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Abstract 

Victims of stroke often have difficulty with rehabilitation. With limited movement on their affected arm, 

patients often do not want to move much for physical therapy. In this project, we design a robotic brace 

that helps stroke patients move their arm more effectively in a reaching or pulling motion. By giving 

patients more movement in their affected arm than they would have otherwise, patients gain more from 

rehabilitation. The brace also adapts to the patient’s needs, providing more inclination or resistance as 

needed for their physical therapy. This kind of therapy engages patients rather than relying on their likely 

dwindled motivation. This project includes both software coding and hardware implementation. A video 

of the project demonstration is available upon request. 
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Chapter 1 - Introduction 

Stroke claims the second most amount of lives in the world, and leaves 75% of its survivors with enough 

disabilities to decrease their employability. Most stroke victims use physical therapy for treatment. Recent 

research in stroke therapy has included elements such as virtual reality, video games, and robotic therapy 

for improvement [1]. Different research groups have developed and tested these methods. S.-C. Yeh et al 

showed that repetitious actions that simulated reality in a “skinner-box” virtual reality set-up proved 

effective for stroke treatment [2]. And Holden et al demonstrated how virtual reality allowed for the 

treatment to occur remotely with similar results [3].   

 

The iMove laboratory at University of California, Irvine researches these concepts. The lab treats and 

improves the lives of those affected with neural injuries by developing robotics and devices that assist 

with their movement during treatment. These devices provide the patient with more movement than they 

would have otherwise for physical therapy, allowing for more effective treatment. Past projects include 

the robotic exoskeleton T-WREX [4], and the interactive web-based telerehabilitation [5].   

       

I received the opportunity to intern at this lab and worked on a rat training box. This box allowed a rat 

with a neural injury to train their affected arm by pulling on an apparatus to dispense a treat. An electric 

motor and microcontroller helped the rat move the apparatus, adapting to their needs but still increasing in 

difficulty. The system also collected and exported data during the trial to allow for more analysis. I left 

iMove with the project unfinished, thus for my senior project I hoped to complete and expand upon the 

task to create a functional product, while moving up the evolutionary ladder and updating the machine to 

work with humans. 

 

For this report, the next chapter will outline more of the literature and past projects surrounding these 

concepts, and how this project relates to those. Chapter 3 gives more background on the previous project I 

worked on for the internship and how it applies to this project, while outlining other considerations for 

this project such as discussing the customer needs research. Chapter 4 summaries the design method and 

results of the project. Chapter 5 offers conclusions for the project and gives insight on future works. The 

appendices include items such as the code used, the cost accumulated, and the ABET senior project 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

Chapter 2 – Literature Review 

 

Devices for stroke therapy prove effective at addressing upper extremity impairment of stoke patients    

[2] - [6]. The devices demonstrate an opportunity for repeatable actions that simulate or correlate to useful 

everyday behavior. Systems of this variety also allow for precision measurements that give clearer 

pictures to the physical therapists to guide treatment. They also allow for more engaging therapy as 

instructing patients with a simple and interactive goal helps with retention through iteration [2, 3, 5]. 

Though these projects grow in number, the amount of actual commercial or practical patents on these 

findings are still limited, and mostly consist of individual tools or subsystems for robotics [7]. 

 

S.-C. Yeh et al demonstrates a virtual reality (VR) simulation and motion capture for a similar affect. 

While more computer science orientated, the paper illustrates an easy to understand metric for measuring 

progress: the amount of time used to complete a task. Plots of this progress show that whether controlled 

or automated, repetitious treatment can lead to better performance in stroke patients [2]. M. Holden et al 

illustrates a similar process in a VR environment, but uses different metrics such as the Fugl-Meyer 

Motor score and the Wolf Motor test to track progress, and the results are similar [3]. 

 

D. Reinkensmeyer et al highlights a therapy process using a Java software and more mechanical input 

device, such as a joystick. While using similar data collection methods as in S.-C. Yeh et al [2] and M. 

Holden et al [3], Reinkensmeyer et al dabbles in this robot centered therapy in conjunction with software 

techniques. The software techniques also incorporate game theory concepts through the design of a trial, 

which can help keep a patient engaged [5]. A more involved robotic approach was introduced with the T-

WREX. This robot arm brace gave patients more movement and control over their arm movements. 

While the results were not too different from previous methods, such as in [5], the user satisfaction saw a 

massive increase in the patient confidence in their actions and the use of the treatment [4].  

 

This project centers on the hardware control and interfacing those theories through a training algorithm. 

The project takes a more engineering centered approach, rather than using human trials to prove the 

effectiveness of this device through trials and statistics. The project allows for an exploration how such 

devices are made, and what should be considered during the design process.  
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Chapter 3 – Background 

 

Based on previous projects, the training algorithm needs to offer stable control of the motor process while 

offering the benefits of robotic medical training. In order for this to happen, the program needs to increase 

difficulty in order to ensure that the patient will improve progress, but still allow room to decrease 

difficulty of a task if the patient has trouble completing it, effectively adapting to the needs of the patient. 

Past robotic-centered treatments have caused the patients to become lazy in their treatment, letting the 

machine do the work for them [3], [4]. As such, the device needs to ensure that the patient is in the most 

amount of control.  

 

For the physical therapists and researchers, the system also collects data during a trial, and compiles a 

data file at the end of a trial. This data may include: the force the motor or patient exerts, the motor’s 

velocity, and the state or difficulty level of the system over time. This allows the physical therapists to 

interpret the progress of the patient. The therapist can also alter the state of the system and adjust its 

difficulty for the patients based on their judgement. These states and desired variables base themselves on 

S.-C. Yeh et al, though on a smaller scope [2]. 

 

The past version of the project, the rat box, used a state machine to accomplish this task. The 

microcontroller measured parameters such as velocity and position of the motor via a linear piston 

potentiometer, as well as the error of the current position versus the desired position to switch between 

states and collect data with. The motor also somewhat functioned like a spring, with the “spring constant” 

being determined by the voltage outputted to the motor via the microcontroller and motor driver. If the 

patient pulled on the motor, they would experience a resistance similar to that of a spring. A picture of the 

motor can be seen in Figure 1 below. The challenge of the previous project was to pull on the motor past 

certain distances, which contributed resistance similar to a spring, and the tension of the “spring” would 

tighten or loosen depending on how well the patient preformed. This device worked for a rat with a neural 

injury, and the device would dispense a food pellet to reward the rat for accomplishing the task and 

incentivize the rat to engage with it more. The states are outlined in the Figure 2 below.  

  
Figure 1: Original Project Setup 

Microcontroller  

with motor shield 

Motor 

Potentiometer to determine 

position of the motor 

Box for rat 
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Figure 2: Original Project’s State Machine 

 

State 1 in Figure 2 acts as a rest state, with the machine staying in that state while the rat did not move the 

motor, and once the rat started to move the motor to initiate a trial, the error signal would change and the 

machine would move into State 2 after it was above 25 %. State 2 would only be entered once to flag that 

a trial was starting, and while the patient pulled on the motor, the state would shift between states 3 and 4. 

If the motor didn’t move (i.e. the velocity was zero), the “spring constant” would increase in each 

iteration of the void loop in the Arduino code by increasing the voltage sent to the motor via the motor 

shield, and the motor would begin to pull against the patient. This was done in order to incentivize the rat 

to constantly move the motor. Once the rat moved the motor past a certain threshold value, the machine 

would enter State 5 and mark the trial was successful. Trials would be marked as unsuccessful until the 

patient reached State 5, meaning if they never reached State 5 after initiating a trial, and returned to    

State 1, the machine will mark the trial as unsuccessful. State 5 is only entered once, similar to State 2, 

and enters State 3 next, effectively pulling the motor back to the starting position and State 1, if the 

patient did not continue to the pull on the machine.  If the trial was successfully finished by the time the 

machine entered State 1 again, the “spring constant” of the motor would increase, and effectively increase 

the difficulty of the next trial. The machine would also dispense a food pellet as reward for the rat if the 

trial was successful, incentivizing them to go again. If the trial was unsuccessful, then the spring constant 

would decrease in order to lessen the difficulty of the next trial.  

 

There were additional features of the internship machine, however the methodology explained above 

summarizes and acts as the main influence on the project discussed in this paper. This state machine did 

not do an accurate job of determining an adaptive difficulty for a patient, only increasing or decreasing 
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the “spring constant” or effective difficulty for a trial when certain criteria were met. There were also 

stability issues for the machine: if the user or microcontroller wanted to motor to reach a certain position, 

the motor would often oscillate around that position or become unstable. Ideally, the motor would help 

the patient move using a dictated path for the motor, but with the instability issues of the motor, the motor 

had difficulty following any such path, and the feature was left unfinished. A new state machine was 

required for this project. Certain ideas, such as having a rest state and finished state, are carried over, but 

the criteria and methods for determining difficulty and the status of the patient were updated. Different 

parts are also be used for this project, which affected the design process and planning around these parts.    

 

To prepare, a customer needs assessment was required to determine who this project is aimed at, and from 

there different marketing requirements and engineering specifications take shape. After assessing 

different literature: stroke patients, their families, doctors, physical therapists, and researchers make up 

this product’s major customers. While the intention of the system relates to stroke patients, anyone who 

could benefit from the device can also serve as a potential customer. Customers require treatment that 

offers more movement and control of their affected arm. Allowing their arm more flexibility can help 

with the treatment process. Researchers and physical therapists can also use the system to control the 

therapy more effectively. The ability to adequately control the system and receive data gives the therapists 

more flexibility. Past research assessed and determined these needs [2-5]. 

 

The system allows for easy use, giving patients an incentive to use it over typical physical therapy. 

Improved muscle movement satisfies the customer’s main concern. The system also adapts to the needs of 

the patient. Past treatments of this caliber have caused the patients to become lazy in their treatment, 

letting the machine do the work for them [3], [4]. As such, the system adapts and become harder, but still 

lessens the difficulty if the patient has trouble.  

 

Table 1 summarizes the engineering specifications and marketing requirements found from these needs. 

Table 4 showcases the specifications of the finished product, and can be used to compare with Table 1. 

The format of the table derives from Ford and Coulston [6]. 
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Table 1: Stroke Therapy Brace Initial Requirements and Specifications 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

1, 5 Should take less than 5 minutes to begin a 

trial on average 

Guarantees easy use for the patient. 

2, 3 Increases the reaching motion length of 

the average patient  during a trial by at 

least 10%  

Ensures effective product treatment. 

Previous experiments indicate that 10% 

improvement is desirable. 

5, 6 Powers supplied by Microcontroller 

power source and/or 9 Volt battery 

Helps reduce system size and lowers power 

limits. 

5, 6 Entire system weighs less than 20 lbs. Helps reduce size and feasibility of the 

system. 

1, 5, 6 The apparatus the patient moves weighs 

less than 5 lbs. 

Allows the affected arm to properly move 

and work the device. 

1, 3, 4, 7 Reads distance of brace (in) and force (N) 

applied or exerted and compiles data 

within 1 min of a trial 

Gives instant feedback and ensures data 

collection. 

5, 7 Can turn off the system within 1second of 

initiating stop 

Gives safety measure for unforeseen events 

during a trial. 

1, 7 Can alter initial conditions (max/min 

variables, time of trial, difficulty level) 

within 5 % accuracy 

Allows therapist and patient control on the 

treatment progress and allows for multiple 

patients to use system. 

6 At most 1’ X 3’ X 2’(when fully 

extended) 

Within specified dimensions to limit space 

and give portability to the system. 

Marketing Requirements: 

1. Easy to use 

2. Offers better treatment and use of arm 

3. Adapts to needs 

4. Able to collect data 

5. Safe to use 

6. Small and portable 

7. Offers control for the therapist and patient 

 

An Arduino Uno with an ATMega328p microcontroller was used for this project [7], as the designer was 

most familiar with this microcontroller. The microcontroller could be used either with the Arduino 

licensed GUI and the use of open source code, or by using Atmel studio to set the bits of registers within 

the ATMega328p microcontroller to allow for more nuanced control and capabilities from the 

microcontroller. For this project, the Arduino licensed GUI was used for simplicity. LabView was also 

used late in the project’s design as a user interface, communicating to the Arduino via serial and USB. 

Initially a python script tested a user interface, but LabView’s potential created a more approachable face 

to the project. The inductive motor found in Figure 1 could not be found for this project, so a Frigelli L12 

linear actuator was used instead. 
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Chapter 4 – Design and Results 

 

The motor used in the original internship project and seen in Figure 1 could not be found in preparation 

for this design. As a result, a Frigelli L12 linear actuator was used for this project. This actuator moves in 

a linear motion and can be operated using a pulse width modulation (PWM) signal to control the position 

of the actuator. This allows for a nice interface with a microcontroller, which can easily generate a PWM 

signal while executing different processes. The dimensions of the actuator can be seen in Figure 3 below.  

 

 
Figure 3: Firgelli L12 Linear Actuator Dimensions [8] 

 

The Actuator in Figure 3 requires a PWM signal of 0 V - 5 V, 1 kHz square wave, where the duty cycle of 

the waveform dictates the position of the actuator. The wiring of the actuator also allows for a current 

input or RC input, however these control methods were not used. The product also features a position 

feedback signal, which is useful for giving feedback to the microcontroller on the state of the actuator. 

The Actuator also needed a 12 V supply. The table in Figure 4 below outlines this wiring scheme with a 

picture of the actuator wires as reference. 
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Figure 4: Firgelli L12 Linear Actuator Wiring [8] 

 

Different duty cycles of a 0-5 V, 1 kHz square wave were inputted to characterize the control of the 

actuator, and what length  or extension of the actuator correlates to what duty cycle. Roughly half of the 

reach of the actuator is achieved when a 50% duty cycle square wave is inputted. A near 0% duty cycle 

fully retracts the actuator, and a near 100 % duty cycle fully extends the actuator. The actual PWM signal 

generated by the microcontroller uses a built in 8-bit timer, and as such the microcontroller does not 

generate a waveform at exactly 1 kHz, or at an exact duty cycle, but the actuator still operates adequately, 

implying some room for error that the actuator can sense. Some examples of the PWM signal that drives 

the actuator can be seen in Figures 5 - 7 below. 

 
Figure 5:  0 % Duty Cycle Output 
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Figure 6:  50 % Duty Cycle Output 

 

 
Figure 7: 100 % Duty Cycle Output 

 

Each waveform in Figures 5, 6, and 7 operate around 5 Vpp, with a maximum variance of 2.24 %. While 

the 0 % duty cycle output in Figure 5 actually outputs a 0.39% duty cycle from the microcontroller; 

however this still fully retracts the linear actuator. The duty cycles in Figures 6 and 7 are much more 

accurate; however the frequency of the signal is at 976.32 Hz, 2.425 % off from the desired 1 kHz. Again, 
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the error discussed is due to the limited capabilities of the microcontroller, but the actuator still operates 

under these conditions. 

 

While the actuator moves and reaches its ending position, the actuator often adjusts itself a bit at the end, 

overshooting and undershooting a bit before completely stopping, somewhat similar to a response found 

in an underdamped or PID controller step response. Such phenomena can be sporadic and random 

depending on how the actuator moves, and the only way to avoid it totally is to have the actuator 

constantly move. The full reach of the actuator is 4.25”, outlined with a ruler below in Figure 8 for 

reference. 

 

 
Figure 8: Actuator Length 

 

The position feedback signal (wire 3 in Figure 4) was then measured and compared with the PWM input 

to outline the functionality of the actuator. This data can be seen in Table 2 and Figure 9 below. 
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Table 2: Linear Actuator Position Feedback 

PWM input (%duty cycle) Position feedback (V) 

1 3.2784 

5 3.1422 

10 2.9766 

15 2.8371 

20 2.6648 

25 2.4938 

30 2.3253 

35 2.17 

40 1.9975 

45 1.8207 

50 1.663 

55 1.4859 

60 1.3511 

65 1.1833 

70 1.0209 

75 0.83583 

80 0.66558 

85 0.51167 

90 0.35525 

95 0.17196 

 

 
Figure 9: Firgelli L12 Linear Actuator Characterization 

 

As seen in Figure 9, the position feedback signal has an inverse, near linear relationship with the PWM 

duty cycle. This feedback also works at a maximum of 3.3 V, which is convenient for interfacing with a 
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microcontroller. The actuator requires a 12 V supply to operate, however this does not have an easy 

battery equivalent, which was an initial specification in Table 1. The actuator also has a peak current draw 

of about 150 mA, with an average of 100 mA current draw when the actuator moves. While the 12 V 

requirement can be achieved with two 9 V batteries in series (such as a MN1604 Duracell battery), 

stepped down to 12 V (via a resistor divider or buck converter), the required current draw is a more 

prominent limitation of battery capabilities. As such, the linear actuator was found to only work with a 

separate DC power supply that was able to supply the required current, with typical batteries unable to 

adequately power the device. 

 

One drawback about using a linear actuator is that a patient cannot grab on the arm of the actuator and 

pull to make it move. Not only does the actuator not have an apparatus to grab onto, but the actuator arm 

itself is stiff and won’t move until it is dictated to do so by the PWM signal. As such, the device needs an 

apparatus for the patient to grab onto. This can be done by attaching a sliding potentiometer or linear 

transducer to the actuator. If a patient pulls on this, the signal generated can be used to tell the 

microcontroller that the patient is initiating a movement, and that the linear actuator should start moving.  

For this project, the sliding potentiometer was also attached to a piece of wood so it could move across a 

table or flat surface. Because the actuator has to push against a piece of wood and a human hand, it needs 

a heavier material to push back against, such that the potentiometer and actuator arm adequately moves. 

Thus a larger piece of wood was used for behind the actuator. This kind of potentiometer setup can be 

seen in Figure 10 below.  

 

 
Figure 10: Linear Actuator with Potentiometer Setup.  

 

With the linear actuator, potentiometer, and microcontroller usage outlined, a block diagram of the whole 

device setup can be seen in the block diagram in Figure 11 below.  

Spring for 

resistance and 

default position 

Wood block to weigh 

potentiometer down and to slide 

across table Signal wires sent to 

microcontroller 
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Figure 11: Device Block Diagram 

 

Figure 11 showcases the wiring diagram of the device. The Arduino microcontroller acts as the 

centerpiece of the design, as it does most of the measuring and processing, with most inputs and outputs 

of each subsystem leading to or from the Arduino. The linear actuator requires a 12 V supply, with its 

ground pin attached to the ground pin of the Arduino, such that it can interface with the internal voltage 

levels of the Arduino. The potentiometer uses the 5 V supply and other ground pin of the Arduino to 

power it, and its position feedback signal is driven back to the A0-analog input pin of the Arduino.  

Similarly, the position feedback of the linear actuator is attached to the A1-analog input pin of the 

Arduino. These are labeled pos feedback and arm_pos feedback on Figure 7, which correlates with the 

variables in the Arduino code they represent. The digital pin 3 of the Arduino acts as the PWM control for 

the linear actuator. Lastly, the Arduino is powered via a USB cord, which connects to an external CPU. 

This USB also communicates to the CPU via serial, with the CPU running LabView as a user interface 

for the whole device and as a way to collect data. A picture of the testing setup similar to the diagram in 

Figure 7 can be seen in Figure 12 below. 
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Figure 12: Device Wiring 

 

 
Figure 13: Full Device 

 

While Figure 12 showcases the wiring similar to Figure 11, Figure 13 shows the computer connected via 

USB, and also includes a small PCB board used for the 12 V source. This PCB can be seen in more detail 

in Figure 14 below.  

 

 

 

Linear Actuator 

Potentiometer 

Arduino 

External CPU 
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External CPU 

Power Board 

Linear Actuator 

Large Wood Block to 

weigh down Actuator 

Potentiometer 

Arduino 
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Figure 14: Power Board 

 

The board in Figure 14 takes the 12 V supply and splits up the ground node, with one wire going to the 

ground wire of the linear actuator (wire 6 in Figure 4), and the other going to the ground pin of the 

Arduino. This is done to ensure both devices use the same ground node, so they can properly interface. 

The positive rail also goes to the linear actuator (wire 5 in Figure 4).  

 

With the linear actuator characterized, and the actuator movement planned, the state machine that runs the 

training algorithm was created. Through a series of testing the Arduino’s capabilities in driving the linear 

actuator, and building of the original state machine in Figure 2, the resulting state machine can be seen 

below in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Device State Machine 
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Similar to the original state machine in Figure 2, State 1 in Figure 15 represents a rest state, insuring the 

linear actuator does not move until the patient initiates a movement. Once a movement is initiated, the 

machine moves into State 2, which has two sub-states. State 2 represents the machine during a trial, where 

the patient needs to continuously move the potentiometer in order to move the actuator. If the maximum 

time set for a trial passes, or if a trial is deemed successful, then the machine will return to State 1 and the 

linear actuator will return to its initial position. Within State 2, the machine will alternate between two 

states, 2a and 2b. 2a initiates a movement of the linear actuator if the patient adequately preforms a 

movement, and 2b waits until the linear actuator reaches its desired position before it moves again, to 

prevent the actuator from stalling. This effectively creates steps of movement in the actuator until a trial is 

successful. These steps can help dictate the difficulty of a trial, if more steps are required before the 

actuator fully extends, the task is more difficult. 

To illustrate the function of the state machine above, and how it relates to the actual movement of the 

device, Figure 16 below outlines the process the state machine in Figure 15, with arrows indicating the 

movement of the potentiometer or actuator. 
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Figure 16: Trial process 

 

1. Patient at rest, with hand 

on potentiometer 

2. Patient moves potentiometer, 

sending signal to Microcontroller 

3. Once signal is past certain threshold, 

linear actuator begins to move, moving 

patient’s arm 

4. Patient repeats process until actuator 

fully extends 

5. If patient completes task or time runs 

out, actuator retracts 
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In conjunction with the State machine detailed above in Figure 13 and 14, different difficulty levels can 

be introduced in order to give some utility to the device. The patient or therapist gives initial inputs that 

affect certain variables within the state machine that alters its function. Difficulty levels alter the threshold 

that the potentiometer needs to move to move the actuator, such as in step 2 and 3. They also alter how far 

the linear actuator moves whenever a potentiometer threshold is reached, such as in steps 3 and 4. These 

values also adapt depending on how well the patient does throughout a trial. More detail into how much 

difficulty changes and what its effect will be discussed while explaining the microcontroller code. 

One might notice that the patient only has to move their thumb on the potentiometer in order to move the 

actuator.  

Table 3 below outlines the variables used in the Arduino code to execute the State machine and data 

collection. This Table can be used as a reference for the discussion on the programming of the state 

machine, in order to keep track of the amount of variables used when discussing the code.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

Table 3: Variables in Arduino Code 

Variable Type Function 

pos int Reads patient input position. Fed into A0 pin of on-board ADC. 

Possible values 0-1023; 5 V max. 

arm_pos int Linear Actuator position feedback. Fed into A1 pin of on-board 

ADC. Possible values: 0-680; 3.3 V max. Has inverse relationship 
as seen in Figure 5. 

pull_dist double Holds minimum pull distance that the patient has to pull in order to 

move the actuator. Compared to pos variable; 1023 max. 

pull_dist_max double Holds the maximum pull distance allowed, based on difficulty 
level. Compared to pull_dist, 1023 max. 

distance int Holds of the amount that the linear actuator moves per successful 

pull. OCR2B uses this to act as the timer for the PWM; 255 max.  

state int Holds the state number in order to which States as needed. 

time unsigned long Uses the millis() function of the Arduino library to keep track of 

time in milliseconds. Needs to be an unsigned long in order to hold 

a large time value. 

time_state int Holds the start time once a trial is initiated and State 1  State 2. 

current_time int Compares time to time_start to track how long a trial is taking. 

max_time int Compared to current_time to see if trial is taking too long. 

difficulty int Has an inverse relationship with distance, where  

distance = 255/difficulty; minimum value of 1. 

diff_max int Compared to difficulty, holds the maximum value difficulty can be, 

determined by the overall difficulty level (diff_level). 

diff_level int Holds difficulty level initiated by patient or therapist, values 1-5. 

stateflag int Shifts between States 2a and 2b within State 2. Either 0 or 1. 

doitonce int Flag to make sure initial conditions are only instigated once. 

ser int Decodes serial inputs dictated by the patient or therapist. 

attempt int Tracks the amount of unsuccessful attempts a patient has with a 

trial. Alters difficulty and pull_dist. Is reset once a successful trial 

is completed. 

 

With the major variables of the Arduino code cataloged in Table 3, the code itself will be discussed in 

order to describe its function, and how it executes the state machine in Figure 15. The complete code can 

be found in the appendix at the end of this paper. The python test code can also be found in the appendix 

section. The first part of the Arduino code declares the variables outlined in Table 3 above, with their 

respective variable types. After this, the initial void setup() function of the Arduino code is called, as 

outlined in Figure 17 below.  
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Figure 17: void setup() Function 

The first four lines within the void setup() of Figure 17 format the PWM output used for controlling the 

linear actuator, on pin 3 of the Arduino. This is done by using one of the 8-bit timers on the 

ATMega328p, and using the TCCR2A timer, and setting the OCR2B compare register, where its max 

value of 255 corresponds with a 100% duty cycle [8]. OCR2B  is initially set to 0 to fully retract the linear 

actuator. The Serial.begin(9600) function initiates serial communication through the USB port at a rate of 

9600 baud. The rest of the  void setup() function sets some of the variables outlined in Table 3 to their 

respective initial values for a trial, with commented explanations for each variable.  

The void loop() function is then called and is the primary function used to run the device, as it repeats 

itself over and over until the device is reset. The first step in this function is to measure some key values 

that need to be constantly updated, and placing them at the beginning of the loop allows for that to occur 

and to be used later on. This is outlined in Figure 18 below. 

 

 

 

 

Figure 18: Initial Variables in void loop() 

The pos, arm_pos, and time variables are the first to be updated in the void loop() as seen in Figure 18. 

From here, the code decodes any serial inputs that dictate the initial conditions of a trial. This process will 

be discussed later in the paper, however.  

void setup() { 

  pinMode(3, OUTPUT); 

  pinMode(11, OUTPUT); 

  TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) | _BV(WGM20); 

  TCCR2B = _BV(CS22); 

   

  Serial.begin(9600); 

 

   

  OCR2B = 0; // pin 3 PWM 

  difficulty = 0;    //"difficulty level", distance = 255/difficulty 

  pull_dist = 205; //1023 = max 5 V, used to compare with pos 

  state = 1; //state variable 

  flag = 0; //flag to ensure actuator only moves once at a time 

  attempt = 1; //tracks # of attempts 

  max_time = 8000; //max time one can take w/ o doing anything in a trial (in milliseconds) 

  pull_dist_max = 1023; 

  diff_max = 30; 

 

} 
 

void loop() { 

  pos = analogRead(A0); //A0 pin = patient position input , 1023 = max 5 V 

  arm_pos = analogRead(A1); //A1 pin = actuator position feedback, 678 = max 3.3 V 

  time = millis(); //measures time in milliseconds 
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State 1, as discussed in Figure 18 above, acts to hold the actuator still until the patient initiates a 

movement. Once this happens, State 1 also sets the values that dictate the behavior of State 2. This 

process and the code for State 1 can be seen in Figure 19 below. 

 

 

 

 

 

 

 

 

 

 

Figure 19: State 1 Code 

While the state variable in Figure 19 equals 1, the device is in State 1. During this state, the output 

compare register OCR2B equals 0, resulting in a 0 % duty cycle PWM driving the linear actuator, fully 

retracting it. Once the patient moves their arm to generate a voltage with the potentiometer (measured 

with pos) at a large enough value (dictated by pull_dist), the trial effectively begins. The movement also 

cannot initiate the actuator until it is fully retracted and arm_pos (showing the position of the actuator) is 

equal or greater than 678 (at the 3.3 V of the actuator feedback signal). When the trial starts, the pull_dist 

and difficulty values are increased, which increases the effective difficulty of the trial, as the distance a 

patient needs to pull on the potentiometer increases, and the distance the linear actuator moves with each 

pull decreases. This is also done at the beginning of a trial to increase the difficulty over the course of a 

training session, as each time the patient begins a trial, it becomes harder. The difficulty can also be 

diminished if the patient has difficulty, which will be covered later in the report. The time_start variable 

is also set, keeping track of the starting time of the upcoming trial. 

Once State 2 has been reached, it alternates between States 2a and 2b. State 2a increases the actuator 

position once the patient preforms a successful movement, and State 2b insures the actuator reaches that 

position to ensure the actuator does not stall. This is controlled with the flag variable within State 2. Also, 

if the patient does not move within the max_time allowed while in State 2, the trial fails and the device 

revers back to State 1. This process is outlined in the code in Figure 20 below. 

 

 

//*****STATE 1 

  if(state == 1){ 

    OCR2B = 0; 

    flag = 0; 

    if( pos > pull_dist && arm_pos >= 678){ 

      state = 2; 

      time_start = time; 

      pull_dist =  pull_dist + 10; 

      if(pull_dist > pull_dist_max){ 

        pull_dist = pull_dist_max; 

      } 

      difficulty = difficulty + 2; 

      if(difficulty > diff_max){ 

        difficulty = diff_max; 

      } 

      distance = 255/difficulty; //how far actuator will move with each step 

    } 

  } 
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Figure 20: State 2 Unsuccessful Trial Code 

When a trial is unsuccessful (when the max_time or time limit of a trial has been reached), an attempt 

variable is increased to keep track of the number of times a patient unsuccessfully completes a trial. The 

attempt variable is used to decrease the difficulty and pull_dist variables, effectively decreasing the 

overall difficulty of future trials, depending on how long the patient has trouble with them. If the patient 

fails many times in a row, this will significantly decrease the difficulty of the trials. The attempt variable 

is also reset if the patient successfully completes a trial (shown later in the report). The code in Figure 21 

below outlines the process behind States 2a and 2b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: State 2a and 2b Code 

//*****STATE 2 (plus 3&4) 

  else if (state == 2 || state == 3 || state == 4){ 

    current_time = time - time_start; 

     

    if(current_time > max_time ){ //unsuccessful trial 

      state = 1; 

      if(OCR2B < 250){ 

        difficulty = difficulty - 15*attempt; 

        if(difficulty < 0){ 

          difficulty = 0; 

        } 

        pull_dist = pull_dist - 15*attempt; 

        if(pull_dist < 50){ 

          pull_dist = 50; 

        } 

        attempt++; 

      }   

    } 

     

     

    if( (pos > pull_dist) && (flag == 0) ){ 

      if(OCR2B + distance > 255){ 

        OCR2B = 255; 

      } 

      else{ 

        OCR2B = OCR2B + distance; //increase actuator length is pos met 

      } 

      time_start = time;   

      flag = 1; 

      state = 3; 

    } 

    else if( (flag == 1) ){ 

      if(difficulty >= 20 && arm_pos >= 670 && (710 - (679/255)*OCR2B) >= arm_pos ){             

     flag = 0; 

      }  

      else if( (679 - (679/255)*OCR2B) >= arm_pos ){ 

           flag = 0; 

      } 

       state=4; 

    } 

     

    if( (OCR2B >= 250) && (arm_pos < 10) ){ //successful trial 

      state = 1; 
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While in State 2, State 2a is triggered when the patient pulls the potentiometer past the distance threshold 

(pos  >  pull_dist), as seen in Figure 21. Doing so increases the OCR2B (increasing the linear actuator 

position) and resets the time_start variable, resetting the amount of time the patient has to successfully 

pull. The flag variable is also set, which moves the device to State 2b. While in State 2b, the device 

predicts where the linear actuator will go based on the equation: 679 – (679/255)*OCR2B, and compares 

this to its actual actuator position: arm_pos. Once arm_pos has reached its predicted position, flag is reset 

and the device returns to State 2a. There is a potential glitch in this process, which occurs when the 

distance value is too low (i.e. when difficulty is greater than or equal to 20) to make a movement occur 

when the arm is fully retracted, effectively trapping the device in this state. This is curbed by altering the 

equation in this situation (when the actuator is fully retracted, arm_pos >  678 and difficulty is >= 20), 

which insures that the device does not get stuck in this state and will increase OCR2B until the device 

moves. Once the device moves beyond its rest state, this glitch does not occur and the device behaves as 

normal. 

The last amount of code in State 2 determines if a trial is successful. This occurs when the position of the 

actuator, arm_pos, fully extends (approaches 0), and the OCR2B register approaches 255 for a 100% duty 

cycle.  Once this happens, the device returns to State 1, and the attempt variable is reset as previously 

mentioned. This process is outlined in Figure 22 below. 

 

 

 

 

Figure 22: State 2 Successful Trial Code 

The remaining Arduino code to be discussed details the data that is sent to and from the device via serial. 

At the end of the void loop(), a series of Serial.print() functions are executed to send the noteworthy data 

variables over the course of a trial. This is also useful for testing and observing how certain variables 

change over a trial for debugging purposes. This process is outlined in the code in Figure 23 below. 

 

 

 

 

 

Figure 23: Serial Transmitting Code 

As previously stated, a python script initially read these variables and acted as a user interface. The script 

prompted the user to enter the difficulty levels and general settings, before the script continuously read 

the variables from serial, with the intention of compiling the data once a trial finished. This continuous 

if( (OCR2B >= 250) && (arm_pos < 10) ){ 

//successful trial 

      state = 1; 

      attempt = 1; 

    } 
 

    Serial.print(time); 

    Serial.print('\t'); 

    Serial.print(pos);  

    Serial.print('\t'); 

    Serial.print(arm_pos); 

    Serial.print('\t'); 

    Serial.print(difficulty); 

    Serial.print('\n'); 

   

} 
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reading and printing of the variables gathered also allowed for effective debugging during the design 

process. Eventually, LabView was used instead for a cleaner user interface and more options. Nonetheless 

the test python script prompts and code can be seen in Figure 24 below for reference.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Python Test Code (Above) and User Prompts (Below) 

Beyond receiving data from the Arduino from Figure 23, the LabView virtual instrument (vi) also acts as 

the interface with the patient or therapist before initiating a trial. The front panel of the vi displays a 

general and advanced tab. The general tab outlines basic controls and data collection for the potential 

import serial 

 

ser = serial.Serial('COM6', 9600,timeout=1) 

ser.readline() 

 

setup = input('Simple (1) or Advanced (2) Setting? (Enter 1 or 2): ') 

if(setup == '1'): 

    diff_level = input('Enter Overall Difficulty Level between 1 and 5, 1 = very easy, 5 = very 

hard: ') 

    ser.write(bytes([50])) 

    ser.write(bytes([int(diff_level)])) 

     

else: 

    difficulty = input('Enter Starting Difficulty Level (integer between 1-50): ') 

    ser.write(bytes([10])) 

    ser.write(bytes([int(difficulty)])) 

 

    pull_dist = input('Enter Max Pull Distance (integer out of 100%, e.g. enter 50 for 50%): ') 

    ser.write(bytes([20])) 

    ser.write(bytes([int(pull_dist)]))  

     

    max_time = input('Enter Max Time for Trial (in seconds): ') 

    ser.write(bytes([30])) 

    ser.write(bytes([int(max_time)])) 

 

 

try: 

  while True:    

    line = ser.readline() 

    print(line) 

 

     

except KeyboardInterrupt: 

    ser.close() 
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patient or anyone wanting a quick trial. This includes setting the simple difficulty levels outlined below 

and in Table 4, and whether or not to generate a text file. The general settings tab also displays the graphs 

for the various variables collected throughout the previously run trial, and an LED labeled “program 

running,” to alert the user when the program is on and running. These settings on the front panel can be 

seen on Figure 25 below. 

 

Figure 25: LabView Front Panel – General Settings 

The simple difficulty levels vary from 1-5, with differences outlined in Table 4 below. Each level changes 

the minimum and maximum values of the pull_dist (possible values 0-1023), difficulty (needs to be at 

least 1), and max_time variables for a trial.  

Table 4: Difficulty Levels 

Difficulty Level Serial Letter pull_dist values difficulty values max_time value 

1-“very easy” A 50-205 1-10 8 seconds 

2-“easy” B 200-410 5-15 6 seconds 

3-“normal” C 410-610 10-20 4 seconds 

4-“hard” D 610-820 15-25 3 seconds 

5-“very hard” E 820-1020 20-30 2 seconds 

 

In order to coordinate the difficulty levels illustrated in Table 4 above, the LabView vi continuously 

writes a letter to the Arduino via serial (as seen in the Serial Letter column in Table 4) that dictates the 

desired difficulty level. The Arduino reads this letter in ASCII, so “A” appears as 65, and so on. The 

reason for writing letters as a string instead of numbers is that the Arduino would often misinterpret 

numbers or instead use the new line character and alter the variable’s value instead of keeping it constant. 

Since the variables in Table 4 need to only be altered once: when the trial starts, and since the vi 
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continuously writes, the variable doitonce checks for the initial update of the variables required in     

Table 4, and ensures the variables do not update anymore and deviate from the changes made throughout 

the trial. The Arduino code for such reading and interpreting the difficulty levels can be seen in Figure 26 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Arduino Serial Transmitting Code 

 

 

ser = Serial.read(); 

   

  //Overall Difficulty Level 

  if(ser == 65 && doitonce == 0){      //Level 1, A 

    pull_dist = 50; 

    pull_dist_max = 205; 

    difficulty = 2; 

    diff_max = 10; 

    max_time = 8000; 

    doitonce = 1; 

  } 

  else if(ser == 66 && doitonce == 0){ //Level 2, B 

    pull_dist = 200; 

    pull_dist_max = 410; 

    difficulty = 5; 

    diff_max = 15; 

    max_time = 6000; 

    doitonce = 1; 

  } 

  else if(ser == 67 && doitonce == 0){ //Level 3, C 

    pull_dist = 410; 

    pull_dist_max = 610; 

    difficulty = 10; 

    diff_max = 20; 

    max_time = 4000; 

    doitonce == 1; 

  } 

  else if(ser == 68 && doitonce == 0){ //Level 4, D 

    pull_dist = 610; 

    pull_dist_max = 820; 

    difficulty = 15; 

    diff_max = 25; 

    max_time = 3000; 

    doitonce = 1; 

  } 

  else if (ser == 69 && doitonce == 0){ //Level 5, E 

    pull_dist = 820; 

    pull_dist_max = 1020; 

    difficulty = 20; 

    diff_max = 30; 

    max_time = 2000; 

    doitonce = 1; 

  } 
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The LabView wiring diagram in Figures 28 and 29 below alters the LabView example “Continuous Serial 

Write and Read.” The visa port settings are specified to open the serial port, and a while loop with two 

case statements allowing for a continuous writing and reading of the serial port. The settings to open the 

serial port are under the advanced settings tab in the vi’s front panel. The default values for these settings 

usually work with the Arduino; however the USB port where the Arduino is attached to the computer 

often needs to be specified. The advanced settings tab of the front panel and the serial communication 

section of the vi’s wiring diagram described can be seen in Figures 27 - 29 below. 

 

Figure 27: LabView Front Panel Advanced Settings Tab 

  

Figure 28: LabView Wiring Diagram – Serial Port Initiation 
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Figure 29: LabView Wiring Diagram – Serial Write and Read 

After the continuous serial write and read initiated from the LabView vi, and once the operator clicks the 

STOP button on the front panel, the vi complies the data collected. The STOP button is also connected to 

the LED on the front panel labeled “program running,” meaning when the STOP button is pressed, the 

LED is turned off and the user is alerted that the program is no longer running. Of course the program 

actually does continue to run to analyze the data, but this happens so quick the user will likely not notice 

when the program actually stops. To compile the data, the vi first converts the long string response into a 

workable array for data processing. The LabView example “Search String for Numbers” was altered to 

search the long string response from the continuous write and read, find the numbers, and organize them 

as an array, removing extra characters such as tabs and the ‘new line.’  This generates a 1D array of 

values. This altered LabView example in the wiring diagram can be seen in Figure 30 below.  

 

Figure 30: LabView Wiring Diagram – Search String for Numbers 
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Once the data is in a presentable array, the variables gathered need to be separated. Upon starting up, the 

Arduino serial values often show random, unworkable values in the beginning, and these values need to 

be filtered out. This is done by splitting the array where ‘1’ appears, which occurs once the Arduino’s 

millis() function begins counting the time. If a ‘1’ appears when the Arduino starts up in the “random 

junk” section, then this method will not work, however this event is unlikely. Figure 31 below outlines 

the initial junk that appears in the serial communication and where the ‘1’ representing the start of the 

trial is. 

 

Figure 31: Initial Serial Data 

Once the array is separated at the ‘1’, each variable is separated using the “Decimate Array” sub vi. This 

sub vi separates every four variables, which coordinates with how the data was written to serial. Some of 

the variables are then converted to workable units.  The time variable is divided by 1000 to convert the 

milliseconds to seconds. The pos is multiplied by 
19

8184
, in order to convert the ADC analog reading 

integer value to the distance the potentiometer moves in inches. This was found by noting that the 

potentiometer moves 2 3/8” total, and that the ADC value varies 0-1023, thus dividing 2.375/1023 for a 

conversion factor. The arm_pos variable is divided by -160 and added to 4.25, converting its ADC read 

value to the amount of inches the actuator moves. The arm_pos is divided by a negative number as the 

arm_pos as an inverse relationship between the distance moved and arm_pos value. And 4.25 is added as 

the actuator moves 4.25” at most. 

From here the data of each individual variable is bundled with time and graphed, with each variable given 

its separate graph. These graphs are organized with a tab in the general settings on the front panel of the 

vi. These variables could not appear on the same graph as the units and typical range of values are all too 

different for them to be presentable on the same graph. While the tabs might be cumbersome to click 

through in order to compare different variables at different times, separating them creates less clutter than 

having four graphs next to each other.  

The total distance moved for both the pos and arm_pos are calculated by integrating the data of each 

value over time. This is done by first finding the mean of the differences in the time variable first. A for 

loop uses a shift register to compile an array of the differences between each time data point, and the 

mean is found from that array. This mean serves as the ‘dt’ input for the integration function, with both 

the pos and arm_pos given their own function. The data analysis process can be seen in Figure 32 below, 

including the separation of variables, conversion into workable units, graphing, and integrating. 
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Figure 32: LabView Wiring Diagram – Data Analysis 

Generating a text file of the data collected requires the user to push a button on the general settings tab on 

the front panel of the vi. Doing so activates the case structure in the wiring diagram that combines the 

different variables back into one array, converts it into a string, and generates a text file from it. The file is 

also given a title row with the name of each variable in the order they appear in each row. The case 

statement of this process is outlined in the section of the wiring diagram in Figure 33 below, and an 

example text file can be seen in Figure 34. 
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Figure 33: LabView Wiring Diagram –Text File Generation 

 

Figure 34: Example Text File 
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Chapter 5 – Conclusions 

The project has researched and identified the properties of past works, in order to properly identify the 

potential of this project. The linear actuator used has been characterized in order to accurately design 

around the new part.  The state machine has been designed and detailed, with the stability of the linear 

actuator guaranteed. A sliding potentiometer adds a way for the user to move the actuator, and having the 

potentiometer mounted on a wood block gives the setup some stability. LabView replaced python as a 

user interface, and adds more functionality and options to the user while keeping an approachable visual 

presence. Table 5 below details the specifications of the final product, comparing it with the initial 

specifications found in Table 1. The reasoning behind these specifications can also be found in Table 1. 
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Table 5: Stroke Therapy Device Final Results 

Marketing 

Requirements 

Initial Engineering 

Specifications 
Final Result 

1, 5 Should take less than 5 minutes to begin a 

trial on average 

Can take less than 5 minutes on average, 

only depending on the speed of the 

software (or CPU hardware) and find 

comfortable position of device 

2, 3 Increases the reaching motion length of 

the average patient  during a trial by at 

least 10%  

Has not been extensively studied, but can 

increase movement by at least 10 % 

5, 6 Powers supplied by Microcontroller 

power source and/or 9 Volt battery 

Voltage and Current draw too high for 

typical 9 V battery, requires external 12 V 

source 

5, 6 Entire system weighs less than 20 lbs. Entire system (other than external CPU) 

weighs around 5 lbs. maximum 

1, 5, 6 The apparatus the patient moves weighs 

less than 5 lbs. 

The apparatus the patient moves weighs 

around 1 lbs 

1, 3, 4, 7 Reads distance of brace (in) and force (N) 

applied or exerted and compiles data 

within 1 min of a trial 

Device reads distance of brace in inches, 

force exerted is not read. Complies data in 

on average less than a 1min of trial (time 

depending on the length of the trial and 

amount collected) 

5, 7 Can turn off the system within 1second of 

initiating stop 

Gives safety measure for unforeseen events 

during a trial 

1, 7 Can alter initial conditions (max/min 

variables, time of trial, difficulty level) 

within 5 % accuracy 

Each initial condition specified in Table 3 

is altered within 5 % accuracy 

6 At most 1’ X 3’ X 2’(when fully 

extended) 

When fully extended, the system is  

10” X 18” X 2” (excluding wires and 

external CPU) 

Marketing Requirements: 

1. Easy to use 

2. Offers better treatment and use of arm 

3. Adapts to needs 

4. Able to collect data 

5. Safe to use 

6. Small and portable 

7. Offers control for the therapist and patient 

 

Comparing Table 5 to Table 1 demonstrates that the final product meets most of the initial requirements, 

with the exception of the power consumption and measuring the force exerted by the patient and applied 

to the patient via the actuator. These areas allow for the most amount of improvement. 
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Other Improvements on the project include adding more options through LabView, such as altering 

individual variables, or generating an excel spreadsheet with data. An indication for when the linear 

actuator retracts, such as an LED, can tell the patient when the device reverts to State 1 and the patient 

can’t move the device. Bugs in the LabView data collection also needs to be solved. Above all else, the 

effectiveness of this device via human trials should occur to test the validity of the device. Even if the 

device is not as successful as it could be, the concepts behind this paper may prove useful as a discussion 

around the design considerations of robotically assisted therapy.  
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Appendix A. Programming Code 

Arduino Code: 

int pos; 

int arm_pos; 

double pull_dist; 

double pull_dist_max; 

int state; 

unsigned long time; 

int time_start; 

int current_time; 

int distance; 

int difficulty; 

int diff_max; 

int diff_level; 

int stateflag; 

int attempt; 

int ser; 

int max_time; 

int doitonce; 

   

void setup() { 

  pinMode(3, OUTPUT); 

  pinMode(11, OUTPUT); 

  TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) | _BV(WGM20); 

  TCCR2B = _BV(CS22); 

  Serial.begin(9600); 

 

   

  OCR2B = 0; // pin 3 PWM 

  difficulty = 0;    //"difficulty level", distance = 255/difficulty 

  pull_dist = 205; //1023 = max 5 V, used to compare with pos 

  state = 1; //state variable 

  stateflag = 0; //flag to ensure actuator only moves once at a time 

  attempt = 1; //tracks # of attempts 

  max_time = 8000; //max time one can take w/ o doing anything in a trial (in 

milliseconds) 

  pull_dist_max = 1023; 

  diff_max = 30; 

  doitonce = 0; 

 

} 

 

void loop() { 

  pos = analogRead(A0); //A0 pin = patient position input , 1023 = max 5 V 

  arm_pos = analogRead(A1); //A1 pin = actuator position feedback, 670 = max 

3.3 V 

  time = abs(millis()); //measures time in milliseconds 

   

  ser = Serial.read(); 

   

  //Overall Difficulty Level 

  if(ser == 65 && doitonce == 0){      //Level 1, A 

    pull_dist = 50; 

    pull_dist_max = 205; 
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    difficulty = 2; 

    diff_max = 10; 

    max_time = 8000; 

    doitonce = 1; 

  } 

  else if(ser == 66 && doitonce == 0){ //Level 2, B 

    pull_dist = 200; 

    pull_dist_max = 410; 

    difficulty = 5; 

    diff_max = 15; 

    max_time = 6000; 

    doitonce = 1; 

  } 

  else if(ser == 67 && doitonce == 0){ //Level 3, C 

    pull_dist = 410; 

    pull_dist_max = 610; 

    difficulty = 10; 

    diff_max = 20; 

    max_time = 4000; 

    doitonce == 1; 

  } 

  else if(ser == 68 && doitonce == 0){ //Level 4, D 

    pull_dist = 610; 

    pull_dist_max = 820; 

    difficulty = 15; 

    diff_max = 25; 

    max_time = 3000; 

    doitonce = 1; 

  } 

  else if (ser == 69 && doitonce == 0){ //Level 5, E 

    pull_dist = 820; 

    pull_dist_max = 1020; 

    difficulty = 20; 

    diff_max = 30; 

    max_time = 2000; 

    doitonce = 1; 

  } 

   

   

  //*****STATE 1 

  if(state == 1){ 

    OCR2B = 0; 

    stateflag = 0; 

    if( pos > pull_dist && arm_pos >= 678){ 

      state = 2; 

      time_start = time; 

      pull_dist =  pull_dist + 10; 

      if(pull_dist > pull_dist_max){ 

        pull_dist = pull_dist_max; 

      } 

      difficulty = difficulty + 2; 

      if(difficulty > diff_max){ 

        difficulty = diff_max; 

      } 

      distance = 255/difficulty; //how far actuator will move with each step 

    } 

  } 
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  //*****STATE 2 (plus 3&4) 

  else if (state == 2 || state == 3 || state == 4){ 

    current_time = time - time_start; 

     

    if(current_time > max_time ){ //unsuccessful trial 

      state = 1; 

      if(OCR2B < 250){ 

        difficulty = difficulty - 15*attempt; 

        if(difficulty < 0){ 

          difficulty = 0; 

        } 

        pull_dist = pull_dist - 15*attempt; 

        if(pull_dist < 50){ 

          pull_dist = 50; 

        } 

        attempt++; 

      }   

    } 

     

     

    if( (pos > pull_dist) && (stateflag == 0) ){ 

      if(OCR2B + distance > 255){ 

        OCR2B = 255; 

      } 

      else{ 

        OCR2B = OCR2B + distance; //increase actuator length is pos met 

      } 

      time_start = time;   

      stateflag = 1; 

      state = 3; 

    } 

    else if( (stateflag == 1) ){ 

      if(difficulty >= 20 && arm_pos >= 670 && (710 - (679/255)*OCR2B) >= 

arm_pos ){ //fix for glitch with getting actuator to move at higher 

difficulty 

           stateflag = 0; 

      }  

      else if( (679 - (679/255)*OCR2B) >= arm_pos ){ //making sure actuator 

reaches destination 

           stateflag = 0; 

      } 

       state=4; 

    } 

     

    if( (OCR2B >= 250) && (arm_pos < 10) ){ //successful trial 

      state = 1; 

      attempt = 1; 

    } 

     

  } 

   

    Serial.print(time); 

    Serial.print('\t'); 

    Serial.print(pos);  

    Serial.print('\t'); 

    Serial.print(arm_pos); 
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    Serial.print('\t'); 

    Serial.print(difficulty); 

    Serial.print('\n'); 

   

} 

 
Python Code: 

import serial 

 

ser = serial.Serial('COM6', 9600,timeout=1) 

ser.readline() 

 

setup = input('Simple (1) or Advanced (2) Setting? (Enter 1 or 2): ') 

if(setup == '1'): 

    diff_level = input('Enter Overall Difficulty Level between 1 and 5, 1 = 

very easy, 5 = very hard: ') 

    ser.write(bytes([50])) 

    ser.write(bytes([int(diff_level)])) 

     

else: 

    difficulty = input('Enter Starting Difficulty Level (integer between 1-

50): ') 

    ser.write(bytes([10])) 

    ser.write(bytes([int(difficulty)])) 

 

    pull_dist = input('Enter Max Pull Distance (integer out of 100%, e.g. 

enter 50 for 50%): ') 

    ser.write(bytes([20])) 

    ser.write(bytes([int(pull_dist)]))  

     

    max_time = input('Enter Max Time for Trial (in seconds): ') 

    ser.write(bytes([30])) 

    ser.write(bytes([int(max_time*1000)])) 

 

 

try: 

  while True:    

    line = ser.readline() 

    print(line) 

 

     

except KeyboardInterrupt: 

    ser.close() 
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Appendix B. ABET Senior Project Analysis 

1. Summary of Functional Requirements 

 

The project allows stroke patients or people who cannot move their arm during physical therapy to move 
their arm more effectively using an apparatus to train their arm for rehabilitation. The system offers a 

more full use of the arm than traditional physical therapy, as well as adapting to the needs of the patients. 

Trials increase in difficultly over time, but still become easier if the patient has trouble. Physical 

therapists control the general difficulty before starting a trial, and gather data during a trial for future use. 
The device also offers safety, portability, and easy use. 

 

2. Primary Constraints 
 

Finding a proper motor system that would provide a linear movement for the device provided the first 

major hurdle of the design process. The motor in the original internship project could not be found in a 

timely fashion, so a substitute had to be found and characterized to fully understand and design around its 
performance. Creating a compact system also caused issues in deciding parts and limiting the power and 

scope of the hardware involved. Buying and shipping these parts within the timeline and time constraints 

of the Cal Poly quarter system also limited the scope of the project. The design of a training algorithm to 
effectively address the needs of the patient proved to be the most significant challenge of this project. Not 

only did this process take the most amount of time to design and test, but it also affected and dictated the 

function of the rest of the device. For instance scalping the user interface required knowledge of the 
training algorithm and device capabilities. An initial plan for the user interface was also abandoned during 

the design process once a preferable substitute was found, but this did not cause much difficulty as there 

was a good amount of time left. 

 
3. Economic 

 

The human capital of this project includes the design engineers, and those who would benefit most from 
the system, such as patients, physical therapists, and researchers. Their knowledge, findings, and desires 

drive the design for this project, and ultimately decide the practicality and longevity of the project into the 

future. The manufacturing personnel who provided the parts for the project also contribute to the human 
capital. The various components this project requires make up the main cost of the project, since labor 

costs do not add to the overall cost. The financially involved also include the companies and 

manufacturers who supply these parts. Any profitability of the project can lead to an increase in 

production for the product, which results in profitability for the manufacturers. The shipping companies 
and their resulting costs also contribute. The microcontroller, linear actuator, wires, wood blocks, and the 

external computer to run the user interface software for the apparatus make up the manufactured capital. 

All of these use the Earth’s resources in varying degrees. The power requirements of the system also 
consume Earthly resources. The system uses a DC power supply, which has its own environmental and 

economic concerns surrounding their fabrication, resources, efficiency, and disposal. The farming and 

mining of these Earthly resources have an effect on the environment and species where these materials 

reside. Changes in these areas can affect how much or how sustainable each material is. 
 

Most of the costs of this project accumulate during the design process. Purchasing and shipping parts 

requires time and money, and additional parts accumulated throughout the design process. The companies 
involved in manufacturing and shipping the parts have their own costs during this process. The benefits of 

the project do not occur until the project nears completion. If certain organizations wish to use the project 

for their own benefit or research, then some income for the project will accumulate.  
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The inputs of the project include the labor and time costs of the design process, the manufacturing and 

parts costs, the documentation, and upkeep of the project. The costs estimates can be seen in Table 6 
below, with the exclusion of monetary labor costs. Table 6 uses following equation in Ford and Coulston 

for the Expected cost. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 =
𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 𝑇𝑖𝑚𝑒+4×𝑅𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐 𝑇𝑖𝑚𝑒+𝑃𝑒𝑠𝑖𝑚𝑖𝑠𝑠𝑡𝑖𝑐 𝑇𝑖𝑚𝑒

6
 [6] 

 

Table 6: Initial Cost Estimation 
Part  Optimistic Cost ($) Realistic Cost ($) Pessimistic Cost ($) Expected Cost ($) 

Electric Motor 10 50 100 51.67 

Arm Brace 20 50 80 50 

Wheels 5 20 50 22.5 

Casings 20 50 150 61.67 

Total Cost ($) 185.84 

 

The actual cost accumulated over the project can be seen in Table 7 below. 
 

 

Table 7: Final Cost 

Part Cost ($) 

Linear Actuator 110.54 

Potentiometer 9.80 

Wire 10.79 

PCB 2.69 

Wood Blocks Free (Scrap) 

Total Cost 133.82 

 

 

Comparing Table 6 to Table 7, the initial cost estimate came to $185.84, and the actual cost for the 
finished product came to $133.82. This ignores the cost of the microcontroller, which the designer already 

had before the project began, but whose cost is around $25. This make the total cost of the project around 

$158.82. The engineers designing and testing the project handle the major costs of the project during the 
initial design process. The design process required various kinds of equipment, such as DC power 

supplies, multimeters, and oscilloscopes. Since the design process occurred at Cal Poly San Luis Obispo, 

where these devices are readily available, they did not add any additional costs. 
 

How much the product earns relies on how the product is sold, which is discussed more in the next 

section. However, if sold at the $250 rate, with the $158.82 production cost, and with an estimated 100 

units sold annually, the net profit would yield $9,118. The designer, therapist or research companies that 
endorse this product would profit. 

 

Products can emerge late into the design process, if human testing takes place during the design process to 
receive feedback on the project’s functionality. Operation costs would come in the form of power 

requirements, for both the device and computer required to run the user interface. Maintenance may need 

to occur for the wood blocks that weigh down the linear actuator and potentiometer, The LabView 
protocol could potentially be updated, or have later installments. Replacement parts for the actuator, 

potentiometer, or even microcontroller may also require consideration. The design process for this project 
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was influenced by the Cal Poly quarter system, nonetheless the expected development time and tasks can 

be seen in the Gantt chart in Figure 35 below, with the actual timeline in Figure 36. 
 

 

 
Figure 35: Expected Timeline Gantt Chart 

 

 
Figure 36: Actual Timeline Gantt Chart 
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Comparing Figure 35 to Figure 36, the work in EE 461 focused primarily around finding and 

characterizing the linear actuator, as well as going through two design/build/test cycles to optimize the 
training algorithm and the programming of the microcontroller. Two reports were also required in EE 461 

in Figure 36, not one in Figure 35. EE 462 was mostly spent around the user interface and finishing the 

loose ends of the project. 

 
After the project ends, the report goes into the digital commons of the Cal Poly library, to be seen by 

future students for reference or to inspire their future projects. Cal Poly will also have access to the 

software and programs used for this design. If researchers or therapists find the project and deem it 
worthy to get a hold of a prototype or seek out and invest in similar projects, then the lifespan of this 

project or similar projects will persist.  

  
4. If Manufactured on a Commercial Basis  

 

If this project becomes available on a commercial basis, then the main customers of the project as 

outlined previously are the main beneficiaries. If the project receives support from organizations for 
research or to further this project or similar projects, then this anticipation may occur sooner. However, 

only a few organizations may initially consider giving projects like this support, even if the project is 

considered product ready. As such, the projected number of devices sold per year expects around 100 
initially. This project may also inspire future similar projects and products to appear, if successful. Since 

little specific patents on stroke therapy of this nature currently exist, this stands as a greater potential 

market [9]. 
 

Since the individual components of the project come from their respective manufacturers, the components 

continued presence in the market allows for the continuation of this project. From these components, the 

manufactured cost came out to $133.82 at the end of the design process. Because this requires acquiring 
the rights from the companies who manufactured these parts, designing and reverse engineering these 

parts for a commercial basis seems like a more viable solution to reduce the cost per unit. With the 

manufactured cost above, however, and with the few amount of products sold, the cost of each individual 
device would likely fall in the $250 range, resulting in a net annual profit of:  

($250 – $158.82) × 100 units = $9,118.  

 

The power required to work the device determines the cost for the user to operate the device. Both a DC 
12 V supply and external computer (which the user is likely to already have) are required. Thus the cost to 

operate the device comes from the cost used to power these instruments. With the average power 

consumption of the project estimated at 0.12 W (from 12 V and 100 mA draw) and the average power 

consumption of a computer being 130 W [10], and for a time interval of an hour a day, three days a week, 
for a total three hours, the energy usage comes to 0.39036 kWh per week or 1.5624 kWh per month. The 

actual cost to run, would therefore be determined by the user’s cost of power in their home.   

 
5. Environmental  

 

The environmental manufacturing costs mainly come from the companies who design and manufacture 
the parts needed for the project. The IC’s and PCB’s used to create the microcontroller and inner 

workings of the linear actuator require raw materials such as silicon and packaging materials, causing an 

environmental concern for the manufacturers. The material used for the linear actuator arm also has its 

own manufacturing environmental concerns based on the eventual material used. The actual resources and 
specific environments and species affected become difficult to determine as they vary between the 

companies involved. Shipping costs and transportation fuel also affect the environment based on the 

companies, locations, and vehicles used for these steps. The wood blocks require the wood from trees, 
which can affect the environment and various species through deforestation. The power the system 
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requires causes the main environmental concern as the project requires power during and after the design 

process. Originally power outlets, function generators, computers, and oscilloscopes that need wall outlets 
for the design and testing process consume power. The power each of the tools use and their 

environmental concerns from the power companies involved supplement the interests for this project. 

With most of the testing occurring at Cal Poly San Luis Obispo, both the university and PG&E become 

responsible for these costs.  
 

After the design process, the project requires similar power needs. The 12 V supply for the linear actuator 

could come from an external DC supply, or a 12 V battery that would supply adequate amount of current 
levels. Both cases require more raw materials and chemicals to construct, and each has different energy 

efficiencies and performance levels which affect the longevity and sustainability of the supply. Each 

addition of new materials required affects the environments and surrounding species that supply these 
resources. All of the concerns raised ultimately harm the environment, as most deplete Earthly resources 

and offer little sustainability. The wood blocks used to mount the device can be a sustainable resource, if 

farmed properly.  

 
6. Manufacturability 

 

The manufacturing issues derived mainly from the companies who manufacture the components for the 
project. Since the companies sell these products on a commercial basis, as long as they are on the market, 

most of the manufacturing planning and sustainability concerns are of secondary. Choosing the right 

components to fit within the dimensions specified in Table 1 offered some concern. The wood blocks 
used came from a scrap pile of a local mill, but the criteria to choose them relied on their weight, and 

potential friction on a table or flat surface.  

 

7. Sustainability 
 

Since the project mostly consists of components from various companies, as long as these products, or 

similar products, are on the market, the project could continue to be produced and allow for replacement 
parts. Reverse engineering or designing original components that offer similar functionality may be a 

viable route to defend against these components going out of sale. It also offers a more thorough 

understanding on how these components work, and how to properly debug or address issues in the design. 

Currently the device is fairly durable with its individual components; however wear may affect the wood 
blocks used for the potentiometer and to weigh down the linear actuator, such that they may require 

replacements. The sliding potentiometer also sees a fair amount of human interaction, and is thus more 

likely to break and require a replacement.  
 

Since the project mostly consists of components from various companies, the sustainability of the project 

depends on the materials that make up these components. If each material used does not offer sustainable 
production, it hampers the overall sustainability. Currently most of the materials used are raw materials 

with limited Earthly resources. The power and size concerns of the design process affect the sustainability 

of the project. The project is portable, and thus fairly small and able to fit on a desk, but the current size 

may not be an economic use of resources. The power limitations may hamper the sustainability of the 
project if the sources used are not sustainable. The supply required to run the external CPU may use 

inefficient or non-sustainable methods, depending on the utility company or sources used.  

 
Improvements can be made in creating more efficient power usage, and determining a 12 V supply that 

operates on an efficient and sustainable manner. More research can be made into the different components 

that make up the system, and whether a more sustainable option is present. Reverse engineering the 
various components required would also allow for preferable upgrades, however doing so may be costly. 
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8. Ethical 
 

According the IEEE Code of Ethics [11], this system ensures that the health and safety of those using the 

system falls under the concerns of the main designer. Exaggeration of the findings and effectiveness of 

the system or mishandling information in order to give the project more notoriety does not occur during 
the production of this project. No bribery affects the development of the project. No discrimination of 

different customs, cultures, or orientations inherently exists with the project, and assistance from 

colleagues occurred when relevant.  
 

Using Rawls’ Contractarianism [12], this project upholds equal liberty as its intention does not 

discriminate against anyone. Stroke patients that the project seeks to aid get the most out of the project 
capabilities, however. Limitations may occur based on the society this product enters and how well 

received the project or similar projects become in the medical community. These limits may include the 

prescription, insurance availability, or limited researchers or therapists who use the device. Individual 

economic status may also affect who can use the device.  In practicality, not everyone has the most 
immediate access to the project initially, but in theory, the project does not inherently discriminate against 

anyone in its design. Since the project helps people move their affected arm more effectively, the project 

gives people a better chance to advance in society. It more accurately addresses the disparaging rights of 
people affected by stroke or equivalent by offering differing or more effective treatment. If this project (or 

similar projects) does not succeed, it could distract research and treatment away from more viable 

solutions, affectively jeopardizing the opportunity of the individuals who need it. The inequalities of the 
least advantaged in society are not given much more flexibility with this project beyond the groups it 

directly affects. As stated before, the project can give people more opportunity with effective treatment, 

which improves the lesser advantaged in society, but it is not an absolute solution to the difference 

principle. Many of the facets of fairness and inequality this project creates depend on the society the 
project integrates to. The project does not seek to change any of those tenants, but instead change the 

lifestyle of those who benefit and engage with the product. 

 
9. Health and Safety 

 

Providing better health defines the essence of this project, and the health and safety implications of the 

project guide every facet. The project potentially gives the recipients movement they might never have 
again, and allowing them to do so acts as this project’s top priority. As such, the project aims to help the 

customers’ well-being than harm. And since the project has the customers act physically during their 

participation, the potential harm to their arm becomes a main concern. Economically, the product sells 
with these factors as marketing principles. Thus the health and safety concerns affect the design, 

manufacturing, and economic facets of the system and permeates its purpose for existing. 

 
 

10. Social and Political  

 

The stakeholders of this project include the patients, therapists, researchers, and engineers involved. The 
medical community and any political party that backs such treatment potentially benefits from the project. 

More notoriety may also be given to stroke treatment and potentially more compelling research. The 

project could also negatively affect these institutions if the product offers questionable performance. 
Public reception also dictates the longevity, lasting impact, and reputation of those involved. Physical 

therapists might become more obsolete if this kind of treatment becomes effective and more widespread. 

If the stroke therapy from this device succeeds, then drug and pharmaceutical companies potentially acts 
as competition or their medicine becomes outdated.  Welfare and insurance companies may be affected by 

the device as they either endorse or deny such treatment. Limited patents for such products currently exist 
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[6], and if an increase in the number patents for this brand of therapy occurs it could prove more 

complicated for different products to arise and for other parties to get involved. Patients with certain 
conditions benefit most from the functionality of the project, and physical therapy may not be as adequate 

a treatment for some. Depending on potential insurance costs, customers may even be locked out of this 

kind of treatment. Thus this project favors those with a more steady income. Some knowledge of 

computers and running software is also required to run the device, thus those living in more First World 
countries who more readily have that kind of knowledge may benefit more.  

 

11. Development 
 

This project allowed for the exploration of many facets surrounding the design and development of a 

functional product, while building upon an unfinished project from an internship. Research into the 
design process and what it entailed began early into the planning of the project [6]. This also required 

investigation into therapy techniques and data gathering in order to accurately address and identify 

customer needs [2-5]. Finding and characterizing components also allowed for a more detailed probing 

and deciphering of datasheets [7], [8]. The project also allowed for the consideration of additional 
elements of a product, such as aesthetics, which are not often considered in hardware and circuit based 

design. Thorough documentation proved valuable as a skill during the design process. 

 


