

SLO Dancing Final Report
Senior Project of Ryan Moelter, Audrey Bruscia, and Matthew Smith

Advisor: Dr. Franz Kurfess

June 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/77510684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SLO Dancing Introduction | 2

Introduction ... 4

Relevance ... 4

Intended Users ... 4

Goal and Objectives .. 4

Progress .. 4

Team Structure .. 4

Ryan Moelter .. 4

Audrey Bruscia .. 5

Matthew Smith .. 5

Background & Inspiration .. 6

Existing Systems ... 6

Technology Overview ... 6

System Design ... 7

Overview .. 7

Frontend [RM].. 8

Backend .. 8

Database ... 9

Features ... 10

Event List.. 10

Event Management .. 11

Add ... 12

Edit ... 12

Organizations ... 12

General structure ... 12

Inviting and Removing ... 13

Authentication and Security ... 13

Google API ... 13

Structure .. 14

Backend and Sessions .. 14

Future work ... 15

New features ... 15

Notes ... 15

Animations .. 15

Logo & Branding ... 15

Calendar, Events tracking, & Notifications .. 15

SLO Dancing Introduction | 3

Minor Improvements & Bugs ... 15

Update EventList UI .. 15

Add Preview to Add Event Page .. 15

Send Emails with Invites ... 16

Fix EditEvent Form Population .. 16

Properly Implement Sessions ... 16

Dev Environment .. 16

Automated testing ... 16

Automated deployment / Continuous integration... 16

Local MySQL instances .. 16

Conclusion .. 18

Personal Reflections ... 19

Ryan .. 19

Audrey ... 19

Matt... 20

Appendix ... 21

1. MySQL Database Events Schema ... 21

SLO Dancing Introduction | 4

Introduction
Our project is a website (slodancing.com) that displays all social dance events in the SLO area.

Relevance
Currently there is no centralized place to find information for all dances. Most dance communities

have their own websites or events on Facebook, but that information can be difficult to find.

Oftentimes, people have to sign up for email lists or walk around town or Cal Poly looking for

posters advertising the events. Our website consolidates all of this information into one convenient

place.

Intended Users
SLO residents, Cal Poly students, and SLO visitors are the intended users. The project framework is

generic and can be expanded to other cities in the future if someone in that city wants to manage it.

Goal and Objectives
The goal was to make the website into one consolidated place where a person can retrieve dance

info from all the organizations in the area. A search box at the top allows users to filter the data how

they want, including by dance style or by venue. The website also allows trusted users to have

accounts and submit or edit dance events for the website, allowing the info on the website to be

regulated by trusted organizations.

Progress
We have completed most of the website we envisioned when we set out on this project. We have

our list of dance events connected to our backend and database, methods of posting and editing

events, accounts with associated organizations and authentication through google, and

management of said organizations and accounts. We’ve fully implemented the frontend, backend,

and database for the features we’ve launched.

Team Structure
We worked as a team, which means that we all ended up getting our hands in everything. During

the first quarter, we structured role assignments by the categories of Frontend, Backend, and

Database so that we could have a solid understanding of how each section would work and how the

components would communicate. During the second quarter, we taught each other what we had

learned so that we could make roll assignments based on feature and have a full stack

understanding when implementing them. Below are the role descriptions and primary features we

worked on.

Ryan Moelter
Ryan is responsible for much of the general architectural design, project management, and initial

frontend development. He laid out the general design of the full stack of the project,

SLO Dancing Introduction | 5

Audrey Bruscia
Audrey is responsible for the design of database tables and integration between backend and

database. She designed and created the MySQL database, and worked with Matt to integrate it with

the backend. The other key feature she worked on was authentication to make sure that only

trusted users that are added into the database are able to sign in and access the pages to add or edit

events.

Matthew Smith
Matt was responsible for the design of the backend API and object relational models in backend. He

designed, created, and deployed the Play Framework application, in addition to working with

Audrey to get it integrated with the database and working with Ryan to hammer down the client

API. After the project's skeleton was developed, Matt went on to work on features like event

management (adding the ability to add/edit events), and did some work with organization

management and the ability to invite new users.

SLO Dancing Background & Inspiration | 6

Background & Inspiration

Existing Systems
Our project was inspired mostly by a site with the domain www.portlanddancing.com, a website

where Portlandians can check the dates and locations of upcoming dance events in Portland. A

website like this did not exist in San Luis Obispo, but there were some other existing technologies

that had similar functions to our project, such as Facebook Events. However, finding dance events

on Facebook can be difficult since its search engine isn’t specifically designed for it.

Technology Overview
This project consists of a webapp that SLO residents and visitors will use to find dance events that

they would like to attend. We decided on a webapp as opposed to a mobile app because anyone can

access a website from almost any device, and because we guessed that most people will be

accessing this from a desktop computer. Additionally, the website was designed for scalability in

different browser sizes, which makes it mobile friendly. We also wanted to learn web development,

since none of us had previous experience in it.

SLO Dancing System Design | 7

System Design

Overview

Figure 1: Diagram of general system architecture

Figure 2: Screenshots of finished product for this project, showcasing the responsive design

Our website contains three parts: the frontend, which contains everything that runs in the client’s

browser; the backend, which serves the frontend to the client and provides an API to allow the

frontend to get data; and the database, which provides long-term storage for the dance events list

and contains tables for organiazations and their associated members. The frontend leverages

AngularJS and is written in HTML, CSS, and Javascript, like most webapps. The backend is built on

Play Framework and is written in Java. The database is a MySQL database.

We spent a large portion of the first quarter deciding on the technologies to use. The frontend uses

Angular JS because it provides the developer with many tools to make development easier, such as

data binding and animation, and it has the clout of Google behind it. We chose to use the Play

framework because it has extensive functionality and is written in Java, which we’re all comfortable

Frontend

(AngularJS)
Backend

(PlayFramework)
Database
(MySQL)

Rest API Local
Port

SLO Dancing System Design | 8

with. It is simple to learn, fast, stateless, and non-blocking, and it easily supports the REST API we

use to communicate with the frontend. The database uses MySQL due to its read-after-write

reliability and its common use in larger applications.

Frontend [RM]

Figure 3: Diagram of most of the AngularJS app

The frontend is a fairly typical AngularJS webapp; it consists of a main app module (Javascript) with

controllers (Javascript) bound to specific views (HTML/CSS) which sometimes use directives

(reusable Javascript with HTML/CSS templates) and factories (shared Javascript objects). A

diagram can be found in Figure 3 above.

Generally, each controller is bound to one view, and each controller-view pair represents a page on

our site. The one exception to this is the navbar with the signinController, which is on every

page.

Any code that is shared between multiple pages goes into a factory or directive. We put all of our

API-accessing logic into factories (modelFactory and httpFactory), and same with our user

authentication logic (userFactory). We put reused UI elements into directives, as is standard with

AngularJS.

Backend
The backend, written in Java with the Play Framework, was created as a RESTful API to allow GET

and POST requests to retrieve data from and manipulate the database that it was connected to. This

API included endpoints that allowed for adding and retrieving events, managing users, and

authentication (through session in POST data). The Play Framework allowed for an easy template

to create endpoints within the API for the frontend to connect to. It also allowed for simple

connection to the database and an easy framework for object relational model creating and

manipulation. The backend also incorporated Jackson, a Java library allowing for simple parsing

and modeling of JSON objects. Jackson annotations on Java objects allowed for translation between

SLO Dancing System Design | 9

the database models on the backend and the JSON objects that got sent to and received from the

frontend.

Database

Figure 4: Diagram of the database schema

The complete MySQL database schema is included in Appendix 1, but a visual representation can

be found in Figure 4 above. As part of the design, database tables are broken up into distinct

representations of data. The table DanceEvent is the primary table that holds a single reference to

every existing event. All other tables have foreign keys that reference the DanceEvent.event_id.

This structure allows all of the details associated with an event to be linked back to that event,

including the style, venue information, price, occurrence, and lesson information. Additionally, all

enum possibilities are in their own tables where the table name preface is Enum and the enums are

referenced with foreign keys. For example, the table Style has a foreign key into the EnumStyle

table to be able to retrieve the text string of the dance style for that event. We followed the naming

convention of capitalizing table names and using lower case with underscores for table column

names.

SLO Dancing Features | 10

Features

Event List

Figure 5: Screenshots of the main list of events

The event list is the most important feature of the SLO Dancing project. This list is the first thing

that the user sees when navigating to slodancing.com. The front page list is populated by querying

the backend for all dance events that exist and listing them in the order of the next occurring event.

The event list was implemented as a directive so that it could be incorporated into multiple views

(in this case, the home page and the My Events page). Creating the event list as a directive also

allowed us to filter the list depending on which view it appeared. In the case of the My Events page's

view, the list was filtered by the organization of the logged-in user.

SLO Dancing Features | 11

The event list appears to the user as a list of rows which show details about a specific event. When

the user first visits the page, these events appear as a compact view and only show the essential

details about the event (title, styles, date of next occurrence, and venue name). The styles are

shown in bright colors that make the event visually appealing and make it easier for the user to

identify specific events when browsing. When a specific event is clicked, the event is expanded and

more details are shown. The expanded characteristics include a description, lesson details, contact

information, and prices.

Event Management

Figure 6: Screenshots of the Add Event and My Events pages

Another key feature of the SLO Dancing website is the ability to create and manage events. When a

user is logged in, they have the ability to directly add an event or navigate to the Event Management

page. A directive was created to represent a form that reflects an event's details. The reason for

creating this directive was so that it could be utilized in both the Add Event and Edit Event page and

eliminate the need for duplicate code.

SLO Dancing Features | 12

Add
In order to add an event, a user simply selects the "Add Event" option from the drop down menu

below their name. This redirects the app to the add event page of the app, which includes the

directive representing a large form that allows users to insert details about the event that they wish

to create. This page utilizes the formly-angular library for Angular which allows for JavaScript

objects to be automatically updated to reflect the state of the form in the Angular UI. Formly also

allows for simple input validation (input fields can be forced to match a regex expression or

conform to other requirements).

Edit
The ability to edit an event is available in the My Events page, which can also be navigated to from

the drop down menu below the user's name. This page utilizes the Event List directive. In this case,

a filter is bound to the directive to hide any events that are not owned by the organization that the

logged-on user is a part of. The event list also shows an edit button on each event that, when

clicked, redirects the user to the Edit Event page for the specific event. This page utilizes the same

directive as the Add Event page to display the form, which allows the app to bind the Javascript

object that represents this event to the directive. By binding this object to the directive, the form is

partially filled out for the user automatically. This page also allows the user to delete the specific

event that they are editing. Adding, editing, and deleting of events is done by the frontend POSTing

to the corresponding endpoints on the Java Play backend.

Organizations

Figure 7: Screenshot of organization management page

General structure
The purpose of Organizations is that multiple individuals can be associated with an organization

and can post on behalf of the organization. With this structure, we ensure that only trusted users

gain access to adding, editing, and deleting events. Initially, a president or leader of the organization

is added to the database with their organization name and their Gmail account. Once one user in an

organization has authorized access, they can sign in and navigate to the My Organization page

where they will see their organization name. They can then invite other trusted users to be under
their organization.

SLO Dancing Features | 13

Inviting and Removing
When an authorized user is signed in and is on the My Organization page, they can invite new

trusted users by entering the user’s name and Gmail. The new information is then submitted to the

database User table and the newly added user appears on the list of organization members,

meaning that the user now has access to sign in. The list of organization members can also be edited

by selecting the edit button and then selecting the remove button next to the user’s name.

Authentication and Security

Figure 8: Screenshot of the user’s menu when signed in

Authentication is an important part of our website because we want the website to be self-

regulating and managed by representatives from trusted organizations. Therefore, it is important

that only these people have access to adding, editing, and deleting events so that people don’t post

irrelevant events that ruin the integrity of the website.

Google API
We decided to take advantage of Google authentication API because many people have Gmail

accounts and would be inconvenienced by creating a new account and password just to post events

on our website. Another advantage of using the API is that we do not need to worry about handling

extremely sensitive data when authenticating users, as we would have to do if we did the

authentication process without the help of Google.

Integrating the Google API with Angular proved more of a challenge than we first anticipated
because they do not integrate seamlessly. We were unable to just follow the Google sign in

documentation on Google’s website and had to supplement the process with a wrapper which can

be found at https://github.com/canemacchina/angular-google-client. This wrapper then allowed us

to respond to the click of the sign in button and to initiate Google’s authentication process.

Once a user signed in, Google gave us access to a GoogleIdToken which we could use for

authentication purposes. Google also provided the user’s first name, last name, email, google id, and

photo. We took advantage of having access to the user’s first name by placing their name on the

navbar menu to indicate that the user was signed in.

https://github.com/canemacchina/angular-google-client

SLO Dancing Features | 14

Structure
To handle the authentication process, we created a sign in page supported by UserFactory to

store user data. UserFactory holds a User object that populates user information when someone

is signed in. When signed in on the frontend, we send the google id token to the backend for
verification. Upon a success result, the user is signed in and their status on the website changes to

reflect that and give them menu options to access the other pages of the website and redirects to

the home page. Upon unsuccessful sign in, an error message appears and they are redirected to the

home page.

Backend and Sessions
Once a user authenticated, we had to implement security to verify that the user was still validly

signed in. We protected all endpoints and page routes that should not be publicly accessible. To

protect the endpoints, we have Auth.java in the backend that receives the google token from the

frontend and calls the Google methods to perform the verification. A JSON result is sent back to the

frontend indicating success or failure and a message. If successful, a cookie session is started that

contains the user’s google id token and the organization id that they belong to, based on the

database information. For every java method that is called when an endpoint is hit, we retrieve the

google token from the session cookies and call the google verification to make sure the user is still

valid, otherwise we return. To protect unauthorized users from accessing the frontend pages, the

controller for that page calls modelFactory.checkUserAuth(), which will reroute to the home

page if the user is not logged in, otherwise they can continue.

SLO Dancing Future work | 15

Future work

New features
We came up with some ideas to improve upon our final product that we either ran out of time to

implement or decided were out of scope for this iteration.

Notes
We would like to implement the ability to add notes to events. The purpose of notes would be for

when something happens that breaks the normal pattern. For example, if an event that happens

every Sunday is canceled one Sunday because of rain, then a note would be able to explain that.

Animations
Adding animations to the project would help to improve the overall user experience. One of the

main areas we would like to add animations is when the user clicks the compact event row and it

expands to the detail view. Including an animation here would help improve the look and would

make it more exciting and interactive.

Logo & Branding
We would like to add a distinct, visually appealing logo to our site, which would reside on the

navbar and on the favicon, and would allow us to have a marketable branding that can appear any

time we are promoting the website. Having a logo would make the website recognizable and would

add more of a sense of legitimacy to the website and its content.

Calendar, Events tracking, & Notifications
Another feature we would like to add is a calendar system. There are many ways of implementing

such a system. Some thoughts we had were to be able to add events to a calendar, which

additionally could sync with Google calendar. We also thought it would be nice to have a way to

subscribe to a recurring or one-time event and get a notification when the event is coming up.

Minor Improvements & Bugs
There were a few minor improvements that we would like to make to our project in the future that

didn’t quite make it into the final product of this project.

Update EventList UI
One of the improvements that we would like to make to the website is an improvement to the event

list GUI. Right now, the expanded view of an event looks a little bit disorganized and messy. The

improved format of the events list would ideally look like the following image:

[RM: Image of updated Event Row GUI here]

Add Preview to Add Event Page
Once this format is created, we would also like to eventually have this event row appear at the

bottom of the page for Add Event and Edit Event. This would allow the user to see how their event

will appear to visitors of the website.

SLO Dancing Future work | 16

Send Emails with Invites
Another improvement that could be made is verification emails that get sent to invited users.

Currently, when a user invites a new user to an organization, the new user's email gets added to the

table of authorized users but the new user is not notified by email. The new user simply has to be

told by the original user that they have been added so that they can log in.

Fix EditEvent Form Population
A bug that currently exists in our app is that the Edit Event page does not completely fill all forms

on the page. By binding the dance event object (that the user wants to edit) to the formly field on

the Edit Event page, a lot of the forms are automatically filled out for the user with existing values.

This requires some extra processing on the event object since the form object and event object are

not identical. However, some of the formly fields do not appear in the GUI for the user to see. For a

few of the fields, this could be solved with extra processing of the dance event to make the object

match the format expected by formly. For certain fields, such as the date-picker, even after

processing the field still does not display on the GUI.

Properly Implement Sessions
We have a few session-related bugs to fix. Currently, the user does not stay logged in when the page

refreshes. Additionally, when the user stays logged in for a while, either the session cookies or the

google id token expires; once it expires, the javascript still thinks the user is logged in, but the actual

authentication process fails.

Dev Environment
Along with minor improvements and bug fixes to the project, the environment that we developed in

had room for improvement. Efficient dev environments allow projects to run more efficiently and

allow the project to be tested more thoroughly.

Automated testing
Java Play allows for integration with JUnit for unit testing. Testing files can be created in the /test

directory of the Play project and the tests can be automatically run with the command:

play auto-test slodancing
This command automatically launches the browser, runs the tests, and closes the browser. The

most popular option for Angular Unit testing is Jasmine. Jasmine allows for structured organization

of tests under the describe() function, where individual it() functions define each individual

test. Jasmine can be combined with Karma to run the tests automatically.

Automated deployment / Continuous integration
Continuous Integration for Java Play projects is usually done through Jenkins jobs. Jenkins allows

for automation of any process including testing and deployment. Jenkins jobs include a build script

that performs any testing/deployment commands that need to be automated. There are also many

JetBrains tools for Continuous Integration and automated deployment which would be convenient

to utilize since our development was mostly done on JetBrain's IntelliJ IDE.

Local MySQL instances
Currently, when we're developing, we need to establish an SSH tunnel so that our database can run

on the server and we can connect to the database while we are working. Having a local database

SLO Dancing Future work | 17

instance would improve the development process because we would not have the hassle of

establishing the SSH tunnel.

SLO Dancing Conclusion | 18

Conclusion
Going into this project, none of us had any experience building a website from scratch. Because of

this, there was a steep learning curve involved in getting this project started since we needed to

learn about all of the aspects that go into creating a website. Along with the software challenges

that came with building a website (like building a MySQL database and learning new frameworks

like PlayFramework and AngularJS) there were also many technical/logistical hurdles that we had

to overcome (like buying a domain, server space, and an SSL certificate). Along with the many

challenges that we had to overcome as a team, each individual in the group had different learning

experiences because of the division of work and diversity of previous experience.

SLO Dancing Personal Reflections | 19

Personal Reflections

Ryan
Prior to this project, I had never created a website or completed a backend to an app; my primary

interest in this project was to get this experience and see if web development is something I want to

include in my career. Secondarily, I have been drifting and/or leaping into leadership roles in my

group projects, so I wanted to further explore the art of leading a team. Somewhere in the middle of

this project, these interests balanced out to be equally motivating my work on this project.

To these extents, this project was a resounding success.

As far as code goes, I was mostly in charge of the general architectural design and frontend

development. I got to learn Javascript, or more specifically the AngularJS framework, and all of its

oddities. I also got to experience designing the entire stack, though I’d had some minimal exposure

to backend architecture from previous attempts to create a backend for another project that just

never worked out. I plan to take this experience I wouldn’t have gotten otherwise and use it to

make more great projects for fun and profit.

Team management was an adventure for this project. I wanted to run the team right, so once I had

drifted into the position of project lead I proposed that we use Todoist to track tasks and

encouraged the other two to learn and use git extensively. Overall, these measures worked out well,

though our team was easy to deal with because we all get along and are motivated to do this

project. I’m looking forward to leading more teams whenever I get the chance; I’m beginning to

realize that I like leading teams as much as being a part of them.

The actual product of our project definitely still needs work, and we plan to continue working on it

over the summer to further improve it. But we’ve all learned more than we expected to, and we’ve

structured the project in such a way that we can easily continue to collaborate despite parting ways

soon.

This has been one of the most influential projects in my college career. I’m looking forward to

polishing it enough for it to get popular.

Audrey
This project was an excellent opportunity to work on a product that I have wanted and that many

other people have wanted. I have been very involved in the dance community in SLO, so my

motivation for undertaking this project was to contribute to the community and make it easier for
dancers to find events and become more involved. Prior to this project, I had no experience with

web dev or databases, so I learned a tremendous amount this year. I read a lot of articles about

database design, writing SQL statements, and SQL injection. I also learned about POST and GET calls

and JSON and how the frontend can communicate with the backend. During the process I learned

about the general folder structure and components that are required to build a website. It took a

while to learn the whole project structure because there are many folders containing files that are

all important and that interact with each other. Additionally, I learned about project management

and planning. We used slack to communicate effectively, had weekly meetings to stay in touch and

on the same page, and used Todoist to track our planned tasks and who was covering each one. It

was excellent to receive great feedback from our peers at the Senior Project Expo when we

SLO Dancing Personal Reflections | 20

presented our website with dummy data. Many people said they are looking forward to when the

website is up and fully running, and I am excited along with them.

Matt
I wanted to be a part of this project because I had never worked on a project that involved creating

a website before. The idea for the product which Audrey pitched sounded like a very useful

resource for San Luis Obispo residents that are looking for venues to dance. The fact that this senior

project could be something that can continue to be used event after I graduate made the project

seem even more interesting. I would love for this project to actually leave a mark on the San Luis

Obispo community and have my name be a part of that. The aspect of software that I improved the

most at during this project was version control. My use of Git before this project had been fairly

minimal, but because of the complex branching system that Ryan formulated for our project, I was

forced to learn much more about Git commands and processes. By using a system of feature

branching and rebasing, we were able to collaborate much easier on the code base and isolate work.

This project also gave me more experience working on a larger system with many components that

worked together (frontend, backend, database).

SLO Dancing Appendix | 21

Appendix

1. MySQL Database Events Schema
DanceEvent

event_id INT(11)  not null, primary key
event_name VARCHAR(75) not null
organization_id INT(11) not null
contact_email VARCHAR(50)
contact_name VARCHAR(50)
contact_phone_num VARCHAR(20)
description TEXT
event_created_date DATETIME not null
event_updated_date DATETIME
external_event_pages VARCHAR(255)
sponsor_websites VARCHAR(255)
age_limit INT(11) foreign key

Style
styles_id INT(11) not null, primary key
event_id INT(11) not null, foreign key
style INT(11) not null, foreign key

Venue
venue_id INT(11) not null, primary key
event_id INT(11) not null, foreign key 
address VARCHAR(50) not null 
title VARCHAR(50)
venue_image VARCHAR(100) (URL to static image)
venue_website VARCHAR(100)  (URL)

Price
price_id INT(11) not null, primary key
event_id INT(11) not null, foreign key
price DECIMAL(10,2) not null (price and admission_type are an
associated pair, ex. General $5, Student $0)
admission_type INT(11) not null, foreign key   

Occurrence
occur_id INT(11) not null, primary key
event_id INT(11) not null, foreign key
repeating INT(11) not null, foreign key
day_of_week INT(11) foreign key   
week_num INT(11)
date_of_start DATE (inclusive)
start_time TIME
duration TIME (stored as hours:minutes:seconds, but seconds won't be
used)
exception TINYINT(1) not null

SLO Dancing Appendix | 22

Lesson
lesson_id INT(11) not null, primary key
event_id INT(11) not null, foreign key
title VARCHAR(75) not null
style INT(11) foreign key              
skill_level INT(11) foreign key    
start_time TIME not null
duration TIME (stored as hours:minutes:seconds, but seconds won't be
used)
description TEXT
lesson_price  DECIMAL(10,2)
instructor VARCHAR(40)

Organization
organization_id INT(11) not null, primary key
title VARCHAR(50) not null, foreign key

User
user_id INT(11) not null, primary key
organization_id INT(11) not null, foreign key
first_name TEXT
last_name TEXT
email VARCHAR(110)

EnumAdmissionType
admission_type_id INT(11) not null, primary key
admission_type VARCHAR(20) not null options for this: General,
Student, Senior

EnumDayOfWeek
day_of_week_id INT(11) not null, primary key
day_of_week VARCHAR(15) not null Mondays, Tuesdays, Wednesdays,
Thursdays, Fridays, Saturdays, Sundays

EnumSkillLevel
skill_level_id INT(11) not null, primary key
skill_level VARCHAR(20) not null   options are Beginner, Novice,
Intermediate, Advanced, Champion

EnumRepeating
repeating_id INT(11) not null, primary key
repeating VARCHAR(15) not null options are: Weekly, Monthly, One-time

EnumAgeLimit
enum_age_limit_id INT(11) not null, primary key
age_limit VARCHAR(5) not null options are: 16+, 18+, 21+, None

EnumStyle
enum_style_id INT(11) not null, primary key
style VARCHAR(25) not null

SLO Dancing Appendix | 23

Style Options
Bachata
Balkan
Ballroom
Bhangra
Blues
Cajun
Contra
East Coast Swing
Ecstatic
Folk
Fusion
Irish
Israeli
Lindy Hop
Line Dancing
Misc
Polka
Salsa
Scandinavian
Scottish
Square
Tango
Waltz
West Coast Swing
Zouk
African
Native American
Latin

