
A fast high-precision six-degree-of-freedom relative position sensor 

Gary B. Hughesa, Van P. Macasaetb, Janelle Griswoldc, Claudia A. Sisona, Philip Lubinc, 
Peter Meinholdc, Jonathan Suenc, Travis Brashearsc, Qicheng Zhangc, and Jonathan Madajianc 

gbhughes@calpoly.edu 
aStatistics Department, California Polytechnic State University, San Luis Obispo, CA 

bAerospace Engineering Department, California Polytechnic State University, San Luis Obispo, CA 

 cPhysics Department, University of California, Santa Barbara, CA   

ABSTRACT 

Lasers are commonly used in high-precision measurement and profiling systems.  Some laser measurement systems 
are based on interferometry principles, and others are based on active triangulation, depending on requirements 
of the application.  This paper describes an active triangulation laser measurement system for a specific application 
wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high 
precision in six degrees of freedom (DOF).  Potential applications include optical systems with feedback to 
control for mechanical vibration, such as target acquisition devices with multiple focal planes.  The method uses 
an array of several laser emitters mounted on one component.  The lasers are directed at a reflective surface on 
the second component.  The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more 
generally a curved reflective surface such as a hyperbolic paraboloid.  The reflected spots are sensed at 2-
dimensional photodiode arrays on the emitter component.  Changes in the relative position of the emitter component 
and reflective surface will shift the location of the reflected spots within photodiode arrays.  Relative motion in any 
degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position 
determination between the two component positions. Response time of the sensor is limited by the read-out rate of 
the photodiode arrays.  Algorithms are given for position determination with limits on uncertainty and sensitivity, 
based on laser and spot-sensor characteristics, and assuming regular surfaces.  Additional uncertainty analysis is 
achievable for surface irregularities based on calibration data. 

Keywords: laser metrology, dynamic measurement, real-time estimation, in-process metrology, structural metrology 

1. INTRODUCTION1.1. Laser Measurement Systems 
The use of optoelectronic methods for dimensional metrology has many advantages, particularly when 

compared to mechanical methods.  Optoelectronic measuring systems can acquire more data in less time and without 
contacting the measured object.  Mechanical measuring systems can be prone to significant errors and deformities due to 
rapid wear.1-4  Linear encoders with optical grating scales are the most common optoelectronic measuring devices used 
for high-precision applications.  Simple optical encoder systems are based on the geometrical effect of phase-shifted 
optical relays for the conversion of the grating displacement relative to the read head into an electrical signal.5  Linear 
encoders tend to be robust, even under unstable environmental conditions. 

Since the invention of the helium-neon laser, in 1960, lasers have been used as coherent light sources for laser 
interferometry measurement systems.  Optical laser interferometry is often used for displacement measurement 
applications that require high accuracy.  Laser interferometers use a scale length of a well-defined wavelength and link it 
to the meter by frequency comparison definition.  Homodyne sensors use two waves with the same wavelength that are 
phase shifted by 90 degrees and generated by polarization optics to determine the direction of motion and two additional 
signals with opposite phase are used to correct changes in the optical intensity.  Heterodyne sensors compare slightly 
different frequencies with a reference bean, allowing the beat frequency of the interference signal to be detected.  The 
phase of the beat frequency changes with the motion of the mirrors and can then be compared with a fixed reference 
frequency. 

Triangulation sensors are often used for in-process metrology and coordinate metrology.  Triangulation sensors 
exploit a collimated light source, generally a laser diode, and a detector unit.  The detector unit consists of an imaging 
lens and a position-sensitive detector5.  The optical axes of the imaging lens with the light source form a fixed angle. 
The surface of the object is brought close to the axes point of intersection and the diffused reflection of light is imaged 
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onto the detector.  Typical measurement ranges for triangulation systems are 2 m to 200 mm and can provide relative 
position measurements with resolutions in the range of 10-4 m. 
 

1.2. Dynamic Metrology 
Dynamic metrology is concerned with the measurement of quantities that are time-dependent.6-26  As the 

characteristics of interest are changing through time, methods of time series analysis have been employed to provide 
point estimate and uncertainty evolution based on data acquisition through time.  Dynamic structural metrology, for 
instance, is concerned with how the relative position of components in a structure changes through time, as the structure 
flexes with temperature changes and vibrates in structural modes.  Such technology has been developed for atomic force 
microscopes (AFMs).  In an AFM, a molecular tip is mounted on the free end of a cantilever.  As the tip is moved across 
the surface of a sample, molecular-scale movements of the cantilever are induced.  A laser is reflected off the back side 
of the cantilever, and detected at a split photodiode.  Movements of the cantilever are detected in the changing position 
of the laser spot on the photodiode.  The AFM cantilever provides a ~3-DOF measurement system (although typical 
AFM systems only sense one or perhaps two of the potential movements).  The AFM tip is typically a flat surface, and 
the single reflected laser spot moves across the photodiode.  In a modification of AFM technology, 6-DOF measurement 
of the tip position could be attained by using an array of lasers, and by including a curved reflective surface such as a 
pyramid or hyperbolic paraboloid.  The multiple reflected spots would be sensed, and changes in the relative position of 
the emitter component and reflective surface will shift the location of the reflected spots.  Various motions produce 
independent shifts in the reflected spot locations, allowing full 6-DOF relative position determination.  This paper 
describes an implementation of such a 6-DOF sensor.  The sensors are illustrated as part of a system to correct for 
mechanical flexing of a structure with multiple target acquisition sensors.  The sensors are envisioned to make control-
time measurements of the relative position of sensor housings within a local mechanical datum coordinate system, thus 
improving the target vector from the sensing structure. 
 

2. A DYNAMIC RELATIVE POSITION SENSOR CONCEPT 

2.1. Sensor Concept 
A sensor is envisioned to make dynamic measurements of the relative position of two components.  The method 

uses an array of several laser emitters mounted on one component.  The lasers are directed at a reflective surface on the 
second component.  The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a 
curved reflective surface such as a hyperbolic paraboloid.  The reflected spots are sensed at 2-dimensional photodiode 
arrays on the emitter component.  Changes in the relative position of the emitter component and reflective surface will 
shift the location of the reflected spots within photodiode arrays.  Relative motion in any degree of freedom produces 
independent shifts in the reflected spot locations, allowing full 6-DOF relative position determination between the two 
component positions.  Response time of the sensor is limited by the read-out rate of the photodiode arrays. 

In one implementation, consider a series of parallel laser emitters mounted on the first component.  Such an 
arrangement can be thought of as originating from a grid pattern in a fixed ‘emitter plane’ that is normal to the beam 
vector.  A series of photodiode array detectors might be positioned at appropriate places within the emitter plane.  
Positions of each detector in the emitter plane depend on properties of the reflective surface, which is mounted on the 
second component.  Many implementations are possible; the results presented in this paper are based on parallel 
emitters, with a suitable pattern of detectors in an emitter plane on the first component.  The reflected beam locations in 
the emitter plane depend on the relative position of the two components.  Geometric ray-tracing of the beam paths from 
the emitter plane (on the first component) to the reflective surface (on the second component) and back to the detectors 
(on the first component) provides a forward transformation that can predict the detected beam pattern for any relative 
alignment of the two components.  Inversion of the forward transformation can be used to determine the relative 
alignment of the two components from a specific (measured) beam pattern.  Transformations are described below for a 
3-panel pyramid reflector, and for a hyperbolic paraboloid. 
 

2.2. Pyramid Reflector 
Consider an arrangement with several parallel emitters and their associated detectors, all situated in a single 

‘emitter plane’ on the first component.  Given a (unit-length) emitter direction vector ܧ ൌ ,ଵܧ〉 ,ଶܧ  ଷ〉, an implicitܧ
emitter plane equation is: 
ܧ  ∙ ሺݔ, y, zሻ ൌ ݀ா (1) 
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The emitters can be represented by points Pi (i = 1, 2, …, nE = number of emitters) in the emitter plane, e.g.: 

 ௜ܲ ൌ ൫ ௜ܲଵ, ௜ܲଶ, ௜ܲଷ൯,			with			ܧ ∙ ௜ܲ ൌ ݀ா		and			ܧ ≡
൫௉ೕି௉೔൯ൈሺ௉ೖି௉೔ሻ

‖∙‖
 (2) 

The notation ‖∙‖ indicates the Euclidean norm of the expression in the numerator, forcing the resulting vector to be unit-
length.  A beam emanates from the ith emitter at point Pi and follows the direction vector E, so the parametric form for 
each emitter beam as it leaves the emitter plane is: 
 ௜ܲ ൅ ݐ ∙ ݐ			,ܧ ∈ Թ,			݅ ൌ 1	to	݊ா (3) 
A pyramid reflector is constructed on the second component, consisting of ‘panels’ that reflect the emitted beams back 
toward the first component.  The ‘pyramid’ shape will constrain the plane orientations, in particular none of the panels 
will be parallel, so there will be a single point of intersection representing the ‘apex’ of the pyramid, ܣ ൌ ,ଵܣ〉 ,ଶܣ   .〈ଷܣ
Reflector panels have (unit-length) normal vectors Ri and the implicit plane equations are: 
 ܴ௜ ൌ 〈ܴ௜ଵ, ܴ௜ଶ, ܴ௜ଷ〉,			with			ܴ௜ ∙ ሺݔ, y, zሻ ൌ ܴ௜ ∙ ݅			,ܣ ൌ 1	to	݊ா (4) 

The number of panels in the pyramid does not necessarily need to equal the number of emitters, e.g., two or more 
emitters could strike the same panel; so, the set {Ri} could contain repeated vectors, but a reflective plane must be 
defined for each emitter.  The points Qi where the ith emitter strikes the ith plane is then found by travelling a distance ti 
from the emitter location Pi along the emitter direction vector E: 
 ܳ௜ ൌ ௜ܲ ൅ ௜ݐ ∙  (5) ܧ
The distance ti can be determined directly, since Qi lies in the reflector panel plane 27, i.e., from Eq. (4): 
 ܴ௜ ∙ ܳ௜ ൌ ܴ௜ ∙  (6) ܣ
Substitute the expression for Qi from Eq. (5) into Eq. (6): 
 ܴ௜ ∙ ሺ ௜ܲ ൅ ௜ݐ ∙ ሻܧ ൌ ܴ௜ ∙  (7) ܣ
Distribute the inner product across the sum in Eq. (7) to solve for ti: 

௜ݐ  ൌ
ோ೔∙ሺ஺ି௉೔ሻ

ோ೔∙ா
 (8) 

The points Qi are then found by: 

 ܳ௜ ൌ ௜ܲ ൅ ቀ
ோ೔∙ሺ஺ି௉೔ሻ

ோ೔∙ா
ቁ ∙  (9) ܧ

Assuming specular reflection, the ith incident beam will be reflected across the panel normal Ri at the point Qi.  The 
reflected beam will lie in a ‘reflection plane’ containing the point Qi.  A (unit) vector Ni that is normal to the reflection 
plane can be determined by the cross product of the incident beam vector E and the panel normal vector Ri: 

 ௜ܰ ൌ 〈 ௜ܰଵ, ௜ܰଶ, ௜ܰଷ〉 ൌ
ாൈோ೔
‖∙‖

 (10) 

The incident angle is between E and Ri (which are both unit length): 
௜ߠ  ൌ acosሺܧ ∙ ܴ௜ሻ (11) 

The reflected beam emanates from Qi, at an angle 2θi from E around the axis of rotation Ni.  A (unit) vector Si in the 
direction of the reflected light is determined by rotating the incident beam (unit) vector in the rotation plane, i.e., around 
the rotation vector Ni, by an angle 2θ 27: 

 ௜ܵ ൌ
ெ೔∙ா

‖∙‖
 (12) 

௜ܯ  ൌ ൦

cosሺ2ߠ௜ሻ ൅ ௜ܰభ
ଶሾ1 െ cosሺ2ߠ௜ሻሿ െ ௜ܰయsinሺ2ߠ௜ሻ ൅ ௜ܰభ ௜ܰమሾ1 െ cosሺ2ߠ௜ሻሿ ௜ܰమsinሺ2ߠ௜ሻ ൅ ௜ܰభ	 ௜ܰయሾ1 െ cosሺ2ߠ௜ሻሿ

௜ܰయsinሺ2ߠ௜ሻ ൅ ௜ܰభ ௜ܰమሾ1 െ cosሺ2ߠ௜ሻሿ cosሺ2ߠ௜ሻ ൅ ௜ܰమ
ଶሾ1 െ cosሺ2ߠ௜ሻሿ െ ௜ܰభsinሺ2ߠ௜ሻ ൅ ௜ܰమ ௜ܰయሾ1 െ cosሺ2ߠ௜ሻሿ

െ ௜ܰమsinሺ2ߠ௜ሻ ൅ ௜ܰభ ௜ܰయሾ1 െ cosሺ2ߠ௜ሻሿ ௜ܰభsinሺ2ߠ௜ሻ ൅ ௜ܰమ ௜ܰయሾ1 െ cosሺ2ߠ௜ሻሿ cosሺ2ߠ௜ሻ ൅ ௜ܰయ
ଶሾ1 െ cosሺ2ߠ௜ሻሿ

൪ (13) 

By the same process shown in Eq. (5) through Eq. (8), the points ௜ܲ
ᇱ where the ith reflected beam strikes the emitter plane 

are found by travelling a distance ݐ௜
ᇱ from the incident locations Qi along the reflected direction vectors Si.  The distances 

௜ݐ
ᇱ are: 

ܧ  ∙ ௜ܲ
ᇱ ൌ ݀ா 			→ ܧ			 ∙ ሺܳ௜ ൅ ௜ݐ

ᇱ 	 ∙ ௜ܵሻ ൌ ݀ா 			→ 			 ௜ݐ
ᇱ ൌ

ௗಶିா∙ொ೔
ா∙ௌ೔

			 (14) 

And the points ௜ܲ
ᇱ are then found by: 

 ௜ܲ
ᇱ ൌ ܳ௜ ൅ ௜ݐ

ᇱ 	 ∙ ௜ܵ (15) 
Thus far, geometric ray traces from Pi to ௜ܲ

ᇱ have been established as: 
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 ௜ܲ
ᇱ ൌ ௜ܲ ൅ ቀ

ோ೔∙ሺ஺ି௉೔ሻ

ோ೔∙ா
ቁ ܧ ൅ ቀ

ௗಶିா∙ொ೔
ா∙ௌ೔

ቁ ௜ܵ (16) 

where Si is defined in Eq. (12) and Eq. (13).  The ray trace assumes that the emitters are all parallel and lie in a plane that 
is normal to the emitter beams, that the rays are sensed in the same emitter plane, and that the reflection is specular.  A 
simulated reflector based on the pyramid reflector model is shown in Fig. 1. 
 

 
Figure 1. Conceptual diagram of a 6-DOF relative position measurement scheme, using a pyramid reflector.  
Laser emitters mounted on one component are directed at a reflective pyramid that is mounted on a second 
component.  The reflected spots are sensed in separate 2-D photodiode arrays on the first component.  Changes 
in the relative position of the emitter plane and reflective surface will shift the location of reflected spots.  
Kinematic and independent motions ensure that the measured spot locations can be used to determine the 
relative position of the emitter plane and the reflective surface.  The implementation in this figure shows six 
parallel laser emitters emanating from a normal plane, where the detector arrays would also be mounted. 

 
 

2.3. Hyperbolic Paraboloid Reflector 
The same mathematical analysis can be performed for any well-defined reflective surface, e.g., consider a 

hyperbolic paraboloid.  The surface is characterized implicitly as: 

ݖ  ൌ ቀ
௫

௔
ቁ
ଶ
െ ቀ

௬

௕
ቁ
ଶ
			→ 			െ ቀ

௫

௔
ቁ
ଶ
൅ ቀ

௬

௕
ቁ
ଶ
൅ ݖ ൌ 0 (17) 

A parametric form is given by: 
ݔ  ൌ ܽ ∙ ሺݑ ൅  ሻ (18a)ݒ
ݕ  ൌ ܾ ∙ ሺݑ െ  ሻ (18b)ݒ
ݖ  ൌ 4 ∙ ݑ ∙  (18c) ݒ
,ݑ  ݒ ∈ Թ (18d) 
Using the parametric form of the emitter beams from Eq. (3), it is possible to find the intersection of the beam and the 
(parametric) hyperbolic paraboloid, by equating the components with the (parametric) line: 
 ௜ܲభ ൅ ݐ ∙ ଵܧ ൌ ܽ ∙ ሺݑ ൅  ሻ (19a)ݒ

 ௜ܲమ ൅ ݐ ∙ ଶܧ ൌ ܾ ∙ ሺݑ െ  ሻ (19b)ݒ

 ௜ܲయ ൅ ݐ ∙ ଷܧ ൌ 4 ∙ ݑ ∙  (19c) ݒ

This is not a linear system, since the product of u and v appears in Eq. (19c).  However, the system can be solved 
algebraically, using substitution.  Solution of the system yields values ti, the distances from the emitters Pi to the 
reflective surface along E: 

௜ݐ  ൌ
ସ∙௨∙௩ି௉೔య

ாయ
 (20) 

0.5

1
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 ܳ௜ ൌ ௜ܲ ൅ ௜ݐ ∙  (21) ܧ
The unit vector that is normal to the surface at the point Qi is Ni: 

 ௜ܰ ൌ
〈
షమೂ೔భ
ೌమ

,
మೂ೔మ
್మ

,ଵ〉

‖∙‖
 (22) 

The remaining steps to determine the geometric ray traces from Pi to ௜ܲ
ᇱ are the same as Eq. (11) through Eq. (16).  A 

simulated reflector based on the hyperbolic paraboloid reflector model is shown in Fig. 2. 
 
 

 
Figure 2. Conceptual diagram of a 6-DOF relative position measurement scheme, using a hyperbolic paraboloid 
reflector.  The implementation in this figure shows six parallel laser emitters emanating from a normal plane, 
where the detector arrays would also be mounted. 

 
 

2.4. Relative Position from Reflected Spot Location Measurements 
Relative motion of the reflective surface in any of the six degrees of freedom will result in a kinematic 

displacement of the reflected point P.  For example, a translation in the z-axis (Δz  ≡  0, 0, Δz, which occurs with 
thermal expansion), results in displacement of P that depends on the distance between the emitter plane and the 
reflective surface (d), and curvature properties of the reflective surface (determined by a and b): 

 ∆ܲ ൌ ሺܳ ൅ ሻݖ∆ ൅
ௗିா∙ሺொା∆௭ሻ

ா∙ோ
∙ ܴ (23) 

The change in location of the reflected spot P for a given change in the z-location of the reflective surface is kinematic.  
For example, for motions in the z-axis, the calculation for change in the reflected spot position is easily invertible: 

 ∆ܲ ൌ ሺܳ ൅ ሻݖ∆ ൅
ௗିா∙ሺொା∆௭ሻ

ா∙ோ
∙ ܴ			 → 			 ݖ∆ ൌ

ሺ∆௉ିொሻሺா∙ோሻିሺௗିா∙ொሻோ

ா∙ோିாሺଷሻ
 (24) 

Additionally, changes in the reflected multi-spot pattern are independent for motions in the six degrees of freedom when 
a pyramid, hyperbolic paraboloid or other curved surface is used as the reflecting component.  Kinematic motions and 
independent changes in the spot pattern ensure that position determination is invertible for simultaneous motions in all 
degrees of freedom, i.e., for some measured change in the spot location from the nominal ∆x, ∆y, ∆z, ∆θx, ∆θy, ∆θz, the 
relative position of the emitter plane and reflective plane can be determined.  The forward ray tracing transformations 
provide a framework for constrained optimization calculations.  Since the number of data points required for the 
optimization is small, the numerical inversion is fast enough to keep pace with dynamic measurements coming from the 
photodiodes. 
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3. A SIMULATED APPLICATION 

3.1. Target Acquisition with Multiple Focal Planes 
An application of the sensor concept is envisioned as part of a system to correct for mechanical flexing of a 

structure with multiple target acquisition sensors.  The sensors are envisioned to make control-time measurements of the 
relative position of sensor housings within a local mechanical datum coordinate system, thus improving the target vector 
from the sensing structure.  The target is viewed, for example using an infrared imaging system, consisting of an optic 
and an infrared focal plane array (IRFPA) that are mounted together in a mechanical housing.  A conceptual drawing is 
shown in Fig. 3, based on a design for an extensible phased array laser system.28,29 
 
 

 
Figure 3. (a) Conceptual diagram of two adjacent cells of a laser phased array; a target sensor is situated 
between the emitter cells, and phase-tap structures are connected to the sensor housing.  (b) top view.  (c) as 
elements are added to the array, additional target sensors and phase-taps are mounted between adjacent emitters.  
(d) the relative position between adjacent phase tap structures is determined with 6-DOF relative position 
sensors. 

 
 
Target acquisition algorithms determine the target centroid xc, yc in the IRFPA pixel array coordinate system.  Using 
camera calibration information, the target centroid xc, yc is then converted to a target axis θT, φT as polar (θ) and 
azimuthal (φ) directions in the infrared camera mount mechanical datum coordinate system, using transformations 

(aLI (b) (e)
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deduced from innovative calibration algorithms.30-33  Conversion from image coordinates to the target axis is 
accomplished using a composite inverse transformation:29 

 ൤
்ߠ
்߮
൨ ൌ ሺܨ°ܦ°ܣሻିଵ ቀቂ

௖ݔ
௖ݕ
ቃቁ (25) 

where F is the transformation from the target axis to ideal pixel coordinates, D is a lens distortion mapping, and A is the 
ideal affine transformation from scene coordinates to pixel coordinates, all determined during camera calibration. 

The relationship between pixel coordinates and the mechanical mounting is also characterized during 
fabrication.  Precision machining is not adequate for ultra-precision alignment, but statistical calibration/characterization 
techniques are available.  The statistical approach reduces measurement error and supports ultra-precision alignment 
with 'irregular' machined datum surfaces. 
 

3.2. Pointing and Phase Alignment of a Laser Array 
The system depicted in Fig. 3 shows a phased array laser system with multiple target acquisition sensors.28,29  

The relative position of adjacent target sensors is determined using 6-DOF relative position sensors.  The emitter plane 
maintains a rigid spatial relationship within the mechanical datum coordinate system, and the phase tap maintains a rigid 
spatial relationship to the reflective plane.  Using the relative position of the reflective plane, and the rigid relationships, 

the position of the phase tap within the mechanical datum coordinate system is determined.  The target axis θT, φT in 
the mechanical datum coordinate system is used to establish the target plane, which (arbitrarily) passes through the 
datum origin.  The plane becomes the phase reference plane, which is: 

 ்ܰ ∙ ,ݔ〉 ,ݕ 〈ݖ ൌ 0,			்ܰ ൌ
〈ୡ୭ୱሺఏ೅ሻୱ୧୬ሺఝ೅ሻ,ୱ୧୬ሺఏ೅ሻୱ୧୬ሺఝ೅ሻ,ଵ〉

‖〈ୡ୭ୱሺఏ೅ሻୱ୧୬ሺఝ೅ሻ,ୱ୧୬ሺఏ೅ሻୱ୧୬ሺఝ೅ሻ,ଵ〉‖
 (26) 

A single phase tap structure connects two adjacent emitters.  A nominal location of the phase taps within the mechanical 
datum coordinate system are determined during factory calibration.  The target plane is the phase reference plane: the 
control system must seek to align the phases of all emitters to the same value at the target plane.  Deviations from the 
calibrated (mechanical datum) location of the phase taps are determined in control time with AFM relative position 
sensors.  The distance of the phase taps from the phase reference plane can then be determined. 

௥௘௙ܦ  ൌ
ே೅∙〈௫೟ೌ೛,௬೟ೌ೛,௭೟ೌ೛〉

‖ே೅‖
ൌ ்ܰ ∙ ,௧௔௣ݔ〉 ,௧௔௣ݕ  ௧௔௣〉 (27)ݖ

Distance along the target vector from the phase tap provides the phase alignment target at the phase tap.  Phase 
alignment is modulo one cycle, e.g., shift the measured phase ϕmeas of an emitter to zero in the phase alignment plane: 

 Δ߶ ൌ ߶௠௘௔௦ െ

ವೝ೐೑
ഊ

ିඌ
ವೝ೐೑
ഊ ඐ	

ଶగ
 (28) 

 

4. CONCLUSIONS 

A design and method for a fast, 6-DOF relative position sensor are described.  The sensor is based on active 
triangulation laser measurements, and is suitable for applications where the relative position of two fixed, rigid 
mechanical components is to be measured dynamically with high precision.  The method uses an array of several laser 
emitters mounted on one component, which are directed at a reflective surface on the second component.  The reflective 
surface is curved; examples are described using a pyramid and a hyperbolic paraboloid.  The reflected spots are sensed at 
2-dimensional photodiode arrays on the emitter component.  Changes in the relative position of the emitter component 
and reflective surface shift the location of the reflected spots within photodiode arrays.  Relative motion in any degree of 
freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position 
determination between the two component positions.  Response time of the sensor is limited by the read-out rate of the 
photodiode arrays.  Position is determined using constrained optimization, and can be implemented in FPGA.  Limits on 
relative position uncertainty and sensitivity are achievable, based on laser and spot-sensor characteristics, and assuming 
regular surfaces.  Continuing work will address uncertainty analysis, including deviations due to surface irregularities.  
The sensor is being developed to support a system with multiple target acquisition sensors.  As the sensors must be 
mounted within a mechanical structure subject to vibration.  The sensors are envisioned to make control-time 
measurements of the relative position of sensor housings within a local mechanical datum coordinate system, thus 
improving the target vector from the sensing structure. 
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