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ABSTRACT 

 

Consumers are increasingly relying on public wireless hotspots to access the internet from a 

growing number of devices. Usage of these hotspots has expanded from just laptops to 

everything from iPhones to tablets, which are expected to be internet-connected for full 

functionality. It has become common for one to check if there’s an open wireless hotspot 

connection available at places like coffee shops, hotels, restaurants, or even a doctor’s waiting 

room. The issue that arises is that these public connections present an inherent security risk, as 

anyone can connect and gain access to the network. For increased security, the use of a Virtual 

Private Network (VPN) is often recommended while connected to a public network, especially 

for sensitive data. Individuals can choose from a variety of VPN providers today, but are usually 

required to download a software client for each of their devices they want to connect to the VPN. 

 

My project involves the use of a Raspberry Pi serving as a VPN router to provide secure internet 

access for connected devices. The Pi is connected to the internet via either a wireless or wired 

ethernet interface, and in turn provides a VPN connection through a wireless access point. When 

a computer or mobile device connects to the Pi, all traffic is routed through the VPN tunnel 

before reaching the internet. No software client is required for devices to connect as the Pi 

handles connecting to the VPN service and all required routing. Any number of devices with 

different operating systems can utilize the Pi’s secure network, as the process is no different than 

accessing a standard wireless access point. 
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I. Introduction 

Even the basic features of consumer devices often require an internet connection as mobile 

operating systems shift to cloud-hosted platforms for services like photo storage, messaging, 

video playback, etc. While the expansion of mobile data networks has helped to provide “always 

on” connections for these devices, users are consuming more and more data at an unanticipated 

rate. Mobile carriers have responded by charging for blocks of data (usually in gigabytes) and 

phasing out unlimited data plans. As a result, users often fall back to Wi-Fi connections when 

available as to conserve their limited allocated data.  

 

Public wireless hotspots, especially at local businesses, are often not set-up or maintained by 

networking professionals. This can lead to major security issues such as lack of isolation 

between clients, which increase the risk for man-in-the-middle attacks. Unrestricted access to the 

router and/or access point’s device administration page could allow an attacker to redirect clients 

to fake or malicious websites.  

 

Companies have long required employees to use a VPN in order to access the corporate intranet, 

but benefits are also applicable for individuals looking to increase security, bypass geo-

restrictions or censorship, or protect their personal identities while online. For a user looking to 

secure multiple devices, this can be a cumbersome and confusing process as software VPN 

clients vary in appearance and configuration across operating systems, both desktop and mobile. 

In addition, once the software is installed, one must connect and disconnect from the VPN on 

each individual device.  

 

The Raspberry Pi is small enough to be packed easily for travel and powered by a standard 

micro-USB charger, making it convenient for travelling. Users can configure the Pi to connect to 

a public wireless hotspot and then connect their device(s) to the Pi’s hotspot, eliminating the 

need for any wired networking connection whatsoever. For places where only wired internet is 

available, the Pi also has an ethernet port available. Connection information and configuration 

changes can be made through a web interface similar to a consumer’s home router.  
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With an easily accessible VPN connection, users can protect an ever-growing number of mobile 

devices while connected to public wireless hotspots. Since all traffic is routed and encrypted 

through the VPN connection before reaching the internet, the threat of traffic snooping or man-

in-the-middle attacks is greatly reduced. In addition, one could also bypass web filtering 

restrictions or throttling that may infringe on net neutrality principles. 
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II. Requirements 

 
The Pi should provide the end user with the ability to connect their device(s) to a secure wireless 

network that routes all traffic through an encrypted tunnel. It should support connectivity for 

multiple devices. Furthermore, these devices can be running any operating system, either mobile 

or desktop, as long as they support the ability to connect to a WPA2-secured wireless network or 

ethernet connection. Unlike traditional software VPN solutions, there is no additional client 

software required for user devices to connect. 

 

The user should have the flexibility to connect the Pi to either a wired or wireless internet uplink 

depending on what is available. For example, coffee shops almost always provide wireless 

access but rarely offer patrons the ability to connect over a wired ethernet connection. In some 

cases, a venue may only offer wired access, although this is increasingly uncommon. 

Nevertheless, the Pi should support both methods of connectivity to the internet. 

 

In order to choose a public wireless network, a web configuration page can be accessed by the 

user once they are connected to the secure wireless hotspot. It should give them basic connection 

information, list available wireless networks, and give them the ability to connect to both 

encrypted and unencrypted public networks. 

 

When the Pi is provided an internet uplink, users should be able to connect their devices without 

any additional configuration beyond what would normally be required for getting online. The Pi 

will host a password-protected wireless hotspot that appears no different than one hosted by a 

consumer wireless router. The user shouldn’t need to configure any other network settings other 

than simply entering the WPA2 password upon connecting. 

 

Once an end user device is connected to the Pi’s wireless hotspot, they should be able to reach 

the internet immediately. They should be able to use any application as they normally would 

without any indication that the connection is being routed over a VPN. 
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III. Use Cases 

 
Public WiFi hotspots have become increasingly accessible by consumers and can be found in a 

variety of venues from restaurants to laundromats. Users today expect their devices to remain 

continuously connected to the web and often take advantage of these hotspots for internet access. 

Those who desire to maintain a secure connection can use the Pi to connect to such hotspots.  

 

Although not as common by today’s standards, occasionally only wired internet access is 

available at a public place, such as a hotel. Or, both wired and wireless are available but the 

quality of the wired connection outperforms a potentially weak wireless signal. This could 

prevent a user from getting online with mobile devices like tablets or phones, which don’t 

normally support a wired ethernet connection. The user can connect the Pi to an ethernet port 

provided for internet, and then broadcast a secure wireless hotspot for such devices to use.  

 

Some public networks may have content filtering enabled, blocking access to certain sites or 

categories of sites. They might also block certain protocols from being used, such as those used 

by BitTorrent or e-mail clients. Even if sites or protocols aren’t outright blocked, certain types of 

traffic may be throttled or prioritized by the network. Assuming the Pi is able to establish a VPN 

tunnel, these filtering restrictions can be bypassed by the user. The public network would only be 

able to see the existence of VPN traffic and not be able to prioritize or discriminate against 

specific services used by the user. 

 

VPN traffic routed through the Pi is protected by strong encryption that can prevent adversaries 

on the network from snooping or sniffing on the user’s internet traffic. Websites that support 

HTTPS can generally be used safely even on public networks, but not all sites use HTTPS by 

default or at all. Additionally, there may be applications on a user’s device that make insecure 

requests to the web without obvious notification to the user, such as an e-mail client 

downloading mail over an unencrypted port. The Pi routes all of this traffic through a secure 

VPN tunnel, eliminating the need for a user to worry about their traffic being intercepted. 
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Figure 1: Use case diagram and scenarios 
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IV. Design 

A. High Level Design 

Goals 

The goal of this project is to produce a solution that provides secure VPN access for an end user 

in a compact and easy-to-use package. The device should be lightweight and portable since it 

will be used while travelling, and not require a large power adapter. Nevertheless, it needs to be 

powerful enough to run a full Linux operating system and be capable of serving as a network 

router for multiple devices. The costs of the hardware required should be kept at a minimum, 

while software costs are effectively zero through the use of open-source packages. Security is 

also a major motivating factor, requiring the use of strong encryption to protect user data passed 

through the device. 

 

Hardware Equipment Required 

The primary piece of equipment required in my design is the Raspberry Pi 2 Model B, a small 

computer available online for around $35. It is developed by the Raspberry Pi Foundation. It 

replaced the original Raspberry Pi 1, and introduced a faster quad-core processor as well as 1GB 

of memory. Even though the Pi 2 had only been recently released at the time, I opted to choose 

that version given the significant performance improvements over the Pi 1. Specifically, my 

project requires the Pi to function as a full-blown wired/wireless router along with the overhead 

of VPN encrypted traffic. I knew that the inferior single-core processor of the Pi 1 had the 

potential to bottleneck performance. 

 

The Raspberry Pi contains 4 USB ports, an ethernet port, HDMI port for display output, and a 

Micro SD slot. It requires a 5V Micro USB power supply, which is also used by most non-Apple 

smartphones. I purchased a dedicated Anker 24W Dual USB Wall Charger to use for the Pi, and 

also used a portable USB power bank for mobile power. For storage, I purchased a 16GB 

MicroSDHC Class10 card from which the Pi boots an operating system. The 16GB size is more 

than sufficient to contain the operating system and any associated configuration data. 

The Pi 2 doesn’t contain any wireless capabilities out of the box, so USB wireless adapters are 

required. Two are required: one for connecting to existing public wireless networks, and another 
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to create a private wireless access point for a user to connect to. I chose the Edimax EW-7811Un 

given its known compatibility with the Raspberry Pi and driver support for hosting a wireless 

access point. For wired ethernet connectivity, I used the built in 10/100 ethernet port. I used one 

of the remaining USB ports for a keyboard, and connected to an external display using the given 

HDMI port. 

 

Software Requirements 

The Raspberry Pi is designed mainly to use Linux-based operating systems, although Windows 

10 now has an embedded version of their operating system available. The Raspberry Pi 

Foundation provides an installer called NOOBS that allows for the selection of several different 

Linux operating systems to install. I chose to use Raspbian, the official supported operating 

system based on Debian. Raspbian is optimized for for the Raspberry Pi hardware, and the 

majority of guides/tutorials involving projects on the Raspberry Pi use Raspbian. The OS also 

comes with tools that make managing Raspberry Pi configurations easier. 

I used a hosted VPN service, VyperVPN, to establish a VPN connection from the Pi to the 

internet. I chose to connect via the OpenVPN protocol, which offers better security than PPTP 

and faster performance than L2TP/IPsec. This requires the installation of an OpenVPN client 

software package on the Pi. 

 

As mentioned previously, the Pi uses one of its wireless adapters to host a private wireless 

network for users to connect to. This requires the creation of a virtual, software-based wireless 

access point. I used Hostapd, a “user space daemon for access point and authentication servers” 

for Linux. A modified package of Hostapd was required that includes a driver compatible with 

the Edimax adapters used in this project. 

 

A small web server is also run on the Pi to show a webpage with network statistics such as the 

current VPN IP address. I used Flask, a lightweight web framework for Python. Users who 

connect to the Pi can access the webpage to see those statistics. 
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Figure 2: Raspberry Pi Basic Hardware Configuration 
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B. Lower Level Design 

Operating System Configuration 

The Raspbian operating system will run from the 16GB MicroSD card inserted into the 

Raspberry Pi. A password will be set for the default login user, Pi. The operating system will run 

without a full GUI/window manager, and only a terminal console is visible upon connecting the 

Pi to an external display. Configuration changes and additions necessary for this project will be 

made via the command line. Packages required for the project will be installed via apt-get, unless 

a different version than what is available from the default repositories is required. 

 

OpenVPN Configuration 

VyperVPN, the hosted VPN provider selected for this project, provides VPN connectivity for the 

chosen protocol OpenVPN. VyperVPN manages their own software, network, and server 

infrastructure to provide an anonymized VPN connection to the web for end users. I downloaded 

the provided CA Certificate, which is used to verify the authenticity of the server when 

connecting, as well as the provided .ovpn configuration file, which is used by the OpenVPN 

client software to connect to a remote VPN server. I left almost all settings in this configuration 

file as defaults. This includes using AES-256-CBC as the cipher for encrypting packets and 

SHA256 to authenticate them. Allowed OpenSSL TLS cipher suites, which are used by 

OpenVPN to secure the control channel and exchange encryption keys, include DHE-RSA-

AES256-SHA, DHE-DSS-AES256-SHA, and AES256-SHA. I added a line to the configuration 

specifying the VyperVPN username and password for OpenVPN to authenticate with. 

Upon connecting, OpenVPN will create a TUN virtual network adapter named tun0 and assign it 

an IP address from VyperVPN via DHCP. 

 

Access Point Configuration 

The Pi should have the ability to host a wireless access point which users can connect to like any 

other wireless router/hotspot. The software Hostapd provides this functionality, but the default 

build doesn’t support the Edimax-branded wireless USB adapters used in this project, 

specifically the RTL8188CUS chipset. A custom version supporting this chipset is available 

from various sources online and required by the Edimax adapters. I compiled and installed this 

version on the Pi. Once installed, the hostapd configuration must be modified. I set the wireless 



14 

interface used for the access point to wlan0, SSID to “securepinetwork” WPA2 password to 

“tester123”, channel to 1, and hardware settings required for the chipset used by the Edimax 

adapters. Finally, I started Hostapd and added it as a service to start whenever the Pi powers on. 

Upon connecting to “securepinetwork”, clients should receive an IP address, gateway, and DNS 

servers. I used the Dnsmasq package, which is available on most Linux distributions and 

provides DHCP and DNS services. After installing Dnsmasq, I set the appropriate configuration 

to serve DHCP and also added Dnsmasq as a service on boot. 

 

Network Interface Configuration 

The Pi will always have a minimum of three active interfaces: the virtual VPN adapter, 

wired/wireless uplink, and secure wireless hotspot.  

 

Tun0: The virtual VPN adapter, receives an IP and gateway via DHCP from VyperVPN. 

Anything connecting through this interface gets routed to the internet through a secure VPN 

tunnel. 

Eth0: Wired uplink interface, receives an IP and gateway via DHCP from the public network. 

This provides the Pi with an internet uplink, which it needs to establish a VPN connection to 

VyperVPN’s servers. 

Wlan0: Wireless hotspot interface, IP is statically set to 192.168.10.1. This represents the 

gateway interface used by devices connecting to the secure wireless hotspot. 

Wlan1: Wireless uplink interface, receives an IP and gateway via DHCP from the public 

network.  This provides the Pi with an internet uplink, which it needs to establish a VPN 

connection to VyperVPN’s servers. 

 

Firewall/Routing Configuration 

The Pi must be configured to route packets appropriately across each of the above interfaces.To 

do so, IP forwarding/routing must be enabled in the Linux kernel. 

Additionally, packet filtering rules must be set using iptables. Since the Pi is acting as an internet 

router, NAT should be enabled on the VPN and uplink interfaces: tun0, eth0, and wlan1. This 

allows the IP address of packets travelling from the internal private network to the outside public 

network to be translated appropriately. Iptables should be set to forward new packets from the 
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private internal network wlan0 out through the VPN interface tun0, and forward returning traffic 

from tun0 back to wlan0. This allows clients on the private network to access the public internet, 

and blocks unsolicited public internet traffic from accessing the private network. 

 

Figure 3: Software Design Configuration 
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Figure 4A: Tracing a request from secure hotspot client to internet 
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Figure 4B: Tracing reply from internet back to secure hotspot client 
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Web server configuration 

A small web server is run on the Pi, accessible to clients on the secure private network. The 

server hosts a configuration/statistics page with information on established network connections. 

It is run using Flask, a Python web framework. I chose to install it in virtualenv, which keeps the 

project environment (Python version, libraries, etc.) isolated. For development/testing, I set the 

server visible on all interfaces and debugging mode enabled. Flask enables the binding of 

functions to a URL, which I set to /config. The user will type in the IP address and web server 

port of the Pi plus /config to access the configuration page e.g. ‘192.168.10.1:5000/config’. 

 

The application is a single Python script that contains functions to get network interface data 

from Linux. I imported Python modules (listed in Appendix C) to retrieve this data from the 

system and return it into a usable array. 

 

For the page itself, I render an HTML template that references variables from the Flask 

application (Python script). This is achieved by calling the render_template method() in the 

application and providing the name of the HTML template along with any variables. In this 

instance, I pass network information such as public IP address, VPN IP address, and available 

public wireless networks as variables to be shown on the configuration page. There are 

placeholders in the HTML template that are populated from these variables. Available public 

wireless networks are listed on the configuration page, along with password form fields if the 

network is encrypted. 

 

Web server usage 

To connect to an encrypted wireless network, the required password must be entered in the 

associated form field for that network. Unencrypted networks will not show a password field. 

Once the “connect” button is selected, the selected network and password is submitted as a 

POST request back to the application. These details are written to wpa_supplicant’s 

configuration, wpa_supplicant is reloaded, and a DHCP request is made for the new network. 

Once the connection is complete, OpenVPN is restarted to re-establish the VPN connection used 

by the secure network. The user can also turn off the Pi by selecting the “Power off” button at the 

bottom of the configuration page. 
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Figure 5: Web Configuration Page 
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V. Implementation 

 

A. Physical Assembly 

The Raspberry Pi should be connected to its power source, the Anker wall charger, via a Micro 

USB cable. Both Edimax wireless adapters should be plugged into the USB ports on the side of 

the Pi. The MicroSD card should be inserted into the slot on the opposite side of the unit. For 

testing/development, a USB keyboard and HDMI cable should be connected for physical console 

access. 

 

B. Software Configuration 

Operating System Installation 

The NOOBS installer can be used to install the Raspbian operating system. It can be downloaded 

from the following URL: 

https://www.raspberrypi.org/downloads/noobs/ 

 

I used a MicroSD adapter with the 16GB MicroSD card so that it could be inserted in a regular 

SD card reader on my laptop PC running Windows. Once visible to the PC, I extracted the 

previously downloaded NOOBS folder onto the SD card volume. When this process completed, I 

removed the MicroSD card/adapter from the PC and inserted the card into the Raspberry Pi. I 

made sure a keyboard and HDMI display were connected to the Pi, then plugged in the power 

supply.  

 

The Pi will then boot and display a list of different operating systems to install. I chose the 

Raspbian option, which begins the installation. Upon completion, a configuration page loads 

(raspi-config). I changed the user password and set regional settings for U.S. and PST timezone. 

I also set “command line” as the boot environment, since we don’t need a desktop GUI. Then, I 

continued with “Finish” which brings up a terminal for Raspbian. Most commands in the 

implementation require root privileges, and will need to be run with sudo. 

 

 

 

https://www.raspberrypi.org/downloads/noobs/
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I installed vim for use in editing configuration files: 

 

$ apt-get install vim 

 

Initial connection to an internet uplink 

Connecting to the internet via ethernet simply involves connecting an ethernet cable into the port 

on the Pi. The Pi will detect the connection and acquire a public IP address via DHCP.  

Connecting via WiFi for the first time involves modifications to /etc/network/interfaces and 

/etc/wpa_supplicant/wpa_supplicant.conf: 

 

$ vim /etc/network/interfaces 

 

Wlan1 will be the interface used for connecting to a public wireless uplink, and should have the 

following: 

#wlan1 

auto wlan1 

allow-hotplug wlan1 

iface wlan1 inet manual 

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf 

 

We then edit /etc/wpa_supplicant/wpa_supplicant.conf to specify a wireless network for 

wpa_supplicant to connect to: 

$ vim /etc/wpa_supplicant/wpa_supplicant.conf 

 

Finally, we can restart networking 

$ service networking restart 

 

OpenVPN Setup 

1. Download and install the OpenVPN package: 

$ apt-get install openvpn 

2. Download the OpenVPN configuration package from VyperVPN: 
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https://support.goldenfrog.com/hc/en-

us/article_attachments/205311978/VyprVPNOpenVPNFiles.zip 

3. Extract the zip and save the .ovpn file (I chose the USA - Los Angeles.ovpn file based on 

location) to /etc/openvpn/client.conf 

4. Create a login file under /etc/openvpn, with the first line containing the VyperVPN user 

and second line the password. This allows OpenVPN to login automatically without 

prompting for credentials 

 $ vim /etc/openvpn/login.txt 

 

 <e-mail address> 

 <password> 

 

5. Edit /etc/openvpn/client.conf, find the line containing “auth-user-pass” and append 

“login.txt” to the end of the line: 

 $ vim /etc/openvpn/client.conf 

 

 auth-user-pass login.txt 

 

6. Enable the NTP service to ensure the Pi has a matching timestamp for OpenVPN: 

 

 $ service ntp start 

$ update-rc.d ntp enable 

 

7. Start OpenVPN as a service and enable startup when the Pi boots: 

 

$ service openvpn start 

$ update-rc.d openvpn enable  

 

8. The Pi should now establish a VPN connection using the supplied OpenVPN connection. 

It will be accessible on the tun0 interface 

 

https://support.goldenfrog.com/hc/en-us/article_attachments/205311978/VyprVPNOpenVPNFiles.zip
https://support.goldenfrog.com/hc/en-us/article_attachments/205311978/VyprVPNOpenVPNFiles.zip
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Secure Access Point Setup- Hostapd 

Download, extract, and install the custom version of Hostapd with driver support for the Edimax 

wireless cards: 

$ wget https://github.com/jenssegers/RTL8188-

hostapd/archive/v1.1.tar.gz 

$ tar -zxvf v1.1.tar.gz 

$ cd RTL8188-hostapd-1.1/hostapd 

$ make 

$ make install 

 

 

Edit the Hostapd configuration to contain the following: 

$ vim /etc/hostapd/hostapd.conf 

 

# Basic configuration 

interface=wlan0 

ssid=securepinetwork 

channel=1 

#bridge=br0 

 

# WPA and WPA2 configuration 

 

macaddr_acl=0 

auth_algs=1 

ignore_broadcast_ssid=0 

wpa=3 

wpa_passphrase=tester123 

wpa_key_mgmt=WPA-PSK 

wpa_pairwise=TKIP 

rsn_pairwise=CCMP 
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# Hardware configuration 

 

driver=rtl871xdrv 

ieee80211n=1 

hw_mode=g 

device_name=RTL8192CU 

manufacturer=Realtek 

 

Start the Hostapd service and enable startup when the Pi boots: 

 

$ service hostapd start 

$ update-rc.d hostapd enable 

 

Secure Access Point Setup-DHCP/DNS 

Install DNSmasq: 

$ apt-get install dnsmasq 

 

Edit the configuration to set DHCP options. The DHCP server should serve addresses from 

192.168.10.10-192.168.10.200. It should push DHCP options for the gateway/router, 

192.168.10.1 (the Pi itself) and DNS server, also 192.168.10.1. 

 

$ vim /etc/hostapd/hostapd.conf 

 

interface=wlan0 #wlan0 is our adapter for the hotspot 

dhcp-range=wlan0,192.168.10.10,192.168.10.200,2h 

dhcp-option=3,192.168.10.1 #router 

dhcp-option=6,192.168.10.1 #dns server 

dhcp-authoritative #make clients grab a new IP 

 

We will actually start the DHCP server in the next section after the network interfaces are 

probably configured first 
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Network Interface Setup 

I configured the interfaces configuration file with the following: 

$ vim /etc/network/interfaces 

<interfaces configuration available in Appendix C) 

 

Finally, start the DNSmasq service and enable startup when the Pi boots: 

$ service dnsmasq start 

$ update-rc.d dnsmasq enable 

 

Firewall/Routing Setup 

I enabled IP routing in the Linux kernel by editing /etc/sysctl.conf: 

$ vim /etc/sysctl.conf 

 

Uncomment the following line: 

net.ipv4.ip_forward=1 

 

Set the following rules for the Iptables firewall, to be loaded by iptables-restore when starting the 

firewall: 

<Iptables rules available in Appendix A> 

 

Web Server Setup 

 

First, install Python and Virtualenv: 

$ apt-get install python-dev 

$ apt-get install python-virtualenv 

 

Create a Python virtual environment for Flask to use (we’ll call “wiconfig”) and activate it: 

$ cd /home/pi 

$ virtualenv wiconfig 

$ . wiconfig/bin/activate 
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Now install Flask inside the virtual environment: 

$ pip install Flask 

 

We can create the folder structure, with “app” containing the application itself: 

$ cd wiconfig 

$ mkdir app 

$ mkdir app/static 

$ mkdir app/templates 

 

Next, create an initialization script for the “app” package: 

 

$ vim app/__init__.py 

 

from flask import Flask 

 

app = Flask(__name__) 

from app import views 

 

This will create the application object and import the “views” module. The views model 

responds to requests from clients accessing the web server (e.g. web browsers). Our view 

function maps to a single request URL, the default root directory. It should be saved as views.py: 

 

$ vim app/views.py 

 

<code for views.py available in Appendix C> 

 

 

 

 

 



27 

Finally, we create a script that starts our web server with the application, run.py: 

$ vim run.py 

 

#!flask/bin/python 

from app import app 

app.debug = True 

app.run(host='0.0.0.0') 

 

So, our directory structure is as follows: 

 

|----wiconfig/ 

|--------app/ 

|------------static/ 

|------------templates/ 

|------------__init__.py 

|------------views.py 

|--------bin/ 

|--------include/ 

|--------lib/ 

|--------local/ 

 

We can start the server by executing run.py from the command line. The webpage itself can then 

be accessed at http://192.168.10.1:5000/config when connected to the secure wireless hotspot. 

 

 

 

 

 

 

 

 

 

 

 

 

http://192.168.10.1:5000/config
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VI. Results/Conclusions 

 
I was able to follow my planned design and successfully connect clients to a secure wireless 

hotspot, which then routed all traffic over a VPN tunnel to VyperVPN’s servers. The Pi is able to 

use either a public wired or wireless connection for its internet uplink. Connecting to a wireless 

internet uplink required more work and implementation for the web server’s configuration page 

as a preferred network SSID and password is required. Without the configuration page, a user 

connecting to the secure hotspot wouldn’t have a way to tell the Pi which wireless network to 

connect to. 

 

Performance for clients connecting to the secure hotspot is overall consistent. Clients are able to 

connect quickly and get internet access almost immediately. The range of the secure hotspot is 

less than that of a traditional router which has more transmit/receive power, but is more than 

enough for the intended short-range use cases. Download throughout was noticeably reduced 

compared to connecting a public network directly, but still fast enough for most internet use. 

This is likely due to a combination of encryption overhead, hardware limitations, and using 

wireless for both the uplink and hotspot. Running this project on a more powerful system (such 

as the recently released Raspberry Pi 3) could help improve performance, though the Pi didn’t 

appear to be under heavy CPU load during testing.  

 

I encountered some issues initially regarding the power source for the Raspberry Pi. I started by 

using a low-cost phone charger, but would occasionally receive errors relating to power in the 

Pi’s console session. In some cases, the file system would become temporarily corrupted and 

prevent the Pi from booting. Fortunately, a simple run of fsck to repair the MicroSD card’s file 

system would alleviate the issue and the Pi would boot normally thereafter. I attributed these 

issues to the use of two USB wireless adapters (required for the wireless uplink and hotspot) and 

a USB keyboard, all of which likely drew a significant amount of the power from the USB bus. I 

purchased a better quality charger and cable to power the Pi, which was much more reliable. 

Another potential solution would be to connect the USB devices to a powered USB hub before 

connecting to the Pi, but this would add more physical components to the setup. 
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My original design called for the ability for clients to connect via either a secure ethernet 

connection or a secure wireless hotspot, but I made the decision to only provide the wireless 

hotspot. Almost all modern day devices have wireless capabilities and the performance tradeoff 

is relatively small. Additionally, it would require more configuration and user-required input that 

would further complicate the process of connecting. 
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VI. Next Steps 

 
One of the challenges with first connecting to public networks such as hotels is that they often 

employ redirection to a captive portal webpage. The network blocks internet access to the client 

until required information such as room number, name, and/or agreeing to a usage agreement is 

submitted. This can prevent VPN software from establishing a secure connection, requiring the 

user to first be exposed on the public network in order to reach the captive portal page. In the 

case of the Pi, it would likely be unable to establish a VPN connection for secure hotspot users 

until the captive portal page is filled out. One potential solution would be to clone the Pi’s MAC 

address to that of the client device. Since most captive portal systems authenticate clients via 

MAC address, once the user’s device accepts the captive portal agreement, the Pi would also be 

authenticated (since they share the same MAC address) and able to establish a VPN connection 

 

The Pi VPN configuration page could continue to be improved upon. Additional detailed 

network information such as number of connected hotspot clients and connection history could 

be added to assist the user in troubleshooting potential connectivity issues. Support would also 

be added for connecting to WPA-Enterprise networks such as Cal Poly’s Mustang Wireless. The 

configuration page might also keep track of multiple preferred wireless networks and store their 

connection details, with the ability to add or remove networks between uses of the Pi.  

 

Much of the development and testing was done in a relatively isolated environment. Additional 

security precautions should be taken if the system is used regularly in a public setting. The web 

server itself should have debugging mode/logging disabled, and firewalled off from the public 

network to limit access only to users on the private network. The web application should also be 

moved from Flask’s built in web server to a production-ready server such as Apache or NGINX. 

Field validation should be added for the forms shown on the web configuration page and input 

sanitized.  

Overall performance could be further improved by using a more powerful device than a 

Raspberry Pi. Wireless range and throughput would likely increase with higher-powered adapters 

than the relatively small Edimax USB adapters. However, this could reduce overall portability 

and make it less convenient for users to transport while travelling.  
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Appendix A. Iptables Rules 

*nat 

:PREROUTING ACCEPT [82:6649] 

:INPUT ACCEPT [21:1600] 

:OUTPUT ACCEPT [40:2782] 

:POSTROUTING ACCEPT [6:426] 

-A POSTROUTING -o eth0 -m comment -j MASQUERADE 

 

-A POSTROUTING -o wlan1 -m comment -j MASQUERADE 

 

-A POSTROUTING -o tun0 -m comment -j MASQUERADE 

 

COMMIT 

# Completed on Wed Oct 28 20:26:49 2015 

# Generated by iptables-save v1.4.14 on Wed Oct 28 20:26:49 2015 

*filter 

:INPUT ACCEPT [981:687162] 

:FORWARD ACCEPT [1669:717210] 

:OUTPUT ACCEPT [939:205723] 

-A FORWARD -s 192.168.10.0/24 -i wlan0 -o tun0 -m comment --comment 
"Allow only traffic from clients to tun0" -j ACCEPT 

 

-A FORWARD -i tun0 -o wlan0 -m conntrack --ctstate ESTABLISHED,RELATED 
-m comment --comment "Allow only traffic from clients to tun0" -j 
ACCEPT 

 

-P FORWARD DROP 

COMMIT 
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Appendix B. Web configuration page source 

Views.py (main application) 
 

from __future__ import print_function 
from app import app 
from flask import Flask, render_template, request, redirect, url_for 
import socket 
import subprocess 
import sys 
import os 
import netifaces 
import wifi 
from wifi import Cell,Scheme 
 
@app.route('/config', methods=['GET', 'POST']) 
def config(): 
 
    REMOTE_SERVER = "www.google.com" 
    # adjust for what's the internet interface 
 
    # check if eth0 is active, otherwise default to wireless. get IP if active. 
    try: 
      addrs = netifaces.ifaddresses('eth0') 
      myip = addrs[netifaces.AF_INET][0] 
      myrealip= myip['addr'] + " (connected via ethernet)" 
    except: 
      myrealip="N/A" 
       
 
    # check to see if wlan1 is active, get IP if active 
    try: 
      addrs = netifaces.ifaddresses('wlan1') 
      myip = addrs[netifaces.AF_INET][0] 
      myrealip= myip['addr'] + " (connected via wireless)" 
    except: 
      myrealip="N/A" 
       
       
    # check to see if tun0 (vpn) is active, get IP if active 
    try: 
      vpn_addrs = netifaces.ifaddresses('tun0') 
      myvpnip = vpn_addrs[netifaces.AF_INET][0] 
      myvpnrealip= myvpnip['addr'] 
    except: 
      myvpnrealip="N/A" 
 
    try: 
      # check to see if we can resolve hostname 
      host = socket.gethostbyname(REMOTE_SERVER) 
      # connect to the host - can we actually reach it? 
      s = socket.create_connection((host, 80), 2) 
      connected="Connected" 
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    except: 
      connected="Not Connected" 
       
    #get available wireless networks 
    networks = Cell.all('wlan1') 
    results = {} 
 
    # form to get ssid/password and connect 
    select_ssid = "N/A" 
     
    select_password = "password" 
 
    # get current SSID from wpa_supplicant service 
    wpa_process = subprocess.Popen("wpa_cli status | grep ^ssid", shell=True, 
stdout=subprocess.PIPE) 
    stdout_wpa_process = wpa_process.communicate()[0].split('\n')[0] 
    print(stdout_wpa_process[5:], file=sys.stderr) 
    current_ssid = stdout_wpa_process[5:] 
 
    if request.method == "POST": 
      try: 
        # check to see if power off button submitted, if so turn off the Pi 
        poweroff = request.form['poweroff'] 
        if poweroff == "true": 
          print('powering off...', file=sys.stderr) 
          subprocess.call(['poweroff'], shell=True) 
          return 'Powering off...' 
        # get SSID from form 
        select_ssid = request.form['ssid'] 
 
        # get password from form, assume no password if blank 
        try: 
          select_password = request.form['password'] 
        except: 
          select_password = "" 
        # write configuration file for wpa_supplicant 
        wpa_config = open("/etc/wpa_supplicant/wpa_supplicant.conf", 'w') 
        wpa_config.write("ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev\n") 
        wpa_config.write("network={\n") 
        wpa_config.write('ssid="' + select_ssid + '"\n') 
 
        # if no password, the network is assumed to be unencrypted 
        if select_password == "": 
          wpa_config.write('key_mgmt=NONE\n}\n\n') 
        # password provided so set it in the configuration 
        else: 
          wpa_config.write('psk="' + select_password + '"\n') 
          wpa_config.write('proto=RSN\nkey_mgmt=WPA-PSK\npairwise=CCMP 
TKIP\ngroup=CCMP TKIP\nauth_alg=OPEN\n}\n\n') 
 
        # close configuration file 
        wpa_config.close() 
 
        # tell wpa_supplicant to reload configuration file 
        subprocess.call(['wpa_cli reconfigure'], shell=True) 
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        # kill all previous instances of dhcp client 
        subprocess.call(['killall dhclient'], shell=True) 
 
        # call dhclient to acquire a public IP via DHCP 
        subprocess.call(['dhclient wlan1 -v'], shell=True) 
 
        # restart OpenVPN 
        subprocess.call(['sleep 5 && service openvpn restart'], shell=True) 
 
        # return a 302 redirect back to config page after form submitted 
        return redirect(url_for('config')) 
 
      except: 
        # something bad happened 
        print('exception', file=sys.stderr) 
 
    # render template 
    return render_template('index.html', connected=connected, myrealip=myrealip, 
myvpnrealip=myvpnrealip, networks=networks, current_ssid=current_ssid) 

 

Index.html 
<!doctype html> 
<html class="no-js" lang="en" dir="ltr"> 
  <head> 
    <meta charset="utf-8"> 
    <meta http-equiv="x-ua-compatible" content="ie=edge"> 
    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
    <title>Pi VPN Configuration</title> 
    <link rel="stylesheet" href="static/css/foundation.css"> 
    <link rel="stylesheet" href="static/css/app.css"> 
  </head> 
  <body> 
    <div class="row"> 
      <div class="large-12 columns"> 
        <h2>Pi VPN Configuration</h2> 
      </div> 
    </div> 
 
    <div class="row"> 
      <div class="large-12 columns"> 
        <div class="callout"> 
          <h3>Current Network Information </h3> 
 
          <div class="primary callout small"> 
            <p><strong>Public IP Address:</strong> {{ myrealip }}</p> 
          </div> 
          <div class="warning callout small"> 
            <p><strong>VPN IP Address:</strong> {{ myvpnrealip }}</p> 
          </div> 
          <div class="success callout small"> 
            <p><strong>Current SSID:</strong> {{ current_ssid }}</p> 
          </div> 
          {% if connected == "Connected" %} 
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          <div class="success callout small"> 
            <p><strong>Internet Connection Status:</strong> {{ connected }}</p> 
          </div> 
          {% endif %} 
          {% if connected != "Connected" %} 
          <div class="alert callout small"> 
            <p><strong>Internet Connection Status:</strong> {{ connected }}</p> 
          </div> 
          {% endif %} 
 
          <h3> Available Wireless Networks</h3> 
          <table class="hover"> 
            <thead> 
              <tr> 
                <th width="50">SSID</th> 
                <th width="20">Quality</th> 
                <th width="20">Signal</th> 
                <th width="10">Channel</th> 
                <th width="10">Encrypted</th> 
                <th width="10">Encryption Type</th> 
                <th width="300">Connect</th> 
 
              </tr> 
            </thead> 
            <tbody> 
              {% for network in networks %} 
 
              {% if network.ssid %} 
              {% if network.ssid != "securepinetwork" %} 
              <tr> 
                <td>{{ network.ssid }}</td> 
                <td>{{ network.quality }}</td> 
                <td>{{ network.signal }}</td> 
                <td>{{ network.channel }}</td> 
                <td>{{ network.encrypted }}</td> 
                <td>{{ network.encryption_type }}</td> 
                 
                <td> 
                <form method='POST' action='/config'> 
                        {% if network.encryption_type %} 
                        <label>Password: 
                          <input type="text" name="password" placeholder="Password"> 
                        </label> 
                        {% endif %} 
                        <input type="hidden" name="ssid" value="{{network.ssid}}"> 
                        <input type="hidden" name="poweroff" value="false"> 
                        <button type="submit" class="small button">Connect</button> 
                </form> 
                 
              </tr> 
              {% endif %} 
              {% endif %} 
              {% endfor %} 
            </tbody> 
          </table> 
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        </div> 
         <form method='POST' action='/config'> 
          <input type="hidden" name="poweroff" value="true"> 
          <button type="submit" class="small button">Shutdown Raspberry Pi</button> 
         </form> 
      </div> 
    </div> 
 
    <script src="static/js/vendor/jquery.js"></script> 
    <script src="static/js/vendor/what-input.js"></script> 
    <script src="static/js/vendor/foundation.js"></script> 
    <script src="static/js/app.js"></script> 
  </body> 
</html> 
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Appendix C. Network interfaces configuration 

(/etc/network/interfaces) 

$ vim /etc/network/interfaces 
 
auto lo 
iface lo inet loopback 
 
#auto eth0, wired uplink interface 
allow-hotplug eth0 
iface eth0 inet dhcp 
 
#auto wlan0, wireless access point interface 
allow-hotplug wlan0 
#set a static IP for the access point 
iface wlan0 inet static 
address 192.168.10.1 
netmask 255.255.255.0 
 
auto wlan1 
allow-hotplug wlan1 
#obtain an IP via DHCP 
iface wlan1 inet dhcp 
#start wpa_supplicant before bringing up interface 
pre-up wpa_supplicant -B -Dwext -i wlan1 -
c/etc/wpa_supplicant/wpa_supplicant.conf 
#stop wpa_supplicant if interface is brought down 
post-down killall -q wpa_supplicant 
 
#restore default firewall rules 
up iptables-restore < /etc/iptables.ipv4.nat 

 
#restart openvpn and hostapd after interfaces loaded 
up service openvpn restart 
up service hostapd restart 

 


