switching regulator configured 

for 3.3V output. The layout recommendations from the datasheet were referenced, but 

the layout example reproduced in Figure 135 could not be implemented due to space 
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constraints. The inductor, capacitors, and feedback resistors are located as closely as 

possible to the regulator IC as possible to conserve space and minimize noise. The 

feedback resistor return path was carefully routed through the IC ground pin and into the 

thermal belly pad of the IC where it is connected to ground at a single point. It is 

important that the feedback return path is clean of any switching return current from the 

IC, inductor, and filtering capacitors. The thermal belly pad of the IC has as many vias 

that the design would permit to provide a low thermal impedance path to the ground 

plane. The 5.0V switching regulator circuitry layout is similar to the 3.3V regulator with 

minor component placement differences. 

 

Figure 134: 3.3V Switching Regulator Layout 
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Figure 135: Switching Regulator Datasheet Layout Example [47] 

Figure 136 shows the layout of the transceiver, crystal, oscillator, level translators, 

balun, and additional circuitry. The PCB layout description from the AT86RF233 

evaluation board hardware user manual was referenced for digital and analog grounding 

of the transceiver, RF connection, and oscillator layout; snapshots from the application 

note are shown in Figure 137 and Figure 138. [60] 

 

Figure 136: Transceiver Layout 
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Figure 137: Atmel AT86RF233 Ground Connection Layout Recommendation [60] 

 

Figure 138: Atmel AT86RF233 Crystal Layout Recommendation [60] 

Figure 139, Figure 140, and Figure 141 show the layout for the LNA, power 

amplifier, RF switches, and RF connectors. The datasheets, application notes, and 

evaluation board layout for each device was referenced during the layout and 

recommendations were implemented as practical within the board’s space constraints. 

The components are extremely crowded and packed as closely as possible.  
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Figure 139: LNA Layout 

 

Figure 140: Power Amplifier Layout 
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Figure 141: RF Switch and RF Connector Layout 

Figure 142 shows the top layout of the board with RF traces colored red, ground 

connections colored gray, the 3.3V power net colored pink, and 5.0V colored purple.  

 

Figure 142: PCB with Highlighted Traces: RF = Red, GND = Gray, 3.3V = Pink, 5.0V 

= Purple 
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Stackup information from the PCB fabricator’s website was utilized to calculate the 

appropriate RF trace width to achieve 50 Ohm impedance. The information from the 

website is reproduced in Figure 143, which shows the four layer stackup utilizes two 

sheets of 2216 pre-preg between the top copper foil and 2nd layer. The thickness of the 

pre-preg varies depending on the amount of copper material remaining on the two layers 

being bonded. The table shows the approximate pre-preg thickness for 30% and 70% 

copper utilization, these numbers were used to estimate the height between the top layer 

and the ground plane.  

The resulting estimated PCB stackup is shown in Table 17. The stackup 

information was then inputted into the free Saturn PCB Design tool program to calculate 

the required width for 50Ω microstrip impedance as shown in Figure 144. The resulting 

trace width of 16.1 mils was used for the RF traces on the PCB.  

 

Figure 143: Advanced Circuits 4 Layer PCB Stackup and Prepreg Thicknesses 
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Table 17: PCB 4 Layer Stackup 

LAYER THICKNESS (mils) 

COPPER 1: SIG/RF 1.4 

PREPREG SHEET1 5.1 

PREPREG SHEET2 4.7 

COPPER 2: GND 1.4 

CORE 39 

COPPER 3: PWR 1.4 

PREPREG SHEET3 4.7 

PREPREG SHEET4 5.1 

COPPER 4: SIG 1.4 

 

 

Figure 144: 50 Ohm Microstrip Trace Impedance Calculation by Saturn PCB 

Design Tool 

To prevent the top layer ground plane flood from affecting the trace impedance, 

the ground flood was kept 40mils away when possible. The rule of thumb is to keep the 

copper pour four dielectric thicknesses away to reduce parasitic effects.  

Component dimension information was also inputted during the layout which is 

shown in Figure 145 and Figure 146. This model allowed confirmation of adequate 
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clearance between the components and the RF shield case as well as clearance 

between components.  

 

Figure 145: PCBA 3D Model with Component Height Information 

 

Figure 146: PCBA 3D Model with Shield Installed, Confirming no Mechanical 

Clearance Issues 

Several days were dedicated to double checking the schematic, footprints, pinouts, 

connector orientations, and layout which resulted in several mistakes being caught and 

corrected prior to the board being ordered. It is important to double check all the details 

within a design before it is fabricated, because physically troubleshooting and correcting 

the mistakes on the finished board consumes much more time than performing the 
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proper due diligence. The PCB was also fit checked and inspected prior to assembly as 

shown in Figure 147. 

 

Figure 147: PCB Fit Check Prior to Assembly 
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7 PCBA Bring Up and Testing 

7.1 Initial Bring Up and Troubleshooting 

The PCBAs were visually inspected under a microscope for assembly issues upon 

reception. The four PCBAs passed visual inspection with no visible issues. A multimeter 

configured in continuity measurement mode was used to confirm no shorts present 

across the power nets and ground and no shorts across a random selection of 

capacitors. Next was the smoke test; the board was powered from a benchtop power 

supply configured at 4.0V with a 100mA current limit. The board drew 6mA indicating no 

major short present on the board. The power nets were then measured with a voltmeter 

to confirm the 3V3 and 5V0 regulators were operating nominally. The crystal was probed 

with an oscilloscope to confirm oscillator activity at the AT86RF233 transceiver. 

The evaluation processor board reads the SPI EEPROM for configuration settings 

prior to communication with the transceiver. The EEPROM data from the evaluation 

board was extracted using the Aardvark USB to I2C/SPI hardware developed by 

TotalPhase. The Aardvark Flash Center software was utilized to extract the EEPROM 

data and to program a modified version to the ISIR. Figure 148 shows the ISIR 

EEPROM being programmed by the Aardvark and Figure 149 shows a screen capture of 

the Flash Center software reading the EEPROM data from the evaluation board. 

 

Figure 148: Flashing the ISIR EEPROM with Modified Configuration File 
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Figure 149: Aardvark Flash Center EEPROM Programming Software 

After programming the ISIR EEPROM, the ISIR and evaluation processor board 

were connected and interfaced to a laptop. A partner evaluation board was also set up 

and a packet error rate test between the ISIR and the evaluation board was successful 

utilizing the evaluation software. Figure 150 shows the initial communication test 

between the evaluation board and the ISIR. This test confirmed that the transceiver, 

buffers, and regulators were functional. The test also confirmed the evaluation connector 

pinout was correct and that the software present on the evaluation processor board 

worked with the ISIR. 

 

Figure 150: ISIR and Evaluation Board Initial Communication Test 
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7.2 Balun AC Coupling Issue 

After initial bring up of the board, the transmit power from the AT86RF233 

transceiver was measured utilizing the coaxial switch test point placed after the 

transceiver. The transceiver was configured for an output of 4dBm, but the output power 

measured -1.7dBm after accounting for cable loss; the transceiver was transmitting 6dB 

less than expected. The only device between the transceiver and test point was the 

balun and AC coupling capacitor. The AC coupling capacitor was shorted out and the 

issue remained, therefore the issue was with the balun. After consulting the datasheet 

for the AT86RF233 and balun, it was discovered that the balun was not AC coupled 

between the bias and the balanced input pins. Therefore the DC bias at the transceiver 

output pins RFP and RFN was being shorted to ground through the balun bias pin. 

Figure 151 shows an annotated snippet of the schematic with the areas missing the AC 

coupling capacitors circled. 

 

Figure 151: Balun Coupling Capacitors Missing, Annotated Schematic 
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The balun was then removed using a microscope and SMT hot-air gun rework station. 

The traces to the balun were cut using a Xacto knife and two 22pF, 0201 capacitors 

were soldered across the two cut traces. Figure 152 shows the reworked transceiver to 

balun interface with the added capacitors. 

 

Figure 152: Reworked Board with Balun Coupling Caps Added 

The balun and C122 decoupling capacitor were then replaced and the transceiver output 

power was re-measured as 3.5dBm which matched the configured output power of 

4dBm minus the balun insertion loss of 0.6dB.   

7.3 TCXO Voltage Divider Issue 

During receive sensitivity testing, the crystal was swapped with the TCXO to 

evaluate whether the TCXO improved receive sensitivity. However, the receive 

sensitivity significantly degraded when the TCXO was connected. The TCXO output was 

then observed on an oscilloscope to be significantly smaller than expected. The TCXO 

had a resistive divider on its output to level convert the 3.3V oscillator output to 521mV 
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amplitude; however the measured amplitude was below 20mV. The AT86RF233 

datasheet specifies a parasitic capacitance of 3pF at the XTAL1 oscillator input pin, and 

it turns out that the impedance of 3pF at 16MHz is 829Ω which is significantly smaller 

than the 21kOhm resistor in parallel from the divider. Therefore, a capacitive voltage 

divider was more appropriate for level translating the output of the TXCO. Figure 153 

shows the annotated schematic snippet of the TCXO voltage divider. 

 

Figure 153: Oscillator Voltage Divider Issue, Annotated Schematic 

R21, R23, and R25 were iteratively changed while observing the output of the 

TCXO on an oscilloscope and performing a packet error rate test with an evaluation 

board. The values that gave the best receive sensitivity and reduced ringing were R21 = 

1.2pF, R23 = 10pF, and R25 = 270 Ohms.  After resolving this issue, the TXCO and 

crystal produced identical receive sensitivity measurements. 

7.4 Antenna Selection Switch Issue 

The final RF switch did not perform transmit and receive switching as intended, 

which was immediately apparent after looking that the schematic. Figure 154 shows the 

switch which does allow selection of an antenna, but it does not perform the required 

transmit and receive switching between the LNA and PA during communication. 

Therefore, one RF connector was configured as always transmit and the other always 

receive. This issue could not easily be resolved through physical modification of the 
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board and must be corrected in a second board revision. However, testing could 

continue by merely using one RF port for receive and the other for transmit. 

 

Figure 154: Antenna Selection Switch Issue, Annotated Schematic 

7.5 Receiver Desensitization Issue 

During initial receive sensitivity testing, the ISIR was found to perform 15dB worse 

than the evaluation board. 15dB is a significant difference, so mismatch loss from an un-

tuned LNA was ruled out and a noise issue was suspected. The 3.3V and 5.0V switching 

regulators were bypassed with a benchtop supply to see if the switching noise was the 

cause of the issue. Surprisingly, the receive sensitivity degraded by an additional 10dB 

when powered by the benchtop supply.  

Next, the LNA was bypassed and the transceiver’s receive sensitivity was directly 

measured using the coaxial switch test point in front of the transceiver. The issue still 

occurred when connected directly to the transceiver; therefore the noise was interfering 

with the transceiver. The analog voltage rail 0Ω series resistor was replaced with a large 

ferrite, manufacturer part number MPZ 2012 S601A, and the issue was resolved. With 

the ferrite in series with the transceiver’s analog voltage rail, the receive sensitivity 

matched the evaluation board. Another ferrite was placed in series with the LNA voltage 
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rail as well, but the receive sensitivity did not improve; therefore the LNA did not require 

a ferrite in series with its power supply. The baseband circuitry internal to the transceiver 

was probably jammed with noise on the 3.3V power net emitted by activity from nearby 

digital circuits and the ferrite filtered out the noise. Figure 155 shows the schematic and 

where R152 is replaced by a ferrite bead. R152 was intentionally placed in the 

schematic for the possibility of this issue. 

 

 

Figure 155: Ferrite Required on Transceiver Analog Power Net, Annotated 

Schematic 

7.6 RF Leakage Issue 

It was extremely difficult to isolate the transmitter and receiver during receive 

sensitivity testing. The problem of RF leakage was first encountered during receive 

sensitivity testing of the evaluation board and was discussed in: “4.5.1 Evaluation Board 

Receive Sensitivity Measurements.” Due to RF leakage between the two boards, the 

receiver will receive the transmitted signal regardless if the receiver has an antenna or is 

terminated with a 50Ω load. The ISIR transmits at a power 30dB greater than the 

evaluation board; therefore the leakage issue was more difficult to overcome. Several 
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weekends were spent attempting to adequately shield the receiver and transmitter so 

that receive sensitivity testing could be performed. 

Figure 156 shows a faraday cage constructed from a cardboard box and copper 

mesh. This faraday cage was adequate for receive sensitivity testing the UHF board at 

400MHz, however it provided very little shielding at the ISIR frequency of 2.4GHz. The 

copper mesh box has poor gasketing between the lid and the walls which probably 

created large enough gaps in the faraday cage to allow 2.4GHz signals to pass right 

through.  

 

Figure 156: Faraday Cage Constructed from Box and Copper Mesh Material, 

Inadequate Shielding 

A second box shown in Figure 157 was constructed out of aluminum foil. 

Measurements showed that this box provided no shielding at all and was worse than the 

copper mesh Farday cage. The receiver was placed in the aluminum foil box and then 

the copper mesh box, but the RF leakage issue still persisted. The transmitter was also 

put in the shields with the receiver outside, but that also provided inadequate isolation. 

Different value attenuators were placed in series with the coaxial cable inside and 
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outside the box, but no configuration of the boxes or attenuators provided adequate 

isolation between the transmitter and receiver. The transmitter and receiver were moved 

as far apart as possible but the issue persisted, even with the transmitter and receiver in 

different rooms or different floor levels.   

 

Figure 157: Faraday Cage Constructed from Box and Aluminum Foil, Inadequate 

Shielding 

A third faraday cage was then implemented using metal paint cans as shown in 

Figure 158. Both the transmitter and receiver were shielded within the metal paint cans 

with fixed attenuators between the radio and the lid pass-through. The paint can lids 

were drilled and USB, power, and SMA pass-throughs were soldered through the lid 

while keeping openings as small as possible. Figure 159 shows the ISIR, USB adapter, 

power, and coaxial cable passed through the paint can lid.  
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Figure 158: Paint Can Faraday Cage 

 

Figure 159: Paint Can Faraday Cage Lid with Pass Throughs 

Initially, the paint can faraday cages did not provide adequate attenuation. A 

coating on the rim of the lid had to be sanded away to provide electrical continuity 

between the can and lid. The lid had to be aggressively formed against the can with a 
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screw driver handle each time the lid was replaced to provide adequate contact between 

the lid rim and the can; simply hammering the lid into the can resulted in too large of 

gaps and RF leakage. Ultimately, after a few weekends of frustration, the RF leakage 

issue was resolved with the paint can faraday cages and receive sensitivity testing could 

be performed. 

7.7 2000kbps Packet Drop Issue 

During receive sensitivity testing the packet error rate at 2000kbps was non-zero 

regardless of the attenuation between the transmitter and receiver. The evaluation 

boards also experienced the same issue, which indicated the issue was not from the 

ISIR design. This issue was accidently overlooked during the original evaluation board 

testing and it is unknown how a -87dBm measurement was obtained at 2000kbps. 

Around 5% of packets are dropped during the 2000kbps receive sensitivity test 

regardless of attenuation. After consulting the AT86RF233 datasheet, it was discovered 

that the receiver sensitivity control RX_PDT_LEVEL register value should be set to a 

value of 1 to achieve the -88dBm receive sensitivity at 2000kbps as shown in Figure 160. 

However, the evaluation software only allows modification of the transmitter’s register 

settings. The receiver’s register settings cannot be modified during the packet error rate 

test. Therefore, the 2000kbps packet drop issue was not resolved and needs to be 

investigated further once software is written for the ISIR.  
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Figure 160: Receive Sensitivity Control Register for 2000kbps, AT86RF233 

Datasheet Excerpt [28] 

7.8 ISIR PA Tuning and Transmit Power Measurements 

Without any modifications to the board, the transmit power outputted by the ISIR 

measured around 30dBm, which is 3dB less than the 33dBm design target. However, 

this was expected due to the layout differences compared to the power amplifier 

evaluation board. It was expected that the passive component values of the tuning 

networks needed to be slightly modified to obtain maximum transmit power. However, 

the power amplifier tuning resulted in much more labor than anticipated, consuming 

about 4 weekend’s worth of time. 2.4GHz is within the transition frequency range where 

lumped components are typically replaced with transmission line equivalents.  

Capacitors and inductors are no longer well behaved in matching networks at high 

frequency due to the required low values and parasitic effects. Capacitance changes on 

the order of 0.1pF and a capacitor’s effective series inductance on the order of 1nH 

considerably affects the match. The transmission line length between components also 

introduces non-negligible phase shift of the signal and must be accounted for when 

calculating the passive component values. 
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At first, a Smith chart approach was attempted, but this approach was later 

deemed ineffective due to component parasitic effects at 2.4GHz. Figure 161 shows the 

power amplifier S11 measurement with the original input matching circuit; the power 

amplifier input is well matched at 2.75GHz instead of the desired 2.4GHz. 

 

Figure 161: Power Amplifier Input S11 

The input matching network values were slightly tweaked, but the S11 null could not be 

improved toward 2.4GHz. The input matching network was then completely removed 

and series components replaced with solder shorts. Figure 162 shows the Smith Chart 

measurement with the input matching network removed.  
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Figure 162: Power Amplifier S11 Smith Chart, Matching Network Removed 

Figure 163 shows using Smith Chart freeware to calculate component values to 

match the input of the power amplifier using the VNA measurements. However, using 

the calculated component values did not provided the calculated match as shown in 

Figure 164. The transmission line lengths and approximate component parasitics were 

also accounted for in consecutive calculation attempts using the Smith chart software 

with no success. After a few weekends of researching and re-attempting matching the 

power amplifier input, no improvement could be achieved. The effect of simply placing 

one series component such as a coupling capacitor could not be predicted using the 

Smith chart software due to the uncertainty of the capacitor and the layout’s parasitics.  

The parasitics could be modeled in advanced EM analysis microwave software by 

importing the layout into the software and obtaining passive component models from the 

vendors, however time did not permit this approach.  Eventually, the Smith chart 

approach was dismissed in favor of an iterative approach.  
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Figure 163: Smith Chart Software Used for Matching Power Amplifier Input 

 

Figure 164: Resulting Power Amplifier S11 using Smith Chart Software Values, Not 

Matched 

Figure 165 shows the power amplifier circuitry prior to tuning for maximum transmit 

power. The three-stage amplifier has four matching networks: input, stage 1 output, 
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stage 2 output, and stage 3 output these are shown as different colored boxes in the 

figure. 

 

Figure 165: Power Amplifier Circuitry before Tuning, Matching Networks Indicated 

The values of these components were iteratively varied while monitoring the resulting 

output power of the amplifier, usually starting with the last component in the network and 

moving toward the source. A Smith chart was referenced during the matching to gain 

insight into how the component was affecting the match and how the next component 

completed the match, but the Smith chart ultimately could not predict the final value.  

Over the course of 3 weekends, 368 iterations were performed to achieve 

maximum transmit power. Each iteration took approximately 5 to 10 minutes to change a 

component value, energize the board, command transmission, and measure the result. 

Figure 166 shows a snapshot of the excel sheet utilized to track iterations and resulting 

S21 measurements; the figure shows 35 of the 368 iterations. Table 18 shows the final 
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matching network component values to obtain 33.4dBm output from the amplifier after 

accounting for cable loss and output series component loss. Figure 167 shows the final 

output power measurement with 10.46dB cable attenuation. Accounting for the 

theoretical 1.65dB component insertion loss after the amplifier, approximately 33.4dBm 

is output from the amplifier.  

However, the amplifier should be capable of outputting 34.5dBm. This 1dB 

difference in output power is most likely due to non-optimal tuning or some unaccounted 

loss. The characteristic impedance of the traces was not well controlled and was 

calculated based off of unverified stack-up best guess assumptions from the 

manufacturer’s website. The layout is also highly compressed compared to the 

evaluation board due to space constraints which may have introduced non-negligible 

leakage paths. The dielectric is FR4 which is somewhat lossy at 2.4GHz, but not lossy 

enough to fully account for the 1dB difference. 

 

Figure 166: Iterative/Empirical Power Amplifier Tuning Excel Sheet Snapshot 

(Iterations 206 through 241 of 368) 
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Table 18: Final Power Amplifier Tuning Values 

 
Input Stage 1st Stage 2nd Stage Output Stage 

 

 
L2 C35 C38 L1 C30 C37 C34 L3 C42 C40 L5 C45 C46 C47 C50 

Type Serial Shunt Serial Biasing Shunt Shunt Serial Biasing Shunt Serial Biasing Shunt Shunt Serial Shunt 

Value 2.4nH 0.6pF SHORT 22nH 0.8pF 2.5pF 22pF 3.3nH 0.3pF 2.2pF 24nH 3pF DNP SHORT DNP 

 

 

Figure 167: Final Output 31.8dBm Power Measurement (10.64dB Series 

Attenuation) 

Figure 168 shows the measured board output power after subtracting measured cable 

loss from the measurement. The transceiver output power setting is varied from -17 to 

4dBm to demonstrate the gain of the amplifier and compression above -5dBm. 
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Figure 168: ISIR Transmit Power versus Input Power Register Setting 

7.9 ISIR Receive Sensitivity Measurements 

The ISIR receive sensitivity was measured using the same method of measuring 

the evaluation board receive sensitivity described in “4.5.1: Evaluation Board Receive 

Sensitivity Measurements.” However, at the time of this receive sensitivity testing, the 

same lab and hardware used in the evaluation testing was not available, so the 

evaluation board receive sensitivity was re-measured for a direct comparison without 

concern about measurement equipment differences.  

The ISIR receive sensitivity testing was performed after tuning the amplifier to 

maximum transmit power. The receiver and transmitter were placed in paint can Faraday 

cages and connected with coaxial cable with a variable attenuator placed in-between. A 

packet error rate test was continuously performed between the radios while increasing 

the attenuation. Once the packet error rate reached around 5%, the input to the receiver 

was disconnected and connected to a spectrum analyzer for power measurement. 

Figure 169, Figure 170, and Figure 171 show the transmitter and receiver within the 
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Faraday cages connected across the lab with coaxial cable and variable attenuator in 

between. 

 

Figure 169: Receive Sensitivity Test Setup: Receive Radio 

 

Figure 170: Receive Sensitivity Test Setup: Transmit Radio 
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Figure 171: Receive Sensitivity Test Setup, Coax Cable Run 

Figure 172 shows the noise measurement of the spectrum analyzer with no signal 

at its input. The spectrum analyzer is configured in a channel power measurement mode 

for measuring the power within the 2.3MHz signal bandwidth. The resolution bandwidth 

was reduced to 10kHz and pre-amplifier was enabled to provide the most sensitive 

measurement possible. However, the noise introduced by the spectrum analyzer into the 

measurement was still non-negligible and had to be subtracted from the receive 

sensitivity measurements. 
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Figure 172: Spectrum Analyzer Noise Measurement (No Signal) 

Figure 173 shows the signal measurement for the receive sensitivity at 500kHz as -

93dBm. At this power level, the receiver decoded packets at an error rate of 6%. 

Subtracting the previously measured noise introduced by the spectrum analyzer results 

in a calculated receive sensitivity of -94dBm.  
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Figure 173: 500kbps Receive Sensitivity Measurement 

The receiver sensitivity test was performed between two Intrepid S-Band ISM 

Radios and the sensitivity was recorded at the four data rates: 250kbps, 500kbps, 

1000kbps, and 2000kbps. The same test with identical setup and hardware was 

performed with two evaluation boards for direct comparison. The results are shown in 

Table 19. The 2000kbps receive sensitivity measurement should be ignored due to the 

packet drop issue described in “7.7 2000kbps Packet Drop Issue.” The evaluation board 

performed worse in this test setup than the initial evaluation board testing; it is 

hypothesized that RF leakage was not as adequately shielded as hoped during the 

previous testing.  

The ISIR outperformed the evaluation board receive sensitivity by 2.8dB, 0.9dB, 

and 1.5dB at data rates 250kbps, 500kbps, and 1000kbps respectively. However, the 

sensitivity measured 2 dB worse than stated in the datasheet. The LNA should have 

theoretically provided a 2.36dB improvement over the evaluation board, and this is 

approximately true.  
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Table 19: Receive Sensitivity Test Results: ISIR compared to Evaluation Board  

*Poor 2000kbps sensitivity due to software configuration issue, see 7.7 

Data 
Rate 

(kbps) 

PE
R 

(%) 

Meas. Signal 
Power (dBm) 

Meas. SA 
Noise(dB

m) 

Calc. 
ISIR RX 
Sens. 
(dBm) 

Eval. RX 
Sens. 
(dBm) 

Datasheet  
(dBm) 

250 1% -96.2 -99.22 -99.1 -96.3 -101 

500 6% -93.0 -99.22 -94.2 -93.3 -96 

1000 4% -91.3 -99.22 -92.1 -90.6 -94 

2000* 5% -81.5 -99.22 -81.6 -83.4 -88 
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8 Future Work 

A second revision of the Intrepid S-Band ISM Radio is warranted to correct the 

issues discovered in the first revision. Further development of this radio depends on the 

funding available and upcoming CubeSat missions. With appropriate funding, the 

designer can afford to control the stackup and dielectric of the board for improved 

characteristic impedance and less loss.  The protection circuitry should also be fully 

tested prior to development of the second revision. After embedded software 

development for the ISIR has matured, the evaluation connectors can be removed from 

the second revision. The profile of the board can be reduced with the loss of the large 

evaluation headers. The board’s interface can be modified to match the needs of the 

mission. The second revision should also incorporate an improved thermal path between 

the amplifier and satellite structure and thermal radiator. 

Prior to additional development, a noise survey at Cal Poly should be conducted to 

confirm the presence of a frequency within the ISM band with minimal interference, such 

as the survey performed in Irvine in “4.2 ISM Noise Floor.” Development of an S-Band 

CubeSat antenna must be completed. The antenna could either be a simple patch 

antenna or a deployable dish depending on the desired mission data rate. A 4.5 meter or 

larger dish with a 2.4GHz circular feed horn must be added to the PolySat Earth Station 

for adequate gain to complete the satellite link. The same dish with different feed horns 

could be used in the future for higher frequencies as more complex, higher data rate 

radios are developed. The future work outlined above could easily provide work for four 

or more student theses or senior projects; the future work is re-stated below as a 

bulleted list: 
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S-Band Future Work: 

 1st revision remaining testing 

o Amplifier protection circuitry 

o Compare power consumption measurements to estimates 

 Embedded software development for System Board microprocessor 

 2nd Revision ISIR PCBA Design 

o Correct issues discovered during 1st revision testing 

o Remove evaluation board development headers and EEPROM 

o Tailor radio dimensions for specific mission and current bus architecture 

o Incorporate thermal path between amplifier and regulator to satellite 

thermal sink 

 High-gain satellite antenna design 

o Deployable high gain antenna recommended 

 Ground Station upgrades 

o ISM S-Band Noise survey  

o Add 4.5 meter dish with circular 2.4GHz feed horn to Cal Poly ground 

station 

o  Transceiver selection, power amplifier, mast-mounted low noise amplifier 
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9 Summary and Conclusion 

The Intrepid ISM S-Band Radio (ISIR) for the PolySat System Board was 

successfully designed, fabricated, tuned, and tested. The final specifications for the 

Intrepid S-Band ISM Radio (ISIR) are as follows: 

Table 20: Intrepid ISM S-Band Radio Final Specifications 

ISIR Final Specifications 

Frequency Range 
2.322 to 2.527 GHz,  

500kHz channel spacing 

Channel Bandwidth 2.3MHz Spread Spectrum 

Modulation O-QPSK  

Protocol ZigBee 

Data Rates and Receive Sensitivity 
(within 2.3MHz bandwidth) 

 250kbps: -99.1dBm 

 500kbps: -94.2dBm 

 1000kbps: -92.1dBm 

 2000kbps: TBD 

Maximum Transmit Power 31.8dBm (1.5W) 

Receive Mode Power Consumption 90mW (Estimated) 

Transmit Mode Power Consumption 6.9W (Estimated) 

Digital Interface SPI 

Doppler Tolerance or Correction 
Capability 

+/- 100kHz 

Physical Dimensions Intrepid Daughter Board B, 1.4” x 3.3” 

Temperature Range -40 to 85 C (Industrial) 

Additional Features 

 Amplifier Protection 

 Transmit and Reflected Power 
Measurement 

 DC Power and Temperature 
Measurement 

 Dual Antenna Diversity Support 

 EEPROM for Unique Board Info 

 

FCC frequency restrictions will require missions with this radio to operate within 

2400-2483.5 MHz ISM band with high terrestrial interference, however measurements 

demonstrate that surveying the ground station location and carefully selecting quiet nulls 

within the ISM band can eliminate interference to thermal noise levels. With further 

student future work and appropriate funding, a high-data rate CubeSat ISM S-Band 

communication can be implemented by the Cal Poly PolySat lab to support future higher 

data throughput missions.  
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Appendix A: Intrepid S-Band ISM Radio R1 Schematic 
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