

Roborodentia XXI Robot

Jose A. Villa

Advisor: John Seng

California Polytechnic State University

Computer Engineering Program

Spring 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/77510727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

California Polytechnic State University Page | 1

Table of Contents

Introduction .. 2

Problem Statement ... 3

Design .. 5

Software ... 5

Hardware .. 13

Mechanical .. 16

Budget and Bill of Materials .. 22

Lessons Learned .. 24

Conclusion ... 26

References ... 27

Appendix A: Roborodentia XXI Rules .. 28

Appendix B: RoboShieldMain.ino ... 31

Table of Figures

Figure 1. Roborodentia XXI Course Model, Perspective View ... 3

Figure 2. Roborodentia XXI Course Model, Top View ... 4

Figure 3. High Level Program Flow .. 6

Figure 4. 90° Turn Calculation ... 8

Figure 5. Line Following Algorithm Flowchart ...10

Figure 6. Line Following Algorithm Scenarios .. 11

Figure 7. High Level Architecture Diagram ... 13

Figure 8. Navigation Subsystem Diagram ... 14

Figure 9. Ring Pick-up Subsystem Diagram .. 15

Figure 10. Chassis CAD Model. .. 16

Figure 11. Bottom View of Chassis ... 17

Figure 12. Top View of Chassis .. 18

Figure 13. Top and Bottom Robot View. .. 19

Figure 14. Front and Back Robot View. .. 20

Figure 15. Left and Right Side Robot View. ... 21

Figure 16. Reed Switch and Magnet Height Detection System Error! Bookmark not defined.

California Polytechnic State University Page | 2

Introduction

Roborodentia is a competition held annually during Cal Poly’s Open House. The general

objective of every competition is to build an autonomous robot that will perform specific

tasks to earn points within a time limit. These tasks are different every year and

sometimes are radically changed from the previous competition. Building such robots

involves a good mix of mechanical, electrical, and software knowledge. The project

outlined in this report was a contestant robot for the 21st Roborodentia competition

which took place on April 16, 2016.

California Polytechnic State University Page | 3

Problem Statement

Overview

The overall objective of the competition was for the robot to carry rings from a supply

peg to a scoring peg. Figure 1 shows a model of the course. Robots can take primary,

secondary, or center rings and score points by placing them on scoring pegs #1 or #2.

Below is a high level summary of the contest rules. Full specifications can be found in

Appendix A [1].

Figure 1. Roborodentia XXI Course Model, Perspective View

Robot Specifications

Robot footprint must be 12”x12” maximum at the beginning of the match and must not

exceed 14”x14” at any point during the match. Height must be under 15” at the

beginning of the match with no restriction once the match begins. Robots are to be fully

autonomous and may not fly or disassemble into multiple parts.

Course Specifications

The entire course is 8’x8’, with 4” walls surrounding the edges and along the center. The

black lines (shown in Error! Reference source not found. and Figure 2) are strips

of ¾” black masking tape. Rings are cut from 2” Sch 40 PVC pipes and are ½” tall. All

the pegs are cut from ½” Sch 40 PVC pipes and are 3” tall. Each supply and center peg

holds 4 rings. The secondary ring box holds 10 secondary rings.

California Polytechnic State University Page | 4

Figure 2. Roborodentia XXI Course Model, Top View

Regulations

The competition was a head-to-head double elimination tournament with 3-minute

matches. Competitors were seeded based on qualifying runs. At the beginning of the

match, robots must be touching the tape intersection closest to the supply pegs. Each

supply peg will be replenished with up to 4 rings every time the robot touches the center

intersection; center pegs are not replenished throughout the match.

Scoring

Every primary ring placed in a scoring peg #1 is worth 1 point and 3 points if it is placed

in a scoring peg #2. Secondary rings are worth 2 points if placed in scoring peg #1 and 8

points if placed in scoring peg #2. Center rings are worth 3 points on their own;

moreover, when a center ring is part of a stack of rings on a scoring peg, the value of the

stack is tripled but the center ring only counts as a primary ring. When a scoring peg

holds 4 or more rings, they will be removed and only the bottom 4 rings will score

points.

California Polytechnic State University Page | 5

Design
Software
Overview

The software that runs the system is written for the Arduino platform which uses an

avr-gcc compiler on C/C++ code that is later executed by the ATmega2560. The entirety

of the code (not including standard libraries) is contained in four files: RoboShield.cpp,

RoboShield.h, RoboShield_Defines.h, and RoboShieldMain.ino. The first three files

comprise the library provided for the Roboshield, while the last one contains all

functionality written specifically for the competition. The Roboshield library can be

found on github.com [2] and RoboShield.ino can be found in Appendix B. Below are

detailed descriptions of each.

RoboShield Library

This library was written specifically for the RoboShield to run on the ATmega2560. It

was developed by Cal Poly professor Dr. John Seng and Cal Poly alumnus Brian

Gomberg, both of who also designed the RoboShield board itself. The library is split into

three files and consists of a single class called RoboShield which contains about thirty

methods. RoboShield.h contains the class and function declarations,

RoboShield_Defines.h contains all the #defines used throughout the library, and

RoboShield.cpp contains the class and function definitions.

RoboShieldMain.ino

This file contains the main loop performed for the competition as well as some support

functions. The main loop begins by picking up rings from the supply pegs, which is

where the robot begins the match. After that, the robot backs up 6”, turns around, and

heads towards the center of the course as it follows the black line. Once it sees the

intersection, it takes a right turn and continues to follow the black line as it heads

towards the scoring pegs. Once it sees the intersection by the scoring pegs, it stops and

begins to move forward until the distance sensor reads about 1” away from the wall. At

that point, the rings are lowered onto the scoring pegs. The robot once again backs up

for 6”, turns around and follows the black line until the center intersection. It then takes

a left turn, stops at the intersection by the supply pegs, and gets within 1” of the wall to

begin the loop again. Figure 3 graphically shows the process in a flowchart.

California Polytechnic State University Page | 6

Figure 3. High level program flow

The rest of the RoboShieldMain.ino file contains functions that support each of the

processes outlined in the flowchart. Every process can be divided into four different

categories. Below are detailed descriptions of each.

Pick Up/Drop Ring

This process is performed by the LiftRing() function, shown in Code Snippet 1 (note that

‘shield’ is a global reference to a RoboShield object). A detailed mechanical description

of this process can be found in the Mechanical subsection. It begins by setting the angle

of the mini servo so that the gripper that is attached to it closes enough to hold a ring

(the gripper should initially be opened). This angle was fine-tuned by trial and error.

Two magnets and the reed switch are used to signal that actuator is low enough to pick

up a ring or high enough to clear a peg. Since the actuator begins in the low position, the

function tells the actuator to begin moving up for 5000ms, which is long enough for the

reed switch to clear the bottom magnet. At that point, it begins waiting for the reed

switch to see the top magnet and stop the actuator.

California Polytechnic State University Page | 7

Code Snippet 1: LiftRing()function.

The LowerRing() function performs the same calls but with different arguments and in

different order. It initially instructs the linear actuator to move down and opens the

gripper after the bottom magnet is sensed by the reed switch.

Distance-specific maneuvers

A mathematical approach was taken to approximate distances to for the wheels to travel.

Each gearmotor has an integrated quadrature encoder that outputs 64 CPR (counts per

revolution) of the motor shaft. The gear ratio of the output shaft to motor shaft is 50:1,

which totals (50)(64 CPR) = 3200 CPR of the output shaft. However, the library only

looks at one of the two encoder outputs, and only counts rising edges of the signal

effectively cutting the amount of CPRs to a fourth. The final count is then 3200 CPR / 4

= 800 CPR. The wheels used were 90mm in diameter and therefore (90mm)(π) ≈

283mm in circumference. So the encoders give a distance per count of (283mm / 800

counts) = 0.35375mm/count or 0.014”/count. Simple conversions can be done to get the

counts needed for a wheel to travel a specific distance. For example, one of the processes

requires the robot to back up 6”, which comes out to be (6”) / (0.014”/count) ≈ 429

counts.

A little more math was required to calculate turns. Assuming only one of the wheels

moves and the other one rotates in place, and approximation of the distance that it takes

for one of the wheel to travel to complete a specific turn in degrees can be calculated

using the formula for the circumference of a circle and taking the distance between the

two wheels as the radius. Figure 4 illustrates the idea and shows an example for

calculating a 90° turn.

California Polytechnic State University Page | 8

Figure 4. 90° Turn Calculation

From there, we can use the same formula as before and get the number of encoder

counts needed for the left wheel to travel that distance. Specifically, (15.7”) /

(0.014”/count) ≈ 1121 counts. Specific values for the needed distances were computed

beforehand and stored as #define constants to avoid computation costs.

Moving to a specific distance from the wall

This is a straightforward function that simply moves the robot forward until the value

being read from the IR distance sensor exceeds a specific value. It is worth noting,

however, that a specific distance cannot be accurately calculated from a sensor reading

but rather has to be extracted from the sensor’s datasheet as the distance-voltage curve

is not exactly linear. The only distance used is 1”, which the datasheet says should result

in a sensor output of about 1.9 volts [3]. The microcontroller’s Analog to Digital

Converter (ADC) takes a 0V-5V reading and maps it to a 0-1023 integer output. This

means the 1” should roughly be (1.9V/5V)·(1023) ≈ 389, which is argument used in the

function call AdvanceUntilIR(), shown in Code Snippet 2.

California Polytechnic State University Page | 9

Code Snippet 2: AdvanceUntilIR()function.

Line following and stopping

This was the section that required the most time and testing. With a variety of line

following algorithms and an array of eight reflectance sensors to take advantage of,

options were vast. Figure 5 shows the algorithm that was used. Only the middle four

sensors, out of the eight, were used. The sensors will be referred to as Outer Left (OL),

Center Left (CL), Center Right (CR), and Outer Right (OR) hereafter. The algorithm

works under the assumption that at the time that it’s called, there is a black line under at

least one of the four sensors. The algorithm begins by taking a reading from the four

sensors. Six different scenarios were considered and are illustrated in Figure 6.

California Polytechnic State University Page | 10

Figure 5. Line Following Algorithm Flowchart

California Polytechnic State University Page | 11

Figure 6. Line Following Algorithm Scenarios

Scenario (a) is the one that is first checked for. It is whether or not the robot found a

horizontal black tape line. This immediately stops both motors and ends the algorithm.

In scenario (b) both center sensors are able to read the line. In practice, this is an ‘if

statement’ checking that both CL and CR sensor readings are above a specific threshold.

This is the ideal scenario as the robot is presumably following the black line in a straight

path. Both motor speeds are set to the same value expecting to maintain the same path

and the algorithm starts over. In case at least either CL or CR read less than the

threshold, the next step is to find the max value among the sensor readings, i.e. which

sensor is closest to the black line. This is a simple search for the highest value on a four-

element integer array with the sensor values. In case of a tie, the first found value is

taken as the highest. This leaves the last four scenarios: scenario (c) where CR is the

max value, scenario (d) where CL is the max value, scenario (e) where OR is the max

value, and scenario (f) where OL is the max value. Note on scenario (d) that the value of

sensor CR would not be above the threshold for a black line and is therefore different

from scenario (a). Scenarios (c) and (e) result in speeding up the left motor and

California Polytechnic State University Page | 12

scenarios (d) and (f) in speeding up the right motor, as pointed out in the algorithm

flowchart. The amount of difference in speed, or correction, is determined by both the

value of the max sensor reading, and whether it is a center or outer sensor that has the

max value. Higher max sensor readings and outer sensors result in higher correction.

Finally, there is a small delay for allowing the correction to impact the path before

returning to the beginning of the algorithm and recalculating correction.

California Polytechnic State University Page | 13

Hardware
Overview

The system was controlled by an ATmega2560 on an Arduino Mega-clone

microcontroller board, manufactured by Keystudio. On top of it sat a Roboshield,

developed by Cal Poly professor Dr. John Seng and Cal Poly alumnus Brian Gomberg.

Wired to the microcontroller/shield were two gearmotors, a reed switch, a linear

actuator, a mini servo, an IR distance sensor, and a reflectance sensor array. The system

was powered by 8 AA-rechargeable-batteries. Figure 7 shows a high level diagram of the

system. There were two main subsystems: the navigation and the ring pick-up/drop-off.

Figure 7. High Level Architecture Diagram

Navigation

Movement was achieved by rotating two Pololu 50:1 Metal Gearmotors with 64 CPR

encoders. Each was connected to the two 6-pin motor connectors in the Roboshield

which include motor terminal A, motor terminal B, encoder GND, encoder Vcc, encoder

A output, and encoder B output. Line following was achieved with the aid of a Pololu

QTR-8A Reflectance Sensor Array. The sensor provides analog output readings from

each of the 8 IR LED/phototransistor pairs, these were captured by input pins A0

through A7 on the Roboshield. Finally, proximity to walls was measured by a Sharp

GP2Y0A51SK0F Analog Distance Sensor with a range of 2-15cm. Figure 8 shows the

wiring diagram.

California Polytechnic State University Page | 14

Figure 8. Navigation Subsystem Diagram

Ring Pick-up/Drop-off

This subsystem included a PowerPro SG90 9g Mini Servo which actuated a 3D printed

gripper. The three pin servo connector (ground, power, and signal) plugged right into

one of the eight servo connectors on the Roboshield. The gripper was attached to the

Windynation Linear Actuator so that the rings could be lifted. The linear actuator was

controlled similarly to a DC motor and is therefore able to be connected to one of the

four two-pin motor connectors on the Roboshield. Finally, the reed switch and two

magnets provide information regarding the position of the linear actuator. The reed

switch acted as a short when a magnet was nearby and otherwise as an open. It was

therefore wired as a simple switch and the value was read through a digital pin in the

Keystudio microcontroller. One of the magnets signaled the gripper was low enough to

grab rings and the other one that the gripper was high enough to clear the peg. Figure 9

shows the wiring diagram.

California Polytechnic State University Page | 15

Figure 9. Ring Pick-up Subsystem Diagram

California Polytechnic State University Page | 16

Mechanical
Overview

The base of the robot was a laser-cut wood chassis designed using Autodesk Inventor.

The chassis had four screw holes for mounting each gearmotor, four screw holes for the

front swivel wheel, four screw holes to mount the Keystudio microcontroller, and a

squared opening to run wires from the bottom to the top of the chassis. Figure 10 shows

the model.

Figure 10. Chassis CAD Model.

On the bottom side of the chassis, there were two mounting brackets for the gearmotors

attached using four screws each. Close to the center of the chassis was the reflectance

sensor array mounted using LEGO blocks and hot-melt adhesive. Near the front was a

swivel wheel attached to the four mounting screw holes. Next to it was the distance

sensor hot-glued to the chassis. Figure 11 shows a pictorial representation.

California Polytechnic State University Page | 17

Figure 11. Bottom View of Chassis

On the top side of the chassis, the battery pack sits near the back of the robot. Moving

towards the front of the robot is the squared opening that allows the wires coming from

the gearmotors and the reflectance sensor array to be connected to the microcontroller.

Nearby is the microcontroller, sitting on four screws with plastic spacers, and next to it

is a mini breadboard attached using a sticky pad. Next to them is the linear actuator

which was attached using hot-melt adhesive. Towards the front is the ring holder that

prevented rings from falling to the sides once they were lifted. Figure 12 shows a

pictorial representation of the top view of the chassis. Functionality of the two

subsystems is explained below.

California Polytechnic State University Page | 18

Figure 12. Top View of Chassis

Navigation Subsystem

The robot used a differential driving system with two independently controlled wheels

on each side near the back of the chassis and a swivel wheel in the center front. The

gearmotors were attached to the chassis using Pololu mounting brackets. Four #4-40

machine screws held each mounting brackets to the chassis and three M3 held each

gearmotor to its mounting bracket. Attached to each gearmotor were Pololu mounting

hubs which were screwed onto Pololu 90x10mm wheels. The front of the chassis was

supported by a reused office chair swivel wheel. Most of these components can be seen

in Figure 13 .

California Polytechnic State University Page | 19

Figure 13. Top and Bottom Robot View.

California Polytechnic State University Page | 20

Figure 14. Front and Back Robot View.

Ring Pick-up/Drop-off

The most intricate mechanism of the robot is surely the ring-handling system. The

initial approach was to build a pulley system using LEGO pieces. However, it was

difficult to achieve structural integrity and consistency. Because the ring gripper needed

to be supported from its backside, it would cause it to tilt forward because of the weight

distribution. In other words, it was difficult to maintain the gripper in a horizontal

position. The Windynation 8” Linear Actuator was used instead. The actuator raises and

lowers a 3D-printed gripper. The original 3D-printable files were found and retrieved

from Thingiverse.com [4]. Longer pinchers were designed to better grab rings. The

gripper is actuated by the PowerPro SG90 9g Mini Servo and attached to the linear

actuator using LEGO pieces and laser cut wood. As rings are raised by the gripper, they

are positioned around a “ring holder”, made by gluing two PVC pipes to a wood

platform. The long support pipe is glued to the chassis and the small ring-holding pipe is

meant to be positioned right above a scoring/supply peg. This prevents any of the top

rings from falling over. The ring holder can be appreciated in the side views of the robot

in Figure 15.

California Polytechnic State University Page | 21

Figure 15. Left and Right Side Robot View.

 Lastly, there is a reed switch attached to the gripper and there are two magnets hot-

glued to the ring holder’s support pipe; one is near the bottom signaling the reed switch

that the gripper is low enough to grab onto rings, and the other is at a height at which

the gripper clears the scoring/supply peg so that the robot can move away from it.

Error! Reference source not found. shows a close-up photograph of this system.

Figure 16. Reed Switch and Magnet Height Detection System

California Polytechnic State University Page | 22

Budget and Bill of Materials

The Cal Poly Computer Engineering department funds up to $200 of senior project

costs. Any more money spent past that is out-of-pocket for project members. As

mentioned in the ‘Mechanical Design’ section, because of the relative high cost of linear

actuators, it was initially attempted to take a less costly approach. However, given that it

was not as reliable and mechanically stable as needed, it was decided to spend money

past the original budget. It is also worth noting that the cost of the metal gearmotors

was subsidized by Roborodentia, saving about $60 per pair. Below is the final bill of

materials.

Table 1. Bill of Materials

Part Name Model Supplier

Name

Qty. Unit Price

($)

Extended

Price ($)

Keystudio

Microcontroller

Mega 2560 R3 Amazon.com 1 $14.99 $14.99

Battery Holder 4-AA Batteries, On-Off

Switch

Amazon.com 1 $4.54 $4.54

Jumper Wire 40-pin Male to Male /Female

to Female /Male to Female
Amazon.com 1 $8.99 $8.99

Linear Actuator WINDYNATION 8" 12V

225lbs

Amazon.com 1 $59.99 $59.99

Batteries Energizer Rechargeable -

8pk

Best Buy 1 $25.91 $25.91

Chassis Wood 1/4" x 12" x 12" Cal Poly

Bookstore
1 $3.17 $3.17

Metal

Gearmotors

50:1 37Dx70L mm with 64

CPR Encoder

Cal Poly Robotics

Club
2 $10.00 $20.00

Mounting Hubs 6mm Shaft, #4-40 Holes

(2-pack)

Cal Poly Robotics

Club
1 $7.00 $7.00

Mounting L-

Bracket

Stamped Aluminum, for 37D mm

Metal Gearmotors (2-pack)
Cal Poly Robotics

Club
1 $8.00 $8.00

RoboShield Version 1.0 Cal Poly Robotics

Club
1 $35.00 $35.00

Reflectance

Sensors

QTR-8A Pololu.com 1 $9.95 $9.95

California Polytechnic State University Page | 23

Analog

Distance Sensor

Sharp GP2Y0A51SK0F Pololu.com 1 $5.56 $5.56

Pololu Wheel 80mm x 10mm Pair - Red Pololu.com 1 $9.25 $9.25

Reed Switch RS-01C Sparkfun.co

m

1 $1.95 $1.95

3D Printing &

Laser Cutting

Digital Fabrication Lab

Punch Card

Cal Poly

CAED

1 $40.00 $40.00

Mini Servo TowerPro SG90 9g Amazon.com 1 $2.99 $2.99

Screws and

Nuts

#4-40 and M3 Pololu.com 1 $4.00 $4.00

Total $261.29

California Polytechnic State University Page | 24

Lessons Learned
This project taught me many lessons along the way, most of them regarding robotics.

Below are a few that are worth highlighting.

LiPo vs NiMH Batteries

Going into the project I had no knowledge of the different types of batteries and their

specific behavior/performance. After reading the voltage requirement of around 10V for

the RoboShield and the gearmotors, the first thing that came to my mind was to use 8

AA-batteries, and even better, to save a few dollars and the environment by choosing

rechargeable ones. I soon learned that rechargeable batteries only provide 1.2V when

fully charged. To top it all off, all the initial testing was done with a power supply so I

did not get to experience or evaluate the performance of the rechargeable AA-batteries

until the day before the competition. The issue with NiMH batteries is that under high-

drain use, their output voltage drops at a high rate [5]. While most of the components do

alright with lower a supply voltage, the gearmotors change the speed at which they turn

for the same software-specified value. This meant that as the batteries were used more,

the line following algorithm behaved differently, the linear actuator was slower, and the

servo on the gripper had less torque. To drive the point home, every single returning

team at the competition that I talked to was using a LiPo battery pack, and while I saw a

handful of teams using AA-batteries, I believe I was the only ones using rechargeable

ones.

Component price should be a considered factor but not a decisive one

During early design stages of the project, the idea of purchasing a linear actuator was

scratched out because of their relatively high prices. In the end, it turned out that the

time spent trying to build a substitute for a lower price was not worth the savings of not

buying a linear actuator. So, when switching to the linear actuator, there were a few

tweaks that had to be made in order to incorporate it. Most notably, there was no place

to mount it through the chassis, which resulted in having it mounted on the side. At the

same time, the gripper had to be awkwardly attached to the actuator, and weight

distribution in the chassis was negatively affected; a firm push to the actuator would

actually cause the robot to tip over. Overall, if the benefits of pricier components would

have been weighted heavier than their price, system integration would have gone a lot

smoother.

Theory does not equal practice

There were a couple of instances along the way in which mathematical models and

datasheet information turned out to be notably different in practice. The biggest

example was the distance-specific movement functions. Even though the motors spun

the wheels for at least the required distance, there was extra time between the function

California Polytechnic State University Page | 25

call to stop the motors and the time that they physically stopped. The wheels were often

moving at different speeds or stopped at different times so one of the wheels would end

up ahead of the other, resulting in a slight alteration of the robot’s path. While the

mathematical models can provide good approximations, there are always little

deviations that need to be accounted for in practice.

California Polytechnic State University Page | 26

Conclusion
In general, I believe the approach and the design of the robot were adequate; however,

mechanical integration and power system came a little short. The ring pick-up system

required the ring holder to be accurately positioned right above the scoring or supply

peg. Even if the holder was misaligned from the supply peg by a few centimeters, there

was a chance that the rings would hit the ring holder on their way up and be dropped by

the gripper. Likewise, misalignment with a scoring peg often resulted in the rings not

falling into the peg. This shortcoming combined with the fact that the battery voltage

and, consequently, motor speeds were different between runs, resulted in unsuccessful

ring pick-up/drop-off more often than desirable. A possible solution to this problem,

used by a number of other competitors, would have been to move the robot forward

until the front of the chassis is flush with the course wall so that the distance to the peg

is always the same. Combining this with a LiPo battery pack to minimize motor speed

variations between test runs would have increased the performance of the robot.

California Polytechnic State University Page | 27

References
[1] Seng, John. “Roborodentia XXI”. Internet: https://docs.google.com/document/d/

1rYSVdBPb6dNHQXfgRWYkEfzj00706zCozCtoAm_0bv4/pub, Jan. 11, 2016 [June 5,

2016]

[2] Gomberg, Brian. Seng, John. “roboshield”. Internet: https://github.com/roboshield/

roboshield, Feb. 14, 2016 [June 8, 2016]

[3] Pololu. “Sharp GP2Y0A51SK0F Analog Distance Sensor Datasheet” Internet:

https://www.pololu.com/file/0J845/GP2Y0A41SK0F.pdf.pdf, n.d. [June 6, 2016]

[4] Thingsverse. “Mini servo gripper”. Internet: http://www.thingiverse.com/

thing:2415, Apr. 20, 2010 [June 5, 2016]

[5] Energizer Holdings. “Product Datasheet: Energizer NH15-2300” Internet:

http://data.energizer. com/PDFs/nh15-2300.pdf, n.d. [June 5, 2016]

California Polytechnic State University Page | 28

Appendix A: Roborodentia XXI Rules
Competition Rules and Course Specification:
Version 1.0 (1/11/16)
This year's competition is a head-to-head double elimination tournament where the object of the
competition is to move rings onto scoring pegs.
 Competition Date: April 16, 2016 (1pm)
 Competition Location: Rec Center Gym, Cal Poly Campus
Teams are required to register with their intent to compete in Roborodentia. Registration forms will
be made available.
Note: Rules are subject to minor updates and clarifications. Any changes will be announced and
noted at the bottom of this page.
Download the competition layout here: Roborodentia 2016 Sketchup

1. Course Specifications (see attached diagrams for more details and dimensions)
1.1 The entire course is 8’ wide x 8’ long with 4” high walls surrounding the edges and along the
center.
1.2 The black lines shown on the playing field are strips of 3/4" black masking tape.
1.3 There are 3 supply pegs (1/2" Sch 40 PVC pipe) located at the end of the field. Each supply
peg will initially hold 4 primary (red or blue) rings.
1.4 At the left and right ends of the field are 3 scoring pegs (1/2" Sch 40 PVC pipe). Each peg is 3”
tall.
1.5 There will be a box of secondary (green) rings. This box will contain 10 rings that will be
randomly placed in the box.
1.6 Rings are painted PVC pipe (2” Sch 40 PVC pipe color red/blue/yellow/green and 1/2" pipe
length).
2. Robot Specifications

2.1 Robots must be fully autonomous and self-contained.
2.2 Robots must have an 12” x 12” footprint or smaller at beginning of the match, but may
autonomously expand after the match begins. At any point during a match, a robot’s footprint may
not be larger than 14” x 14”.
2.3 A robot may have a maximum height of 15” at the start of a match. There is no height
restriction after the match begins.
2.4 A robot may not disassemble into multiple parts.
2.5 Robots may not use any RF wireless receivers/transmitters during the competition.
2.6 Robots may not damage the course or the contest rings.
2.7 Adhesives may be used to pick up rings, but the rings may not be modified in any way. A ring

must be completely free of residue after it has been picked up.
2.8 If a robot has RF wireless components on-board, the contestant will be required to notify the

judges before the competition, and be able to demonstrate that the wireless components are not
used. If RF components are found on-board that were not declared, or declared non-
operational when active, it will be grounds for immediate disqualification.

2.9 Intentionally jamming an opponent's sensors is not allowed. Robots may not have weaponry or
devices designed to damage or impede the operation of an opponent’s robot.
2.10 A robot may not disturb rings on an opponent’s side of the field.
2.11 A robot may not fly.
3. General Regulations
3.1 At the start of a match, a robot must be touching the tape intersection nearest to the supply
pegs. The robot may start in any orientation.
3.2 Robots will be seeded based on qualifying runs.

https://www.google.com/url?q=http://www.csc.calpoly.edu/~jseng/Roborodentia_2016_v1.0.skp&sa=D&ust=1465456271224000&usg=AFQjCNHt6n8S4EnMtNPZnmxdvplk8IFn4w

California Polytechnic State University Page | 29

3.3 The tournament will be run in a double elimination format.
3.4 A match will last 3 minutes.
3.5 If both teams agree, the match may end prior to three minutes.
3.6 At the end of a match, the robot with more points wins the match.
3.7 A team may pick up and restart their robot (touching the tape intersection nearest to the supply
pegs) during the match. If a restart occurs, the opposing team will be awarded a bonus. (3 points for
the first restart, 4 points for the second, and 5 points for the third, etc.)
3.8 On a restart, all rings will be removed from the robot.
3.9 A 3 second tone countdown will signal the start of a match. Contestants must start the robot
during this period by pressing only 1 button 1 time. Contestants may not touch a robot during a
match (except on a restart). Not restarting a robot ends the run for that robot and the robot keeps
all points up to that instant.
4. Competition Regulations
4.1 Robots may start with 1 ring (primary or secondary) pre-loaded on the robot. Each supply peg
will initially hold 4 rings.
4.2 If a contest ring goes off the playing field, then the ring is out of play with no penalty assessed.
4.3 A supply peg is replenished with up to 4 rings once a robot touches the center intersection.
4.4 The box of secondary rings will be replenished with up to 10 rings when there are 3 or fewer
secondary rings in the box AND either:

- a robot scores a ring on scoring pegs #2
- a primary or center ring is scored

4.5 Rings that are dropped by a robot on its own side of the playing field will be removed by the
judges when practical.
4.6 The first 2 rings that land on an opponent’s side of the field will not be assessed a penalty. For
each team, any rings after the first 2 will be assessed a 2 point penalty per ring (deducted from the
robot corresponding to the ring color). Opponent rings resting on a team’s playing field will be
removed by the judges as soon as practical.
5. Scoring

5.1 Primary rings (red or blue) that are placed on scoring pegs #1 will be worth 1 point each.
5.2 Primary rings that are placed on scoring pegs #2 will be worth 3 points each.
5.3 Center rings (yellow) on their own are worth 3 points. When a center ring is part of a stack of
rings on a scoring peg, the point value of the stack will be tripled (a center ring will count towards
the score as if it were a primary ring). This triple bonus is applied only once per stack even if there
are multiple center rings in a stack.
5.4 Secondary rings (green) will be worth 2 points on scoring pegs #1. Secondary rings will be
worth 8 points on scoring pegs #2.
5.5 Once a scoring peg holds 4 or more rings, the rings will be removed as soon as practical. Only
the first 4 rings on a peg will count towards the score (any rings above the 4th ring will not count).
5.6 At the end of the match, any primary rings located in the 2nd position of a center peg will be
worth 20 points.
5.7 Every pair of primary rings placed in the secondary ring box is worth 1 point.
6. Penalties
6.1 If any part of a robot breaks the plane of the center wall that is farthest from the robot, then
that robot will be assessed a penalty. This allows a robot to be directly over the center wall without
penalty. Otherwise, the penalty is that all rings for that robot on the center peg are invalidated, the
robot’s scored is multiplied by .5, and the match ends for that robot.
6.2 A robot that attempts to damage an opponent's robot will be disqualified for that match.
6.3 Robots that do not move within the first 20 seconds of a match will be considered inoperable
and will forfeit the match.

California Polytechnic State University Page | 30

6.4 If both robots have not moved for 60 seconds (at any time during a match), the match will end.
6.5 If a robot exceeds the size restrictions during a match, the match ends for that robot. The
opponent robot may continue the match.
7. Tie breakers
In the event of a tie, the following tie breakers (listed in order below) will be used to

determine a winner:
1. Whichever robot scores more center rings
2. Whichever robot scores more secondary rings
3. Whichever robot removes more center rings from pegs
4. Whichever robot removes more primary rings from pegs
5. One round of rock, paper, scissors
6. Coin toss

8. Contestant eligibility

Current university students and former students that graduated during the 2015-2016 academic
year may enter Roborodentia XXI.
9. Prizes
Below are the prize levels:
1st Place - $1,000

2nd Place - $600

3rd Place - $400

California Polytechnic State University Page | 31

Appendix B: RoboShieldMain.ino

#include <RoboShield.h>
#include <RoboShield_Defines.h>
#include <Wire.h>

//PINS
#define GRIPPER_PIN 0
#define REED_SENSOR_PIN 53
#define LEFT_MOTOR_PIN 2
#define RIGHT_MOTOR_PIN 3
#define IR_SENSOR_PIN 8
#define IR_SENSOR1_PIN 1
#define ACTUATOR_PIN 0
#define RIGHT_ENCODER 1
#define LEFT_ENCODER 0
#define OUTER_RIGHT 0
#define CENTER_RIGHT 1
#define CENTER_LEFT 2
#define OUTER_LEFT 3

//Line following
#define BASE_SPEED 12
#define CENTER_CORRECTION 0.016 // 8/500
#define OUTER_CORRECTION 0.024 // 12/500
#define SLOW_MOTOR_CORRECTION -5

//Argument values
#define MOTOR_DISTANCE_SIX_IN 429
#define IR_DISTANCE_ONE_IN 390
#define ENCODER_TURN 1150
#define BLACK_TAPE_READING 450
#define GRIPPER_OPENED -45
#define GRIPPER_CLOSED 40
#define ACTUATOR_UP -100
#define ACTUATOR_DOWN 100

//Globals
RoboShield shield;
QTRSensor reading;
int QTRReadings[6];

//Prototypes
int FollowLine();
void TurnRight();
void TurnLeft();
void TurnAround();
void AdvanceUntilIR(int value);
void BackUpFor(int value);
void ReadQTR(QTRSensor *reading);

California Polytechnic State University Page | 32

typedef struct {
 int outerRight;
 int centerRight;
 int centerLeft;
 int outerLeft;
} QTRSensor;

void setup() {
 //Set motor pins as outputs
 pinMode(LEFT_MOTOR_PIN, OUTPUT);
 pinMode(RIGHT_MOTOR_PIN, OUTPUT);
 pinMode(REED_SENSOR_PIN, INPUT);

 //Stop motors
 shield.setMotor(LEFT_MOTOR_PIN, 0);
 shield.setMotor(RIGHT_MOTOR_PIN, 0);

 //Open gripper
 shield.setServo(GRIPPER_PIN, GRIPPER_OPENED);

 //Wait for button press
 while (!shield.buttonPressed())
 ;
}

void loop() {

 LiftRing();

 BackUpFor(MOTOR_DISTANCE_SIX_IN);

 TurnAround();

 while(FollowLine())
 ;

 TurnRight();

 while (FollowLine())
 ;

 AdvanceUntilIR(IR_DISTANCE_ONE_IN);

 LowerRing();

 BackUpFor(MOTOR_DISTANCE_SIX_IN);

 TurnAround();

 while(FollowLine())
 ;

California Polytechnic State University Page | 33

 TurnLeft();

 while (FollowLine())
 ;

 AdvanceUntilIR(IR_DISTANCE_ONE_IN);

}

int getMax(int num, int arr[]) {
 int i, max = 0;
 for (i = 1; i < num; i++) {
 if (arr[i] > arr[max])
 max = i;
 }

 return max;
}

void LiftRing () {
 shield.setServo(GRIPPER_PIN, GRIPPER_CLOSED); //Close gripper/grab rings
 shield.setMotor(ACTUATOR_PIN, ACTUATOR_UP); //Begin moving the linear actuator up
 delay(5000); //Wait for the actuator to clear the bottom magnet
 while (digitalRead(REED_SENSOR_PIN) == 0) //Wait for the reed switch to see the top
magnet
 ;
 shield.setMotor(ACTUATOR_PIN, 0); //Stop the actuator
}

void LowerRing() {
 shield.setMotor(ACTUATOR_PIN, ACTUATOR_DOWN); //Move actuator down
 delay(5000); //Wait for actuator to clear the top magnet
 while (digitalRead(REED_SENSOR_PIN) == 0) //Wait for the actuator to reach the bottom
 ;
 shield.setMotor(ACTUATOR_PIN, 0); //Stop the actuator
 shield.setServo(GRIPPER_PIN, GRIPPER_OPENED); //Open the gripper/drop rings
}

void BackUpFor(int value) {
 shield.resetEncoder(RIGHT_ENCODER); //Reset encoder count
 shield.setMotor(LEFT_MOTOR_PIN, -BASE_SPEED);
 shield.setMotor(RIGHT_MOTOR_PIN, BASE_SPEED); //Set motors to move backwards
 while(shield.readEncoder(RIGHT_ENCODER) < value) //Wait for encoder count to reach
target
 ;
 shield.setMotor(RIGHT_MOTOR_PIN, 0);
 shield.setMotor(LEFT_MOTOR_PIN, 0); //Stop the motors
}

int FollowLine() {
 static double rightCorrection, leftCorrection;
 static int max;

California Polytechnic State University Page | 34

 //Read reflectance sensors
 ReadQTR(&reading);

 //Reset corrections
 leftCorrection = 0;
 rightCorrection = 0;

 //Lock for horizontal line
 if (reading.midRight > BLACK_TAPE_READING &&
 reading.midLeft > BLACK_TAPE_READING &&
 reading.centerLeft > BLACK_TAPE_READING &&
 reading.centerRight > BLACK_TAPE_READING) {

 shield.setMotor(LEFT_MOTOR_PIN, 0);
 shield.setMotor(RIGHT_MOTOR_PIN, 0);
 delay(100);
 return 0;
 }

 //Check if going straight
 else if (!(reading.centerLeft > BLACK_TAPE_READING &&
 reading.centerRight > BLACK_TAPE_READING)) {

 //Find minimum
 max = getMax(4, QTRReadings);

 //Find the sensor closest to the black tape line
 switch(max) {
 case OUTER_RIGHT:
 //Speed up opposite motor
 leftCorrection = OUTER_CORRECTION * QTRReadings[max];
 //Slow down the same-sided motor
 rightCorrection = SLOW_MOTOR_CORRECTION;
 shield.lcdClear();
 shield.lcdPrintf("ORight");
 break;

 case CENTER_RIGHT:
 leftCorrection = CENTER_CORRECTION * QTRReadings[max];
 rightCorrection = SLOW_MOTOR_CORRECTION;
 shield.lcdClear();
 shield.lcdPrintf("CRight");
 break;

 case CENTER_LEFT:
 rightCorrection = CENTER_CORRECTION * QTRReadings[max];
 leftCorrection = SLOW_MOTOR_CORRECTION;
 shield.lcdClear();
 shield.lcdPrintf("CLeft");
 break;

 case OUTER_LEFT:
 rightCorrection = OUTER_CORRECTION * QTRReadings[max];

California Polytechnic State University Page | 35

 leftCorrection = SLOW_MOTOR_CORRECTION;
 shield.lcdClear();
 shield.lcdPrintf("OLeft");
 break;

 default:
 shield.lcdClear();
 break;
 }

 //Update motor speeds
 shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED + (int)leftCorrection);
 shield.setMotor(RIGHT_MOTOR_PIN, -BASE_SPEED - (int)rightCorrection);
 }

 //Keep going straight
 else {
 //Set both motor speeds equal
 shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED);
 shield.setMotor(RIGHT_MOTOR_PIN, -BASE_SPEED);
 shield.lcdClear();
 shield.lcdPrintf("Straight");
 }

 return 1;
}

void TurnAround() {
 //Reset encoder
 shield.resetEncoder(RIGHT_ENCODER);

 //Begin turning
 shield.setMotor(RIGHT_MOTOR_PIN, BASE_SPEED);
 shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED);

 //Turn for little less than 180deg
 while (shield.readEncoder(RIGHT_ENCODER) < 400)
 ;

 //Find the black tape line
 while(shield.getAnalog(4) < 300)
 ;

 //Stop
 shield.setMotor(RIGHT_MOTOR_PIN, 0);
 shield.setMotor(LEFT_MOTOR_PIN, 0);
}

void AdvanceUntilIR(int value) {
 //Set motors to move forward
 shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED);
 shield.setMotor(RIGHT_MOTOR_PIN, -BASE_SPEED);

California Polytechnic State University Page | 36

 //Wait until specific IR reading
 while (shield.getAnalog(IR_SENSOR_PIN) < value)
 ;

 //Stop motors
 shield.setMotor(LEFT_MOTOR_PIN, 0);
 shield.setMotor(RIGHT_MOTOR_PIN, 0);
}

void TurnRight() {
 shield.resetEncoder(LEFT_ENCODER);
 shield.setMotor(LEFT_MOTOR_PIN, BASE_SPEED);
 while (shield.readEncoder(LEFT_ENCODER) < ENCODER_TURN)
 ;
 shield.setMotor(LEFT_MOTOR_PIN, 0);
}

void TurnLeft() {
 shield.resetEncoder(RIGHT_ENCODER);
 shield.setMotor(RIGHT_MOTOR_PIN, BASE_SPEED);
 while (shield.readEncoder(RIGHT_ENCODER) < ENCODER_TURN)
 ;
 shield.setMotor(RIGHT_MOTOR_PIN, 0);
}

void ReadQTR(QTRSensor *reading) {
 QTRReadings[0] = reading->outerRight = shield.getAnalog(2);
 QTRReadings[1] = reading->midRight = shield.getAnalog(3);
 QTRReadings[2] = reading->centerRight = shield.getAnalog(4);
 QTRReadings[3] = reading->centerLeft = shield.getAnalog(5);
}

