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Abstract

Chopped carbon fibers are used as reinforcements in thermoplastics, but the viscous shear

forces that arise in melt-processing reduces the fiber length well below its critical length result-

ing in only moderate strength and stiffness gains compared to the neat resin. This research

project aimed to experimentally determine the effect of the melt–flow portion of a single-screw-

extrusion process on carbon fiber length attrition in isolation from the immediately preceding

screw–plastication step that is responsible for most of the heat needed for melting. Carbon fibers

with an initial length of 2 mm were stirred into 5,000 centipoise and 10,000 centipoise silicone

oils at a fiber volume fraction of 10%. Each suspension was passed through a single–screw–

extruder under the same conditions and the resultant fiber length distributions were compared

for absolute and relative amounts of length attrition. Silicone oil suspensions of fibers were

shown to be a viable method of determining the effect of the melt–phase of the extrusion pro-

cess. Both samples showed similar amounts of fiber attrition. The final fiber lengths were not

reduced as much as what is found in complete thermoplastic composite processing methods

that include screw–plastication. Therefore, it is suggested that further research focus on how to

reduce damage from screw–plastication (possibly by eliminating it) rather than on decreasing

polymer viscosity in attempts to preserve fiber length.

1 Introduction

1.1 Stakeholders, purpose, and deliverables

As a non-sponsored project, I am the sole stakeholder of this project, and in accordance with Cal

Poly policy, I have total rights to any and all IP generated from this senior project. The purpose

of this project is to evaluate whether a new class of polymers would be infeasible for improving

the properties of fiber reinforced polymers produced by certain types of additive manufacturing.

The deliverable will primarily be this report, which ideally will be instructive for elaborating on

the invention I’m going to patent. Any connections that could exist between myself and external

companies is not relevant within the scope of this senior project.

1.2 Broader impacts

Additive manufacturing refers to any manufacturing technique in which material is added to form

a part as opposed to processes that begin with a block of material larger than the part volume and

remove excess material. Additive manufacturing has been touted as a game-changing technology
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that will revolutionize production at a global scale. [CITATION] Some proponents have gone so

far as to say that this will represent a ”democratization” of manufacturing, in which the up front

costs are so low, anyone could start building useful parts for themselves or as a business.

However, the market data and predictions tell a different tale. Additive manufacturing and the

raw materials used therein currently represent a XXXX dollar global market. [CITATION] While

rapid growth is expected, bringing the value to XXXX by YYYYY, this is still a small fraction

of the $10 trillion global manufacturing output, where single manufacturing technologies such as

injection molding or machining are each worth hundreds of billions. [CITATION] This disparity

is particularly noteworthy when it is considered that additive manufacturing encompasses multiple

technologies each with completely different applications.

The details of each additive manufacturing process is beyond the scope of this project and sev-

eral excellent reviews already exist in this area. [3] [4] [MORE CITATIONS] Instead a high-level

overview will be given of a few classes of processes viewed from a materials perspective that con-

siders their current commercial success and anticipated growth. Structural performance combined

with scalability has been the primary factor affecting process viability in comparison to traditional

manufacturing methods, thus functionally graded materials or finished parts that incorporate multi-

ple components such as circuitry will not be considered.

Metals are the first important class of additive manufacturing materials and they typically involve

powder processing. Metals have the obvious advantage over polymers of superior mechanical prop-

erties such as strength, stiffness, and durability. The additional benefit all additive manufacturing

process posses has allowed metal additive manufacturing to find applications in a handful of high

performance applications such as [LIST EXAMPLES]. Nevertheless, the exceedingly high cost of

a metal additive manufacturing machine means scaling with parallel processing is not feasible for

larger production runs and the applications will remain limited. [5]

In general, additive manufacturing processes are slow and therefore the only way to increase

throughput at a reasonable cost is through parallel processing, unlike in traditional manufacturing

where there is typically a focus on reducing time per part in a serial process. [CITATION? or self-

evident] This brings us to the main polymer additive manufacturing processes. Polymer processes

might have an even higher barrier to entry into final part commercial applications (as opposed to

prototyping or mold-production) than metals since they fail to offer a significant and unique perfor-

mance advantage in most commercial applications given their relatively poor mechanical properties.

However, polymer based additive manufacturing processes lend themselves to far lower cost ma-

chines so wherever an innovation occurs in polymer processing that creates a novel commercial

application, there is a far greater chance that parallel(y) scaling the process would be cost-effective.

There are fields of innovations in polymer additive manufacturing that might enable this scalability:

speed and performance.
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Most polymer additive manufacturing processes are not competitive with injection molding for

nearly any part, but faster printing can make it viable. Carbon3D is a company that has increased

the speed of a polymer printing process1 sevenfold and in doing so will find many parts that then

make more sense to additively manufacture than injection mold, and their initial automotive indus-

try partners prove this [CITATIONS].

Higher performance additive manufacturing with polymers could also enable serious applica-

tions and the clear path to achieve this is with carbon fiber reinforcement. Fiber reinforcement

is available for selective laser sintering and fused deposition modeling (FDM), but the mechanical

properties are typically not much higher than double that of the neat polymer. In comparison,

carbon fiber composites with traditional manufacturing methods are usually more than an order of

magnitude stronger and stiffer than the neat polymer. The reason for this disparity is that additive

manufacturing methods are limited to using fibers shorter than the critical length due to processing

constraints. This project will explore possibilities for narrowing this gap with longer fibers for fused

deposition modeling, therefore possibly furthering global opportunities in additive manufacturing.

2 Literature review

This review will be broken up into three parts. The first will go over the general processing principles

that control the subsequent structure in terms of length distribution of reinforcement fibers since

polymer processing fractures discontinuous fibers causing a reduction in length. The second section

will go over the micromechanics of short fiber composites and provide the motivation for fiber

length preservation, as well as briefly summarizing existing data. The final section will provide an

extension to the analytical techniques of the first section and go over fiber length characterization

methods. After reading the literature review, the motivation for the following two questions that

this research project seeks to address will become apparent.

• Does reduced viscosity in the post-compression section of extrusion decrease fiber length

attrition?

• If so, is the reduction enough to have a ”substantial” effect on the material properties?
1 Carbon3D does steriolithography, which uses a pool of resin that is pulled from an upside-down platform that UV

cures the polymer as it is lifted.
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2.1 Processing and structure

2.1.1 Injection molding and filament extrusion process overview

The literature on additive manufacturing filaments for FDM is fairly limited, but it is a fairly similar

process to injection molding so we will integrate what is known from injection molding to guide

this research. The injection molding process is fairly straightforward [Figure 2] [1]. In the first step,

thermoplastic pellets are being fed by the hopper into the screw mechanism. Modern injection

molding machines use shear forces within the screw rather than direct conductive heating to gener-

ate roughly 80% of the heat. Once a melt pool forms in front of the screw-tip, it plunges forward. In

comparison, a filament extruder does not plunge forward and since the filament feeds at a slower

continuous rate, the screw mechanism is sufficient to move the material forward. Both processes

involve screw extrusion and are sometimes used with fiber reinforcement.

2.1.2 Fiber length attrition mechanisms in filament extrusion

Fiber length attrition is caused by multiple factors and occurs in a few stages [Figure 1]. First, the

initial crushing of the pellets begins the fiber breaking process. This pellet crushing is the primary

heating process in an injection molding machine or filament extruder since they operate on the

same principles. Once the fibers are in the melt-flow, they can be further broken by fiber-fiber,

fiber-wall, or fiber-melt interactions [6] . Of these, it may be that the last one is most significant.

When a fiber is in a melt flow it will not always be perfectly aligned with the flow. This misalignment

allows the viscous shear forces from the fluid to inflict a stress on the fiber, which can surpass the

fiber strength and cause fracture. The fiber stress that results in buckling by shear-induced axial

compression has a critical value (𝜂𝛾)𝑐𝑟𝑖𝑡 for rodlike particles and it can be given as a function of

shear rate and viscosity of the suspending medium Equation (1) [7].

(𝜂𝛾) ≈ 𝐸𝑏(𝑙𝑛(2𝑎) − 1.75)
2𝑎4 (1)

where

𝜂 is shear rate

𝛾 is viscosity

𝐸𝑏 is modulus of rupture

𝑎 is aspect ratio (𝑙/𝑑)
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While this equation has been tested experimentally and could even be an exact representation

for compression buckling, it neglects the bending of fibers [7]. When one considers bending,

the fracture point is simply determined by thin rod theory [7] (2). Complex bending of fibers

in suspension will in turn have an effect on the viscosity and it becomes difficult to model even if

bending rather than buckling is the main source of fiber length attrition. Therefore, it is uncertain

how much of a benefit can be obtained by changing processing parameters to reduce shear rate or

changing the material to reduce intrinsic viscosity of the polymer.

𝑅𝑏𝑟𝑒𝑎𝑘 = 𝐸𝑑
2𝜎𝑓𝑢

(2)

where

𝑅𝑏𝑟𝑒𝑎𝑘 is radius at which the rod breaks

𝑑 is fiber diameter

𝐸 is Young modulus

𝜎𝑓𝑢 is ultimate tensile strength of fiber

Figure 1 – Fiber length in different stages of injection molding.

2.1.3 Fiber length preservation

Since injection molding is 4 orders of magnitude higher throughput in the plunging step, design

changes to screw shape with intent to make filament could be effective in reducing shear with

current material systems. Studies have shown that screw geometry has an impact on fiber length
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attrition, but since screw-extruders might not be re-designed for the filament extrusion process at

lower shear rates, their could be some trivial optimization to be made that would result in substantial

improvements [8].

Replacing thermoplastics with reversible-thermosets could be even more effective based on the

previously mentioned critical buckling value since they quickly drop in viscosity. The company

Evonik makes such a material. Their hybrid polymer thermosets, but then exhibits repeatable heat-

induced de-crosslinking so it has the processability benefits of thermoplastics and thermosets. In the

melt phase, the viscosity can be tailored and while not publicly disclosed, could be as low as typical

thermosetting resins such as epoxies. Whether this is valuable for reinforced FDM filaments could

be simulated with a low viscosity suspension of fibers to observe breakage. This would simulate

only a portion of the process where the fibers break however, and it does not guarantee the material

is a good option, but if it exhibits a large degree of fiber breaking it could rule it out. Furthermore,

as the prior equations showed, the exact relation between viscosity and overall fiber attrition is

unknown.

Figure 2 – A simplified view of the injection molding process [1].

2.2 Properties and performance

2.2.1 Performance of chopped fiber reinforcement

Chopped carbon fibers can be used in injection molded and FDM parts, but these parts are not

nearly as strong as continuous fiber reinforced thermoplastics [9]. The strength of short fiber com-

posites for a given composition is controlled by the length of the fibers and the interfacial adhesion

between the fibers and the matrix. Higher adhesion and length means a larger area in which tensile

loads can be transferred from matrix to fiber via shear loads, and the length of fiber at which the

load transfer is sufficient to pull apart the fiber at failure rather than the fiber pulling out of the
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matrix is defined as the critical length (Equation 3). This yields two cases with composite tensile

strengths that can be modeled with the rule of mixtures 2 either the fibers are below the critical

length (Equation 4) or they are above the critical length and will fracture (Equation 5).

𝑙𝑐 = 𝜎𝑓𝑢 ⋅ 𝑟
𝜏𝑖

→ 𝜏𝑖 = 𝜎𝑓𝑢 ⋅ 𝑟
𝑙𝑐

(3)

𝜎𝐿𝑡𝑢 = 𝜏𝑖
𝑙𝑓

2 ⋅ 𝑟𝑣𝑓 + 𝜎𝑚𝑢(1 − 𝑣𝑓) → 𝜎𝐿𝑡𝑢 = 𝜎𝑓𝑢
2

𝑙𝑓
𝑙𝑐

𝑣𝑓 + 𝜎𝑚𝑢(1 − 𝑣𝑓), (𝑙𝑓 < 𝑙𝑐) (4)

𝜎𝐿𝑡𝑢 = 𝜎𝑓𝑢 (1 − 𝑙𝑐
2𝑙𝑓

) 𝑣𝑓 + 𝜎′
𝑚(1 − 𝑣𝑓), (𝑙𝑓 > 𝑙𝑐) (5)

where

𝑙𝑓 is fiber length

𝑙𝑐 is critical length

𝜎𝑓𝑢 is ultimate fiber tensile strength

𝑟 is fiber radius

𝜏𝑖 is interfacial shear strength (IFSS)

𝜎𝐿𝑡𝑢 is composite unidirectional ultimate tensile strength

𝑣𝑓 is fiber volume fraction

𝜎𝑚𝑢 is matrix ultimate tensile strength

𝜎′
𝑚 is matrix stress at fiber failure strain

These equation show that even if the fiber lengths are all at the critical length, the composite

will still only reach half the strength of a continuous fiber composite (ignoring matrix contribution

to strength). Specifically, when 𝑙𝑐 = 𝑙𝑓, 𝜎𝑙𝑡𝑢 = 𝜎𝑓𝑢𝑣𝑓
2 + 𝜎𝑚𝑢(1 − 𝑣𝑓). Below the critical length,

the strength from the fibers is proportional to their length and to achieve comparable strength to

continuous composites, the fiber lengths must be a few times longer than the critical length so

2 These equations make various assumptions such as uniformity of shear stress along fiber and perfect matrix plasticity

during failure among other. [10] These assumptions are of course false, but in trying to form a better model one runs

into the problem that ”[a] general theory of composite strength for an arbitrary fiber length and orientation distribution

and local fiber density distribution for a part which is loaded in multiaxial stress does not exist.” [11]. However, since

this project merely attempts to experimentally prove a trend, this simple model should suffice.
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that the fiber end effects become negligible, at which point the static3 properties begin to plateau.

Having a distribution of fiber lengths where many fibers are several times longer than the critical

length can be achieved in two ways: 1) decrease the fiber length attrition during processing 2)

improve the fiber matrix bonding to decrease the critical length. This project focuses on the former

method, but since there is a wide variability in fiber matrix bonding even for the same constituent

materials, we will provide an overview of typical values so that our experimental results can be

considered in context.

2.2.2 Fiber matrix interface properties

Equation (3) showed that the critical length for a fiber of some diameter and strength is based

solely on the the interfacial shear strength (IFSS). As IFSS increases there is a (decreasing) decrease

in the critical length [Figure 3]. In practice, it is the critical length that is observed directly in

experimentation via single fiber tests that measure residual fiber lengths, which then determine the

IFSS since the relationship of Equation (3) is invertable.

IFSS can be thought of as a measure of how well the fiber bonds to the matrix. In general,

fiber-matrix bonding can comprise covalent bonding, intermolecular bonding, and mechanical in-

terlocking [probably should cite]. An interphase of nonzero thickness exists at the interface and the

modulus of the interphase is an effective proxy for IFSS [probably should cite]. This is mentioned

to make more obvious why it is not merely the matrix material and the fiber surface that deter-

mine IFSS, but also the processing parameters. Variations in crystallization based on cooling rates4

as well as the residual stress due to the greater thermal expansion of polymer than fiber result in

variations in IFSS for any given materials system. Studies with carbon fiber an PEEK have shown

variations on the order of 1.5X for IFSS and 3X for interlaminar shear strength (ILSS) [12] [13].

ILSS is often easier to obtain than IFSS since it can be measured with bulk coupon tests rather

than requiring specialized equipment to deal with individual fibers. IFSS and ILSS are sometimes

used interchangeably, but they do not always correlate, and many studies only measure one prop-

erty5. However, there exists a good review that covers various surface treatments and includes both

ILSS and IFSS for various systems [14]. Furthermore, a table of ILSS values is provided (Table 1).

Assuming IFSS values would be similar, this shows a typical range of critical lengths of about 300

𝜇m to 500 𝜇m, which suggests fiber lengths on the order of 2 mm would be sufficient to obtain

high performance parts.

3 Dynamic properties such as fatigue and creep might still be substantially worse than with continuous fibers.
4 Elongational flows in additive manufacturing could plausibly also influence crystallization.
5 The degree of correlation may relate to the relative values of the interface and bulk since one may operate as a limiting

factor that gives artificially low experimental values due to the opposing failure mode taking place.
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Figure 3 – Critical length shown as a function of interfacial shear stress. Ticks are values from Table 1.

2.3 Analysis and characterization

2.3.1 Non-point-mass length distribution

The equations of section 2.2.1 consider the variable of fiber length to be a single value, but since fiber

attrition occurs, the lengths will not be constant. If one considers some discrete distribution of fiber

lengths then one can use the same equations, although equations 3 and 4 must be combined since

the distribution typically has fibers both above and below the critical length, and all constants can

be removed from the summation (Equation 7). Constants are introduced to represent the volume

fraction of subcritical and supercrical fiber lengths (Equations 8. Note that when 𝑣𝑓 appears within

a sum it means the volume fraction of the individual fiber in each term.
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Treatment Matrix ILSS pre-treatment ILSS post-treatment Ref. and year

NO Plasma PEEK 34 52 [15] 2011

NO Plasma PES 30 46 [15] 2011

NO Plasma PES 43 46 [15] 2011

Plasma PC 22 44 [16] 2005

Plasma PPESK6 70 79 [17] 2007

HNO3 PEI 34 58 [18] 2011

𝛾-radiation PEI 34 54 [19] [20] 2011

Nano YbF3 PEI 34 52 [21] [22] 2011/2012

O3 PA6 35* 55* [23] 2008

MWNT, CVD PMMA 12.5* 15.8* [2] 2014

C2H4 + NH3 PEEK 49.9* 92.2* [24] 2012

Table 1: Summary of interface properties and corresponding critical lengths for various for various thermo-

plastic material systems and surface treatments [2]. Asterisks mean IFSS instead of ILSS.

The sum for supercritical fibers can be replaced with constants since the fibers have ”full

strength” minus the reduction near the ends. Therefore one merely needs to subtract this value

from each fiber to determine the overall strength contribution. For subcritical fibers one notices that

the product 𝑣𝐹 𝑙𝑓 comprises proportional terms and thus the strength contribution of a subcritical

fiber is proportional to the square of its length. Both of these simplifications can be seen in Equation

7.

The reader might notice that 𝜎′ no longer appears in these equations. This is because the failure

strain is not know a priori and thus the contribution of strength from the matrix has a larger estimate.

The inaccuracy from this is much smaller than the bias from assuming the rule of mixtures model

applies. One might also remove this term entirely.

𝜎𝐿𝑡𝑢 = 𝜎𝑓𝑢
⎛⎜
⎝

𝜉 ∑
𝑙𝑓<𝑙𝑐

𝑣𝑓𝑙𝑓
2𝑙𝑐

+ 𝜒 ∑
𝑙𝑓>𝑙𝑐

𝑣𝑓(1 − 𝑙𝑐
2𝑙𝑓

)⎞⎟
⎠

+ 𝜎𝑚(1 − 𝑣𝑓) (6)

𝜎𝐿𝑡𝑢 = 𝜎𝑓𝑢𝑣𝑓 [ 𝜉
2𝑙𝑐

̄𝑆 + 𝜒 (1 − 𝑙𝑐
2 𝑁)] + 𝜎𝑚(1 − 𝑣𝑓) (7)

𝜉 =
∑𝑙𝑓<𝑙𝑐

𝑙𝑓
∑𝑙𝑓<𝑙𝑐

𝑙𝑓 + ∑𝑙𝑓>𝑙𝑐
𝑙𝑓

, 𝜒 = 1 − 𝜉 (8)

where

̄𝑆 is the average of the square of lengths of subcritical fibers
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𝑁 is the number of supercritical fibers

𝜉 is the weight fraction of subcritical fibers

𝜒 is the weight fraction of supercritical fibers

While most researchers report number or weight averages of fiber length distributions, these

values are only useful for relative comparisons within a particular system of study since they do not

map to any material property. Not only are these relative values not proportionally meaningful, it is

possible for the property value of the model to move in the opposite direction of that suggested by

the change in a length average due to strength plateauing at high values!7 Therefore, a reasonable

person would seek a universal metric with the least deviation from linearity that has minimal depen-

dence on the properties of the constituent materials. However, the non-linearities are dependent on

the critical length so an ideal point metric does not exist, but one can define a function that provides

the relevant metric for any particular critical length, thereby allowing universal comparisons among

various studies and material systems (Equation 9)8. Analogous integral forms of these equations

can also be constructed for theoretical consideration, but are of little practical value when working

with actual data.

𝐶 ∶ (𝜌, 𝑙𝑐) → [0, 1] by 𝐶(𝜌, 𝑙𝑐) = 𝜉
2𝑙𝑐

̄𝑆 + 𝜒 (1 − 𝑙𝑐
2 𝑁) (9)

2.3.2 Methods of determining fiber length distributions

The distribution of fiber lengths can be obtained by several methods. Sieves can be used, which

allows histogram-like data to be obtained, but this method is considered unreliable since it can lead

to fiber breakage, which skews the results. Another method that is beneficial when the fibers are in

a solid matrix is scanning with X-ray microtomography. The preferred method involves obtaining

a micrograph of a representative sample of fibers where the degree of overlap between fibers is

little enough to allow some piece of software to effectively determine the length of each fiber and

thus the length distribution of the sample. One researcher has suggested that 600 to 800 fibers is

a representative sample, but the actual sample size needed would of course be dependent on the

shape of the population distribution. While fiber length distributions are well modeled by Weibull

distributions, the Weibull modulus and scale parameters are likely a function of the degree of fiber

attrition, and the researcher should consider this in their analysis. If the fibers are embedded in

7 Such a contrived scenario is unlikely to occur by a single attritive processing step. Consider half the fibers by weight

at the critical length and the other half 100x critical length (50.5x is average) vs. all fibers 50x to see that it is possible.
8 Fixing a fiber length distribution makes this a single variable function.
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a matrix, the matrix can be dissolved, or preferably removed by pyrolysis in order to facilitate

imaging.

3 Experimental procedures

3.1 Materials and overview of procedures

This research project aimed to experimentally determine the effect of the melt-flow portion of a

single-screw-extrusion process on carbon fiber length attrition in isolation from the immediately

preceding screw-plastication step that is responsible for most of the heat needed for melting with

current screw-based designs. It was determined that using silicone oil of various fixed viscosities

could be used to simulate the melt-flow portion of extrusion in complete isolation of the pellet-

crushing plastication step that is required. A summary of the steps carried out is provided followed

by a detailed description of each step.

1. Chopped carbon fibers with an initial length of 2.0 mm were heated in an oven 150𝑜C for 2

hours to break up the fascicular structure that is held together by water.

2. Ten percent carbon fiber by volume was added to two samples of silicone oil with viscosities

of 5,000 and 10,000 centipoise (20k–35k (cP) are typical values).

3. Both suspensions were passed through a hobbyist style additive manufacturing filament ex-

truder, with a 3.0 mm final diameter tapered die.

4. The extrudates where placed in a container of mineral spirits for 24 hours to allow the silicone

oil to dissolve, and then vacuum filftered to separate the carbon fibers.

5. The carbon fibers were dispersed in water with the use of heat and an ultrasonication bath. A

small amount of the suspension was poured into a shallow glass container and slowly heated,

leaving a layer of fibers.

6. The fibers were photographed, but the fiber length distribution was only obtained for the

10,000 cP sample.

3.2 Sample Preparation

Chopped carbon fibers with a constant length of 2 mm were obtained from [COMPANY]. These

chopped carbon fibers are cut from a 3K tow of carbon fiber and each fasicular bundle is held

together with approximately 15% humidity by weight. This humidity holds together the bundle

of fibers and prevents damage during handling, which ensures all the fibers maintain their initial
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length. Chopped carbon fibers were placed in a 600 mL beaker and placed in an oven at 150 𝑜C

for about two hours. The temperature should be low enough to avoid fiber damage via oxidation,

which does not occur below [TEMPERATURE]. Therefore, the sample needs to be heated until all

the individual fiber bundles have fallen apart [Figure 4][Figure 5] [FIGURE, undried on one side,

mostly dried on the other]. It should be noted that if the sample is left unattended for an extended

period of time, it may be necessary to heat the fibers again.

Figure 4 – Carbon fibers as received in fascicu-

lar bundles prior to drying.

Figure 5 – Carbon fibers that are nearly dried

with a few bundles remaining.

Once the fibers were dried, samples were weighed on an enclosed scale. It should be noted that

the fibers have a propensity to become airborne once dried and all sample manipulations should

be done in a fume hood or with adequate respiration equipment. The silicone oil was weighed and

the carbon fiber stirred into the silicone oil with a glass stir rod. Since the relative density of the

carbon fiber decreases when it is poured, the carbon fiber had to be gradually mixed in [Figure 6].

About 4 ounces of each sample were prepared.
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Figure 6 – Prepared samples of carbon fibers in silicone oil.

3.3 Sample Processing

3.3.1 Extrusion

A filastruder is a single screw extruder meant for producing filament for 3D printing [Figure 7. Each

sample was fed through the Filastruder with no heat, and a modified nozzle with a taper ending

a 3 mm diameter die. The diameter and tapering was selected due to preliminary experiments

which showed jamming with smaller sizes. Furthermore, a 500 and 1,000 cP sample had also been

prepared in preliminary tests and experienced similar jamming. However, these samples with the

lowest viscosity failed by separation where the oil would be pressed out of the extruder without

carbon suggesting that their is a minimum viscosity necessary to ”drag-along” the fibers through a

constriction for any given set of processing and materials parameters.

3.3.2 Fiber-oil separation

Once the two samples had been passed through the extruder it was necessary to obtain a planar

image of the fibers in order to obtain their length distribution. A sample far smaller than a cubic

centimeter was placed in a beaker with a few ounces of mineral spirits, which almost entirely

dissolved the silicone oil within 24 hours as evidenced by thorough dispersion of the fibers in the

mineral spirits. Mild agglomeration in these samples occurred, which was readily overcome with a

few seconds of ultrasonication in a bath of water. The fibers were removed from the mineral spirits

via vaccuum filtration [Figure 8]. It seemed that the dissolved silicone oil was not easily passing

through the filter since the 2
�
ounce samples required about 24 hours to pass through the filter.
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Figure 7 – Screw and chamber of the Filastruder with carbon fiber and oil during preliminary tests.

Figure 8 – Vacuum filtration process with ultrasonication bath in background on the left.

3.3.3 Fiber isolation and imaging

individual fibers were then placed in beakers with de-ionized water. Initial attempts to re-disperse

fibers that were agglomerated, presumably from residual silicone oil, failed even after 10 minutes

in an ultrasonication bath. A small amount of heat from a hot plate below the boiling point of

water, interspersed with ultrasonication was finally effective in dispersing the fibers. Then a sample

of the fibers in solution were poured into a shallow glass dish such that the amount of fibers was
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maximized with the constraint that there be minimal fiber overlap in the horizontal plane. Heating

these dishes on a hot plate evaporated the water, leaving a layer of carbon fibers. Initial observation

of the fibers under a microscope showed that the fibers were too long to capture a sufficient number

of fibers within the field of view of the microscope even on the lowest magnification setting of 5X.

Therefore, images of the dishes with fibers were taken in a room lit by sunlight with a blank sheet

of paper underneath.

3.4 Data Analysis Methods

The fibers appeared very faint in the initial images and it would have been difficult to pin down the

endpoints [Figure 9]. Enhancing the contrast with standard image tools was ineffective. Therefore,

a Python script was used to improve the visibility of the fibers that were previously very faint

[Figure 10]. The script makes pixels below a cutoff value switch to black within a grid location, for

all grid locations. It is necessary to have a grid in place due to the overall brightness gradient. A

modifiedMatlab script was used to manually extract endpoint positions by clicking on the endpoints

[Figure 11]. Then the endpoints were converted into lengths and graphed in R.

Figure 9 – Original image of fibers in glass

dish.

Figure 10 – Image of fibers after running

image through Python script.
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from PIL import Image
from PIL import Im a g e F i l t e r
import math
image = Image . open ( ” f i n . JPG” )
image = image . f i l t e r ( Im a g e F i l t e r .SMOOTH)
width = image . s i z e [ 0 ]
h e i g h t = image . s i z e [ 1 ]
p i x e l s = image . l oad ( )
xMesh = 100
yMesh = 100
t h r e s h o l d = .9
meshWidth = width / xMesh
meshHeight = he i g h t / yMesh
f o r x i n range ( xMesh ) :

f o r y i n range ( yMesh ) :
x S t a r t = x * meshWidth
yS t a r t = y * meshHeight
x F i n i s h = xS t a r t + meshWidth
y F i n i s h = yS t a r t + meshHeight
b r i g h t n e s s = [ ]
f o r i i n range ( xS ta r t , x F i n i s h ) :

f o r j i n range ( yS ta r t , y F i n i s h ) :
p = p i x e l s [ i , j ]
b r i g h t n e s s = b r i g h t n e s s + [ p [ 0 ] + p [ 1 ] + p [ 2 ] ]
avg = sum( b r i g h t n e s s )/ l en ( b r i g h t n e s s )
low = min ( b r i g h t n e s s )
h igh = max( b r i g h t n e s s )
gap = f l o a t ( avg − low )
f l o o r = low + t h r e s h o l d * gap
coun t e r = 0

f o r i i n range ( xS ta r t , x F i n i s h ) :
f o r j i n range ( yS ta r t , y F i n i s h ) :

i f b r i g h t n e s s [ coun t e r ] < f l o o r :
p i x e l s [ i , j ] = (0 , 0 , 0)

coun t e r += 1
image . save ( ” f ou t . JPG” )
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Figure 11 – Selection from transformed image with green lines showing each segment that was selected in

Matlab.

4 Results and Discussion

4.1 Resulting fiber length distribution

The length distribution of the sample had a peak centered just below the initial length of 2 mm,

but a spread that went above 2 mm [Figure 12]. There was no ”carbon dust” in the sample, nor

where there any fibers below 0.5 mm, which means there could not be any fibers in the 1.5 mm

to 2.0 mm range as these data suggest. Therefore, it must be that virtually all these fibers were

exactly their initial length of 2 mm except for the very few fibers that fractured in half. The noise

in the image and imprecision and inaccuracy of clicking on endpoints shows the drawbacks of this

method in comparison to sophisticated software that determines the exact endpoints of each fiber.

It was apparent that the same data would result from the 5,000 cP sample, so the fiber lengths from

that sample were not obtained.

4.2 Implications

This project demonstrates that at shear rates used to extrude filament for additive manufacturing, the

viscosity is inconsequential to attrition during the melt-flow. Average fiber lengths in thermoplastics

often drop to about 0.2 mm, or an order of magnitude lower than what was observed in this study.
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Figure 12 – Distribution of fiber lengths.

This means the melt-flow process does not impose a limiting factor that might otherwise make the

fiber lengths end up far below typical critical lengths despite other processing conditions. This

can be concluded since 10,000 cP is only a third to a half the viscosity of a typical thermoplastic

during processing, and the probability of fiber damage is proportional to the product of viscosity

and shear rate. Injection molding operates at shear rates that are four orders of magnitude higher

than filament production. Therefore, viscosity might still be a relevant factor for the melt-flow at

those higher viscosities, and it could also have an effect on the fiber damage in the plastication step.
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4.3 Further research

The most immediately applicable research going forward should focus on how to reduce dam-

age from screw-plastication rather than decreasing viscosity to preserve fiber length. Irrespective

of whether plastication damage can be reduced at lower viscosities, it would be beneficial to de-

crease the amount of plastication by using conductive, radiative and/or inductive heating in a piston-

plunger style extruder to obtain higher performance materials [FIGURE plunger extrusion]. Given

that it is 8 times easier to buckle a fiber twice as long, one could expect such a system to produce

filaments with fibers greater than 1 mm in length. 1 mm fibers are double the critical length of a

composite with a low interfacial shear strength of 30 MPa so it is reasonable to anticipate vastly im-

proved performance and numerous new applications for additively manufactured parts that could

be made with such materials.

5 Conclusion

A review of the motivations behind additive manufacturing and their current limitations was pro-

vided. A study was carried out to gain a greater understanding of the fiber length attrition in the

process used to produce short fiber reinforced filament for FDM additive manufacturing. The re-

sults of the study unexpectedly showed that at the low strain rates used to produce such filament,

plastication can be the only part of the process causing the bulk of the fiber length attrition. A

method of producing filament that removed the plastication step that might produce vastly superior

filament was presented. Furthermore, a novel method of determining fiber length distributions

was shown to be viable in obtaining approximate data, with easier implementation than traditional

methods.
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