
ACCELERATING HASH GRID AND SCREEN-SPACE PHOTON MAPPING 

IN 3D INTERACTIVE APPLICATIONS WITH OPENCL

A Senior Project

presented to the Faculty of the Department of Computer Science

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for a Bachelor of Science

by

Nikolai Shkurkin

June 2016

© 2016 Nikolai Shkurkin  



TABLE OF CONTENTS

ABSTRACT 1...............................................................................................................
1. INTRODUCTION 2....................................................................................................
2. BACKGROUND AND RELATED WORK 2.....................................................................
3. ALGORITHM AND IMPLEMENTATION 5.....................................................................

3.1 SCENE DATA REPRESENTATION 6.....................................................................
3.2. PHOTON EMISSION & SAMPLING 6..................................................................
3.3. 3D HASH GRID 8.............................................................................................
3.4. SCREEN-SPACE TILING 9.................................................................................

4. RESULTS 11.............................................................................................................
4.1 SINGLE CORE AND OPENCL 11........................................................................
4.2 RAYTRACING AND OPENGL 17.........................................................................

5. DISCUSSION AND FUTURE WORK 18........................................................................
6. CONCLUSION 20......................................................................................................
7. REFERENCES 20......................................................................................................
APPENDIX A: HASH GRID SUDO CODE 22...................................................................
APPENDIX B: SCREEN-SPACE TILING SUDO CODE 23..................................................
APPENDIX C: RAYTRACING DATA 24...........................................................................



ABSTRACT

Achieving interactive and realistic rendering is only possible with a combination of 

rendering algorithms, rendering pipelines, multi-core hardware, and parallelization APIs. This 

project explores and implements two photon mapping pipelines based on the work of Mara et. al 

[5] and Singh et. al [7] to achieve interactive rendering performance for a set of simple scenes 

using OpenCL and C++ to work with a GPU. In particular, both a 3D hash grid and a screen-

space tiling algorithm are parallelized to accelerate photon lookup in order to compute direct and 

indirect lighting on visible surfaces in a scene. By using OpenCL with photon mapping 

interactive renderings of scenes were produced and updated live as a user moved a virtual 

camera. This work with OpenCL paved the way for developing a raytracing pipeline in OpenGL 

and for future work on the latest research in realtime realistic rendering. 



1. INTRODUCTION

Modern rendering algorithms utilize multicore computation devices, typically GPUs, to 

accelerate pixel color computations in a resulting image. The application programmer interfaces 

(APIs) that expose access to these devices are complex and merit a great deal of specialized 

knowledge and experience in order to utilize them effectively. The main task of this project is to 

simultaneously gain experience with a particular API, namely OpenCL, and how it can be used 

to implement rendering techniques that are near the forefront of current raytracing research.

Raytracing can be used to realistically render scenes with high visual complexity but at 

huge computational cost. For users of CAD applications and in movie production who work on 

scenes where visual realism is required, final renders take a substantial period of time to produce 

acceptable results. However, engineers, artists, and designers creating objects and scenes need a 

good sense of how the scene will look given a complex set of object properties and lighting 

conditions as they are creating them. By using photon mapping techniques in conjunction with 

GPU programming, fast and reasonable approximations can be delivered to these users at an 

interactive rate (~500ms or 2 frames per second) to both speed up workflows and decrease the 

time of final renders.

2. BACKGROUND AND RELATED WORK

Scenes are rendered by using a combination of mathematical descriptions of object 

surfaces and formulas for how light is perceived at visible surface points by a viewer. The 

rendering equation, as shown in Figure 1, describes how light reflected towards the viewer, Lr, is 

the sum of the product of the surface reflectance, fr, and incoming light, Li, weighted by the angle 

�2



formed by the surface normal n, over the hemisphere H, around a visible surface point x, given 

the vector to the viewer ωr.

One way of generating an image using the rendering equation is by raytracing. In general, 

raytracing involves splitting a camera’s field of view into a uniform grid of pixels and then 

tracing rays from the camera, through the center of those pixels, and into the scene, as shown in 

Figure 2. The color of each visible surface hit by a particular ray is then determined by the 

rendering equation as described before.

Figuring out the incoming light at a visible surface point, or irradiance, requires 

knowledge of how light interacts with the scene and makes its way to the surface to be rendered. 

Irradiance can be approximated using a photon map. Using photon maps to approximate 

�3

Lr(x, ωr) = ∫  fr(x, ωi ⟶ ωr) Li(x, ωi)(n • ωi) dωi                  H

Light reflected 
towards the eye

Surface 
reflectance

Incoming 
light

Angle 
weighting

H

x

ωr

ωi

n

Figure 1: Rendering Equation

Image Plane

Figure 2: Raytracing and the image plane



irradiance and global illumination effects was first introduced by Henrik Wann Jensen in 1996. 

According to Jensen, a photon map is constructed by “emitting photons from light sources in the 

model and storing these in the photon map as they hit surfaces,” eventually creating “a rough 

representation of the light within the scene.” This photon map is then sampled to determine the 

lighting at surface points with respect to the viewer [4]. This photon mapping pipeline is 

summarized in Figure 3 and discussed further in Section 3.

In general, photon mapping is a good candidate for robust and interactive rendering 

(0.2-1.0s) because it captures a wide range of global illumination visual effects and scales very 

well as multicore hardware becomes more powerful [5]. This project relies heavily on the work 

of Singh et. al and their project “Photon Mapper” which implements an interactive, progressive 

hash grid photon mapping raytracer built using CUDA [7]. Additionally, the work of Mara et. al 

and their survey of different algorithms for accelerating photon mapping using CUDA [5] is used 

to guide the implementation of a screen-space tiling algorithm. Each of these use the GPU to 

parallelize the work of their raytracers. 

Raytracers are relatively simple to parallelize on a per ray basis provided that a ray trace 

does not change the scene and writes to a pixel independently of others [8]. However, for 

optimizing a parallel implementation, ensuring memory alignment and buffer size match cache 

lanes on the GPU must be considered, as well as using float instead of integers computations 

whenever possible [3], using as little kernel memory as possible, and working over larger 

datasets [1]. While this level of control is generally present in OpenGL and DirectX, APIs like 

OpenCL, CUDA, Vulcan, and Metal have been created to provide the necessary interfaces for 

creating and optimizing parallelized code. 

�4



Unlike the projects of Singh and Mara which use CUDA, this project utilizes OpenCL, a 

cross-platform parallel programming system, in order to implement a parallelized raytracing 

pipeline. APIs like Metal, which are locked to platform, and CUDA, which are locked to specific 

hardware, limit the scope of where parallel computing solutions can be applied and who gets 

access to these solutions. 

3. ALGORITHM AND IMPLEMENTATION

As shown in Figure 3, a photon mapping pipeline utilizes a scene description to emit 

photons, to organize photons, and then to raytrace the scene. The hash grid and tiling methods 

modify how photons are organized and sampled to accelerate the raytracing step. 

This biggest challenge for this project, beyond understanding the photon mapping 

pipeline, was organizing key algorithms into OpenCL kernels and communicating information 

about the scene from the host CPU to the OpenCL kernels and vice versa. OpenCL 1.2’s kernel 

language, which was used to write almost all of the algorithms, is a subset of C and does not 

support recursive function calls as well as dynamic memory allocation. The consequences of 

these limitations will be discussed throughout the following sections.

�5

Figure 3: Photon Mapping pipeline overview



3.1 SCENE DATA REPRESENTATION

Point lights, planes, and spheres were the only types of scene objects that were 

represented, mainly to simplify intersection testing and keep the project focused on correctness 

and usage of OpenCL. Since OpenCL is designed to work with any number of different 

computation devices, there is no strict guarantee that structs in an OpenCL kernel will match the 

same data layout as on the host CPU (there is a packed attribute that can be applied to the struct 

but the OpenCL compiler used did not properly support it). So scene objects on the host device 

would be placed into a float array, sent off to the compute device, and then recreated as needed 

during execution, as shown in Figure 4.

3.2. PHOTON EMISSION & SAMPLING

Photon maps are constructed by “emitting a large number of photons (packets of energy) 

from the light sources in the scene” [4]. As stated before, this project only considers point lights 

when mapping photons into the scene. Photons are given an equal portion of their source light’s 

energy when they are emitted and as they bounce the photons alter their energy using the surface 

�6

Figure 4: Reliably moving data between Host and GPU during execution.



properties of the objects they have hit. As a photon strikes a surface, Russian roulette [2] is used 

to determine if the photon bounces off into the scene, where each bounce requires further hit tests 

to be performed. Figure 6 shows the result of emitting photons into a sample 2D scene. 

Photons are represented using the position of where the photon has stopped bouncing, a 

normalized incoming direction of where the photon was headed when it stopped on the surface, 

an RGB energy, and the ID of the object that the photon has stopped on, as shown in Figure 5. 

Because there is no dynamic memory allocation explicitly supported in OpenCL kernels, a fixed 

sized array is allocated to store all the resulting emitted photons. If a photon does not stick onto 

any surfaces, the kernel will simply keep emitting photons until all slots in the photon array are 

filled.

Once a photon map is constructed we collect a sample of photons around surface points 

and use them to estimate the direct and indirect illumination (radiance and irradiance) at each 

point. While a K-nearest neighbors algorithm was first used to find a representative sample of 

photons at surface points [4], the final implementation uses photon effect radii [5]. A photon 

effect radius is the distance that defines the spherical volume of space that a photon can effect 

�7

Figure 6: Example result of photon emissionFigure 5: Photon representation



and can be varied across photons in a scene to tweak photon sampling and lighting 

approximations as needed.

For purposes of simplicity this project uses a uniform photon effect radius, where every 

photon has the same effect sphere, which causes every visible surface point to get an equal 

spatial sampling of photons. This allows for both consistent results when shading and far less 

memory usage per ray cast since we don’t keep track of K nearest photons. Because shading is 

now based on photon density, shadows naturally emerge from regions that are less dense in 

photons. Using a uniform effect radius is equivalent to taking a spherical sample of photons 

around the visible surface points as we raytrace, which further simplified the implementation. In 

practice, K-nearest neighbors required that each kernel have its own chunk of K slots of memory 

available for keeping a priority queue of the nearest photons. This extra memory often proved to 

far exceed what was available to each kernel and placed a memory bottleneck on the application. 

3.3. 3D HASH GRID

The 3D hash grid algorithm works by sorting sorting photons in the photon map by their 

grid location (spatial hash) and then only sampling photons that are within a uniform photon 

effect radius ER of the visible surface point, using the spatial grid to limit the search to nearby 

photons. Figure 7 shows an example of using a 2D hash grid and Listing 1 and Listing 2 in 

Appendix A describe the steps to build and traverse the spatial hash. 

The main drawbacks of this approach are that only photons within the grid can be queried 

and used for sampling, that all the photons in the scene must be passed to every kernel, and that 

the extra data for the grid can be a data bottleneck for higher resolution grids. For static scenes a 

hash grid is ideal because placing photons into the grid can be expensive, but searching the grid 

�8



generally is not. As with Figure 7, the 4x4 2D grid shown only covers a specific area of the scene 

and so only photons within this space will be searched and collected for shading. 

In Listing 1 and Listing 2, the variables photonHashes and gridFirstPhotonIndices are 

global data arrays that store the information of the hash grid. Since OpenCL does not have a 

builtin sort function, the photons were sorted on the host CPU using C++’s std::sort function. 

Once sorted, each photonHashes[i] is initialized to the hash of each corresponding photons[i]. 

Each gridFirstPhotonIndices[j] stores the first time spacial hash j occurs in photonHashes, or 

else some default “no first index” value such as -1. Thus a non-negative 

gridFirstPhotonIndices[j] indicates there are some photons at that grid location. Notice that 

since photons are sampled in a uniform sphere, the hash grid only needs to be sampled in the grid 

spaces that touch the sphere. 

3.4. SCREEN-SPACE TILING

The screen-space tiling algorithm works by grouping rectangles of pixels together into 

tiles. Then every render frame the tile’s view frustum is used to place photons into buckets when 

�9

Figure 7: 2D Hash Grid formation and sampling

Sampled grid 
location 4x4 uniform 

spatial grid

Photon



they are within ER of the view frustum. When rendering the scene, only the photons for the 

current tile are sampled since they are guaranteed to be within the sampling sphere for any 

particular visible surface in the tile. Figure 8 shows an example of a 2D tiling algorithm in 

action, and Listing 3 and Listing 4 of Appendix B describe the steps of how to fill and use the 

tiles. 

Although this algorithm requires that the photons be placed into tiles every single render 

frame, scenes that add and remove photons dynamically require no special handling for the tiling 

method. In practice, the tiling step is about thirty times faster than the tile sampling step, and so 

does not present a significant bottleneck to performance. The present implementation does not 

cull photons that are behind other objects within the tile frustum leading to excess photons being 

left for the sampling step for scenes of large depth variance within a tile. 

As described in Listing 3 and Listing 4, tile construction works by first counting how 

many photons belong into each tile, then allocating enough space for each tile’s photons, and 

�10

Sampled tile
Photon

Image 
plane

Figure 8: Screen space tile formation and sampling



finally placing the photons into each tile. While data allocation is handled by the CPU, this 

structure for the algorithm is great for GPUs since a single photon can be worked on by its own 

kernel without lots of data fetches to disparate parts of memory.

4. RESULTS

This project focused on how to use a parallelization API like OpenCL to implement a 

photon mapping pipeline for raytracing. So while there will be a coarse analysis of the 

parallelized implementations, there will also be a look at how to use the ideas and techniques 

learned from working with OpenCL and applying them to OpenGL.

4.1 SINGLE CORE AND OPENCL

The final product includes six different ray tracers, each with its own unique combination 

of algorithm (direct illumination/hash grid/tiling) and computing architecture (single-threaded/

OpenCL).  The single-threaded implementation ran on a 2.3 GHz Intel Core i7 and then the 

massively parallel implementation on an NVIDIA GeForce GT 650M. These raytracers where 

written all in C++11 with GPU kernels written in OpenCL 1.2. 

Figures 9 and 10 rendered the two principal scenes GIRefScene (an abbreviation of 

“Global Illumination Reference Scene”) and sphere_and_plane using a simplified direct 

raytracer where the color of the surface does not take into account irradiance of the scene (other 

than if there is a direct path to the light) at 640x480 pixels.  These images, which rendered in 

realtime, give a baseline time for figuring out the visible surfaces as well as what basic features 

the scenes should have, such as shadow placement, light glare, and object location and color.

�11



�12

Figure 12: GIRefScene with 12k Photons 
using Screen-Space Tiling

Figure 14: GIRefScene with 200k Photons 
using Screen-Space Tiling

Figure 11: sphere_and_plane with 12k 
Photons using Screen-Space Tiling

Figure 13: sphere_and_plane with 200k 
Photons using Screen-Space Tiling

Figure 9: Two colored light sources Photons 
using Direct ray tracing

Figure 10: Two colored light sources Photons 
using Direct ray tracing



�13

Figure 18: Two colored light sources 200k 
Photons using Screen-Space Tiling

Figure 17: Color bleeding from walls 200k 
Photons using Screen-Space Tiling

Figure 16: Two colored light sources Photons 
using Direct ray tracing

Figure 15: sphere_and_plane 200k Photons 
using Hash Grid

Re
nd

er
 T

im
e 

(m
s)

0

100

200

300

400

Resolution (pixels)

160x160 320x240 640x480

HashGrid
Tiling

Graph 1: Render times for OpenCL HashGrid 
and Tiling for GIRefScene 12k Photons 

Re
nd

er
 T

im
e 

(m
s)

0

1750

3500

5250

7000

Resolution (pixels)

160x160 320x240 640x480

HashGrid
Tiling

Graph 2: Render times for OpenCL HashGrid 
and Tiling for GIRefScene 200k Photons



Figures 11 and 13 show the scene sphere_and_plane rendered at 640x480 using the tiling 

algorithm with 12k and 200k photons respectively. The scene is composed of a point light 

source, a sphere, and a plane. Half of the scene is complete darkness since there are no objects 

above the sphere, leading to significantly higher draw rates for the scene in general. Since 

sphere_and_plane is not bounded on all sides like with GIRefScene, notice the speckles that lie 

where the light is least intense on the plane. As parts of the scene farther from the light are 

�14

Re
nd

er
 T

im
e 

(m
s)

0

200

400

600

800

Configuration (Grid XYZ/ Tile XY)

15x10/80 30x20/40 60x40/20 120x80/10

HashGrid
Tiling

Graph 5: Render times for OpenCL HashGrid 
and Tiling for sphere_and_plane 12k Photons 

over various grid and tile configurations 

Re
nd

er
 T

im
e 

(m
s)

0

17.5

35

52.5

70

Resolution (pixels)

160x160 320x240 640x480

HashGrid
Tiling

Graph 3: Render times for OpenCL HashGrid 
and Tiling for sphere_and_plane 12k Photons 

Re
nd

er
 T

im
e 

(m
s)

0

150

300

450

600

Resolution (pixels)

160x160 320x240 640x480

HashGrid
Tiling

Graph 4: Render times for OpenCL HashGrid and 
Tiling for sphere_and_plane 200k Photons 

Re
nd

er
 T

im
e 

(m
s)

0

750

1500

2250

3000

Configuration (Grid XYZ/ Tile XY)

15x10/80 30x20/40 60x40/20 120x80/10

HashGrid
Tiling

Graph 6: Render times for OpenCL HashGrid 
and Tiling for GIRefScene12k Photons over 

various grid and tile configurations 



rendered, the level of error in irradiance calculation increases. This can be mitigated by 

increasing the number of photons, as is evident in Figure 13. 

For the most part, using a hash grid and tiling produce identical results when rendering 

parts of the scene within the bounds of the hash grid. However, as shown in Figure 15, when the 

rendered view exceeds the extent of the hash grid scene nothing can be rendered. So while 

sphere_and_plane cannot easily escape this problem, GIRefScene has a finite region of interest 

for rendering everything in the scene.

Figures 12 and 14 show the scene GIRefScene rendered at 640x480 using the tiling 

algorithm with 12k and 200k photons respectively. The scene is composed of a point light source 

just below the ceiling, six planes, and two spheres, with only the left and right planes’ surface 

colors being other than grey. This scene acted as the main benchmark for ensuring correctness 

for the algorithms but also performance of each algorithm. Since photons are bounced around a 

bounded space, the scene generally has better visual results than with unbounded scenes such as 

sphere_and_plane. 

Figures 16 and 18 show off the renderer using two point lights of different color. The 

point light on the left is a yellowish light, and the one on the right is a blueish light. Adding lights 

to a photon mapping system requires no additional effort other than for those new lights to emit 

their own photons at the photon emission step. For this implementation, additional lights are 

given a random subset of the total number of photons in order to keep the amount of energy in 

the scene the same. Note how the plane beneath the central sphere exhibits the differently 

colored shadows blending and that the left and right sides take on the color of the light that has a 

direct path to that part of the surface.

�15



Figures 17 and 18 show some of the benefits to using photon maps to calculate irradiance 

and, in turn, soft shadows and color bleeding. Soft shadows are generated as the result of photon 

density varying due to how much of the rendered surface is effected by the light and surrounding 

objects.  Similarly, color bleeding emerges as photons bounce from one part of the scene to 

another allowing the light from some objects, like the wall to the left of the sphere in Figure 17, 

to contribute to the color of the object being rendered.  

Graphs 1 through 4 show the speed comparison for rendering GIRefScene and 

sphere_and_plane with the hash grid keeping a fixed 60x40x40 grid and 80x80 pixels being 

gathered into tiles. In this implementation, the performances tradeoffs between each method 

depended heavily on the contents of the scene. In general, when the configurations of the tiles 

and grid are a good fit for the scene to be rendered, the render times do not usually differ by more 

than 20%. While the tiling method tended to have an edge over the hash grid in GIRefScene as 

resolution increased, the opposite was true for the simpler sphere_and_plane scene. Under most 

circumstances when photons were kept reasonably under 200k the scenes tested always had a 

lowest render time that was still interactive. 

Finally, Graphs 5 and 6 detail the render times for tiling and the grid approach under 

various configurations for the sphere_and_plane scene and GIRefScene, respectively. The x-axis 

shows increasing density of the data structures, from 1,500 to 768,000 grid locations and 48 to 

3,072 tiles. In general for both scenes the hash grid did not see a significant performance hit in 

comparison to tiling. Under the current implementation, it does appear that the hash grid, despite 

being limited with respect to where rendering can take place in a scene, does prove to be more 

robust than screen-space tiling under very different configurations of the data structure.  

�16



4.2 RAYTRACING AND OPENGL

OpenGL is a cross-platform 3D graphics API to work with the GPU. Typically its domain 

is limited to rasterized graphics. However, OpenGL (> 3.2) can be used to perform raytracing, as 

laid out in Figure 19. Creating a raytracer using OpenGL is not new, but here acts more of an 

exercise of using the same techniques, namely data packing and unpacking, to leverage this API 

to parallelize a rendering algorithm that is not rasterization.

The two main hurdles for raytracing using OpenGL involve generating rays and then 

giving every pixel access to the scene representation. For ray generation, a quad from (-1.0, -1.0, 

0.0) to (1.0, 1.0, 0.0) is rendered with texture coordinates (0.0, 0.0) on the bottom left and (1.0, 

1.0) at the top right. The vertex shader simply passes on the provided texture coordinate to the 

fragment shader. In the fragment shader the texture coordinate has now been interpolated and can 

be thought of as pointing to the pixel that should be rendered. Using the texture coordinate and 

the camera’s basis vectors, a ray is created that points to the center of each pixel in the image 

plane. 

Scene objects and lights can be accessed in the fragment shader by packing them into a 

texture. This can be done by first determining how objects should be laid out as a series of floats. 

�17

Figure 19: OpenGL raytracing pipeline overview



For example, a sphere and plane need four floats to give basic geometric information (radius and 

position for a sphere, normal and distance along the normal for a plane), seven floats for lighting 

information (surface color, ambient, diffuse, specular, roughness), and a float for type (sphere or 

plane type). If each pixel in the texture only has three float components, then a single object 

would fit into four pixels evenly. In order for float values beyond 0 and 1 to be used in the texture 

an internal format of GL_RGB32F must be used so that the values will not be clamped when 

loaded into the texture. Additionally, the textures should not be mip-mapped and minification and 

magnification parameters should be set to GL_NEAREST in order to avoid interpolating data 

values when reading samples from the texture.

In the fragment shader, where the scene objects and lights will be reconstructed, the 

texture’s width and height must be made available so that the center of each texel can be 

accurately sampled. Object reconstruction occurs by reading in the collection of pixels that make 

up an object and then reading out the float components into each corresponding property of the 

object. With the objects reconstructed in this fashion the entire raytracing pipeline, namely 

intersection testing and color computation, is left entirely unchanged. 

Surprisingly, this OpenGL raytracer runs with almost identical performance to the 

OpenCL direct raytracer discussed earlier in Section 4.  This OpenGL raytracer was built over a 

weekend and shows how useful learning OpenCL was to making creative and effective use of a 

different parallelization API.  

5. DISCUSSION AND FUTURE WORK

The presented implementation looked mainly at building an interactive rendering pipeline 

using OpenCL. OpenCL is markedly more complicated than OpenGL, reflecting how exposing 

�18



more direct control of parallelization hardware comes at the expense of the time and resources 

needed to effectively manage and interface with these APIs. Moving forward, more advanced use 

hardware documentation in conjunction with the features present in a parallelization API like 

OpenCL will be explored.

Since there was a primary focus on the technologies around enabling parallelization, only 

a limited set of rendering features and optimizations were implemented. For example, most ray 

tracers support refraction, reflection, caustics, antialiasing, and use acceleration structures such 

as a bounding volume hierarchy (BVH). Since GPUs tend to be memory bound, integrating a 

BVH to cull out objects that will be not be rendered as well as integrating a z-buffer to 

incrementally update the initial closest intersections would help the raytracing algorithms 

support larger and more complicated scenes.

Both the hash grid and tiling algorithms can be extended to support a wider set of 

rendering features and accelerated using different techniques. The hash grid algorithm can be 

modified to use a more advanced search along the gradient of the surface being sampled. By 

limiting the search to the surface gradient, only grid spaces that contain the surface will be 

searched instead of other nearby objects and empty spaces. Screen-space tiling can be 

accelerated by culling off excess photons not needed during the photon sampling step by using a 

depth buffer. By removing photons from a tile preemptively, less processing would be needed on 

a per-pixel basis and the memory footprint would be reduced per kernel. Finally, photon tiling 

and the hash grid method may be hybridized so that photons are sorted on a per-tile basis into a 

hash grid bounded by the tile’s frustum. Scenes with large depth variance for a given tile could 

possibly see some performance improvements as photons too far away are culled out during the 

sampling step. 

�19



With a parallelized implementation in hand, this project can now be extended to the 

forefront of photon mapping techniques, in particular Image Space Photon Mapping (ISPM) 

introduced by McGuire and Luebke in 2009. ISPM uses a combination of the CPU and GPU 

simultaneously to achieve realtime and interactive rendering of complicated scenes. In particular, 

they make use of OpenGL and its pipeline to calculate irradiance using photon volumes [6].

6. CONCLUSION

Using photon maps and the GPU as a way of achieving realtime and interactive 

renderings of scenes is an exciting area of research. This project explored GPU programming 

with OpenCL to successfully implement two photon mapping pipelines, namely using a 3D hash 

grid and screen-space tiling, in order to achieve interactive rendering of simple scenes. In 

addition, this experience has already been applied to using OpenGL, a different parallelization 

API,  for raytracing. With this experience of working with OpenCL and writing algorithms to run 

on the GPU, future work is now possible in exploring the forefront of realtime rendering research 

as well as implementing a fully-featured realistic raytracing system on the GPU.

7. REFERENCES

[1] APPLE. 2013. Tuning Performance On the GPU. Online: https://developer.apple.com/library/

mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/

TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html 

[2] ARVO, J. and KIRK, D. “Particle Transport and Image Synthesis”. Computer Graphics 24 

(4), pp. 53-66, 1990.

�20

https://developer.apple.com/library/mac/documentation/Performance/Conceptual/OpenCL_MacProgGuide/TuningPerformanceOntheGPU/TuningPerformanceOntheGPU.html


[3] INTEL. 2014. OpenCL Optimization Guide for Intel Atom and Intel Core processors with 

Intel Graphics. Online: https://software.intel.com/sites/default/files/managed/72/2c/

gfxOptimizationGuide.pdf 

[4] JENSEN, H. W. 1996. Global illumination using photon maps. In Rendering techniques, 

Springer-Verlag, London, UK, 21–30.

[5] MARA, M., LUEBKE, D., McGUIRE M. 2013. Toward Practical Real-Time Photon 

Mapping: Efficient GPU Density Estimation.

[6] McGUIRE, M., and LUEBKE, D. 2009. Hardware-Accelerated Global Illumination by 

Image Space Photon Mapping.

[7] SINGH, I., XIAO, Y., ZHU, X.. 2013. Accelerated Stochastic Progressive Photon Mapping 

On GPU. Available via Github under user ishaan13 and the project alias PhotonMapper. 

Online: https://github.com/ishaan13/PhotonMapper 

[8] SPJUT, J., et. al “TRaX: A Multi-Threaded Architecture for Real-Time Ray Tracing, 

Proceedings of the 2008 Symposium on Application Specific Processors, p.108-114, June 

08-09, 2008

�21

https://software.intel.com/sites/default/files/managed/72/2c/gfxOptimizationGuide.pdf
https://github.com/ishaan13/PhotonMapper


APPENDIX A: HASH GRID SUDO CODE

�22

let photons 
let photonHashes # array of photons.count() -1’s 
let gridFirstPhotonIndices # array of grid.xdim * grid.ydim * grid.zdim -1’s 

# Order Photons by Hash 
// Use built-in sort available on CPU or GPU 

# Map Photons To Grid 
for each Photon p at Index i in photons # thread launch 
   if p is inside the hash grid 
      photonHashes[i] = hash(p.position) 

# Compute Grid First Photon Indices 
for each Index i in photons.count() # thread launch 
   let currHash = photonHashes[i] 
   if i == 0 and currHash != -1 
      gridFirstPhotonIndices[currHash] = i 
   else if currHash is not the same as the previous hash, and is not -1 
         gridFirstPhotonIndices[currHash] = i

Listing 1: Hash grid construction algorithm

let photons 
let photonHashes 
let gridFirstPhotonIndices 
let ER # Photon effect radius 

for each Pixel (x, y) with Point pt on Visible Surface S # thread launch 
   if pt is in the hash grid 
      let photonsSampled = 0 
      let farthestDistance = 0 
      let contribution = {0, 0, 0} 
      for each (i, j, k) in the grid that encloses the sphere of radius ER at pt 
         let gridHash = hash(i,j,k) 
         if gridFirstPhotonIndices[gridHash] > 0 
            let pi = gridFirstPhotonIndices[gridHash] 
            while pi < photons.count() and photonHashes[pi] == gridHash 
               let p = photons[pi] 
               let distance = distance from p.position to pt 
               if p is on S and distance < ER 
                  photonsSampled += 1 
                  farthestDistance = max(distance, farthestDistance) 
                  contribution += contribution of p at pt on S 
               pi += 1 
      if photonsSampled > 0 
         contribution = contribution / (PI * distance * distance) 
      pixels[x, y] += contribution

Listing 2: Hash grid photon collection



APPENDIX B: SCREEN-SPACE TILING SUDO CODE

�23

let photons, tiles 
let photonCount # array of tiles.count() 0’s 
let ER # Photon effect radius 

# Counting Pass 
for Index p in photons.count() 
   for Index t in tiles.count() 
      if tiles[t]’s view frustum intersects or contains photons[p] with radius ER 
         atomic_increment(photonCount[t]) 

# Allocation Pass 
let tilePhotons # empty arrays of arrays of photons 
for Index t in tiles.count() 
   tilePhotons[t] = array of size photonCount[t] photons 

# Copy Pass 
let nextPhotonIdx # array of tiles.count() 0’s 
for Index p in photons.count() 
   for Index t in tiles.count() 
      if tiles[t]’s view frustum intersects or contains photons[p] with radius ER 
         let tp = atomic_increment(nextPhotonIdx[t]) 
         tilePhotons[t][tp] = photons[p]

Listing 3: Tile construction algorithm

let tiles 
let ER # Photon effect radius 

for each Pixel (x, y) with Point pt on Visible Surface S # thread launch 
   let (tile, tilePhotons) = tile and photons that correspond (x, y) 
   let i = 0, photonsSampled = 0 
   let farthestDistance = 0 
   let contribution = {0, 0, 0} 
   while i < tilePhotons.count() 
      let p = photons[pi] 
      let distance = distance from p.position to pt 
      if p is on S and distance < ER 
         photonsSampled += 1 
         farthestDistance = max(distance, farthestDistance) 
         contribution += contribution of p at pt on S 
      pi += 1 
   if photonsSampled > 0 
      contribution = contribution / (PI * distance * distance) 
   pixels[x, y] += contribution

Listing 4: Screen-space tile photon collection



APPENDIX C: RAYTRACING DATA

Scene Res Config P# SC Direct CL Direct SC HashGrid SC Tiled CL HashGrid CL Tiled

GIRefScene 160x160 60x40x40 /
80x80

12k 13ms 3.2ms 286ms 887ms 61ms 90ms

320x240 32ms 6.3ms 825ms 1508ms 122ms 129ms

640x480 128ms 13.7ms 3.8 4.4 383ms 338ms

160x160 200k 4.2 11.7 980ms 1219ms

320x240 12.6 23.5 1930ms 2000ms

640x480 50.2 76.0 6.1 5.3

sphere_and_plane 160x160 12k 5.7ms 2.5ms 23ms 100ms 18ms 24ms

320x240 14.6ms 4.2ms 75ms 138ms 41ms 35ms

640x480 51ms 15ms 253ms 354ms 54ms 65ms

160x160 200k 170ms 1550ms 54ms 189ms

320x240 490ms 2420ms 110ms 252ms

640x480 1913ms 5.4 325ms 558ms

Scene Res P# Config SC HashGrid SC Tiled CL HashGrid CL Tiled

sphere_and_plane 640x480 12k 15x10x10 / 80x80 214ms 396ms 50ms 70ms

30x20x20 / 40x40 208ms 330ms 46ms 104ms

60x40x40 / 20x20 290ms 472ms 53ms 225ms

120x80x80 / 10x10 678ms 1098ms 92ms 786ms

Scene Res P# Config SC HashGrid SC Tiled CL HashGrid CL Tiled

GIRefScene 640x480 12k 15x10x10 / 80x80 3.2 4.6 400ms 345ms

30x20x20 / 40x40 3.2 3.7 408ms 356ms

60x40x40 / 20x20 4.2 3.7 547ms 826ms

120x80x80 / 10x10 9.5 4.3 1413ms 2430ms

�24


