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This report highlights the benefits and detriments of pervious pavement systems through research 

of existing knowledge and multifaceted experiments to determine the feasibility of implementing 

a pervious pavement system on high traffic roadways.  With over 40,000 miles of highway in the 

United States alone and severe water crises in states like California and growing environmental 

and safety concerns, the need for pervious pavements is abundantly clear.  The research 

conducted utilizes existing knowledge on pervious pavements and applies it to the application of 

high traffic roadways.  The experiment tests four different pervious concrete mix designs to 

determine compressive strength and water infiltration rates. This report ultimately concludes that 

pervious pavement systems can be used for high traffic roadways in open areas, where water can 

drain from the reservoir layer without the need for auxiliary drainage. Modifying infrastructure in 

urban areas that would require an auxiliary drainage means is not cost effective or practical. The 

experiment found that the mix designs tested could not structurally support highway level traffic; 

however with modifications to the experiment a suitable mix could be achieved. The experiment 

showed that the flow rate through all four mix designs was adequate to serve as a pervious 

pavement.  
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Introduction 
 

Pervious pavement systems have been around for over 30 years, and yet many people have never encountered one.  

With the abundant benefits that pervious pavement systems provide, storm water management, water quality and 

safety to name a few, it is surprising that they are not more prevalent in our society. In urban environments over 

25% of the area is occupied by pavements and over 2/3 of the rainwater that falls comes in contact with a paved 

surface, striking the need for a better roadway water management system. (FHWA, 2015)  As our cities get larger 

and larger and we continue to increase hardscapes and our presence on the planet, we need to start thinking about the 

long term implications of our actions and how we can take steps to better manage the world around us. Pervious 

pavements can help us accomplish these goals. This report will look into the feasibility of implementing pervious 

pavement systems on high traffic roadways in terms of cost, practicality, public safety and water quality; through the 

use of research and an experiment to test the compressive strength and flow through rate of several pervious 

concrete mixes.  

 

Cost 
 

A pervious pavement system is more expensive than a traditional asphalt concrete system because the placement 

process and the materials are generally more expensive due to the use of more Portland cement.  The typical price 

for a pervious asphalt roadway is $4.80 – $6.00/sf and for a pervious concrete roadway $5.00 - $10.00/sf, typically 

15-20% higher than traditional road surfaces. (Cal Trans. 2014) Pervious pavements are more effective in areas 

where the runoff can be channeled into the groundwater table. (Tennis, 2004) Open paved highways and parking lots 

are the most beneficial areas for pervious pavement application because limited rework of infrastructure is needed to 

accommodate the new system.  On large viaducts and overpasses major infrastructure rework if not complete rebuild 

is required to accommodate a pervious pavement systems drainage need, thus rendering it infeasible due to cost.    

 

Practicality 
 

There are over 40,000 miles of highways in the United States today and exponentially more worldwide, the need for 

a better roadway system is apparent and pervious pavements offer one of the most promising options for future 
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development. (Interstate System Design, 2002) However, one major drawback to pervious pavement systems is the 

need for a large reservoir area of well graded drain rock and a filter course, rendering the finished pervious 

pavement road surface much thicker than a traditional road surface. (FHWA, 2015)  This becomes relevant when 

considering how traditional urban infrastructure is built, using cast in place concrete overpasses and underpasses and 

road surfaces that are topped with asphalt as a replaceable layer.  The pervious pavement system would require 

extensive drainage and water management systems as well as an additional 1-2 feet of overall thickness in order to 

function properly on existing urban infrastructure. (Huffman, 2005)  Pervious pavement systems would be better 

implemented in urban streets where ample drainage infrastructure is already available in the form of storm drains 

and sewers. Open highway areas where the runoff can be channeled into the groundwater table and limited existing 

infrastructure rework is required to accommodate the new system are also practical applications for new pervious 

pavement systems.   

 

Public Safety 
 

On average there are 907,831 vehicle crashes per year in the United States due to wet pavement, 16% of all vehicle 

crashes and 73% of all weather related crashes. On average 352,221 people are injured in these crashes, 15% of all 

vehicle injuries, 80% of all weather related injuries.  On average 4,488 people are killed in these crashes, 13% of all 

vehicle fatalities, 77% of all weather related fatalities, making driving on wet pavement the most dangerous driving 

condition there is in the United States.(OPS.FHWA) Pervious pavement systems offer many advantages over 

traditional road surfaces, in the interest of public safety; they effectively remove water from the road surface, 

reducing or eliminating hydroplaning effects and increasing stopping ability.(Mullaney, Lucke, 2014) Pervious 

pavements remove water from the road surface by filtering it through the pores in the road surface and into a 

reservoir layer of well graded rock, from 6”-2’ thick depending on rainfall in the area. The water collected in the 

reservoir layer is then channeled or dispersed into the ground water table or a designated watershed away from the 

roadway. Removing the water from the road surface increases a vehicle’s tires ability to make contact with the 

roadway, reducing or eliminating hydroplaning all together. The increase in surface area and frictional contact 

between the tires and the road surface increases breaking ability and handling characteristics of the vehicle, keeping 

the passengers safer on the road. (Mullaney, Lucke, 2014) 

 

Water Quality 
 

 “Under current provision of the Clean Water Act (CWA) and the amended National Pollution Discharge 

Elimination System (NPDES) all communities with populations of 10,000 or more…are required to regulate and 

control the discharge of urban storm water into receiving water bodies. All dischargers are also required to comply 

with the total maximum daily load (TMDL). If water quality standards are not met, then the water body is classified 

as impaired. Currently, California alone has over 7,000 impaired water bodies with identified sources of pollution 

that require the establishment of TMDL limitations. About 900 of the identified impaired water bodies are directly 

linked with organic and inorganic pollution originated from urban surfaces.” (Kayhanian, 2015) 

 

With the current state of water quality and quantity in California specifically, it is imperative to clean and retain as 

much storm water as possible.  Pervious pavements have been found to effectively remove contaminants in storm 

water runoff and improve overall groundwater quality as well as gradually replenishing the groundwater due to the 

slow release of stored water in the reservoir layer. “Several studies have quantified high removal rates of total 

suspended solids (TSS), metals, oil and grease, as well as moderate removal rates for phosphorous, from using 

porous asphalt pavements (Cahill, 2005; Roseen, 2012).  As the percentage or hardscapes in our urban environments 

increases so does the pollution of storm water. Pervious pavements remove the water from the road surface reducing 

splash up effects and limiting the amount of foreign contaminates that the water comes in contact with as it is 

collected. Pervious pavements have also been noted for having reduced storm water runoff temperatures as well as 

other important environmental impacts such as reducing the Urban Heat Island Effect (UHIE), labeled as, “cool 

pavement technology” due to its high void structure and evaporation properties. (Li, 2013; Stempihar, 2012; EPA 

2008). A pervious pavement system does a very good job at improving storm water runoff and with further research 

into microbe layers and filter screens those qualities could be improved upon even more.   

 

Methodology 
 



The objective of this report through research and experimentation is to analyze the feasibility of implementing a 

pervious pavement system on high traffic roadways with emphasis on the following: 

 

 Cost 

 Practicality 

 Public Safety 

 Storm Water Quality  

 

The methodology for the above section of the report was based heavily on research, case studies and pre-existing 

knowledge compiled to assess the feasibility of implementing a pervious pavement system on high traffic roadways. 

The information was acquired through the use of the California Polytechnic State University, San Luis Obispo 

Kennedy Library, as well as research conducted by other notable universities and professionals around the world. 

The methodology for the experiment section of the report, to follow, is based on previous knowledge as well as 

inferred decision making to test and compare different pervious concrete mixes to determine compressive strength 

and water flow characteristics with the goal of determining the best option to implement on high traffic roadways.    

 

Experiment 
 

In order to test and compare compressive strength and water flow characteristics of concrete pervious pavement 

systems an experiment was conducted using four different pervious concrete mix designs, three of which being 

previously identified, through external research, to be effective pervious mixes. The fourth mix design being an 

interpolated design based on knowledge obtained while studying construction management at California Polytechnic 

State University, San Luis Obispo.  Multiple resources suggest a typical pervious pavement mix design consisting of 

cement content of 600 -630lb/cyd, course aggregate 3/8” and above 2,000-2,500lbs/cyd, and water cement ratios 

(W/C) between .3 and .4 with a binder to aggregate ratio between .2 and .25.(Paine,1992; Cal Trans, 2014) The mix 

designs used, aggregates, cement, water and ratios used to conduct this experiment are found below in table 1.  

 

Table 1 

 

Mix designs  
 

Mix Large (A) Median (B) Cal Trans (C)  Fine (D)  

Aggregate (lbs.)     

3/4" 37.5 0 0 0 

1/2" 75 50 0 0 

3/8" 37.5 100 75 90 

1/4" 0 0 37.5 45 

No. 4 0 0 37.5 0 

No.16 Sand  0 0 0 15 

Cement (lbs.) 33.3125 33.3125 33.3125 33.3125 

Water (lbs.) 10 10 10 10 

W/C Ratio 0.3 0.3 0.3 0.3 

Binder/Aggregate Ratio 0.22 0.22 0.22 0.22 

Slump  0" 0" 0" 0" 

Outside Temp @ Cast  66°F 66°F 66°F 66°F 

Mix Temp @ Cast  68°F 68°F 68°F 68°F 

 

The four mix designs used were labeled as they appear in the table based on their aggregate composition or the 

origin of the design criteria. All mixes were cast on the same day under the same conditions.  All casting procedures 

follow ASTM standards as follows: 



 

 ASTM C1064/1064M Standard test method for temperature of freshly mixed hydraulic cement-concrete 

 ASTM C143/C143M Standard test method for slump of hydraulic cement-concrete  

 ASTM C31/C31M Standard practice for making and curing concrete test specimens in the field  

 ASTM C39/C39M Standard test method for compressive strength of cylindrical concrete samples 

 

All samples were field cured in sealed bags, to reduce evaporation, in a cool, dark room due to the lack of a 

humidity controlled room. Samples were cured per ASTM specifications and were tested in 7 day increments 

starting after 7 days of cure. A water flow through test was conducted on the 28
th

 day, prior to the compressive test.   

 

Experiment Results 
 

Field notes were taken while the experiment was conducted; including pounds applied by the compression machine, 

break type and pounds per square inch (PSI) and were compiled into table 2 as follows:  

 

Table 2 

 

Compressive strength test results  
 

MIX LARGE (A) MEDIAN (B) CAL TRANS (C) FINE (D) 

Day 7     

Pounds 45,000 45,000 40,000 65,000 

Break Type Cone and Shear  Columnar  Shear Shear  

PSI 1591 1591 1414 2299 

Day 14     

Pounds 40000 45000 45000 75000 

Break Type  Shear  Shear Cone and Split  Columnar 

PSI  1415 1592 1591 2652 

Day 21     

Pounds 40,000 47,000 40,000 85,000 

Break Type  Cone and Split Cone and Split  Columnar Columnar 

PSI  1415 1662 1415 3006 

Day 28     

Pounds 40,000 43,000 46,000 80,000 

Break Type   Cone and Shear Columnar  Cone and Shear Cone and Shear 

PSI  1415 1521 1627 2829 

 

Break types are described per the ASTM standard. PSI was calculated by dividing the pounds imposed by the 

compression machine and 28.27 square inches as the surface area of the concrete cylinders. There is no standard for 

flow through rates of pervious pavements, for this test an apparatus was made to hold the test specimen in its casing 

over a clean 5 gallon bucket with a water receptacle attached to the top of the cylinder. The base of the plastic 

concrete test cylinder cut and removed to expose the pervious specimen and allow water to flow unobstructed. The 

purpose of this test was to get a general comparison of the flow rate of each sample and as such some variables were 

ignored including change in head pressure and test sample water absorption.  The apparatus used to conduct the 

experiment can be seen in figure 1 below.   

 



 

Figure 1: Flow through test apparatus  
 

The flow through test was conducted measuring water input, water output and time.  The results from the flow 

through test can be found in table 3 as follows: 

 

Table 3: 

 

Water flow through test results 
 

Mix Large  Median Cal Trans Fine  

Lbs. H2O Before  10 10 10 10 

Bucket Weight (lbs.) 1.8 1.8 1.8 1.8 

Lbs. H2O After  9.2 9.4 9.4 9.2 

Time to Stop Drip (sec) 37.5 44.5 42.5 105 

Flow Rate (gal/min) 1.77 1.52 1.59 0.63 

 

Discussion 
 

The experiment and the results in particular show some promising and some not so promising aspects of concrete 

pervious pavement.  Based on the research highlighted earlier in this report pervious pavements need to have high 

water infiltration rates as well as be able to support the rigors of use as a roadway. Many things were learned as a 

result of conducting the experiment that would have been difficult to ascertain without it. The results of the 

experiment and lessons learned will be discussed.  

 

Compression Testing 
 

The compression testing of the cylinders yielded interesting results, while expecting that the mix designs would have 

lower breaking strengths than traditional concrete mixes, the test cylinders in the experiment broke far lower than 

anticipated. In addition to the low breaking strength, the cylinders almost all uniformly failed at near the same PSI, 

also interesting because they all had different aggregate make up and the same W/C ratio, cement content and binder 

to aggregate ratio. The fourth mix design, with the added fine aggregate performed slightly better in the compression 

tests, from which conclusions can be drawn.   

 

As seen in the figure 2, three of the specimens performed almost identically in compression, being that they have the 

exact same W/C ratio, binder to aggregate ratio and the same amount of cement; one variable stands out, the 

aggregate. When selecting aggregate for the experiment, well graded rock was sourced from a local supplier in the 

denominations identified in table 1.  Upon inspection of the broken test cylinder, the aggregate, although well 

graded and the correct size, contained granite. Granite has relatively low shear strength and since pervious 

pavements don’t have the surface area help of fine aggregate, the shear strength of the course aggregate becomes a 

crucial factor.  It was concluded that the lower shear strength of the granite in the course aggregates created more 

stress in the specimen, causing other aggregates to fail before they would in the absence of the granite. The fourth 

mix design performed higher than the others in compression because it had more fine aggregate than the other mix 

designs.  The fine aggregate increases the surface area that the cement acts on, which in turn lowers shear stress on 



the larger aggregate allowing the sample to bear more weight and fail at a higher PSI than those without fine 

aggregates. 

 

 

Figure 2: Compressive strength of mix designs  
 

 

Flow through Test 
 

The flow through test was conducted to determine whether or not the mix designs tested could accomplish the water 

permeability required of pervious pavement systems. The test was conducted ignoring the change in head pressure 

as the water was drained as well as the absorption of water into the test specimen as they were both irrelevant 

because the test didn’t need to be that precise in order to get an approximate flow rate. The flow rates that were 

determined as seen in table 3 were very good. The large mix, with the coarsest aggregate and least amount of 

smaller aggregates, performed the best with a flow rate of 1.77gal/min, the equivalent to well over a 12”/hr 

storm.(USGS) The worst performing specimen was the fine mix, with the finer coarse aggregates and the addition of 

the sand, performed better than expected at .63gal/min which, despite being much lower than the large mixes flow 

rate, is still over a 5”/hr storm which is satisfactory for the majority of the country.(USGS)   

 

Lessons Learned 
 

While the experiment was overall successfully completed and valuable information gained, there are a few things 

that could be changed to make future experiments more successful. First and foremost, aggregate selection is key, 

the inclusion of granite in this experiments mix designs rendered them weaker than they could have been without the 

granite. Well graded, washed aggregate is essential to ensure porosity and the desired flowrates, however carefully 

selected crushed stone aggregates would make the tests more accurate and successful.  The slump test conducted 

was irrelevant; all of the mix designs despite their varying aggregate contents had a zero slump per the ASTM 

standard test. Pervious pavement systems usually need to be compacted into place using heavy equipment, the 

ASTM standard test uses a rod mainly to remove air pockets and provide minimal compaction, if the experiment 

were repeated a method of compaction should be implemented beyond the ASTM standard test. Although not 

included in this experiment, a durability test in which the samples are subjected to things like tire wear and debris 

could be a valuable additional test.   
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Conclusion 
 

Pervious pavements are more complex and require more care than a traditional road surface however the benefits of 

implementing them far outweigh the detriments. A pervious pavement system has many environmental benefits 

including storm water quality, groundwater replenishment, reducing urban heat island effect and reducing pollutants. 

The systems provide many increases to public safety on the roadways and could lead to a reduction in accidents, 

injuries and fatalities associated with wet conventional roadways. Practically, infrastructure in the United States is 

crumbling and needs to be updated for safety and environmental concerns. While pervious pavements are neither 

practical nor prudent to implement on things like bridges and overpasses, they could be very beneficial on more 

open highways. Anywhere the water stored in the reservoir layer can vacate without the use of auxiliary drainage, 

pervious pavements should be implemented. Pervious pavement systems are more expensive than traditional 

roadways, this additional cost is far outweighed by the environmental and safety benefits alone however it could be 

difficult to find additional funding. Public private partnerships could be a solution to the additional cost problem, by 

making the new pervious freeways toll roads, private investors would be able to help finance the initial project and 

would make money on their investments. Pervious pavements have been gaining in popularity and the pressure from 

environmentalists and the public has been gaining momentum.  Pervious pavements will start to show up more and 

more in the near future and California will more than likely be on the forefront of pervious roadway design due to its 

water needs alone.           
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