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. Introduction

A. Project Overview

This project aims to create a real-time, non-contact heart rate monitoring program that
utilizes a simple camera to capture facial information. Heart rate is one of the most commonly
measured physiological makers, and provides the user with important feedback on their current
state of health. In the past, it has been necessary to have direct contact to the skin in order to
measure one’s heart beat. With the advent of powerful computer vision processing libraries, such
as OpenCV, and advanced signal filtering techniques, it is now possible to extract accurate heart
rate measurements through facial recognition and independent component analysis (ICA). The
success of this project would provide users access to accurate heart rate monitoring
information--if they are unable to obtain their pulse by themselves--and would give healthcare

officials the ability to measure heart rate without needing direct access to a patient’s skin surface.

B. Stakeholders

In broad terms, this project serves the healthcare community, but it also assists in giving
direct access to accurate heart rate information to anyone with a camera; in an age where “64%
of Americans now own a smartphone of some kind”[1], this technology has a relevant impact on
the consumer masses; this is even more evident with the growth and popularity of fitness related
technology. The ability to obtain physiological measures without the need for such expensive

hardware would pave the way for a more ubiquitous approach to healthy living. Further, heart



rate can be correlated with other risk factors; one application of this project is in cars or other

heavy machinery where heart rate can be used as one marker for the wakefulness of the operator.

C. Goals and Objectives

The primary goal of this project is to deliver a functional proof-of-concept by the end of
the second quarter of Senior Project. The minimum value criteria includes a number of
constraints.

1. The application can isolate a human face from a video feed
2. The application can extract an estimated heart rate
3. The application can run in real-time (heart rate updates occur at the frame rate of the
camera)
At minimum, this project aims to verify the applicability of the ICA algorithm by the end of the
first quarter. Beyond that, this project aims to produce some level of functionality by the end of
the first quarter. As a stretch goal, OpenCV also has a machine learning component included in

the library which can be used to continuously improve the facial recognition algorithm.

D. Outcomes and Deliverables

The main deliverable for this project will be a proof-of-concept application that can
perform non-contact, real-time heart rate monitoring. The intended outcome of this project is to
display the power of computer vision and image analysis techniques as they relate to the
healthcare field. Through the application, we aim to make obtaining an accurate heart rate easy

and accessible for a large majority of people. In addition, allowing for real-time heart rate



monitoring, as opposed to analysis of archived footage, will hopefully encourage more consumer
based health applications that leverage the power of general purpose hardware readily available

on most persons.

Il. Background

Current, state-of-the art technology used for measuring heart rate are electrocardiograms
(ECG). ECGs involved placing a number of electrodes on the body and measuring the change in
potential at different angles from pad to pad. This is the most effective way to analyze and
record a person’s heart beat, as each moment of the cardiac cycle can be viewed in isolation.
Typically, ECG machines are only used by healthcare professionals to diagnose cardiovascular
disease; machines like these can cost over $3000.

Alternative, more consumer friendly, methods include chest straps and infrared optic
techniques[2]. In both cases, specialized hardware is used to measure pulses in the bloodstream.
For the chest straps, small microprocessors are paired with electrically conductive fabric to
measure subtle electric impulses in the skin during a heartbeat. Similarly, infrared devices emit
light through the surface of the skin so that it may be absorbed by the bloodstream; the degree
to which this infrared light is absorbed determines when a pulse is counted, or not.

In “Non-contact, automated cardiac pulse measurements using video imaging and blind
source separation”, a research paper by Poh et. al at the Massachusetts Institute of Technology,
they examined photoplethysmography (PPG) using ambient light from standard video recording
devices[3]. Their paper forms the basis of this project, as they were able to accurately determine

a user’s heart rate based on analysis of archived footage. While the researchers at MIT go into



depth on their use of signal filtration and detrending methods, an additional goal of this project
is to show that the techniques they produced in MATLAB can be repeated and sped up using
Python.

Lastly, the scikitlearn website offers a wealth of tutorials on how to incorporate numpy
and scipy operations into a project. The implementation of Independent Component Analysis

that this project will use is called FastICA, and is found in the scikitlearn package[4].

lll. Engineering Specifications

This project will produce a proof-of-concept application that will estimate the heart rate
of the user in real-time. The following is our engineering specification:
1. Will be a Python application
2. Runs on Python(x,y) 2.7, Scikitlearn 0.16, and OpenCV 2.4
3. Be able to use a computer’s attached camera to capture video footage
4. Will process video frames with a target resolution of 640 by 480
5. Will estimate heart rate with at least 90% accuracy
6. Will have a processing time of less than 1 video frame (real-time)
The first requirement was chosen due to the Python’s substantial open source modules.
The most important modules were OpenCV, Scikitlearn, Numpy, and Scipy. OpenCV was
necessary for implementing the facial recognition algorithm; Scikitlearn contained the ICA
algorithm and requires both Numpy and Scipy in order to work properly; Numpy and Scipy are
both statistical modules that helped in performing the signal analysis and filtration. The second

requirement specifying the minimum versions for the different modules was extracted from the



Python(x,y) package. This package contained Python, Scikitlearn, and OpenCV as an optional
add-on. The specified versions are the ones contained within Python(x,y) 2.7.

Specification three is necessary for obtaining the required video footage for analysis. A
minimum target resolution is included in the fourth requirement in order to normalize a specific
resolution to accurately estimate heart rate. This requirement is not a true minimum because we
cannot predict the camera hardware and we will not attempt to restrict users based on their
hardware. Nevertheless, we choose to support a minimum target resolution below which we
cannot guarantee optimal results to meet customer requirements. Specification five was chosen
to represent the minimum level of accuracy required by a heart rate monitor to render its results
useable. Ideally, any well-functioning heart rate monitor should be able to perform at an even
higher accuracy level.

Specification six was determined based on the requirement to have the application
operate in real-time. Rather than place a fixed limit on the running time, the only true
requirement of a real-time system--in this use case--is that the results are accurate to the lowest
quantum of measurement. For a system that relies on a video camera to capture its data, a
quantum is a frame: 33.3ms for a 30fps camera, and 66.6ms for a 15fps camera.

Key: L - Low, M - Medium, H - High, I - Inspection, T - Test

Spec # Description Target Tolerance Risk Compliance

2 Library Versions Python(x,y) - 2.7 min L I
Scikitlearn - 0.16

OpenCV -2.4




4 Target Resolution 640 by 480 min 1L, I

5 Min Accuracy 90% +10% H T

6 Max Algorithm Time 1 frame +20% M T

Table 1: Formal Engineering Requirement Table

A. Personas

Our first persona is Dr. Gerald Moore. He is a 35 year old neonatal practitioner at
Mission Viejo Hospital. Frequently, Dr. Moore wishes to examine the heart rate and other
physiological markers of the newborns without disturbing their sleep. While there is preexisting
hardware for completing this task, the hardware will only work for one baby at a time. Further,
the cost of this additional hardware is multiplied by the number of babies present in the ward at a
given time.

If this application was developed and launched in an overhead camera system, the facial
recognition system could be tuned to that of a baby’s face and the heart rates of all the babies
could be tracked in real-time. Not only would this system save a significant amount of hardware,
but there would also be reduced human intervention required on behalf of nurses and doctors
examining local heart rate monitors. Rather, they would instead only have to examine one
monitor, and that monitor could even be programmed to alert medical staff when one of the
baby’s heart rates left the normal expected range.

Our second persona is Pubert Thomas. He is a 26 year old software developer working

for Tesla. Pubert doesn’t get outside enough and is worried that his physical health is degrading.



In order to improve his physical fitness, he begins to workout on a regular basis. Rather than buy
a trendy smart watch that can provide a myriad of physical biometrics, Pubert instead decides to
be cheap. He uses his phone to track his mileage and takes his own pulse. Having just joined the
fitness scene, however, Pubert struggles to reliably take his pulse and it fluctuates wildly, even
within minutes of readings.

Using our application, Pubert is able to download a version that works with his phone’s
camera. Now when he’s done running, he can accurately take down his heart rate measurements
to see his cardiovascular fitness improve over time. Exploring the possible uses of the
technology, Pubert pitches an idea to his boss, Elon Musk. Soon, this application is present in all
Teslas, constantly monitoring the heart rates of its drivers. When their heart rate drops out of the
expected zone, the driver is alerted and encouraged to pull over. The new software is heralded as

yet another breakthrough in smart car technology.

B. Use Case

The following passage represents the standard use case for this application. The
application is intended to be used by anyone who wishes to obtain theirs or someone else’s heart
rate via video camera. In practice, this group includes healthcare practitioners and general
population technology owners. All of these users have similar needs with respect to this
application. As professionals, they need accuracy and reliability. As ordinary users, they would
prefer a fast execution time, good responsiveness, and a small application footprint. The

following use case illustrates who we believe our clients to be:



Use Case: Identifying one’s heart rate via video camera
Actor: End-User
Goal: Accurately determine the user’s heart rate
Description: User starts application. The application verifies that a camera is present and
available. If not, the user is notified via an error message. To give the camera a chance to obtain
focus, there is a pause of approximately 100 frames before the User Interface appears. Once this
startup period has elapsed, the application then creates an appropriately sized frame to contain
the video feed. The user can zoom in and out of the frame, change the focus, and examine
individual pixel values. Once analysis has begun, a green rectangle will be drawn around the
user’s face. A smaller, red rectangle will be drawn within the green rectangle; this is the region
that will be analyzed. If there is no rectangles being drawn to the frame, then the application is
not identifying a face, and the frame will not be stored for analysis. Once the minimum frames
necessary to obtain an accurate heart rate is captured, an estimated heart rate will then be
displayed to the user on the screen.

This scenario is a use case because the end-user is interacting with the system to take a
picture of a petri dish and have the application analyze it. Thus, it is an interaction of the user

and the system to achieve a goal.



IV. Final Design Concept

A. Algorithm Flow
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Figure 1: Algorithm diagram for obtaining separated source signal
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Figure 2: Algorithm diagram for obtaining estimated heart rate from separated source signal
To obtain the separated source signal from the raw signal traces:
1. We begin with an uncropped frame from the video camera
2. This frame is then cropped to the size of the detected face
3. The frame is separated by channel, and each channel is spatially averaged to obtain a

single channel value



4. This value is added as a time step in each channel’s ongoing signal

5. The complete signal for each channel is detrended and normalized

6. Independent component analysis can now be performed on the three signals

7. The separated signal with the highest power spectral density is the candidate signal for
heart rate analysis

To obtain an estimated heart rate from the separated source signal:

1. The signal is bandpass filtered from 0.7-4Hz

2. The resulting signal is then interpolated with a cubic spline

3. Resulting peaks form the Interbeat Interval, and this forms the basis of the heart rate
calculation

4. From the period of the Interbeat Interval, an estimated heart rate is produced

B. User Interface

The application’s user interface (UI) was designed with simplicity in mind. The goal of
the design was to provide feedback to the user that the facial recognition system was functioning
properly. For a quick summary of the Ul, see Figure 3. As noted in the use case, the user can
zoom in and out of the frame, change the area of focus, and examine individual pixel values. The
outer green rectangle is the face as determined by the OpenCV facial recognition algorithm. As
can be seen in Figure 3, however, this region often incorporates non-facial features as well, such
as hair or clothing. Therefore, an inner red rectangle making up 60% of the size of the original

rectangle is used as the region of interest, because it’s more likely to be composed of solely skin



regions than the outer green rectangle. Lastly, the overall size of the frame is fixed to the size of

the capturing camera, so in this instance the frame size is 640 by 480.
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Figure 3: User interface with red/green rectangles for region of interest

C. Other Considerations

In order to test the accuracy of the application, it was necessary to compare against a

reference heart rate monitor. Ultimately, we decided on a Garmin Premium Heart Rate Monitor.



This particular model is a chest strap; funds permitting, future teams may wish to explore the
fingertip based heart rate monitors for their ease of use and higher recording resolution. This
device communicates via an ANT protocol receiver. Many wearable fitness applications make
use of the ANT protocol, so it’s a fairly ubiquitous choice. The ideal platform for testing would
be to receive the Garmin data while simultaneously comparing it to the application’s estimated
heart rate. However, the only readily available software package for interfacing with raw ANT
data was Golden Cheetah, an all-purpose program designed to communicate with various fitness
monitors. While it allowed for the real-time observation of the Garmin data, there was no way to
interface with it in real-time. Therefore, all testing would have to be done on archive data,

making the process more laborious than ideal.

V. System Integration & Testing

Failure Mode Effects and Analysis Overview

When designing a system, it is important to consider how the system could fail and
what the results of the failure could be. Most of the failures we account for have to do with the
camera and inconsistent frame quality. One of the things that can go wrong with the application
is that the computer does not have an attached camera. In this case, the application should
throw an error and say that there is no available camera to use; at the moment, this application
will follow that behavior. Along with camera failure, there is also the possibility that the
camera is already in use by another application. In this case, the application will throw an error
message saying that the camera is already in use. At this point, the user will need to close the

other application in order to proceed. The final issue we considered is when the camera



captures a low quality frame. Unfortunately, there is nothing fool-proof that we can do about
this particular issue. Something future work groups could do is look into automating this
process with OpenCV; so that when a low quality frame is captured, the application can notify
the user that the quality of the frame will affect results and can prompt the user to, likely,

refrain from moving as much. To see our formal FMEA, see Appendix B.

Design Verification Plan and Report

To see our test plans and test report, see Appendix C.

Overall System Analysis

Any hardware issues that may cause a problem are discussed on the table in Appendix
B. At times the application will crash due to the camera being “in use” despite a previous run of
the application terminating. At this point in time, the reason for the unfreed camera resource is
unknown, but unplugging and plugging the camera back in will restore functionality. Further,
the camera used in this project was the Microsoft Lifecam VX-3000, a very old camera dating
back to 2006. It was long assumed that camera captured 640 by 480 resolution frames at 15
frames per second. However, the technical specifications never listed the frame rate, and further
testing points to the possibility of running at 10 frames per second instead. While this does
provide more time for the algorithm to complete, allowing for a larger frame window, this does
lead to possibility of incurring too much error between frame captures. While the average
human heart rate is unlikely to beat fast enough that even 10 fps would be too little, it’s still

possible for 10 fps to be too slow to capture a periodic trend in the frame window.



The facial recognition worked well in this project, as the default cascade classifier for
identifying human faces provided by OpenCV worked well enough without further training.
Future teams looking to obtain more accurate frame data could look to train individualized
classifiers for each user and incorporate other feature classifiers like that for hair, mouths, eyes,
and other non-whole skin features.

The core heart rate algorithm was based on the MIT paper that explored the same topic
on archive footage. In that paper, the algorithm is loosely explained as a series of steps, with the
majority of the code being represented in MATLAB. That being said, it was difficult to make
the conversion to Python, and many of the techniques described in the paper did not yield
comparable results, despite efforts to replicate the conditions. For example, a window of 300
frames was collected, detrended, normalized, and ran with independent component analysis.
However, none of the three extracted signals exhibited any significantly higher power spectral
density upon analysis, leading to the conclusion that ICA failed to isolate a dominant signal.
This means that either the detrending algorithm was improperly ported to Python (the
normalization is trivially implemented) or there was an issue with the camera setup for
gathering the frames. In either case, it was impossible to obtain any usable data for making
accurate heart predictions.

Therefore, one of the core takeaways from this project was the application of the
remainder of the algorithm to observe whether or not it was practical to run it in real-time. To
test this, the running time for the various algorithm steps was recorded at different frame
windows to determine the maximum window length that could be run in one frame.

Determining a maximum window length is important, because the longer the window, the more



likely to ascertain the periodicity of the heart rate. This project made use of an i15-2500K Intel

processor; results of the test can be seen in Figure 5.
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Figure 4: A graph comparing frame window size to frame algorithm duration

As evidenced in the graph, the relationship between window size and frame duration is
exponential. For this project, a maximum window size can be estimated at over 600 frames, due
to the 10 fps limit placed by the camera used. For a 15 fps camera, a more conservative estimate
1s <600 frames, and <300 frames for a 30 fps camera. The hardware used for this project is still
relatively powerful compared to many machines, so these figures may be larger than is practical
for many systems. The MIT paper ran 30s traces @ 15fps, yielding a frame window of 450
frames. Based on the data gathered here, it might have been possible for their algorithm to run in

real-time, but it would have to have been running on relatively powerful hardware. Future work



on this project should attempt to establish a definitive relationship between window size and
accuracy, so that future attempts at a real-time application can be cognizant of the minimum

necessary window length for acceptable performance.
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B. Failure Mode Effects and Analysis
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C. Test Plans

SAMPLES
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Test Procedure 1:

Determine: Whether the application correctly detects a face

Materials: One video camera; a computer; the application

Safety: Wear your fun hat! :D

Procedure:

1.

AN

Test

Assure application is properly installed

Open application

Ensure there is a present and available camera

Wait predetermined number of frames for Ul to display
Verify that Ul is the correct size for the frame

Identify two rectangles: green and red

a. Ensure the green rectangle occupies the majority of the user’s facial region

b. Ensure the red rectangle occupies a smaller region, within the green rectangle,

composed almost entirely of skin

Procedure 2:

Determine: Whether the application provides an estimated heart rate

Materials: One video camera; a computer; the application

Safety: Wear your fun hat! :D

Procedure:

1.

o

Assure application is properly installed

Open application

Ensure there is a present and available camera

Wait predetermined number of frames for UI to display
Verify that Ul is the correct size for the frame




6. Identify two rectangles: green and red
a. Ensure the green rectangle occupies the majority of the user’s facial region
b. Ensure the red rectangle occupies a smaller region, within the green rectangle,
composed almost entirely of skin
7. Wait predetermined number of frames for analysis to begin
8. Identify a number representing estimated heart rate appear on the UL



