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Introduction 

  

Roborodentia is a competition held annually during Cal Poly’s Open House. The general 

objective of every competition is to build an autonomous robot that will perform specific 

tasks to earn points within a time limit. These tasks are different every year and 

sometimes are radically changed from the previous competition. Building such robots 

involves a good mix of mechanical, electrical, and software knowledge. The project 

outlined in this report was a contestant robot for the 21st Roborodentia competition 

which took place on April 16, 2016.  

  

  

  



 

California Polytechnic State University Page | 3 

  

Problem Statement 

Overview 

The overall objective of the competition was for the robot to carry rings from a supply 

peg to a scoring peg. Figure 1 shows a model of the course. Robots can take primary, 

secondary, or center rings and score points by placing them on scoring pegs #1 or #2. 

Below is a high level summary of the contest rules. Full specifications can be found in 

Appendix A [1].  

 
Figure 1. Roborodentia XXI Course Model, Perspective View 

 

Robot Specifications 

Robot footprint must be 12”x12” maximum at the beginning of the match and must not 

exceed 14”x14” at any point during the match. Height must be under 15” at the 

beginning of the match with no restriction once the match begins. Robots are to be fully 

autonomous and may not fly or disassemble into multiple parts. 

 

Course Specifications 

The entire course is 8’x8’, with 4” walls surrounding the edges and along the center. The 

black lines (shown in Error! Reference source not found. and Figure 2) are strips 

of ¾” black masking tape. Rings are cut from 2” Sch 40 PVC pipes and are ½” tall. All 

the pegs are cut from ½” Sch 40 PVC pipes and are 3” tall. Each supply and center peg 

holds 4 rings. The secondary ring box holds 10 secondary rings.  
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Figure 2. Roborodentia XXI Course Model, Top View 

 

Regulations 

The competition was a head-to-head double elimination tournament with 3-minute 

matches. Competitors were seeded based on qualifying runs. At the beginning of the 

match, robots must be touching the tape intersection closest to the supply pegs. Each 

supply peg will be replenished with up to 4 rings every time the robot touches the center 

intersection; center pegs are not replenished throughout the match. 

 

Scoring 

Every primary ring placed in a scoring peg #1 is worth 1 point and 3 points if it is placed 

in a scoring peg #2. Secondary rings are worth 2 points if placed in scoring peg #1 and 8 

points if placed in scoring peg #2. Center rings are worth 3 points on their own; 

moreover, when a center ring is part of a stack of rings on a scoring peg, the value of the 

stack is tripled but the center ring only counts as a primary ring. When a scoring peg 

holds 4 or more rings, they will be removed and only the bottom 4 rings will score 

points. 
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Design 
Software 
Overview 

The software that runs the system is written for the Arduino platform which uses an  

avr-gcc compiler on C/C++ code that is later executed by the ATmega2560. The entirety 

of the code (not including standard libraries) is contained in four files: RoboShield.cpp, 

RoboShield.h, RoboShield_Defines.h, and RoboShieldMain.ino. The first three files 

comprise the library provided for the Roboshield, while the last one contains all 

functionality written specifically for the competition. The Roboshield library can be 

found on github.com [2] and RoboShield.ino can be found in Appendix B. Below are 

detailed descriptions of each. 

 

RoboShield Library 

This library was written specifically for the RoboShield to run on the ATmega2560. It 

was developed by Cal Poly professor Dr. John Seng and Cal Poly alumnus Brian 

Gomberg, both of who also designed the RoboShield board itself. The library is split into 

three files and consists of a single class called RoboShield which contains about thirty 

methods. RoboShield.h contains the class and function declarations, 

RoboShield_Defines.h contains all the #defines used throughout the library, and 

RoboShield.cpp contains the class and function definitions. 

 

RoboShieldMain.ino 

This file contains the main loop performed for the competition as well as some support 

functions. The main loop begins by picking up rings from the supply pegs, which is 

where the robot begins the match. After that, the robot backs up 6”, turns around, and 

heads towards the center of the course as it follows the black line. Once it sees the 

intersection, it takes a right turn and continues to follow the black line as it heads 

towards the scoring pegs. Once it sees the intersection by the scoring pegs, it stops and 

begins to move forward until the distance sensor reads about 1” away from the wall. At 

that point, the rings are lowered onto the scoring pegs. The robot once again backs up 

for 6”, turns around and follows the black line until the center intersection. It then takes 

a left turn, stops at the intersection by the supply pegs, and gets within 1” of the wall to 

begin the loop again. Figure 3 graphically shows the process in a flowchart.  
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Figure 3. High level program flow 

 

The rest of the RoboShieldMain.ino file contains functions that support each of the 

processes outlined in the flowchart. Every process can be divided into four different 

categories. Below are detailed descriptions of each. 

 

Pick Up/Drop Ring 

This process is performed by the LiftRing() function, shown in Code Snippet 1 (note that 

‘shield’ is a global reference to a RoboShield object). A detailed mechanical description 

of this process can be found in the Mechanical subsection. It begins by setting the angle 

of the mini servo so that the gripper that is attached to it closes enough to hold a ring 

(the gripper should initially be opened). This angle was fine-tuned by trial and error. 

Two magnets and the reed switch are used to signal that actuator is low enough to pick 

up a ring or high enough to clear a peg. Since the actuator begins in the low position, the 

function tells the actuator to begin moving up for 5000ms, which is long enough for the 

reed switch to clear the bottom magnet. At that point, it begins waiting for the reed 

switch to see the top magnet and stop the actuator. 
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Code Snippet 1: LiftRing()function. 

 
 

The LowerRing() function performs the same calls but with different arguments and in 

different order. It initially instructs the linear actuator to move down and opens the 

gripper after the bottom magnet is sensed by the reed switch. 

 

Distance-specific maneuvers  

A mathematical approach was taken to approximate distances to for the wheels to travel. 

Each gearmotor has an integrated quadrature encoder that outputs 64 CPR (counts per 

revolution) of the motor shaft. The gear ratio of the output shaft to motor shaft is 50:1, 

which totals (50)(64 CPR) = 3200 CPR of the output shaft. However, the library only 

looks at one of the two encoder outputs, and only counts rising edges of the signal 

effectively cutting the amount of CPRs to a fourth. The final count is then 3200 CPR / 4 

= 800 CPR. The wheels used were 90mm in diameter and therefore (90mm)(π) ≈ 

283mm in circumference. So the encoders give a distance per count of (283mm / 800 

counts) = 0.35375mm/count or 0.014”/count. Simple conversions can be done to get the 

counts needed for a wheel to travel a specific distance. For example, one of the processes 

requires the robot to back up 6”, which comes out to be (6”) / (0.014”/count) ≈ 429 

counts.  

 

A little more math was required to calculate turns. Assuming only one of the wheels 

moves and the other one rotates in place, and approximation of the distance that it takes 

for one of the wheel to travel to complete a specific turn in degrees can be calculated 

using the formula for the circumference of a circle and taking the distance between the 

two wheels as the radius. Figure 4 illustrates the idea and shows an example for 

calculating a 90° turn. 
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Figure 4. 90° Turn Calculation 

 

From there, we can use the same formula as before and get the number of encoder 

counts needed for the left wheel to travel that distance. Specifically, (15.7”) / 

(0.014”/count) ≈ 1121 counts. Specific values for the needed distances were computed 

beforehand and stored as #define constants to avoid computation costs. 

 

Moving to a specific distance from the wall 

This is a straightforward function that simply moves the robot forward until the value 

being read from the IR distance sensor exceeds a specific value. It is worth noting, 

however, that a specific distance cannot be accurately calculated from a sensor reading 

but rather has to be extracted from the sensor’s datasheet as the distance-voltage curve 

is not exactly linear. The only distance used is 1”, which the datasheet says should result 

in a sensor output of about 1.9 volts [3]. The microcontroller’s Analog to Digital 

Converter (ADC) takes a 0V-5V reading and maps it to a 0-1023 integer output. This 

means the 1” should roughly be (1.9V/5V)·(1023) ≈ 389, which is argument used in the 

function call AdvanceUntilIR(), shown in Code Snippet 2. 
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Code Snippet 2: AdvanceUntilIR()function. 

 
 

Line following and stopping 

This was the section that required the most time and testing. With a variety of line 

following algorithms and an array of eight reflectance sensors to take advantage of, 

options were vast. Figure 5 shows the algorithm that was used. Only the middle four 

sensors, out of the eight, were used. The sensors will be referred to as Outer Left (OL), 

Center Left (CL), Center Right (CR), and Outer Right (OR) hereafter. The algorithm 

works under the assumption that at the time that it’s called, there is a black line under at 

least one of the four sensors. The algorithm begins by taking a reading from the four 

sensors. Six different scenarios were considered and are illustrated in Figure 6.  
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Figure 5. Line Following Algorithm Flowchart 
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Figure 6. Line Following Algorithm Scenarios 

 

Scenario (a) is the one that is first checked for. It is whether or not the robot found a 

horizontal black tape line. This immediately stops both motors and ends the algorithm. 

In scenario (b) both center sensors are able to read the line. In practice, this is an ‘if 

statement’ checking that both CL and CR sensor readings are above a specific threshold. 

This is the ideal scenario as the robot is presumably following the black line in a straight 

path. Both motor speeds are set to the same value expecting to maintain the same path 

and the algorithm starts over. In case at least either CL or CR read less than the 

threshold, the next step is to find the max value among the sensor readings, i.e. which 

sensor is closest to the black line. This is a simple search for the highest value on a four-

element integer array with the sensor values. In case of a tie, the first found value is 

taken as the highest. This leaves the last four scenarios: scenario (c) where CR is the 

max value, scenario (d) where CL is the max value, scenario (e) where OR is the max 

value, and scenario (f) where OL is the max value. Note on scenario (d) that the value of 

sensor CR would not be above the threshold for a black line and is therefore different 

from scenario (a). Scenarios (c) and (e) result in speeding up the left motor and 
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scenarios (d) and (f) in speeding up the right motor, as pointed out in the algorithm 

flowchart. The amount of difference in speed, or correction, is determined by both the 

value of the max sensor reading, and whether it is a center or outer sensor that has the 

max value. Higher max sensor readings and outer sensors result in higher correction. 

Finally, there is a small delay for allowing the correction to impact the path before 

returning to the beginning of the algorithm and recalculating correction.  
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Hardware 
Overview 

The system was controlled by an ATmega2560 on an Arduino Mega-clone 

microcontroller board, manufactured by Keystudio. On top of it sat a Roboshield, 

developed by Cal Poly professor Dr. John Seng and Cal Poly alumnus Brian Gomberg. 

Wired to the microcontroller/shield were two gearmotors, a reed switch, a linear 

actuator, a mini servo, an IR distance sensor, and a reflectance sensor array. The system 

was powered by 8 AA-rechargeable-batteries. Figure 7 shows a high level diagram of the 

system. There were two main subsystems: the navigation and the ring pick-up/drop-off. 

 

 
Figure 7. High Level Architecture Diagram 

 

Navigation 

Movement was achieved by rotating two Pololu 50:1 Metal Gearmotors with 64 CPR 

encoders. Each was connected to the two 6-pin motor connectors in the Roboshield 

which include motor terminal A, motor terminal B, encoder GND, encoder Vcc, encoder 

A output, and encoder B output. Line following was achieved with the aid of a Pololu 

QTR-8A Reflectance Sensor Array. The sensor provides analog output readings from 

each of the 8 IR LED/phototransistor pairs, these were captured by input pins A0 

through A7 on the Roboshield. Finally, proximity to walls was measured by a Sharp 

GP2Y0A51SK0F Analog Distance Sensor with a range of 2-15cm. Figure 8 shows the 

wiring diagram. 
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Figure 8. Navigation Subsystem Diagram 

 

Ring Pick-up/Drop-off  

This subsystem included a PowerPro SG90 9g Mini Servo which actuated a 3D printed 

gripper. The three pin servo connector (ground, power, and signal) plugged right into 

one of the eight servo connectors on the Roboshield. The gripper was attached to the 

Windynation Linear Actuator so that the rings could be lifted. The linear actuator was 

controlled similarly to a DC motor and is therefore able to be connected to one of the 

four two-pin motor connectors on the Roboshield. Finally, the reed switch and two 

magnets provide information regarding the position of the linear actuator. The reed 

switch acted as a short when a magnet was nearby and otherwise as an open. It was 

therefore wired as a simple switch and the value was read through a digital pin in the 

Keystudio microcontroller. One of the magnets signaled the gripper was low enough to 

grab rings and the other one that the gripper was high enough to clear the peg. Figure 9 

shows the wiring diagram. 
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Figure 9. Ring Pick-up Subsystem Diagram  
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Mechanical 
Overview 

The base of the robot was a laser-cut wood chassis designed using Autodesk Inventor. 

The chassis had four screw holes for mounting each gearmotor, four screw holes for the 

front swivel wheel, four screw holes to mount the Keystudio microcontroller, and a 

squared opening to run wires from the bottom to the top of the chassis. Figure 10 shows 

the model.  

 
Figure 10. Chassis CAD Model. 

 

On the bottom side of the chassis, there were two mounting brackets for the gearmotors 

attached using four screws each. Close to the center of the chassis was the reflectance 

sensor array mounted using LEGO blocks and hot-melt adhesive. Near the front was a 

swivel wheel attached to the four mounting screw holes. Next to it was the distance 

sensor hot-glued to the chassis. Figure 11 shows a pictorial representation. 
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Figure 11. Bottom View of Chassis 

 

On the top side of the chassis, the battery pack sits near the back of the robot. Moving 

towards the front of the robot is the squared opening that allows the wires coming from 

the gearmotors and the reflectance sensor array to be connected to the microcontroller. 

Nearby is the microcontroller, sitting on four screws with plastic spacers, and next to it 

is a mini breadboard attached using a sticky pad. Next to them is the linear actuator 

which was attached using hot-melt adhesive. Towards the front is the ring holder that 

prevented rings from falling to the sides once they were lifted. Figure 12 shows a 

pictorial representation of the top view of the chassis. Functionality of the two 

subsystems is explained below. 
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Figure 12. Top View of Chassis 

 

Navigation Subsystem 

The robot used a differential driving system with two independently controlled wheels 

on each side near the back of the chassis and a swivel wheel in the center front. The 

gearmotors were attached to the chassis using Pololu mounting brackets. Four #4-40 

machine screws held each mounting brackets to the chassis and three M3 held each 

gearmotor to its mounting bracket. Attached to each gearmotor were Pololu mounting 

hubs which were screwed onto Pololu 90x10mm wheels. The front of the chassis was 

supported by a reused office chair swivel wheel. Most of these components can be seen 

in Figure 13 . 
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Figure 13. Top and Bottom Robot View. 
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Figure 14. Front and Back Robot View. 

 

Ring Pick-up/Drop-off 

The most intricate mechanism of the robot is surely the ring-handling system. The 

initial approach was to build a pulley system using LEGO pieces. However, it was 

difficult to achieve structural integrity and consistency. Because the ring gripper needed 

to be supported from its backside, it would cause it to tilt forward because of the weight 

distribution. In other words, it was difficult to maintain the gripper in a horizontal 

position. The Windynation 8” Linear Actuator was used instead. The actuator raises and 

lowers a 3D-printed gripper. The original 3D-printable files were found and retrieved 

from Thingiverse.com [4]. Longer pinchers were designed to better grab rings. The 

gripper is actuated by the PowerPro SG90 9g Mini Servo and attached to the linear 

actuator using LEGO pieces and laser cut wood. As rings are raised by the gripper, they 

are positioned around a “ring holder”, made by gluing two PVC pipes to a wood 

platform. The long support pipe is glued to the chassis and the small ring-holding pipe is 

meant to be positioned right above a scoring/supply peg. This prevents any of the top 

rings from falling over. The ring holder can be appreciated in the side views of the robot 

in Figure 15.  
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Figure 15. Left and Right Side Robot View. 

 
 Lastly, there is a reed switch attached to the gripper and there are two magnets hot-

glued to the ring holder’s support pipe; one is near the bottom signaling the reed switch 

that the gripper is low enough to grab onto rings, and the other is at a height at which 

the gripper clears the scoring/supply peg so that the robot can move away from it. 

Error! Reference source not found. shows a close-up photograph of this system. 

 

 
 

Figure 16. Reed Switch and Magnet Height Detection System 
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Budget and Bill of Materials 
 

The Cal Poly Computer Engineering department funds up to $200 of senior project 

costs. Any more money spent past that is out-of-pocket for project members. As 

mentioned in the ‘Mechanical Design’ section, because of the relative high cost of linear 

actuators, it was initially attempted to take a less costly approach. However, given that it 

was not as reliable and mechanically stable as needed, it was decided to spend money 

past the original budget. It is also worth noting that the cost of the metal gearmotors 

was subsidized by Roborodentia, saving about $60 per pair. Below is the final bill of 

materials.  

  
Table 1. Bill of Materials 

Part Name Model Supplier 

Name 

Qty. Unit Price 

($) 

Extended 

Price ($) 

Keystudio 

Microcontroller 

Mega 2560 R3 Amazon.com 1 $14.99 $14.99 

Battery Holder 4-AA Batteries, On-Off 

Switch 

Amazon.com 1 $4.54 $4.54 

Jumper Wire 40-pin Male to Male /Female 

to Female /Male to Female 
Amazon.com 1 $8.99 $8.99 

Linear Actuator WINDYNATION 8" 12V 

225lbs 

Amazon.com 1 $59.99 $59.99 

Batteries Energizer Rechargeable - 

8pk 

Best Buy 1 $25.91 $25.91 

Chassis Wood 1/4" x 12" x 12" Cal Poly 

Bookstore 
1 $3.17 $3.17 

Metal 

Gearmotors 

50:1 37Dx70L mm with 64 

CPR Encoder 

Cal Poly Robotics 

Club 
2 $10.00 $20.00 

Mounting Hubs 6mm Shaft, #4-40 Holes 

(2-pack) 

Cal Poly Robotics 

Club 
1 $7.00 $7.00 

Mounting L-

Bracket 

Stamped Aluminum, for 37D mm 

Metal Gearmotors (2-pack) 
Cal Poly Robotics 

Club 
1 $8.00 $8.00 

RoboShield Version 1.0 Cal Poly Robotics 

Club 
1 $35.00 $35.00 

Reflectance 

Sensors 

QTR-8A Pololu.com 1 $9.95 $9.95 
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Analog 

Distance Sensor 

Sharp GP2Y0A51SK0F Pololu.com 1 $5.56 $5.56 

Pololu Wheel 80mm x 10mm Pair - Red Pololu.com 1 $9.25 $9.25 

Reed Switch RS-01C Sparkfun.co

m 

1 $1.95 $1.95 

3D Printing & 

Laser Cutting  

Digital Fabrication Lab 

Punch Card 

Cal Poly 

CAED 

1 $40.00 $40.00 

Mini Servo TowerPro SG90 9g Amazon.com 1 $2.99 $2.99 

Screws and 

Nuts 

#4-40 and M3 Pololu.com 1 $4.00 $4.00 

Total     $261.29 
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Lessons Learned 
This project taught me many lessons along the way, most of them regarding robotics. 

Below are a few that are worth highlighting. 

 

LiPo vs NiMH Batteries  

Going into the project I had no knowledge of the different types of batteries and their 

specific behavior/performance. After reading the voltage requirement of around 10V for 

the RoboShield and the gearmotors, the first thing that came to my mind was to use 8 

AA-batteries, and even better, to save a few dollars and the environment by choosing 

rechargeable ones. I soon learned that rechargeable batteries only provide 1.2V when 

fully charged. To top it all off, all the initial testing was done with a power supply so I 

did not get to experience or evaluate the performance of the rechargeable AA-batteries 

until the day before the competition. The issue with NiMH batteries is that under high-

drain use, their output voltage drops at a high rate [5]. While most of the components do 

alright with lower a supply voltage, the gearmotors change the speed at which they turn 

for the same software-specified value. This meant that as the batteries were used more, 

the line following algorithm behaved differently, the linear actuator was slower, and the 

servo on the gripper had less torque. To drive the point home, every single returning 

team at the competition that I talked to was using a LiPo battery pack, and while I saw a 

handful of teams using AA-batteries, I believe I was the only ones using rechargeable 

ones. 

 

Component price should be a considered factor but not a decisive one 

During early design stages of the project, the idea of purchasing a linear actuator was 

scratched out because of their relatively high prices. In the end, it turned out that the 

time spent trying to build a substitute for a lower price was not worth the savings of not 

buying a linear actuator. So, when switching to the linear actuator, there were a few 

tweaks that had to be made in order to incorporate it. Most notably, there was no place 

to mount it through the chassis, which resulted in having it mounted on the side. At the 

same time, the gripper had to be awkwardly attached to the actuator, and weight 

distribution in the chassis was negatively affected; a firm push to the actuator would 

actually cause the robot to tip over. Overall, if the benefits of pricier components would 

have been weighted heavier than their price, system integration would have gone a lot 

smoother. 

 

Theory does not equal practice 

There were a couple of instances along the way in which mathematical models and 

datasheet information turned out to be notably different in practice. The biggest 

example was the distance-specific movement functions. Even though the motors spun 

the wheels for at least the required distance, there was extra time between the function 



 

California Polytechnic State University Page | 25 

call to stop the motors and the time that they physically stopped. The wheels were often 

moving at different speeds or stopped at different times so one of the wheels would end 

up ahead of the other, resulting in a slight alteration of the robot’s path. While the 

mathematical models can provide good approximations, there are always little 

deviations that need to be accounted for in practice. 
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Conclusion 
In general, I believe the approach and the design of the robot were adequate; however, 

mechanical integration and power system came a little short.  The ring pick-up system 

required the ring holder to be accurately positioned right above the scoring or supply 

peg. Even if the holder was misaligned from the supply peg by a few centimeters, there 

was a chance that the rings would hit the ring holder on their way up and be dropped by 

the gripper. Likewise, misalignment with a scoring peg often resulted in the rings not 

falling into the peg. This shortcoming combined with the fact that the battery voltage 

and, consequently, motor speeds were different between runs, resulted in unsuccessful 

ring pick-up/drop-off more often than desirable. A possible solution to this problem, 

used by a number of other competitors, would have been to move the robot forward 

until the front of the chassis is flush with the course wall so that the distance to the peg 

is always the same. Combining this with a LiPo battery pack to minimize motor speed 

variations between test runs would have increased the performance of the robot.  
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Appendix A: Roborodentia XXI Rules 
Competition Rules and Course Specification: 
Version 1.0 (1/11/16) 
This year's competition is a head-to-head double elimination tournament where the object of the 
competition is to move rings onto scoring pegs. 
        Competition Date:  April 16, 2016 (1pm) 
        Competition Location:  Rec Center Gym, Cal Poly Campus 
Teams are required to register with their intent to compete in Roborodentia. Registration forms will 
be made available. 
Note: Rules are subject to minor updates and clarifications. Any changes will be announced and 
noted at the bottom of this page. 
Download the competition layout here: Roborodentia 2016 Sketchup 

1. Course Specifications (see attached diagrams for more details and dimensions) 
1.1  The entire course is 8’ wide x 8’ long with 4” high walls surrounding the edges and along the 
center. 
1.2  The black lines shown on the playing field are strips of 3/4" black masking tape. 
1.3  There are 3 supply pegs (1/2" Sch 40 PVC pipe) located at the end of the field.  Each supply 
peg will initially hold 4 primary (red or blue) rings. 
1.4  At the left and right ends of the field are 3 scoring pegs (1/2" Sch 40 PVC pipe).  Each peg is 3” 
tall. 
1.5  There will be a box of secondary (green) rings.  This box will contain 10 rings that will be 
randomly placed in the box. 
1.6  Rings are painted PVC pipe (2” Sch 40 PVC pipe color red/blue/yellow/green and 1/2" pipe 
length). 
2. Robot Specifications 

2.1  Robots must be fully autonomous and self-contained. 
2.2  Robots must have an 12” x 12” footprint or smaller at beginning of the match, but may 
autonomously expand after the match begins. At any point during a match, a robot’s footprint may 
not be larger than 14” x 14”. 
2.3  A robot may have a maximum height of 15” at the start of a match.  There is no height 
restriction after the match begins. 
2.4  A robot may not disassemble into multiple parts. 
2.5  Robots may not use any RF wireless receivers/transmitters during the competition.  
2.6  Robots may not damage the course or the contest rings. 
2.7  Adhesives may be used to pick up rings, but the rings may not be modified in any way.  A ring 

must be completely free of residue after it has been picked up. 
2.8  If a robot has RF wireless components on-board, the contestant will be required to notify the 

judges before the competition, and be able to demonstrate that the wireless components are not 
used.  If RF components are found on-board that were not declared, or declared non-
operational when active, it will be grounds for immediate disqualification. 

2.9  Intentionally jamming an opponent's sensors is not allowed.  Robots may not have weaponry or 
devices designed to damage or impede the operation of an opponent’s robot. 
2.10  A robot may not disturb rings on an opponent’s side of the field. 
2.11  A robot may not fly. 
3. General Regulations 
3.1  At the start of a match, a robot must be touching the tape intersection nearest to the supply 
pegs.  The robot may start in any orientation. 
3.2  Robots will be seeded based on qualifying runs. 

https://www.google.com/url?q=http://www.csc.calpoly.edu/~jseng/Roborodentia_2016_v1.0.skp&sa=D&ust=1465456271224000&usg=AFQjCNHt6n8S4EnMtNPZnmxdvplk8IFn4w
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3.3  The tournament will be run in a double elimination format. 
3.4  A match will last 3 minutes. 
3.5  If both teams agree, the match may end prior to three minutes. 
3.6  At the end of a match, the robot with more points wins the match. 
3.7  A team may pick up and restart their robot (touching the tape intersection nearest to the supply 
pegs) during the match. If a restart occurs, the opposing team will be awarded a bonus. (3 points for 
the first restart, 4 points for the second, and 5 points for the third, etc.) 
3.8  On a restart, all rings will be removed from the robot. 
3.9  A 3 second tone countdown will signal the start of a match. Contestants must start the robot 
during this period by pressing only 1 button 1 time. Contestants may not touch a robot during a 
match (except on a restart). Not restarting a robot ends the run for that robot and the robot keeps 
all points up to that instant. 
4.  Competition Regulations 
4.1  Robots may start with 1 ring (primary or secondary) pre-loaded on the robot.   Each supply peg 
will initially hold 4 rings. 
4.2  If a contest ring goes off the playing field, then the ring is out of play with no penalty assessed. 
4.3  A supply peg is replenished with up to 4 rings once a robot touches the center intersection. 
4.4  The box of secondary rings will be replenished with up to 10 rings when there are 3 or fewer 
secondary rings in the box AND either: 

- a robot scores a ring on scoring pegs #2 
- a primary or center ring is scored 

4.5  Rings that are dropped by a robot on its own side of the playing field will be removed by the 
judges when practical. 
4.6  The first 2 rings that land on an opponent’s side of the field will not be assessed a penalty.  For 
each team, any rings after the first 2 will be assessed a 2 point penalty per ring (deducted from the 
robot corresponding to the ring color).  Opponent rings resting on a team’s playing field will be 
removed by the judges as soon as practical. 
5.  Scoring 

5.1  Primary rings (red or blue) that are placed on scoring pegs #1 will be worth 1 point each. 
5.2  Primary rings that are placed on scoring pegs #2 will be worth 3 points each.   
5.3  Center rings (yellow) on their own are worth 3 points.  When a center ring is part of a stack of 
rings on a scoring peg, the point value of the stack will be tripled (a center ring will count towards 
the score as if it were a primary ring).  This triple bonus is applied only once per stack even if there 
are multiple center rings in a stack.       
5.4  Secondary rings (green) will be worth 2 points on scoring pegs #1.  Secondary rings will be 
worth 8 points on scoring pegs #2.   
5.5 Once a scoring peg holds 4 or more rings, the rings will be removed as soon as practical.  Only 
the first 4 rings on a peg will count towards the score (any rings above the 4th ring will not count). 
5.6  At the end of the match, any primary rings located in the 2nd position of a center peg will be 
worth 20 points. 
5.7 Every pair of primary rings placed in the secondary ring box is worth 1 point. 
6. Penalties 
6.1  If any part of a robot breaks the plane of the center wall that is farthest from the robot, then 
that robot will be assessed a penalty.  This allows a robot to be directly over the center wall without 
penalty.  Otherwise, the penalty is that all rings for that robot on the center peg are invalidated, the 
robot’s scored is multiplied by .5, and the match ends for that robot. 
6.2  A robot that attempts to damage an opponent's robot will be disqualified for that match. 
6.3  Robots that do not move within the first 20 seconds of a match will be considered inoperable 
and will forfeit the match. 
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6.4  If both robots have not moved for 60 seconds (at any time during a match), the match will end. 
6.5  If a robot exceeds the size restrictions during a match, the match ends for that robot.  The 
opponent robot may continue the match. 
7. Tie breakers 
In the event of a tie, the following tie breakers (listed in order below) will be used to 

determine a winner: 
1.  Whichever robot scores more center rings 
2.  Whichever robot scores more secondary rings 
3.  Whichever robot removes more center rings from pegs 
4.  Whichever robot removes more primary rings from pegs 
5.  One round of rock, paper, scissors 
6.  Coin toss 

8. Contestant eligibility 

Current university students and former students that graduated during the 2015-2016 academic 
year may enter Roborodentia XXI. 
9. Prizes 
Below are the prize levels: 
1st Place - $1,000 

2nd Place - $600 

3rd Place - $400 
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Appendix B: RoboShieldMain.ino 
 
#include <RoboShield.h> 
#include <RoboShield_Defines.h> 
#include <Wire.h> 
 
//PINS 
#define GRIPPER_PIN 0 
#define REED_SENSOR_PIN 53 
#define LEFT_MOTOR_PIN 2 
#define RIGHT_MOTOR_PIN 3 
#define IR_SENSOR_PIN 8 
#define IR_SENSOR1_PIN 1 
#define ACTUATOR_PIN 0 
#define RIGHT_ENCODER 1 
#define LEFT_ENCODER 0 
#define OUTER_RIGHT 0 
#define CENTER_RIGHT 1 
#define CENTER_LEFT 2 
#define OUTER_LEFT 3 
 
//Line following 
#define BASE_SPEED 12 
#define CENTER_CORRECTION 0.016     // 8/500 
#define OUTER_CORRECTION 0.024      // 12/500 
#define SLOW_MOTOR_CORRECTION -5 
 
//Argument values 
#define MOTOR_DISTANCE_SIX_IN 429 
#define IR_DISTANCE_ONE_IN 390 
#define ENCODER_TURN 1150 
#define BLACK_TAPE_READING 450 
#define GRIPPER_OPENED -45 
#define GRIPPER_CLOSED 40 
#define ACTUATOR_UP -100 
#define ACTUATOR_DOWN 100 
 
//Globals 
RoboShield shield; 
QTRSensor reading; 
int QTRReadings[6]; 
 
//Prototypes 
int FollowLine(); 
void TurnRight(); 
void TurnLeft(); 
void TurnAround(); 
void AdvanceUntilIR(int value); 
void BackUpFor(int value); 
void ReadQTR(QTRSensor *reading); 
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typedef struct { 
   int outerRight; 
   int centerRight; 
   int centerLeft; 
   int outerLeft; 
} QTRSensor; 
 
 
void setup() { 
   //Set motor pins as outputs 
   pinMode(LEFT_MOTOR_PIN, OUTPUT); 
   pinMode(RIGHT_MOTOR_PIN, OUTPUT); 
   pinMode(REED_SENSOR_PIN, INPUT); 
 
   //Stop motors 
   shield.setMotor(LEFT_MOTOR_PIN, 0); 
   shield.setMotor(RIGHT_MOTOR_PIN, 0); 
 
   //Open gripper 
   shield.setServo(GRIPPER_PIN, GRIPPER_OPENED); 
 
   //Wait for button press 
   while (!shield.buttonPressed()) 
      ; 
} 
 
void loop() { 
 
   LiftRing(); 
 
   BackUpFor(MOTOR_DISTANCE_SIX_IN); 
 
   TurnAround(); 
 
   while(FollowLine()) 
      ; 
 
   TurnRight(); 
 
   while (FollowLine()) 
      ; 
 
   AdvanceUntilIR(IR_DISTANCE_ONE_IN); 
 
   LowerRing(); 
 
   BackUpFor(MOTOR_DISTANCE_SIX_IN); 
 
   TurnAround(); 
 
   while(FollowLine()) 
      ; 
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   TurnLeft(); 
 
   while (FollowLine()) 
      ; 
 
   AdvanceUntilIR(IR_DISTANCE_ONE_IN); 
 
} 
 
int getMax(int num, int arr[]) { 
   int i, max = 0; 
   for (i = 1; i < num; i++) { 
      if (arr[i] > arr[max]) 
         max = i; 
   } 
 
   return max; 
} 
 
void LiftRing () { 
   shield.setServo(GRIPPER_PIN, GRIPPER_CLOSED);   //Close gripper/grab rings 
   shield.setMotor(ACTUATOR_PIN, ACTUATOR_UP);     //Begin moving the linear actuator up 
   delay(5000);                                    //Wait for the actuator to clear the bottom magnet 
   while (digitalRead(REED_SENSOR_PIN) == 0)       //Wait for the reed switch to see the top 
magnet 
      ; 
   shield.setMotor(ACTUATOR_PIN, 0);               //Stop the actuator 
} 
 
void LowerRing() { 
   shield.setMotor(ACTUATOR_PIN, ACTUATOR_DOWN);   //Move actuator down 
   delay(5000);                                    //Wait for actuator to clear the top magnet 
   while (digitalRead(REED_SENSOR_PIN) == 0)       //Wait for the actuator to reach the bottom 
      ; 
   shield.setMotor(ACTUATOR_PIN, 0);               //Stop the actuator 
   shield.setServo(GRIPPER_PIN, GRIPPER_OPENED);   //Open the gripper/drop rings 
} 
 
void BackUpFor(int value) { 
   shield.resetEncoder(RIGHT_ENCODER);                //Reset encoder count 
   shield.setMotor(LEFT_MOTOR_PIN, -BASE_SPEED); 
   shield.setMotor(RIGHT_MOTOR_PIN, BASE_SPEED);      //Set motors to move backwards 
   while(shield.readEncoder(RIGHT_ENCODER) < value)   //Wait for encoder count to reach 
target 
      ; 
   shield.setMotor(RIGHT_MOTOR_PIN, 0); 
   shield.setMotor(LEFT_MOTOR_PIN, 0);                //Stop the motors 
} 
 
int FollowLine() { 
   static double rightCorrection, leftCorrection; 
   static int max; 
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   //Read reflectance sensors 
   ReadQTR(&reading); 
 
   //Reset corrections 
   leftCorrection = 0; 
   rightCorrection = 0; 
 
   //Lock for horizontal line 
   if (reading.midRight > BLACK_TAPE_READING && 
       reading.midLeft > BLACK_TAPE_READING && 
       reading.centerLeft > BLACK_TAPE_READING && 
       reading.centerRight > BLACK_TAPE_READING) { 
 
      shield.setMotor(LEFT_MOTOR_PIN, 0); 
      shield.setMotor(RIGHT_MOTOR_PIN, 0); 
      delay(100); 
      return 0; 
   } 
 
   //Check if going straight 
   else if (!(reading.centerLeft > BLACK_TAPE_READING && 
              reading.centerRight > BLACK_TAPE_READING)) { 
 
      //Find minimum 
      max = getMax(4, QTRReadings); 
 
      //Find the sensor closest to the black tape line 
      switch(max) { 
         case OUTER_RIGHT: 
            //Speed up opposite motor 
            leftCorrection = OUTER_CORRECTION * QTRReadings[max]; 
            //Slow down the same-sided motor 
            rightCorrection = SLOW_MOTOR_CORRECTION; 
            shield.lcdClear(); 
            shield.lcdPrintf("ORight"); 
            break; 
 
         case CENTER_RIGHT: 
            leftCorrection = CENTER_CORRECTION * QTRReadings[max]; 
            rightCorrection = SLOW_MOTOR_CORRECTION; 
            shield.lcdClear(); 
            shield.lcdPrintf("CRight"); 
            break; 
 
         case CENTER_LEFT: 
            rightCorrection = CENTER_CORRECTION * QTRReadings[max]; 
            leftCorrection = SLOW_MOTOR_CORRECTION; 
            shield.lcdClear(); 
            shield.lcdPrintf("CLeft"); 
            break; 
 
         case OUTER_LEFT: 
            rightCorrection = OUTER_CORRECTION * QTRReadings[max]; 
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            leftCorrection = SLOW_MOTOR_CORRECTION; 
            shield.lcdClear(); 
            shield.lcdPrintf("OLeft"); 
            break; 
 
         default: 
            shield.lcdClear(); 
            break; 
      } 
 
      //Update motor speeds 
      shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED + (int)leftCorrection); 
      shield.setMotor(RIGHT_MOTOR_PIN, -BASE_SPEED - (int)rightCorrection); 
   } 
 
   //Keep going straight 
   else { 
      //Set both motor speeds equal 
      shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED); 
      shield.setMotor(RIGHT_MOTOR_PIN, -BASE_SPEED); 
      shield.lcdClear(); 
      shield.lcdPrintf("Straight"); 
   } 
 
   return 1; 
} 
 
void TurnAround() { 
   //Reset encoder 
   shield.resetEncoder(RIGHT_ENCODER); 
 
   //Begin turning 
   shield.setMotor(RIGHT_MOTOR_PIN, BASE_SPEED); 
   shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED); 
 
   //Turn for little less than 180deg 
   while (shield.readEncoder(RIGHT_ENCODER) < 400) 
      ; 
 
   //Find the black tape line 
   while(shield.getAnalog(4) < 300) 
      ; 
 
   //Stop 
   shield.setMotor(RIGHT_MOTOR_PIN, 0); 
   shield.setMotor(LEFT_MOTOR_PIN, 0); 
} 
 
void AdvanceUntilIR(int value) { 
   //Set motors to move forward 
   shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED); 
   shield.setMotor(RIGHT_MOTOR_PIN, -BASE_SPEED); 
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   //Wait until specific IR reading 
   while (shield.getAnalog(IR_SENSOR_PIN) < value) 
      ; 
 
   //Stop motors 
   shield.setMotor(LEFT_MOTOR_PIN, 0); 
   shield.setMotor(RIGHT_MOTOR_PIN, 0); 
} 
 
void TurnRight() { 
   shield.resetEncoder(LEFT_ENCODER); 
   shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED); 
   while (shield.readEncoder(LEFT_ENCODER) < ENCODER_TURN) 
      ; 
   shield.setMotor(LEFT_MOTOR_PIN, 0); 
} 
 
void TurnLeft() { 
   shield.resetEncoder(RIGHT_ENCODER); 
   shield.setMotor(RIGHT_MOTOR_PIN, BASE_SPEED); 
   while (shield.readEncoder(RIGHT_ENCODER) < ENCODER_TURN) 
      ; 
   shield.setMotor(RIGHT_MOTOR_PIN, 0); 
} 
 
void ReadQTR(QTRSensor *reading) { 
   QTRReadings[0] = reading->outerRight = shield.getAnalog(2); 
   QTRReadings[1] = reading->midRight = shield.getAnalog(3); 
   QTRReadings[2] = reading->centerRight = shield.getAnalog(4); 
   QTRReadings[3] = reading->centerLeft = shield.getAnalog(5); 
}   
 

 


