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Abstract 
 

This project further develops the Sustainable Power for Electrical Resources (SuPER) 
system introduced by Dr. Jim Harris. The SuPER system produces modest electricity generation 
capabilities providing families with no alternative electric grid access to a reliable source. 
Previous versions of the SuPER system was controlled and monitored by a laptop. The system is 
being redesigned to be controlled by microcontrollers in order to reduce unnecessary power 
consumption and simplify sensor integration. This transition was started by Clifford Susa and 
Emmanuel Solorio and this project seeks to recreate and expand upon the abilities of their 
system. Two versions of boards are used, a controller board responsible for analyzing, storing, 
and reacting to data, and a digitizer board that handles data collection. At the end of this 
project the ability to communicate between the boards using I2C and logging data paired with a 
timestamp on a SD card have been developed but were unable to be integrating into a full 
system. 
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Chapter 1: Introduction 
 
 The microcontroller integration project modifies the existing SuPER platform by 
replacing the laptop system. Using a laptop is a costly and power-hungry means of controlling 
the system. Implementing microcontrollers to analyze the device’s operation brings down the 
cost of the system and frees more power for loads.  
 SuPER is targeted towards developing regions of the world that have no access to 
electricity, which the International Energy Agency estimates to include 1.3 billion people. 
Access to electricity is a convenience taken for granted by nearly all those in developed 
countries; access to electricity enables the largest quality of life impact. The SuPER system 
seeks to provide modest electrical generation and storage capabilities to the 1.3 billion without 
power. Capable of providing LED lighting, laptop and cellphone charging, small scale 
refrigeration, or any other relatively low power electrical device, a SuPER system has the ability 
to drastically improve life for its operators.  
 This project continues the work of numerous senior projects and master’s theses; 
however it expands mostly on the work by Clifford Susa [3] and Emmanuel Solorio [4] who 
developed an initial prototype of the controller and digitizer boards that replace the laptop. 
This project and report are also an extension of work completed in summer 2015 where I and a 
team of Brazilian exchange students extensively researched the development of the SuPER 
system and started work on expanding the microcontroller capabilities [16] [17] [18].    The 
goals of the project are to finish the initial microcontroller development and implement the 
boards into the system to create a fully functioning SuPER system. 
 SuPER’s final goal is to increase the standard of living for as many people as is possible. 
Doing this requires minimizing the product cost. Estimations from Dr. Harris’ proposal place the 
target system purchase price at $500 [11]. This is likely greater than what the target customers 
can afford without bank support, and banks are unlikely to provide such high risk and low 
return loans, leaving non-profits and aid programs as the buyer. Marketing towards aid 
programs and non-profits increases SuPER’s impact by greatly increasing the rate that the 
system can be distributed since these programs already have distribution lines to the impacted 
areas. 
 My motivation for working on this project stems from an interest in microcontrollers as 
well as renewable resources including solar power. These interests make the SuPER project an 
ideal learning experience.  
 
Chapter 2: Customer Needs, Requirements and Specifications 
 
Customer Needs Assessment 

The end customers are people living without access to an electrical grid, most 
commonly found in third world and developing countries. The SuPER system offers modest 
electrical generation capabilities allowing loads such as lights, cellphone/laptop charging, small 
scale refrigeration, and limited motor use. These loads are prioritized as they create the largest 
improvement in quality of life. By nature, the SuPER system is utilized in remote areas which 
mandate reliability and simplicity as critical considerations. Due to the predicted price of the 
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system, end users do not typically have the free capital to purchase the system, leaving non-
profits as the likely middleman consumer. Their needs dictate the system be reasonably priced, 
easily assembled and installed, and compact. These criteria allow the organizations to provide 
more units in a faster time frame which increases the global impact. The customer needs 
addressed were determined by considering what capabilities would increase the user’s quality 
of life the most. 

Requirements and Specifications 

Table 1: Cal Poly Super Microcontroller Integration Requirements and Specifications 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

2, 4, 5 Sensor data will be checked at least 

every 100us and allow real time 

monitoring through an LCD screen. 

This allows the system to detect faults 

in the circuitry quickly and minimize 

potential damage. 

3 Sensor data must be logged at a rate 

of at least 10 kHz 

The system will store sensor data in 

order to track component efficiencies.  

4 All sensor data logged and displayed 

will have a percent error less than 5% 

Sensor accuracy lets the system 

respond appropriately and maintain 

ideal battery conditions. 

 6 Each microcontroller shall consume 

less than 15W. 

This maximizes power deliverable to 

the loads and battery. 

3, 6 The system must maintain a battery 

voltage greater than 85% during the 

day. 

Maintaining a high battery charge 

prolongs the battery life, increasing 

system reliability and lifespan. 

4, 5 Upon error detection, impacted 

elements will be disconnected in less 

than 10ms. 

Preventing extensive damage in case 

of an error allows for easier repair or 

replacement. This also increases the 

user’s safety. 

3, 4 System must operate in the 

temperature range of -35C – 75C.  

SuPER systems are meant to be 

deployed in developing countries 

which frequently have hostile 

climates. 

3 Microcontroller and sensor elements 

shall be housed in waterproof 

casings.  

These elements are likely to be 

exposed to precipitation and must be 

protected. 

1 Microcontrollers and sensors shall 

cost less than $60 total. 

This reduces the total cost of the 

system. 

Marketing Requirements 
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1. Low cost 

2. Easy to understand interface 

3. Very reliable 

4. Safe for all ages to interact with 

5. Fast data communication. 

6. Power provided for up to 3 days with no charging. 

 

Microcontroller integration requirements presented in Table 1 are relatively 

straightforward. The microcontroller system must balance budget impact and performance. 

Interaction with the system to select displayed values must be intuitive as well as the system 

must be reliable over a long life time. Requirement 6 warrants more explanation, the system 

must track the battery voltage level throughout the day and disconnect a load if its power 

consumption indicates the battery voltage will drop below a threshold. In this case, the 

threshold condition states the battery must keep a charge sufficient for operating normal 

nighttime functions for at least three days with no charging [16]. Ideally, this minimizes the 

impact of cloudy days or storms and protects against loads consuming too much power to 

provide device charging and lighting at night. 

 

Chapter 3: Functional Decomposition 

 

Figure 1 depicts the level 0 block diagram of the system, inputs to the system are read 

and communicated between the Controller and Digitizer boards using an established 

communication protocol. Output signal functions include storing memory, ensuring safe 

operation, and maximized power conversion through the dc-dc converter. The MOSFET gate 

signals isolate subsystems under various circumstances, inluding: sensors indicate an error, 

current load power consumption might damage the battery life, or simply for maintenance. An 

LCD display can be implemented in the future and will allow users to display selected data in 

real time. In addition to the LCD display, code for a PWM signal was prototyped over the 

summer but as not been implemented in this version of the system. For more information on 

the PWM signal refer to Gesiel Soares report [17]. 

 
Figure 1: Level 0 Block Diagram 
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 The functions of the level 0 block diagram contain the surface level inputs and outputs, 

Table 2 provides further explanation of each function. 

 

Table 2: Level 0 Block Diagram Functions 

Module System Microcontrollers 

Inputs  Voltage and current sensor outputs which 
all will be less than 3.3V 

 Buttons integrated with microcontroller 
I/O pins, logic levels 0-3.3V 

 Power supply: 3.3 V DC  

Outputs  MOSFET gate signals: logic levels 0-3.3V 

 PWM signal to control converter 
impedance 

 Data transfer to SD card 

Functionality The microcontrollers collect data from the 

system which is monitored for errors. Any 

errors detected cause appropriate MOSFET 

gates logic levels to change and isolate 

impacted components. Data is stored for long 

term efficiency analysis. Future versions of the 

system will allow users to select current 

sensor data to be displayed on an LCD screen 

using button inputs. 

 

Table 2 expands the inputs and outputs presented in Figure 1, including known voltage 

levels the system experiences. A level 1 block diagram in Figure 2 provides a more detailed 

breakdown, showing individual subsystems. In the current state of the system only the current 

and voltage sensor are utilized however a temperature sensor and pyranometer will be used in 

the final version to collect more data for system analysis. The Controller assess the MOSFET 

gate control signal through the Digitizer and command the Digitizer to toggle the signal as 

desired. 
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Figure 2: Level 1 Block Diagram 

 The level 1 block diagram details subsystems of the microcontroller project and 

additionally provides expected signals between subsystems. Table 3 provides an explanation of 

each function and its corresponding signals. 

Table 3: Level 1 Block Diagram Functions 

Module Controller Board 

Inputs  Buttons integrated with microcontroller 
I/O pins, logic levels 0-3.3V 

 Sensor data from the Digitizer, binary 

logic 

 Power supply: 3.3V DC 

Outputs  Commands to Digitizer, binary logic 

 Data for LCD display, binary logic 

 PWM signal that modifies converter 

impedance for maximum power transfer 

 MOSFET gate control signal to disconnect 

parts of the system as needed, 0-3.3V 

signal 

 Data transferred to SD card 

MOSFET Gate 

Signal 



11 

Functionality The controller board serves as the brains in 

the system; it controls data collection by 

digitizer boards over an I2C communication 

line. Additionally the controller manages input 

selections by the user determining values 

displayed on the LCD. All data read from the 

digitizer and corresponding sensors is time 

stamped by the controller and transferred to 

an SD card. The controller monitors the 

system status and turns off the MOSFET gate 

switch if a part not operating correctly.  

Module Digitizer Board  

Inputs  DC voltage supply: 3.3V 

 Commands from controller, Binary Logic 

 Sensor data, 0-3.3V 

Outputs  Digitized sensor data to the controller 

Functionality The digitizer board processes the sensor 
outputs, creating digital sensor data that is 
more stable for sending across distances. The 
controller board sends inputs controlling when 
the digitizer transmits sensor readings. 
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Chapter 4: Project Planning 

Figure 3: Gantt Chart 

 The Gantt Chart, Figure 3, represents a preliminary schedule of work, detailing both 

duration and progression of tasks. The expected progression of work includes multiple build 

and test iterations over the design process. Each subsystem’s integration provides ample 

opportunities for debugging and verifying the circuit performs as expected. The preliminary 

goals turned out to be ambitious and the final goal of the project shifted towards establishing 

the microcontroller communication and data logging with cart maintenance and integration to 
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be completed by a future team. Table 4 depicts the known and expected expenses of the 

project. 

 

 

Table 4: Costs Estimate 

Component Cost (totals) Justification 

Current Sensor (3) $25 The current sensors selected for the project are 

around $6 each. Estimated shipping fees 

included. 

Labor $3750 Estimated at $25 an hour for a conservative 5 

hours a week over 30 weeks. 

Total $3775 This project is a continuation so most 

equipment is already purchased. 

The current sensor specified in a previous report removes the need for the PERT 

estimation [11]. Recalibration and labor costs are calculated using the PERT estimation below 

where C is labor cost per hour and B is recalibration cost.  

𝐶 =
𝐶𝑎 + 4𝐶𝑚 + 𝐶𝑏 

6
=

20 + 4 ∗ 25 + 30

6
= $25/ℎ 

𝐵 =
𝐵𝑎 + 4𝐵𝑚 + 𝐵𝑏 

6
=

15 + 4 ∗ 30 + 45

6
= $27.50 

 Table 5 contains estimated dates for various project demos, presentations, and reports. 

Table 5: Cal Poly Super Microcontroller Integration Deliverables 

Delivery Date Deliverable Description 

February 19, 

2016 

Design Review  

March 30, 2016 EE 461 demo 

March 30, 2016 EE 461 report 

May 29, 2016 EE 462 demo 

June 6, 2016 ABET Sr. Project Analysis 

June 6, 2016 Sr. Project Expo Poster 

June 9, 2016 EE 462 Report 
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Chapter 5: I2C 

Background 

 I2C is a two wired communication protocol that sends serial data between two devices. 

Devices are classified as either a master or slave; however there can be multiple masters or 

slaves all sharing the same two lines. One line serves as the clock that synchronizes 

transmission between devices while the other line transfers data. Each slave is designated with 

an address that a master must transmit over the data line to specify when the following data 

transmission pertains to that slave. For further information on how to utilize I2C please refer to 

the Microchip datasheets. 

 

Implementation 

 The SuPER system for this project utilizes one master, the Controller board, and one 

slave, the Digitizer board. The Digitizer is responsible for gathering sensor data to be 

transmitted to the Controller as requested as well as opening or closing MOSFET gates as 

instructed by the Controller in order to disconnect portions of the system if an error is 

detected. Microchip offers API’s for the XC16 compiler that help streamline establishing 

communication. Previously the C30 compiler was utilized; however Microchip has stopped 

supporting the C30 compiler. The two compilers function very similarly for I2C; however, the 

C30 API’s have better documentation. Referencing Clifford Susa’s report for documentation on 

the C30 API’s may be more helpful in understanding XC16’s API’s.  

 The I2C code for the Controller board is based heavily on the code developed by Clifford 

Susa but unfortunately Emmanuel Solorio’s code for the Digitizer was not available to use as a 

reference. Susa’s code has been modified to allow the master to write switch commands to the 

slave instead of only being able to read from the slave. For a more detailed analysis of I2C and 

research performed to understand the system please refer to the work complete over the 

summer of 2015 [16]. 

 Figure 4 depicts the hardware connection for I2C. Both the data and clock lines need to 

be externally pulled up to VDD through a resistor as the microcontrollers can only pull the lines 

low. VDD can be supplied by either a 3.3V or 5V pin available from the Explorer 16 PICtail plus 

connector and according to Microchip the pullup resistor should be on the order of 4.7kΩ. The 

data line SDA is attached to RE7 on the PICtail plus connector for both the Controller and 

Digitizer while the clock line SCL is attached to RE6 on both. 
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Figure 4: I2C Hardware Connection 

 Reading and writing have a similar structure with the only differences being when 

acknowledges or not acknowledges are sent and who sends them. Figure 5 shows an example 

of the master reading from the slave. While the I2C bus has been opened and is idling, the 

master generates a start condition followed by sending the slave address with the least 

significant bit being a 1 for read from the slave. If the slave recognizes the address it responds 

with an acknowledge and transmits the data byte. The master then sends either an 

acknowledge which signals the slave to send the next byte or a not acknowledge signaling it is 

done reading data and asserts a stop condition. 

 
Figure 5: Master Read Software Flow 

 If a master is writing to the slave then the R/W bit is a 0, after the slave acknowledge 

the master transmits the data and waits for a slave acknowledgments. At this point the master 

can send another byte of data or generate a stop condition.  

 

Chapter 6: Sensors 

 The PIC24FJ256GB110 microcontroller ADC channels have an internal reference source 

that operates from 0V – 3.3V; ADC channels can also use external reference sources but for 

now it is set up to use the internal source. If a sensor does not output in the same 0V – 3.3V 

range it can be scaled using a voltage divider circuit. This method is used for the current sensor 

utilized in testing; however, it is preferable that all sensors output at the same voltage range as 

using a voltage divider will introduce a small error into the system. Some ADC inputs appeared 

to not work as expected and it is encouraged that testing be done to confirm correct operation 

of any channel used in future version of the SuPER system. During development four ADC 

channels were verified as operating properly, the input pins for these channels are RB1, RB3, 

RB5, and RB8. More information discussing the system sensors can be found in the reports 

completed over the summer 2015 [16].  
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Voltage Sensor 

 The voltage sensor used for testing consists of applying a 0V – 3.3V signal across a 

resistor to test the ADC’s response. Figure 6 depicts the simple method used to determine the 

ADC’s accuracy while Table 6 provides a sample of data collected to verify the ADC’s accuracy. 

In order to measure voltages higher than 3.3V, a voltage divider can be constructed. This will be 

necessary for measuring the voltage of the system as the battery operates around 12V and the 

solar panel operates around 40V. The Voltage divider can be constructed so that these voltages 

will generate a known voltage within the 0V – 3.3V range and changes to the system can be 

measured around these fixed points. 

 
Figure 6: Voltage Sensor Circuit 

 

Table 6: Voltage Sensor Readings 

Real Voltage (multimeter) Read Voltage (pic24f) Error (%) 

2.000 V 2.046 V 2.30 % 

2.740 V 2.805 V 2.37 % 

2.991 V 3.052 V 2.04 % 

 

Current Sensors 

 The current sensor used was the ACS756KCA-050B-PFF-T, which is able to read currents 

from -50 A to 50 A, with a reading sensitivity of 40 mV/A when 5V is used for the forward 

supply voltage (Vcc). For more information on the sensor refer to the datasheet [13]. A RIGOL 

DP832 DC power supply was used to provide the current to test the sensors, 0.1 µF capacitors 

were used to keep the 5 V reference supply input voltage and the analog output voltage stable. 

Pins 4 and 5 were connected to the positive and negative inputs of the power supply. Finally, a 

voltage divider was used on the output of the sensor to scale the voltage given by the sensor of 

2.5 V at 0 A to 4.5 V at 50 A to the values the PIC24F is able to read on the ADC channels, 0 V to 

3.3 V, the resistors of the voltage divider were 520 Ω and 981 Ω, where the 981 Ω resistor 

would give a maximum of 3.3 V. The current sensor circuit diagram can be seen below in Figure 

7.  
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Figure 7: Current Sensor Circuit 

 

Chapter 7: SPI and RTCC for SD Card Data Logging 

Background 

 Serial Peripheral Interface (SPI) is a four wire communication interface used frequently 

to communicate with a Secure Digital (SD) memory card. While I2C only allows one device to 

communicate at a time, SPI operates at full duplex which means a device can accept data in 

while writing data out. The four lines of SPI are Serial Data In (SDI), Serial Data Out (SDO), Serial 

Clock (SCK), and Slave Select (SS). The SD card serves as a non-volatile memory card for storing 

collected sensor data once it has been transmitted from the Digitizer to the Controller. The Real 

Time Clock and Calendar (RTCC) stamps each set of data stored on the SD card with the date 

and time that it was read from the Digitizer in order to record the status and performance of 

the system. This data will be useful for monitoring how the system’s efficiency changes over 

time as well as trouble shooting any potential failures in the system by seeing which sensors log 

abnormal values before the system responds to the error. 

 

Implementation 

 The API’s and Microchip demo code used in Clifford Susa’s previous Controller board 

code to implement the SD card are no longer supported by the XC16 compiler. A new example, 

found in the Microchip Library for Applications (MLA) download, was used as a basis for 

developing the SPI communication for data logging on the SD card. Included in the demo is a 

method for timestamping the date and time the file was made, this code was modified to serve 

as the RTCC for the SD card and timestamps each set of data logged by the system. The RTCC 

used in the MLA example does not use the xc16 compiler API’s; it creates its own RTCC.c and 

RTCC.h that directly address the registers controlling the secondary oscillator of the 

microcontroller. To understand the code please reference the PIC24F datasheet for the RTCC 
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registers. The SD card is mounted in a PICtail Daughter Board for SD and MMC cards. Figure 8 

depicts the connections between the PIC24FJ256GB110 Microcontroller and the PICtail 

Daughter board for SD and MMC cards. For more information on the PICtail daughter board for 

SD and MMC cards please reference the datasheet and for information on the SD card demo 

provided by Microchip please reference the documentation provided in the MLA folder once 

downloaded.  

 
Figure 8: SD Card Pin Diagram 

Chapter 8: USB 

Background 

 Universal Serial Bus is one of the most common methods of communication between 

devices and like SPI utilizes four lines: Data + (D+), Data – (D-), 5V (VBUS), and ground. In the 

SuPER system USB is used to view the SD card data directly on a PC without having to remove 

the SD card from the system. USB allows the file to be updated or edited from the computer 

and eventually data will be able to be viewed in real time. 

 

Implementation 

 The Microchip example code used in the previous Controller board is not compatible 

with the XC16 compiler, the Microchip Library for Applications provides a new example; 

however, there appears to be an issue when using Windows 10 on the PC. Examining the 

example code’s operation using a Salaea logic analyzer verifies that the Controller is trying to 

establish communication but Windows 10 gives no response and does not recognize the board 

as a device. Looking into the documentation provided with the file and the associated USB API’s 

it appears that Microchip has not updated drivers to be compatible with Windows 10 as the 

documents only refer to using Windows 7 and 8. The underlying issues appears to be the device 

cannot be signed by the drivers which causes it to be unrecognized. Microchip has not 

responded to an email inquiring when this issue will be addressed. In lieu of data monitoring 
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through USB, the SD card must be manually removed from the PICtail Daughter Board for SD 

and MMC cards and be inserted directly into a PC.  

 

 

Chapter 9: System Testing and Results 

 Testing of the I2C and SPI-SD card as mentioned previously has shown both features 

work separately. The I2C is able to both read and write as needed, eliminating the errors left 

over from work completed during the summer 2015. The SPI-SD card interface is able to log 

data and generate an associated time stamp for each sample. Integrating these two capabilities 

into one Controller board code has proved problematic. The compiler is able to recognize and 

trace the .h and .c files used but it signals errors in the make-file when the code is compiled. 

The error generated offers no explanation and there is no relevant Microchip documentation 

addressing compiler errors associated with the make-files. After discussing this issue with the 

project adviser it seems this error stems most likely from another version compatibility 

problem. This error was discovered too late in development to be adequately addressed. Please 

refer to appendix 2 for more details about the files found on the USB flash drive and their 

development status. 

 

Chapter 10: Conclusions and Recommendations for the Future 

 The control system for the system has been established and both boards are able to 

communicate with each other. This project has updated the prototype developed by Clifford 

Susa and Emmanuel Solorio and serves as a solid foundation for future development. Testing 

performed at this stage is functional testing and further testing of the system should be 

performed to determine the maximum speed of communication over I2C which determines the 

maximum data speed of the entire system. As mentioned previously the USB capabilities are 

currently unavailable as the drivers appear to be incompatible. The examples of USB 

communication provided by Microchip’s MLA folder will be relatively straightforward to 

implement into the existing code when updated drivers and documentation is available. Work 

completed over summer 2015 analyzed use of pulse-width modulated signal for controlling the 

DC-DC converter present in the system, in this current build the signal is not implemented. 

Please refer to Gesiel Soares’ report for more information if this feature is desired in future 

builds [17].  

 Future development might find it useful to develop look up tables for sensor readings 

instead of performing calculations like the current code. This will allow for a more responsive 

system and faster data collection if desired. Currently the system senses only current and 

voltage but this can be easily expanded upon to meet the needs of the full system as it is 

integrated into the cart. Suggested next steps for SuPER’s development are assessing the status 
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of the cart, removing old components/integrating the microcontrollers and sensors, followed 

by system testing.  

 One issue that has become clear over the course of this project is that Microchip is 

moving away from the PIC24 family of microcontrollers. Updated documentation and example 

codes for the PIC24 family is difficult to find and often unclear. Microchip appears to be 

focusing on developing their 32 bit microcontrollers instead of maintaining adequate support 

for 16 bit families. This suggests moving towards a 32 bit microcontroller. Future development 

teams might even want to consider moving away from microcontrollers in order to avoid issues 

that arise with version updates.  
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Appendix 1 Development Lessons Learned 

A. Updated Versions 
There were 3 separate instances of updated versions creating issues during this project. 
The first change came in using the newer xc16 complier instead of the c30 compiler 
previously used. Some aspects of the code, like the I2C API’s, were not affected greatly 
but other aspects used completely different API’s. This made it difficult to use older 
code as a reference and meant development needed to be done from scratch. A second 
instance is that during development a new version of the xc16 compiler was released, 
Version 1.25; however this updated version did not include peripheral libraries for I2C. It 
is unclear why Microchip would remove this as a standard feature but it can be 
downloaded and included as a legacy peripheral file. For ease of development the xc16 
version 1.24 was used instead. The third update is the Microchip Library for 
Applications, previous versions of the Controller used examples found in this file 
extensively as a building block of the code; however these examples in the current 
version are very different. This meant once again that development needed to be done 
from scratch.  

http://www.allegromicro.com/~/Media/Files/Datasheets/ACS756-Datasheet.ashx
http://ww1.microchip.com/downloads/en/DeviceDoc/DS-51583b.pdf
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B. I2C 
I2C presented the largest challenge of the project and a significant portion of time went 
into troubleshooting errors in the communication. It is recommended that future teams 
read the Microchip datasheet detailing the registers involved in setting up the process. 
There is a lack of examples for the PIC24F family which made it difficult to design, 
specifically for the slave. For more information on difficulties encountered please 
reference work completed over the summer 2015 and Susa’s report [16] [3]. 

C. SPI & RTCC 
The SD card reader example found in the MLA folder uses numerous libraries that are 
not included in the xc16 compiler which necessitated slowly copying and transferring 
each file included in the example. While not explicitly difficult this was a time consuming 
task.  

D. PIC24F Family  
Microchip seems to be moving past the PIC24F family of microcontrollers which has 
made finding updated documentation more difficult. In addition to documentation, 
examples or forums discussing problems encountering trying to implement various 
features with the PIC24F are scarce. Nearly all sample codes available use the old C30 
compiler, the compilers are similar enough that these can be helpful references but 
typically cannot be used directly.  

 
Appendix 2 Code 
 The Controller and Digitizer code has been saved in a USB flash drive and can be obtain 
by contacting Dr. Jim Harris or Dr. Ali Shaban. In addition to the Controller and Digitizer code 
the flash drives contains copies of the xc16 version 1.24 compiler and MLA file containing 
sample code used in this project. The Controller code is labeled Master_Code_noSD, Digitizer 
code is full_slave_code. The Controller_withSD file represents the integrated I2C and SPI-SD 
card code that could not be compiled. SPI-SD code relies on libraries found within the MLA file.  
 

 

Appendix 3 ABET Senior Project Analysis 

 

Project: Cal Poly Sustainable Power for Electrical Resources (SuPER) Microcontroller Integration 

Eric Skinkis 

Advisors: Ali Shaban, Jim Harris 

 

Functional Requirements 

The full SuPER system harvests solar power and delivers the energy to both a battery for 

storage and current loads to the system. The functional requirements associated with the 

project include that the system must maintain battery voltage sufficient to operate through 

three normal use night cycles with no charging. Also, the system must monitor and disconnect 

loads if the rate of power consumption jeopardizes the previous requirement. The system 

operates on one controller board and any number of digitizer boards. The digitizer boards 
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collect sensor data and convert to digital data, allowing an easier transmission over distances to 

the controller. The controller board analyzes the collected data and maintains system status. 

For this project the communication and data logging capabilities of the microcontroller have 

been developed. With future development, the microcontrollers will be able to control status 

include impedance matching the dc-dc converter, ensuring maximum power transfer, as well as 

determining which loads can be used and still maintain a sufficient battery voltage.  

 

Primary Constraints 

Constraints on the project stems primarily from lack of manpower, having additional 

members would greatly speed up coding and testing the system as multiple components could 

be developed in parallel. An additional constraint comes from having to incorporate this design 

into an existing system which limits the possible design choices as it must integrate into the 

existing system. Interfacing between multiple systems requires referencing different senior 

projects reports, a time consuming process.   Also, the existing system had been left to 

deteriorate meaning extensive work analyzing and repairing the system needed to be 

completed prior to full system testing. Work completed on repairing the system reduced the 

time available to spend on improving the system. This, coupled with a lack of manpower, 

proves time as the largest constraint to the project. An accumulation of parts from past projects 

minimizes financial constraints though the desired total price point of under $500 necessitates 

minimizing further spending. Current component costs leave an estimated $100-175 for 

unforeseen components and packaging.  

 

Economic Impact 

Given the nature of the project, SuPER has a potentially large economic impact. In terms of 

human capital, previous senior project’s and master’s thesis put cumulatively thousands of 

person hours into the system and likely more projects after mine must be completed before 

reaching a final design. This makes the project intensively demanding on human capital during 

the design and development stage. Once the final user has a system providing them basic 

electricity it indirectly generates human capital. Laptops and cellphones allow for affordable 

and accessible education that over time increases the human capital by creating a more 

informed and educated community. 

  The financial capital is not extensive during development due to relatively inexpensive 

components and a large accumulation of equipment gathered over the system’s lifetime. By 

enabling people to power laptops and cellphones, SuPER fosters communication in and 

between communities which extrapolates to increased business connections and opportunities, 

increases financial capital in the area.  One goal of the project is to add to the natural capital as 

harvesting solar power for energy helps reduce developing nation’s dependence on 

unsustainable sources of energy. Realistically the project will still produce a negative impact on 
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natural capital due to harvesting resources to produce the system and pollution associated with 

transporting the materials. 

 Most costs associated with the product stem from the time and money put into 

development, with very little costs after purchasing. The benefits however are enormous as 

families with access to reliable electricity see an increased quality of life. The main operating 

assumption is that the costs would not be shifted onto the final consumer, as the price could be 

outside the target demographics capability, but marketed towards nonprofits that will absorb 

the costs. The SuPER system has a projected delivery date of around 2020, after completion of 

microcontroller integration the system enters a final debugging and package designing stage, 

followed by certification that allows the system to enter production [11]. The product designs 

estimate a 20 year lifetime between major repairs and minimal operation costs since it 

produces its own power. Maintenance costs could be costly as delivering and repairing parts in 

remote areas creates a possibly large logistical problem, this drives the design for a long time 

between repairs. Distributing units through nonprofits has the added benefit that supply lines 

to these remote sites already exist for distributing aid; this simplifies the issues associated with 

maintenance but does not greatly reduce the need for a long lifetime as paramount in the 

design. After integrating the system’s microcontrollers, refining the system represents the final 

challenge. This entails extensive testing of the full system to eliminate bugs and designing the 

system’s final packaging.     

 

If Commercially Manufactured 

The SuPER project designs consider simplifying manufacturability. Most likely, the consumer 

would be nonprofits who would purchase the units to be donated to communities in developing 

countries where the system would have the most impact on quality of life. Using a modest 

production line allows an estimated 1000 devices manufactured and sold per year at an 

estimated manufacturing cost of $400. A target purchase price range of $500-$550 leaves a 

profit of $100k-$150k. A target device lifetime of 20 years between major repairs and 

essentially around the clock operation leads to an estimated cost of 0.075 cents per day if the 

unit costs $500 [11]. Target final recipients may have trouble affording this price which makes 

minimizing manufacturing costs vital unless nonprofits are chosen as the sole target. The 

commercial manufacturability must be reassessed after completing the full design. 

 

Environmental 

The SuPER system has an unavoidable negative impact on the environment; however it 

lessens this impact over time. The negative effects associated stem from the harvesting of raw 

resources to make the components and the pollution from transportation of the relatively large 

system. While initially taxing on environmental resources, SuPER seeks to offset these negative 

impacts. Ideally the product produces a positive environmental impact over its lifetime as 
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households would have access to clean LED light instead of the standard kerosene lanterns 

frequently found in developing countries. The kerosene lamps produce black carbon emissions 

that contribute to global warming and can cause adverse health effects from prolonged 

inhalation in closed spaces like houses [12].  SuPER’s reduction of kerosene lanterns lessens the 

negative environmental impact inherent in production but like most products a net positive 

environment impact proves elusive. SuPER should have a minimal impact on other species aside 

from initial resource harvesting that may impact surrounding environments. This impact can be 

avoided by choosing suppliers committed to conscientious harvesting of resources.  

 

Manufacturability 

Manufacturability for the micro-controller and sensor aspects of the system scale well and 

prevent no large issues since they consist of purchased components, but large scale 

manufacturing would prove difficult with the designed dc-dc converter.  The system largely 

uses off the shelf components which leads to easy assembly. The final unit’s packaging most 

significantly impacts the manufacturability and as the system currently exists in a prototyping 

stage that does not represent a final product. Creating packaging durable enough for remote 

and often harsh environments will likely reduce the manufacturability of the system but is 

necessary [11]. A full analysis must be performed after completing the SuPER system design to 

create an easily manufactured system.  

 

Sustainability 

Target markets for the device require the system to operate in hostile and remote 

environments where an electrical grid is not feasible. This necessitates a very reliable system 

since repairs present a large logistical problem. Since nonprofits represent the most likely 

customer, a budget for repairing systems probably does not exist. Considering these 

constraints, a desired average time between extensive repairs of 20 years has been integral in 

the design in order to manage these possible maintenance issues. A useful improvement to the 

design includes using a solar panel with a higher power rating, allowing more power hungry 

loads such as refrigeration. Increased costs for more powerful panels limits the improvement 

but advances in technology help offset costs. The current DC-DC converter used by SuPER 

needs redesigning to accommodate a significantly more powerful panel [3]. The challenges 

associated with upgrading the design stem from the difficulty of cross-referencing all impacted 

circuits to verify new parameters do not exceed the old circuit limitations. This is difficult 

because each component corresponds to a separate report, making research a time consuming 

task.   
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Ethical 

There are limited ethical concerns associated with the SuPER system since its goal is to 

increase the quality of life for its users. Seeking to provide a reasonably priced system capable 

of providing basic electricity to households without prior or reliable access has little negative 

aspects. IEEE’s code of ethics outlines 10 ethical points that the system adheres to. The 

microcontrollers address safety concerns by disconnecting an element of the circuit upon fault 

detection which minimizes the chance of electrocution. No conflicts of interest are currently 

present in the system, nor do they seem likely to arise. All data from previous work on the 

project and current performance characteristics is documented and reproducible in accordance 

with creating realistic claims. Bribes pose no threat to an independent research projects. Each 

successive project seeks to further improve the understanding and performance of the system. 

Responsibility for IEEE’s criteria of availability to all persons falls more on the non-profits that 

distribute the system.  

When scrutinized according to other ethical frameworks, the system also passes as ethical. 

For example, under Utilitarianism, the system actively seeks to promote the greatest good for 

the greatest number by improving the quality of life. The system provides reliable and high 

quality lighting, improving conditions of the household at night, in addition, devices can easily 

be recharged which allows more use of phones and laptops. This enables global contact and 

awareness and especially an opportunity for educating children in their own house using 

educational programs. Additional features include the possibility to mount a motor, pump, or 

small refrigeration device, all of which greatly expand possible uses of the system. 

Possible ethical concerns associated with SuPER are addressed in the social and political 

analysis since the concerns stem more from political and social instability of the regions 

systems ideally operate in. Instability makes bribery, corruption, and theft possible threats 

during the distribution and eventual operation of the systems; while this poses an ethical issue, 

no changes to the project design impact them so they do not affect ethical concerns with the 

SuPER system. 

 

Health and Safety 

The only safety concerns with operating the product include the possibility for electric shock 

or fire if a component fails. As stated previously, the system monitors each subsystem and can 

isolate a system if sensors indicate an error. Isolating the system should minimize these 

potential hazards and make the system safe for use even by young children. Safety features are 

not the priority during this prototyping stage. System safety features, such as disconnecting 

components upon detection of an error, are being developed but a true analysis needs to be 

completed during the packaging design in order to pass code and create a safe system. SuPER 

can positively impact the health of consumers by reducing potentially hazardous chemicals 

inhaled from burning kerosene as described earlier [12].  
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Social and Political 

The project should not have direct negative social or political impact as the goal is 

magnanimous. A possible political concern could arise during a nonprofits selection of country 

to donate the product to and can be refined further to concerns between neighboring 

communities receiving the aid while others do not. This might create an inequality and most 

likely anger those who do not benefit. A fair method would need to be developed to determine 

how to distribute each system so that they would not be destroyed or stolen due to jealousy or 

economic gain. Measurable impact of the system increases over time if it allows children easier 

access to education and information. Socially, SuPER has the potential to increase equality 

given the increase in access to information and education described earlier. Allowing 

widespread access to the internet and online educational tools greatly increases the chances of 

a disenfranchised community achieving better lives. Families that receive a SuPER system 

represent the direct shareholders with the donating nonprofits as the indirect shareholders. 

Indirect shareholders also include members of the international community who benefit from 

increased business opportunities resulting from the increased communication and education 

abilities of a community. Families that receive a system benefit the most, especially since 

charities cover most if not all of the expenses. The charities receive little tangible benefits; 

however this corresponds with the core concept of a charity and poses no problem.  

 

Development 

Research has gone into understanding dc-dc controllers and how to match its impedance 

using a PWM signal. Additionally, research has gone into maximum power point tracking and 

establishing a communication protocol between microcontrollers. During development, 

extensive research was put into understanding the evolution and most recent build of the 

SuPER system as well as research into I2C, SPI, and USB communication protocols.  
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