

A Stroke Therapy Brace Design

By

Evan Kirkbride

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

June 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/77510583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Table of Contents

List of Tables and Figures .. ii

Abstract .. iii

Chapter 1-Introduction ... 1

Chapter 2-Literature Review .. 2

Chapter 3-Background ... 3

Chapter 4-Design and Results .. 7

Chapter 5-Conclusion .. 32

References ... 35

Appendix A. Programming Code ... 36

Appendix B. ABET Senior Project Analysis .. 40

ii

List of Tables and Figures

Tables
Table 1: Table 1: Stroke Therapy Brace Initial Requirements and Specifications 6

Table 2: Linear Actuator Position Feedback ... 11

Table 3: Variables in Arduino Code ... 19
Table 4: Difficulty Levels .. 25

Table 5: Stroke Therapy Device Initial Requirements and Specifications ... 33

Table 6: Initial Cost Estimation .. 41
Table 7: Final Cost .. 41

Figures

Figure 1: Original Project Setup ... 3

Figure 2: Original Project’s State Machine ... 4
Figure 3: Firgelli L12 Linear Actuator Dimensions .. 7

Figure 4: Firgelli L12 Linear Actuator Wiring .. 8

Figure 5: 0% Duty Cycle Output .. 8

Figure 6: 50% Duty Cycle Output .. 9
Figure 7: 100% Duty Cycle Output .. 9

Figure 8: Actuator Length .. 10

Figure 9: Firgelli L12 Linear Actuator Characterization ... 11
Figure 10: Linear Actuator with Potentiometer Setup ... 12

Figure 11: Device Block Diagram .. 13

Figure 12: Device Wiring .. 14
Figure 13: Full Device ... 14

Figure 14: Power Board ... 15
Figure 15: Device State Machine ... 15

Figure 16: Trial Process ... 17
Figure 17: void setup() Function .. 20

Figure 18: Initial Variables in void loop() .. 20

Figure 19: State 1 Code.. 21
Figure 20: State 2 Unsuccessful Trial Code .. 22

Figure 21: State 2a and 2b Code... 22

Figure 22: State 2 Successful Trial Code .. 23

Figure 23: Serial Transmitting Code .. 23
Figure 24: Python Test Script ... 24

Figure 25: LabView Front Panel – General Settings ... 25

Figure 26: Arduino Transmitting Code ... 26
Figure 27: LabView Front Panel – Advanced Settings .. 27

Figure 28: LabView Wiring Diagram – Serial Port Initiation .. 27

Figure 29: LabView Wiring Diagram – Serial Write and Read ... 28
Figure 30: LabView Wiring Diagram – Search String for Numbers .. 28

Figure 31: Initial Serial Data .. 29

Figure 32: LabView Wiring Diagram – Data Analysis ... 30

Figure 33: LabView Wiring Diagram – Text File Generation ... 31
Figure 34: Example Text File ... 31

Figure 35: Expected Timeline Gantt Chart ... 42

Figure 36: Actual Timeline Gantt Chart ... 42

iii

Abstract

Victims of stroke often have difficulty with rehabilitation. With limited movement on their affected arm,

patients often do not want to move much for physical therapy. In this project, we design a robotic brace

that helps stroke patients move their arm more effectively in a reaching or pulling motion. By giving

patients more movement in their affected arm than they would have otherwise, patients gain more from

rehabilitation. The brace also adapts to the patient’s needs, providing more inclination or resistance as

needed for their physical therapy. This kind of therapy engages patients rather than relying on their likely

dwindled motivation. This project includes both software coding and hardware implementation. A video

of the project demonstration is available upon request.

1

Chapter 1 - Introduction

Stroke claims the second most amount of lives in the world, and leaves 75% of its survivors with enough

disabilities to decrease their employability. Most stroke victims use physical therapy for treatment. Recent

research in stroke therapy has included elements such as virtual reality, video games, and robotic therapy

for improvement [1]. Different research groups have developed and tested these methods. S.-C. Yeh et al

showed that repetitious actions that simulated reality in a “skinner-box” virtual reality set-up proved

effective for stroke treatment [2]. And Holden et al demonstrated how virtual reality allowed for the

treatment to occur remotely with similar results [3].

The iMove laboratory at University of California, Irvine researches these concepts. The lab treats and

improves the lives of those affected with neural injuries by developing robotics and devices that assist

with their movement during treatment. These devices provide the patient with more movement than they

would have otherwise for physical therapy, allowing for more effective treatment. Past projects include

the robotic exoskeleton T-WREX [4], and the interactive web-based telerehabilitation [5].

I received the opportunity to intern at this lab and worked on a rat training box. This box allowed a rat

with a neural injury to train their affected arm by pulling on an apparatus to dispense a treat. An electric

motor and microcontroller helped the rat move the apparatus, adapting to their needs but still increasing in

difficulty. The system also collected and exported data during the trial to allow for more analysis. I left

iMove with the project unfinished, thus for my senior project I hoped to complete and expand upon the

task to create a functional product, while moving up the evolutionary ladder and updating the machine to

work with humans.

For this report, the next chapter will outline more of the literature and past projects surrounding these

concepts, and how this project relates to those. Chapter 3 gives more background on the previous project I

worked on for the internship and how it applies to this project, while outlining other considerations for

this project such as discussing the customer needs research. Chapter 4 summaries the design method and

results of the project. Chapter 5 offers conclusions for the project and gives insight on future works. The

appendices include items such as the code used, the cost accumulated, and the ABET senior project

analysis.

2

Chapter 2 – Literature Review

Devices for stroke therapy prove effective at addressing upper extremity impairment of stoke patients

[2] - [6]. The devices demonstrate an opportunity for repeatable actions that simulate or correlate to useful

everyday behavior. Systems of this variety also allow for precision measurements that give clearer

pictures to the physical therapists to guide treatment. They also allow for more engaging therapy as

instructing patients with a simple and interactive goal helps with retention through iteration [2, 3, 5].

Though these projects grow in number, the amount of actual commercial or practical patents on these

findings are still limited, and mostly consist of individual tools or subsystems for robotics [7].

S.-C. Yeh et al demonstrates a virtual reality (VR) simulation and motion capture for a similar affect.

While more computer science orientated, the paper illustrates an easy to understand metric for measuring

progress: the amount of time used to complete a task. Plots of this progress show that whether controlled

or automated, repetitious treatment can lead to better performance in stroke patients [2]. M. Holden et al

illustrates a similar process in a VR environment, but uses different metrics such as the Fugl-Meyer

Motor score and the Wolf Motor test to track progress, and the results are similar [3].

D. Reinkensmeyer et al highlights a therapy process using a Java software and more mechanical input

device, such as a joystick. While using similar data collection methods as in S.-C. Yeh et al [2] and M.

Holden et al [3], Reinkensmeyer et al dabbles in this robot centered therapy in conjunction with software

techniques. The software techniques also incorporate game theory concepts through the design of a trial,

which can help keep a patient engaged [5]. A more involved robotic approach was introduced with the T-

WREX. This robot arm brace gave patients more movement and control over their arm movements.

While the results were not too different from previous methods, such as in [5], the user satisfaction saw a

massive increase in the patient confidence in their actions and the use of the treatment [4].

This project centers on the hardware control and interfacing those theories through a training algorithm.

The project takes a more engineering centered approach, rather than using human trials to prove the

effectiveness of this device through trials and statistics. The project allows for an exploration how such

devices are made, and what should be considered during the design process.

3

Chapter 3 – Background

Based on previous projects, the training algorithm needs to offer stable control of the motor process while

offering the benefits of robotic medical training. In order for this to happen, the program needs to increase

difficulty in order to ensure that the patient will improve progress, but still allow room to decrease

difficulty of a task if the patient has trouble completing it, effectively adapting to the needs of the patient.

Past robotic-centered treatments have caused the patients to become lazy in their treatment, letting the

machine do the work for them [3], [4]. As such, the device needs to ensure that the patient is in the most

amount of control.

For the physical therapists and researchers, the system also collects data during a trial, and compiles a

data file at the end of a trial. This data may include: the force the motor or patient exerts, the motor’s

velocity, and the state or difficulty level of the system over time. This allows the physical therapists to

interpret the progress of the patient. The therapist can also alter the state of the system and adjust its

difficulty for the patients based on their judgement. These states and desired variables base themselves on

S.-C. Yeh et al, though on a smaller scope [2].

The past version of the project, the rat box, used a state machine to accomplish this task. The

microcontroller measured parameters such as velocity and position of the motor via a linear piston

potentiometer, as well as the error of the current position versus the desired position to switch between

states and collect data with. The motor also somewhat functioned like a spring, with the “spring constant”

being determined by the voltage outputted to the motor via the microcontroller and motor driver. If the

patient pulled on the motor, they would experience a resistance similar to that of a spring. A picture of the

motor can be seen in Figure 1 below. The challenge of the previous project was to pull on the motor past

certain distances, which contributed resistance similar to a spring, and the tension of the “spring” would

tighten or loosen depending on how well the patient preformed. This device worked for a rat with a neural

injury, and the device would dispense a food pellet to reward the rat for accomplishing the task and

incentivize the rat to engage with it more. The states are outlined in the Figure 2 below.

Figure 1: Original Project Setup

Microcontroller

with motor shield

Motor

Potentiometer to determine

position of the motor

Box for rat

4

Figure 2: Original Project’s State Machine

State 1 in Figure 2 acts as a rest state, with the machine staying in that state while the rat did not move the

motor, and once the rat started to move the motor to initiate a trial, the error signal would change and the

machine would move into State 2 after it was above 25 %. State 2 would only be entered once to flag that

a trial was starting, and while the patient pulled on the motor, the state would shift between states 3 and 4.

If the motor didn’t move (i.e. the velocity was zero), the “spring constant” would increase in each

iteration of the void loop in the Arduino code by increasing the voltage sent to the motor via the motor

shield, and the motor would begin to pull against the patient. This was done in order to incentivize the rat

to constantly move the motor. Once the rat moved the motor past a certain threshold value, the machine

would enter State 5 and mark the trial was successful. Trials would be marked as unsuccessful until the

patient reached State 5, meaning if they never reached State 5 after initiating a trial, and returned to

State 1, the machine will mark the trial as unsuccessful. State 5 is only entered once, similar to State 2,

and enters State 3 next, effectively pulling the motor back to the starting position and State 1, if the

patient did not continue to the pull on the machine. If the trial was successfully finished by the time the

machine entered State 1 again, the “spring constant” of the motor would increase, and effectively increase

the difficulty of the next trial. The machine would also dispense a food pellet as reward for the rat if the

trial was successful, incentivizing them to go again. If the trial was unsuccessful, then the spring constant

would decrease in order to lessen the difficulty of the next trial.

There were additional features of the internship machine, however the methodology explained above

summarizes and acts as the main influence on the project discussed in this paper. This state machine did

not do an accurate job of determining an adaptive difficulty for a patient, only increasing or decreasing

5

the “spring constant” or effective difficulty for a trial when certain criteria were met. There were also

stability issues for the machine: if the user or microcontroller wanted to motor to reach a certain position,

the motor would often oscillate around that position or become unstable. Ideally, the motor would help

the patient move using a dictated path for the motor, but with the instability issues of the motor, the motor

had difficulty following any such path, and the feature was left unfinished. A new state machine was

required for this project. Certain ideas, such as having a rest state and finished state, are carried over, but

the criteria and methods for determining difficulty and the status of the patient were updated. Different

parts are also be used for this project, which affected the design process and planning around these parts.

To prepare, a customer needs assessment was required to determine who this project is aimed at, and from

there different marketing requirements and engineering specifications take shape. After assessing

different literature: stroke patients, their families, doctors, physical therapists, and researchers make up

this product’s major customers. While the intention of the system relates to stroke patients, anyone who

could benefit from the device can also serve as a potential customer. Customers require treatment that

offers more movement and control of their affected arm. Allowing their arm more flexibility can help

with the treatment process. Researchers and physical therapists can also use the system to control the

therapy more effectively. The ability to adequately control the system and receive data gives the therapists

more flexibility. Past research assessed and determined these needs [2-5].

The system allows for easy use, giving patients an incentive to use it over typical physical therapy.

Improved muscle movement satisfies the customer’s main concern. The system also adapts to the needs of

the patient. Past treatments of this caliber have caused the patients to become lazy in their treatment,

letting the machine do the work for them [3], [4]. As such, the system adapts and become harder, but still

lessens the difficulty if the patient has trouble.

Table 1 summarizes the engineering specifications and marketing requirements found from these needs.

Table 4 showcases the specifications of the finished product, and can be used to compare with Table 1.

The format of the table derives from Ford and Coulston [6].

6

Table 1: Stroke Therapy Brace Initial Requirements and Specifications

Marketing

Requirements

Engineering

Specifications
Justification

1, 5 Should take less than 5 minutes to begin a

trial on average

Guarantees easy use for the patient.

2, 3 Increases the reaching motion length of

the average patient during a trial by at

least 10%

Ensures effective product treatment.

Previous experiments indicate that 10%

improvement is desirable.

5, 6 Powers supplied by Microcontroller

power source and/or 9 Volt battery

Helps reduce system size and lowers power

limits.

5, 6 Entire system weighs less than 20 lbs. Helps reduce size and feasibility of the

system.

1, 5, 6 The apparatus the patient moves weighs

less than 5 lbs.

Allows the affected arm to properly move

and work the device.

1, 3, 4, 7 Reads distance of brace (in) and force (N)

applied or exerted and compiles data

within 1 min of a trial

Gives instant feedback and ensures data

collection.

5, 7 Can turn off the system within 1second of

initiating stop

Gives safety measure for unforeseen events

during a trial.

1, 7 Can alter initial conditions (max/min

variables, time of trial, difficulty level)

within 5 % accuracy

Allows therapist and patient control on the

treatment progress and allows for multiple

patients to use system.

6 At most 1’ X 3’ X 2’(when fully

extended)

Within specified dimensions to limit space

and give portability to the system.

Marketing Requirements:

1. Easy to use

2. Offers better treatment and use of arm

3. Adapts to needs

4. Able to collect data

5. Safe to use

6. Small and portable

7. Offers control for the therapist and patient

An Arduino Uno with an ATMega328p microcontroller was used for this project [7], as the designer was

most familiar with this microcontroller. The microcontroller could be used either with the Arduino

licensed GUI and the use of open source code, or by using Atmel studio to set the bits of registers within

the ATMega328p microcontroller to allow for more nuanced control and capabilities from the

microcontroller. For this project, the Arduino licensed GUI was used for simplicity. LabView was also

used late in the project’s design as a user interface, communicating to the Arduino via serial and USB.

Initially a python script tested a user interface, but LabView’s potential created a more approachable face

to the project. The inductive motor found in Figure 1 could not be found for this project, so a Frigelli L12

linear actuator was used instead.

7

Chapter 4 – Design and Results

The motor used in the original internship project and seen in Figure 1 could not be found in preparation

for this design. As a result, a Frigelli L12 linear actuator was used for this project. This actuator moves in

a linear motion and can be operated using a pulse width modulation (PWM) signal to control the position

of the actuator. This allows for a nice interface with a microcontroller, which can easily generate a PWM

signal while executing different processes. The dimensions of the actuator can be seen in Figure 3 below.

Figure 3: Firgelli L12 Linear Actuator Dimensions [8]

The Actuator in Figure 3 requires a PWM signal of 0 V - 5 V, 1 kHz square wave, where the duty cycle of

the waveform dictates the position of the actuator. The wiring of the actuator also allows for a current

input or RC input, however these control methods were not used. The product also features a position

feedback signal, which is useful for giving feedback to the microcontroller on the state of the actuator.

The Actuator also needed a 12 V supply. The table in Figure 4 below outlines this wiring scheme with a

picture of the actuator wires as reference.

8

Figure 4: Firgelli L12 Linear Actuator Wiring [8]

Different duty cycles of a 0-5 V, 1 kHz square wave were inputted to characterize the control of the

actuator, and what length or extension of the actuator correlates to what duty cycle. Roughly half of the

reach of the actuator is achieved when a 50% duty cycle square wave is inputted. A near 0% duty cycle

fully retracts the actuator, and a near 100 % duty cycle fully extends the actuator. The actual PWM signal

generated by the microcontroller uses a built in 8-bit timer, and as such the microcontroller does not

generate a waveform at exactly 1 kHz, or at an exact duty cycle, but the actuator still operates adequately,

implying some room for error that the actuator can sense. Some examples of the PWM signal that drives

the actuator can be seen in Figures 5 - 7 below.

Figure 5: 0 % Duty Cycle Output

9

Figure 6: 50 % Duty Cycle Output

Figure 7: 100 % Duty Cycle Output

Each waveform in Figures 5, 6, and 7 operate around 5 Vpp, with a maximum variance of 2.24 %. While

the 0 % duty cycle output in Figure 5 actually outputs a 0.39% duty cycle from the microcontroller;

however this still fully retracts the linear actuator. The duty cycles in Figures 6 and 7 are much more

accurate; however the frequency of the signal is at 976.32 Hz, 2.425 % off from the desired 1 kHz. Again,

10

the error discussed is due to the limited capabilities of the microcontroller, but the actuator still operates

under these conditions.

While the actuator moves and reaches its ending position, the actuator often adjusts itself a bit at the end,

overshooting and undershooting a bit before completely stopping, somewhat similar to a response found

in an underdamped or PID controller step response. Such phenomena can be sporadic and random

depending on how the actuator moves, and the only way to avoid it totally is to have the actuator

constantly move. The full reach of the actuator is 4.25”, outlined with a ruler below in Figure 8 for

reference.

Figure 8: Actuator Length

The position feedback signal (wire 3 in Figure 4) was then measured and compared with the PWM input

to outline the functionality of the actuator. This data can be seen in Table 2 and Figure 9 below.

11

Table 2: Linear Actuator Position Feedback

PWM input (%duty cycle) Position feedback (V)

1 3.2784

5 3.1422

10 2.9766

15 2.8371

20 2.6648

25 2.4938

30 2.3253

35 2.17

40 1.9975

45 1.8207

50 1.663

55 1.4859

60 1.3511

65 1.1833

70 1.0209

75 0.83583

80 0.66558

85 0.51167

90 0.35525

95 0.17196

Figure 9: Firgelli L12 Linear Actuator Characterization

As seen in Figure 9, the position feedback signal has an inverse, near linear relationship with the PWM

duty cycle. This feedback also works at a maximum of 3.3 V, which is convenient for interfacing with a

y = -0.033x + 3.3163

R² = 0.9999

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

P
o
si

ti
o
n

 F
e
e
d

b
a

c
k

 (
V

)

Duty Cycle (percent)

Linear Actuator Characterization

12

microcontroller. The actuator requires a 12 V supply to operate, however this does not have an easy

battery equivalent, which was an initial specification in Table 1. The actuator also has a peak current draw

of about 150 mA, with an average of 100 mA current draw when the actuator moves. While the 12 V

requirement can be achieved with two 9 V batteries in series (such as a MN1604 Duracell battery),

stepped down to 12 V (via a resistor divider or buck converter), the required current draw is a more

prominent limitation of battery capabilities. As such, the linear actuator was found to only work with a

separate DC power supply that was able to supply the required current, with typical batteries unable to

adequately power the device.

One drawback about using a linear actuator is that a patient cannot grab on the arm of the actuator and

pull to make it move. Not only does the actuator not have an apparatus to grab onto, but the actuator arm

itself is stiff and won’t move until it is dictated to do so by the PWM signal. As such, the device needs an

apparatus for the patient to grab onto. This can be done by attaching a sliding potentiometer or linear

transducer to the actuator. If a patient pulls on this, the signal generated can be used to tell the

microcontroller that the patient is initiating a movement, and that the linear actuator should start moving.

For this project, the sliding potentiometer was also attached to a piece of wood so it could move across a

table or flat surface. Because the actuator has to push against a piece of wood and a human hand, it needs

a heavier material to push back against, such that the potentiometer and actuator arm adequately moves.

Thus a larger piece of wood was used for behind the actuator. This kind of potentiometer setup can be

seen in Figure 10 below.

Figure 10: Linear Actuator with Potentiometer Setup.

With the linear actuator, potentiometer, and microcontroller usage outlined, a block diagram of the whole

device setup can be seen in the block diagram in Figure 11 below.

Spring for

resistance and

default position

Wood block to weigh

potentiometer down and to slide

across table Signal wires sent to

microcontroller

13

Figure 11: Device Block Diagram

Figure 11 showcases the wiring diagram of the device. The Arduino microcontroller acts as the

centerpiece of the design, as it does most of the measuring and processing, with most inputs and outputs

of each subsystem leading to or from the Arduino. The linear actuator requires a 12 V supply, with its

ground pin attached to the ground pin of the Arduino, such that it can interface with the internal voltage

levels of the Arduino. The potentiometer uses the 5 V supply and other ground pin of the Arduino to

power it, and its position feedback signal is driven back to the A0-analog input pin of the Arduino.

Similarly, the position feedback of the linear actuator is attached to the A1-analog input pin of the

Arduino. These are labeled pos feedback and arm_pos feedback on Figure 7, which correlates with the

variables in the Arduino code they represent. The digital pin 3 of the Arduino acts as the PWM control for

the linear actuator. Lastly, the Arduino is powered via a USB cord, which connects to an external CPU.

This USB also communicates to the CPU via serial, with the CPU running LabView as a user interface

for the whole device and as a way to collect data. A picture of the testing setup similar to the diagram in

Figure 7 can be seen in Figure 12 below.

14

Figure 12: Device Wiring

Figure 13: Full Device

While Figure 12 showcases the wiring similar to Figure 11, Figure 13 shows the computer connected via

USB, and also includes a small PCB board used for the 12 V source. This PCB can be seen in more detail

in Figure 14 below.

Linear Actuator

Potentiometer

Arduino

External CPU

USB to

External CPU

Power Board

Linear Actuator

Large Wood Block to

weigh down Actuator

Potentiometer

Arduino

15

Figure 14: Power Board

The board in Figure 14 takes the 12 V supply and splits up the ground node, with one wire going to the

ground wire of the linear actuator (wire 6 in Figure 4), and the other going to the ground pin of the

Arduino. This is done to ensure both devices use the same ground node, so they can properly interface.

The positive rail also goes to the linear actuator (wire 5 in Figure 4).

With the linear actuator characterized, and the actuator movement planned, the state machine that runs the

training algorithm was created. Through a series of testing the Arduino’s capabilities in driving the linear

actuator, and building of the original state machine in Figure 2, the resulting state machine can be seen

below in Figure 15.

Figure 15: Device State Machine

16

Similar to the original state machine in Figure 2, State 1 in Figure 15 represents a rest state, insuring the

linear actuator does not move until the patient initiates a movement. Once a movement is initiated, the

machine moves into State 2, which has two sub-states. State 2 represents the machine during a trial, where

the patient needs to continuously move the potentiometer in order to move the actuator. If the maximum

time set for a trial passes, or if a trial is deemed successful, then the machine will return to State 1 and the

linear actuator will return to its initial position. Within State 2, the machine will alternate between two

states, 2a and 2b. 2a initiates a movement of the linear actuator if the patient adequately preforms a

movement, and 2b waits until the linear actuator reaches its desired position before it moves again, to

prevent the actuator from stalling. This effectively creates steps of movement in the actuator until a trial is

successful. These steps can help dictate the difficulty of a trial, if more steps are required before the

actuator fully extends, the task is more difficult.

To illustrate the function of the state machine above, and how it relates to the actual movement of the

device, Figure 16 below outlines the process the state machine in Figure 15, with arrows indicating the

movement of the potentiometer or actuator.

17

Figure 16: Trial process

1. Patient at rest, with hand

on potentiometer

2. Patient moves potentiometer,

sending signal to Microcontroller

3. Once signal is past certain threshold,

linear actuator begins to move, moving

patient’s arm

4. Patient repeats process until actuator

fully extends

5. If patient completes task or time runs

out, actuator retracts

18

In conjunction with the State machine detailed above in Figure 13 and 14, different difficulty levels can

be introduced in order to give some utility to the device. The patient or therapist gives initial inputs that

affect certain variables within the state machine that alters its function. Difficulty levels alter the threshold

that the potentiometer needs to move to move the actuator, such as in step 2 and 3. They also alter how far

the linear actuator moves whenever a potentiometer threshold is reached, such as in steps 3 and 4. These

values also adapt depending on how well the patient does throughout a trial. More detail into how much

difficulty changes and what its effect will be discussed while explaining the microcontroller code.

One might notice that the patient only has to move their thumb on the potentiometer in order to move the

actuator.

Table 3 below outlines the variables used in the Arduino code to execute the State machine and data

collection. This Table can be used as a reference for the discussion on the programming of the state

machine, in order to keep track of the amount of variables used when discussing the code.

19

Table 3: Variables in Arduino Code

Variable Type Function

pos int Reads patient input position. Fed into A0 pin of on-board ADC.

Possible values 0-1023; 5 V max.

arm_pos int Linear Actuator position feedback. Fed into A1 pin of on-board

ADC. Possible values: 0-680; 3.3 V max. Has inverse relationship
as seen in Figure 5.

pull_dist double Holds minimum pull distance that the patient has to pull in order to

move the actuator. Compared to pos variable; 1023 max.

pull_dist_max double Holds the maximum pull distance allowed, based on difficulty
level. Compared to pull_dist, 1023 max.

distance int Holds of the amount that the linear actuator moves per successful

pull. OCR2B uses this to act as the timer for the PWM; 255 max.

state int Holds the state number in order to which States as needed.

time unsigned long Uses the millis() function of the Arduino library to keep track of

time in milliseconds. Needs to be an unsigned long in order to hold

a large time value.

time_state int Holds the start time once a trial is initiated and State 1  State 2.

current_time int Compares time to time_start to track how long a trial is taking.

max_time int Compared to current_time to see if trial is taking too long.

difficulty int Has an inverse relationship with distance, where

distance = 255/difficulty; minimum value of 1.

diff_max int Compared to difficulty, holds the maximum value difficulty can be,

determined by the overall difficulty level (diff_level).

diff_level int Holds difficulty level initiated by patient or therapist, values 1-5.

stateflag int Shifts between States 2a and 2b within State 2. Either 0 or 1.

doitonce int Flag to make sure initial conditions are only instigated once.

ser int Decodes serial inputs dictated by the patient or therapist.

attempt int Tracks the amount of unsuccessful attempts a patient has with a

trial. Alters difficulty and pull_dist. Is reset once a successful trial

is completed.

With the major variables of the Arduino code cataloged in Table 3, the code itself will be discussed in

order to describe its function, and how it executes the state machine in Figure 15. The complete code can

be found in the appendix at the end of this paper. The python test code can also be found in the appendix

section. The first part of the Arduino code declares the variables outlined in Table 3 above, with their

respective variable types. After this, the initial void setup() function of the Arduino code is called, as

outlined in Figure 17 below.

20

Figure 17: void setup() Function

The first four lines within the void setup() of Figure 17 format the PWM output used for controlling the

linear actuator, on pin 3 of the Arduino. This is done by using one of the 8-bit timers on the

ATMega328p, and using the TCCR2A timer, and setting the OCR2B compare register, where its max

value of 255 corresponds with a 100% duty cycle [8]. OCR2B is initially set to 0 to fully retract the linear

actuator. The Serial.begin(9600) function initiates serial communication through the USB port at a rate of

9600 baud. The rest of the void setup() function sets some of the variables outlined in Table 3 to their

respective initial values for a trial, with commented explanations for each variable.

The void loop() function is then called and is the primary function used to run the device, as it repeats

itself over and over until the device is reset. The first step in this function is to measure some key values

that need to be constantly updated, and placing them at the beginning of the loop allows for that to occur

and to be used later on. This is outlined in Figure 18 below.

Figure 18: Initial Variables in void loop()

The pos, arm_pos, and time variables are the first to be updated in the void loop() as seen in Figure 18.

From here, the code decodes any serial inputs that dictate the initial conditions of a trial. This process will

be discussed later in the paper, however.

void setup() {

 pinMode(3, OUTPUT);

 pinMode(11, OUTPUT);

 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) | _BV(WGM20);

 TCCR2B = _BV(CS22);

 Serial.begin(9600);

 OCR2B = 0; // pin 3 PWM

 difficulty = 0; //"difficulty level", distance = 255/difficulty

 pull_dist = 205; //1023 = max 5 V, used to compare with pos

 state = 1; //state variable

 flag = 0; //flag to ensure actuator only moves once at a time

 attempt = 1; //tracks # of attempts

 max_time = 8000; //max time one can take w/ o doing anything in a trial (in milliseconds)

 pull_dist_max = 1023;

 diff_max = 30;

}

void loop() {

 pos = analogRead(A0); //A0 pin = patient position input , 1023 = max 5 V

 arm_pos = analogRead(A1); //A1 pin = actuator position feedback, 678 = max 3.3 V

 time = millis(); //measures time in milliseconds

21

State 1, as discussed in Figure 18 above, acts to hold the actuator still until the patient initiates a

movement. Once this happens, State 1 also sets the values that dictate the behavior of State 2. This

process and the code for State 1 can be seen in Figure 19 below.

Figure 19: State 1 Code

While the state variable in Figure 19 equals 1, the device is in State 1. During this state, the output

compare register OCR2B equals 0, resulting in a 0 % duty cycle PWM driving the linear actuator, fully

retracting it. Once the patient moves their arm to generate a voltage with the potentiometer (measured

with pos) at a large enough value (dictated by pull_dist), the trial effectively begins. The movement also

cannot initiate the actuator until it is fully retracted and arm_pos (showing the position of the actuator) is

equal or greater than 678 (at the 3.3 V of the actuator feedback signal). When the trial starts, the pull_dist

and difficulty values are increased, which increases the effective difficulty of the trial, as the distance a

patient needs to pull on the potentiometer increases, and the distance the linear actuator moves with each

pull decreases. This is also done at the beginning of a trial to increase the difficulty over the course of a

training session, as each time the patient begins a trial, it becomes harder. The difficulty can also be

diminished if the patient has difficulty, which will be covered later in the report. The time_start variable

is also set, keeping track of the starting time of the upcoming trial.

Once State 2 has been reached, it alternates between States 2a and 2b. State 2a increases the actuator

position once the patient preforms a successful movement, and State 2b insures the actuator reaches that

position to ensure the actuator does not stall. This is controlled with the flag variable within State 2. Also,

if the patient does not move within the max_time allowed while in State 2, the trial fails and the device

revers back to State 1. This process is outlined in the code in Figure 20 below.

//*****STATE 1

 if(state == 1){

 OCR2B = 0;

 flag = 0;

 if(pos > pull_dist && arm_pos >= 678){

 state = 2;

 time_start = time;

 pull_dist = pull_dist + 10;

 if(pull_dist > pull_dist_max){

 pull_dist = pull_dist_max;

 }

 difficulty = difficulty + 2;

 if(difficulty > diff_max){

 difficulty = diff_max;

 }

 distance = 255/difficulty; //how far actuator will move with each step

 }

 }

22

Figure 20: State 2 Unsuccessful Trial Code

When a trial is unsuccessful (when the max_time or time limit of a trial has been reached), an attempt

variable is increased to keep track of the number of times a patient unsuccessfully completes a trial. The

attempt variable is used to decrease the difficulty and pull_dist variables, effectively decreasing the

overall difficulty of future trials, depending on how long the patient has trouble with them. If the patient

fails many times in a row, this will significantly decrease the difficulty of the trials. The attempt variable

is also reset if the patient successfully completes a trial (shown later in the report). The code in Figure 21

below outlines the process behind States 2a and 2b.

Figure 21: State 2a and 2b Code

//*****STATE 2 (plus 3&4)

 else if (state == 2 || state == 3 || state == 4){

 current_time = time - time_start;

 if(current_time > max_time){ //unsuccessful trial

 state = 1;

 if(OCR2B < 250){

 difficulty = difficulty - 15*attempt;

 if(difficulty < 0){

 difficulty = 0;

 }

 pull_dist = pull_dist - 15*attempt;

 if(pull_dist < 50){

 pull_dist = 50;

 }

 attempt++;

 }

 }

 if((pos > pull_dist) && (flag == 0)){

 if(OCR2B + distance > 255){

 OCR2B = 255;

 }

 else{

 OCR2B = OCR2B + distance; //increase actuator length is pos met

 }

 time_start = time;

 flag = 1;

 state = 3;

 }

 else if((flag == 1)){

 if(difficulty >= 20 && arm_pos >= 670 && (710 - (679/255)*OCR2B) >= arm_pos){

 flag = 0;

 }

 else if((679 - (679/255)*OCR2B) >= arm_pos){

 flag = 0;

 }

 state=4;

 }

 if((OCR2B >= 250) && (arm_pos < 10)){ //successful trial

 state = 1;

23

While in State 2, State 2a is triggered when the patient pulls the potentiometer past the distance threshold

(pos > pull_dist), as seen in Figure 21. Doing so increases the OCR2B (increasing the linear actuator

position) and resets the time_start variable, resetting the amount of time the patient has to successfully

pull. The flag variable is also set, which moves the device to State 2b. While in State 2b, the device

predicts where the linear actuator will go based on the equation: 679 – (679/255)*OCR2B, and compares

this to its actual actuator position: arm_pos. Once arm_pos has reached its predicted position, flag is reset

and the device returns to State 2a. There is a potential glitch in this process, which occurs when the

distance value is too low (i.e. when difficulty is greater than or equal to 20) to make a movement occur

when the arm is fully retracted, effectively trapping the device in this state. This is curbed by altering the

equation in this situation (when the actuator is fully retracted, arm_pos > 678 and difficulty is >= 20),

which insures that the device does not get stuck in this state and will increase OCR2B until the device

moves. Once the device moves beyond its rest state, this glitch does not occur and the device behaves as

normal.

The last amount of code in State 2 determines if a trial is successful. This occurs when the position of the

actuator, arm_pos, fully extends (approaches 0), and the OCR2B register approaches 255 for a 100% duty

cycle. Once this happens, the device returns to State 1, and the attempt variable is reset as previously

mentioned. This process is outlined in Figure 22 below.

Figure 22: State 2 Successful Trial Code

The remaining Arduino code to be discussed details the data that is sent to and from the device via serial.

At the end of the void loop(), a series of Serial.print() functions are executed to send the noteworthy data

variables over the course of a trial. This is also useful for testing and observing how certain variables

change over a trial for debugging purposes. This process is outlined in the code in Figure 23 below.

Figure 23: Serial Transmitting Code

As previously stated, a python script initially read these variables and acted as a user interface. The script

prompted the user to enter the difficulty levels and general settings, before the script continuously read

the variables from serial, with the intention of compiling the data once a trial finished. This continuous

if((OCR2B >= 250) && (arm_pos < 10)){

//successful trial

 state = 1;

 attempt = 1;

 }

 Serial.print(time);

 Serial.print('\t');

 Serial.print(pos);

 Serial.print('\t');

 Serial.print(arm_pos);

 Serial.print('\t');

 Serial.print(difficulty);

 Serial.print('\n');

}

24

reading and printing of the variables gathered also allowed for effective debugging during the design

process. Eventually, LabView was used instead for a cleaner user interface and more options. Nonetheless

the test python script prompts and code can be seen in Figure 24 below for reference.

Figure 24: Python Test Code (Above) and User Prompts (Below)

Beyond receiving data from the Arduino from Figure 23, the LabView virtual instrument (vi) also acts as

the interface with the patient or therapist before initiating a trial. The front panel of the vi displays a

general and advanced tab. The general tab outlines basic controls and data collection for the potential

import serial

ser = serial.Serial('COM6', 9600,timeout=1)

ser.readline()

setup = input('Simple (1) or Advanced (2) Setting? (Enter 1 or 2): ')

if(setup == '1'):

 diff_level = input('Enter Overall Difficulty Level between 1 and 5, 1 = very easy, 5 = very

hard: ')

 ser.write(bytes([50]))

 ser.write(bytes([int(diff_level)]))

else:

 difficulty = input('Enter Starting Difficulty Level (integer between 1-50): ')

 ser.write(bytes([10]))

 ser.write(bytes([int(difficulty)]))

 pull_dist = input('Enter Max Pull Distance (integer out of 100%, e.g. enter 50 for 50%): ')

 ser.write(bytes([20]))

 ser.write(bytes([int(pull_dist)]))

 max_time = input('Enter Max Time for Trial (in seconds): ')

 ser.write(bytes([30]))

 ser.write(bytes([int(max_time)]))

try:

 while True:

 line = ser.readline()

 print(line)

except KeyboardInterrupt:

 ser.close()

25

patient or anyone wanting a quick trial. This includes setting the simple difficulty levels outlined below

and in Table 4, and whether or not to generate a text file. The general settings tab also displays the graphs

for the various variables collected throughout the previously run trial, and an LED labeled “program

running,” to alert the user when the program is on and running. These settings on the front panel can be

seen on Figure 25 below.

Figure 25: LabView Front Panel – General Settings

The simple difficulty levels vary from 1-5, with differences outlined in Table 4 below. Each level changes

the minimum and maximum values of the pull_dist (possible values 0-1023), difficulty (needs to be at

least 1), and max_time variables for a trial.

Table 4: Difficulty Levels

Difficulty Level Serial Letter pull_dist values difficulty values max_time value

1-“very easy” A 50-205 1-10 8 seconds

2-“easy” B 200-410 5-15 6 seconds

3-“normal” C 410-610 10-20 4 seconds

4-“hard” D 610-820 15-25 3 seconds

5-“very hard” E 820-1020 20-30 2 seconds

In order to coordinate the difficulty levels illustrated in Table 4 above, the LabView vi continuously

writes a letter to the Arduino via serial (as seen in the Serial Letter column in Table 4) that dictates the

desired difficulty level. The Arduino reads this letter in ASCII, so “A” appears as 65, and so on. The

reason for writing letters as a string instead of numbers is that the Arduino would often misinterpret

numbers or instead use the new line character and alter the variable’s value instead of keeping it constant.

Since the variables in Table 4 need to only be altered once: when the trial starts, and since the vi

26

continuously writes, the variable doitonce checks for the initial update of the variables required in

Table 4, and ensures the variables do not update anymore and deviate from the changes made throughout

the trial. The Arduino code for such reading and interpreting the difficulty levels can be seen in Figure 26

below.

Figure 26: Arduino Serial Transmitting Code

ser = Serial.read();

 //Overall Difficulty Level

 if(ser == 65 && doitonce == 0){ //Level 1, A

 pull_dist = 50;

 pull_dist_max = 205;

 difficulty = 2;

 diff_max = 10;

 max_time = 8000;

 doitonce = 1;

 }

 else if(ser == 66 && doitonce == 0){ //Level 2, B

 pull_dist = 200;

 pull_dist_max = 410;

 difficulty = 5;

 diff_max = 15;

 max_time = 6000;

 doitonce = 1;

 }

 else if(ser == 67 && doitonce == 0){ //Level 3, C

 pull_dist = 410;

 pull_dist_max = 610;

 difficulty = 10;

 diff_max = 20;

 max_time = 4000;

 doitonce == 1;

 }

 else if(ser == 68 && doitonce == 0){ //Level 4, D

 pull_dist = 610;

 pull_dist_max = 820;

 difficulty = 15;

 diff_max = 25;

 max_time = 3000;

 doitonce = 1;

 }

 else if (ser == 69 && doitonce == 0){ //Level 5, E

 pull_dist = 820;

 pull_dist_max = 1020;

 difficulty = 20;

 diff_max = 30;

 max_time = 2000;

 doitonce = 1;

 }

27

The LabView wiring diagram in Figures 28 and 29 below alters the LabView example “Continuous Serial

Write and Read.” The visa port settings are specified to open the serial port, and a while loop with two

case statements allowing for a continuous writing and reading of the serial port. The settings to open the

serial port are under the advanced settings tab in the vi’s front panel. The default values for these settings

usually work with the Arduino; however the USB port where the Arduino is attached to the computer

often needs to be specified. The advanced settings tab of the front panel and the serial communication

section of the vi’s wiring diagram described can be seen in Figures 27 - 29 below.

Figure 27: LabView Front Panel Advanced Settings Tab

Figure 28: LabView Wiring Diagram – Serial Port Initiation

28

Figure 29: LabView Wiring Diagram – Serial Write and Read

After the continuous serial write and read initiated from the LabView vi, and once the operator clicks the

STOP button on the front panel, the vi complies the data collected. The STOP button is also connected to

the LED on the front panel labeled “program running,” meaning when the STOP button is pressed, the

LED is turned off and the user is alerted that the program is no longer running. Of course the program

actually does continue to run to analyze the data, but this happens so quick the user will likely not notice

when the program actually stops. To compile the data, the vi first converts the long string response into a

workable array for data processing. The LabView example “Search String for Numbers” was altered to

search the long string response from the continuous write and read, find the numbers, and organize them

as an array, removing extra characters such as tabs and the ‘new line.’ This generates a 1D array of

values. This altered LabView example in the wiring diagram can be seen in Figure 30 below.

Figure 30: LabView Wiring Diagram – Search String for Numbers

29

Once the data is in a presentable array, the variables gathered need to be separated. Upon starting up, the

Arduino serial values often show random, unworkable values in the beginning, and these values need to

be filtered out. This is done by splitting the array where ‘1’ appears, which occurs once the Arduino’s

millis() function begins counting the time. If a ‘1’ appears when the Arduino starts up in the “random

junk” section, then this method will not work, however this event is unlikely. Figure 31 below outlines

the initial junk that appears in the serial communication and where the ‘1’ representing the start of the

trial is.

Figure 31: Initial Serial Data

Once the array is separated at the ‘1’, each variable is separated using the “Decimate Array” sub vi. This

sub vi separates every four variables, which coordinates with how the data was written to serial. Some of

the variables are then converted to workable units. The time variable is divided by 1000 to convert the

milliseconds to seconds. The pos is multiplied by
19

8184
, in order to convert the ADC analog reading

integer value to the distance the potentiometer moves in inches. This was found by noting that the

potentiometer moves 2 3/8” total, and that the ADC value varies 0-1023, thus dividing 2.375/1023 for a

conversion factor. The arm_pos variable is divided by -160 and added to 4.25, converting its ADC read

value to the amount of inches the actuator moves. The arm_pos is divided by a negative number as the

arm_pos as an inverse relationship between the distance moved and arm_pos value. And 4.25 is added as

the actuator moves 4.25” at most.

From here the data of each individual variable is bundled with time and graphed, with each variable given

its separate graph. These graphs are organized with a tab in the general settings on the front panel of the

vi. These variables could not appear on the same graph as the units and typical range of values are all too

different for them to be presentable on the same graph. While the tabs might be cumbersome to click

through in order to compare different variables at different times, separating them creates less clutter than

having four graphs next to each other.

The total distance moved for both the pos and arm_pos are calculated by integrating the data of each

value over time. This is done by first finding the mean of the differences in the time variable first. A for

loop uses a shift register to compile an array of the differences between each time data point, and the

mean is found from that array. This mean serves as the ‘dt’ input for the integration function, with both

the pos and arm_pos given their own function. The data analysis process can be seen in Figure 32 below,

including the separation of variables, conversion into workable units, graphing, and integrating.

30

Figure 32: LabView Wiring Diagram – Data Analysis

Generating a text file of the data collected requires the user to push a button on the general settings tab on

the front panel of the vi. Doing so activates the case structure in the wiring diagram that combines the

different variables back into one array, converts it into a string, and generates a text file from it. The file is

also given a title row with the name of each variable in the order they appear in each row. The case

statement of this process is outlined in the section of the wiring diagram in Figure 33 below, and an

example text file can be seen in Figure 34.

31

Figure 33: LabView Wiring Diagram –Text File Generation

Figure 34: Example Text File

32

Chapter 5 – Conclusions

The project has researched and identified the properties of past works, in order to properly identify the

potential of this project. The linear actuator used has been characterized in order to accurately design

around the new part. The state machine has been designed and detailed, with the stability of the linear

actuator guaranteed. A sliding potentiometer adds a way for the user to move the actuator, and having the

potentiometer mounted on a wood block gives the setup some stability. LabView replaced python as a

user interface, and adds more functionality and options to the user while keeping an approachable visual

presence. Table 5 below details the specifications of the final product, comparing it with the initial

specifications found in Table 1. The reasoning behind these specifications can also be found in Table 1.

33

Table 5: Stroke Therapy Device Final Results

Marketing

Requirements

Initial Engineering

Specifications
Final Result

1, 5 Should take less than 5 minutes to begin a

trial on average

Can take less than 5 minutes on average,

only depending on the speed of the

software (or CPU hardware) and find

comfortable position of device

2, 3 Increases the reaching motion length of

the average patient during a trial by at

least 10%

Has not been extensively studied, but can

increase movement by at least 10 %

5, 6 Powers supplied by Microcontroller

power source and/or 9 Volt battery

Voltage and Current draw too high for

typical 9 V battery, requires external 12 V

source

5, 6 Entire system weighs less than 20 lbs. Entire system (other than external CPU)

weighs around 5 lbs. maximum

1, 5, 6 The apparatus the patient moves weighs

less than 5 lbs.

The apparatus the patient moves weighs

around 1 lbs

1, 3, 4, 7 Reads distance of brace (in) and force (N)

applied or exerted and compiles data

within 1 min of a trial

Device reads distance of brace in inches,

force exerted is not read. Complies data in

on average less than a 1min of trial (time

depending on the length of the trial and

amount collected)

5, 7 Can turn off the system within 1second of

initiating stop

Gives safety measure for unforeseen events

during a trial

1, 7 Can alter initial conditions (max/min

variables, time of trial, difficulty level)

within 5 % accuracy

Each initial condition specified in Table 3

is altered within 5 % accuracy

6 At most 1’ X 3’ X 2’(when fully

extended)

When fully extended, the system is

10” X 18” X 2” (excluding wires and

external CPU)

Marketing Requirements:

1. Easy to use

2. Offers better treatment and use of arm

3. Adapts to needs

4. Able to collect data

5. Safe to use

6. Small and portable

7. Offers control for the therapist and patient

Comparing Table 5 to Table 1 demonstrates that the final product meets most of the initial requirements,

with the exception of the power consumption and measuring the force exerted by the patient and applied

to the patient via the actuator. These areas allow for the most amount of improvement.

34

Other Improvements on the project include adding more options through LabView, such as altering

individual variables, or generating an excel spreadsheet with data. An indication for when the linear

actuator retracts, such as an LED, can tell the patient when the device reverts to State 1 and the patient

can’t move the device. Bugs in the LabView data collection also needs to be solved. Above all else, the

effectiveness of this device via human trials should occur to test the validity of the device. Even if the

device is not as successful as it could be, the concepts behind this paper may prove useful as a discussion

around the design considerations of robotically assisted therapy.

35

References

[1] Wikipedia, “Stroke”, 2015. [Online]. Available: https://en.wikipedia.org/wiki/Stroke. [Accessed: 19-

Oct- 2015].

[2] S.-C. Yeh et al, “Evaluation Approach for Post-stroke Rehabilitation Via Virtual reality Aided Motor

Training”, M.J. Dainoff , Ergonomics and Health Aspects, pp. 378–387, 2007.

[3] M. Holden et al, “Telerehabilitation Using a Virtual Environment Improves Upper Extremity Function

in Patients With Stroke”, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 1, pp. 36-42, 2007.

[4] D. Reinkensmeyer et al, "A Pneumatic Robot for Re-Training Arm Movement after Stroke: Rationale

and Mechanical Design", Proc. IEEE 9th Int. Conference on Rehabilitation Robotics. pp. 500-504, 2005.

[5] D. Reinkensmeyer et al, “Web-based telerehabilitation for the upper extremity after stroke”, IEEE

Trans. Neural Syst. Rehabil. Eng., vol. 10, no. 2, pp. 102-108, 2002.

[6] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-Hill, 2007, p. 37

[7] 8-bit Atmel Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash, Atmel Co., San

Jose, CA, 2011.

[8] Linear Motion Series: L12, Firgelli Technologies Inc., Victoria, BC, Canada, 2008.

[9] “Wobbling interface e.g. Steward platform or Hexapod,” U.S. Patent A61H 2001/0207, January 2013.

[10] Griffith University, "Average computer energy usage." [Online]. Available:

https://www.griffith.edu.au/sustainability/sustainable-campuses/sustainable-initiatives/energy/average-

computer-energy-usage [Accessed: 25- May- 2016].

[11] IEEE, “IEEE Code of Ethics”, 2015. [Online]. Available:

http://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: 31- Oct- 2015].

[12] J. Rawls, “A Theory of Justice,” Rev. ed. Cambridge, MA: Harvard University Press, 1999.

36

Appendix A. Programming Code

Arduino Code:

int pos;

int arm_pos;

double pull_dist;

double pull_dist_max;

int state;

unsigned long time;

int time_start;

int current_time;

int distance;

int difficulty;

int diff_max;

int diff_level;

int stateflag;

int attempt;

int ser;

int max_time;

int doitonce;

void setup() {

 pinMode(3, OUTPUT);

 pinMode(11, OUTPUT);

 TCCR2A = _BV(COM2A1) | _BV(COM2B1) | _BV(WGM21) | _BV(WGM20);

 TCCR2B = _BV(CS22);

 Serial.begin(9600);

 OCR2B = 0; // pin 3 PWM

 difficulty = 0; //"difficulty level", distance = 255/difficulty

 pull_dist = 205; //1023 = max 5 V, used to compare with pos

 state = 1; //state variable

 stateflag = 0; //flag to ensure actuator only moves once at a time

 attempt = 1; //tracks # of attempts

 max_time = 8000; //max time one can take w/ o doing anything in a trial (in

milliseconds)

 pull_dist_max = 1023;

 diff_max = 30;

 doitonce = 0;

}

void loop() {

 pos = analogRead(A0); //A0 pin = patient position input , 1023 = max 5 V

 arm_pos = analogRead(A1); //A1 pin = actuator position feedback, 670 = max

3.3 V

 time = abs(millis()); //measures time in milliseconds

 ser = Serial.read();

 //Overall Difficulty Level

 if(ser == 65 && doitonce == 0){ //Level 1, A

 pull_dist = 50;

 pull_dist_max = 205;

37

 difficulty = 2;

 diff_max = 10;

 max_time = 8000;

 doitonce = 1;

 }

 else if(ser == 66 && doitonce == 0){ //Level 2, B

 pull_dist = 200;

 pull_dist_max = 410;

 difficulty = 5;

 diff_max = 15;

 max_time = 6000;

 doitonce = 1;

 }

 else if(ser == 67 && doitonce == 0){ //Level 3, C

 pull_dist = 410;

 pull_dist_max = 610;

 difficulty = 10;

 diff_max = 20;

 max_time = 4000;

 doitonce == 1;

 }

 else if(ser == 68 && doitonce == 0){ //Level 4, D

 pull_dist = 610;

 pull_dist_max = 820;

 difficulty = 15;

 diff_max = 25;

 max_time = 3000;

 doitonce = 1;

 }

 else if (ser == 69 && doitonce == 0){ //Level 5, E

 pull_dist = 820;

 pull_dist_max = 1020;

 difficulty = 20;

 diff_max = 30;

 max_time = 2000;

 doitonce = 1;

 }

 //*****STATE 1

 if(state == 1){

 OCR2B = 0;

 stateflag = 0;

 if(pos > pull_dist && arm_pos >= 678){

 state = 2;

 time_start = time;

 pull_dist = pull_dist + 10;

 if(pull_dist > pull_dist_max){

 pull_dist = pull_dist_max;

 }

 difficulty = difficulty + 2;

 if(difficulty > diff_max){

 difficulty = diff_max;

 }

 distance = 255/difficulty; //how far actuator will move with each step

 }

 }

38

 //*****STATE 2 (plus 3&4)

 else if (state == 2 || state == 3 || state == 4){

 current_time = time - time_start;

 if(current_time > max_time){ //unsuccessful trial

 state = 1;

 if(OCR2B < 250){

 difficulty = difficulty - 15*attempt;

 if(difficulty < 0){

 difficulty = 0;

 }

 pull_dist = pull_dist - 15*attempt;

 if(pull_dist < 50){

 pull_dist = 50;

 }

 attempt++;

 }

 }

 if((pos > pull_dist) && (stateflag == 0)){

 if(OCR2B + distance > 255){

 OCR2B = 255;

 }

 else{

 OCR2B = OCR2B + distance; //increase actuator length is pos met

 }

 time_start = time;

 stateflag = 1;

 state = 3;

 }

 else if((stateflag == 1)){

 if(difficulty >= 20 && arm_pos >= 670 && (710 - (679/255)*OCR2B) >=

arm_pos){ //fix for glitch with getting actuator to move at higher

difficulty

 stateflag = 0;

 }

 else if((679 - (679/255)*OCR2B) >= arm_pos){ //making sure actuator

reaches destination

 stateflag = 0;

 }

 state=4;

 }

 if((OCR2B >= 250) && (arm_pos < 10)){ //successful trial

 state = 1;

 attempt = 1;

 }

 }

 Serial.print(time);

 Serial.print('\t');

 Serial.print(pos);

 Serial.print('\t');

 Serial.print(arm_pos);

39

 Serial.print('\t');

 Serial.print(difficulty);

 Serial.print('\n');

}

Python Code:

import serial

ser = serial.Serial('COM6', 9600,timeout=1)

ser.readline()

setup = input('Simple (1) or Advanced (2) Setting? (Enter 1 or 2): ')

if(setup == '1'):

 diff_level = input('Enter Overall Difficulty Level between 1 and 5, 1 =

very easy, 5 = very hard: ')

 ser.write(bytes([50]))

 ser.write(bytes([int(diff_level)]))

else:

 difficulty = input('Enter Starting Difficulty Level (integer between 1-

50): ')

 ser.write(bytes([10]))

 ser.write(bytes([int(difficulty)]))

 pull_dist = input('Enter Max Pull Distance (integer out of 100%, e.g.

enter 50 for 50%): ')

 ser.write(bytes([20]))

 ser.write(bytes([int(pull_dist)]))

 max_time = input('Enter Max Time for Trial (in seconds): ')

 ser.write(bytes([30]))

 ser.write(bytes([int(max_time*1000)]))

try:

 while True:

 line = ser.readline()

 print(line)

except KeyboardInterrupt:

 ser.close()

40

Appendix B. ABET Senior Project Analysis

1. Summary of Functional Requirements

The project allows stroke patients or people who cannot move their arm during physical therapy to move
their arm more effectively using an apparatus to train their arm for rehabilitation. The system offers a

more full use of the arm than traditional physical therapy, as well as adapting to the needs of the patients.

Trials increase in difficultly over time, but still become easier if the patient has trouble. Physical

therapists control the general difficulty before starting a trial, and gather data during a trial for future use.
The device also offers safety, portability, and easy use.

2. Primary Constraints

Finding a proper motor system that would provide a linear movement for the device provided the first

major hurdle of the design process. The motor in the original internship project could not be found in a

timely fashion, so a substitute had to be found and characterized to fully understand and design around its
performance. Creating a compact system also caused issues in deciding parts and limiting the power and

scope of the hardware involved. Buying and shipping these parts within the timeline and time constraints

of the Cal Poly quarter system also limited the scope of the project. The design of a training algorithm to
effectively address the needs of the patient proved to be the most significant challenge of this project. Not

only did this process take the most amount of time to design and test, but it also affected and dictated the

function of the rest of the device. For instance scalping the user interface required knowledge of the
training algorithm and device capabilities. An initial plan for the user interface was also abandoned during

the design process once a preferable substitute was found, but this did not cause much difficulty as there

was a good amount of time left.

3. Economic

The human capital of this project includes the design engineers, and those who would benefit most from
the system, such as patients, physical therapists, and researchers. Their knowledge, findings, and desires

drive the design for this project, and ultimately decide the practicality and longevity of the project into the

future. The manufacturing personnel who provided the parts for the project also contribute to the human
capital. The various components this project requires make up the main cost of the project, since labor

costs do not add to the overall cost. The financially involved also include the companies and

manufacturers who supply these parts. Any profitability of the project can lead to an increase in

production for the product, which results in profitability for the manufacturers. The shipping companies
and their resulting costs also contribute. The microcontroller, linear actuator, wires, wood blocks, and the

external computer to run the user interface software for the apparatus make up the manufactured capital.

All of these use the Earth’s resources in varying degrees. The power requirements of the system also
consume Earthly resources. The system uses a DC power supply, which has its own environmental and

economic concerns surrounding their fabrication, resources, efficiency, and disposal. The farming and

mining of these Earthly resources have an effect on the environment and species where these materials

reside. Changes in these areas can affect how much or how sustainable each material is.

Most of the costs of this project accumulate during the design process. Purchasing and shipping parts

requires time and money, and additional parts accumulated throughout the design process. The companies
involved in manufacturing and shipping the parts have their own costs during this process. The benefits of

the project do not occur until the project nears completion. If certain organizations wish to use the project

for their own benefit or research, then some income for the project will accumulate.

41

The inputs of the project include the labor and time costs of the design process, the manufacturing and

parts costs, the documentation, and upkeep of the project. The costs estimates can be seen in Table 6
below, with the exclusion of monetary labor costs. Table 6 uses following equation in Ford and Coulston

for the Expected cost.

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 =
𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑡𝑖𝑐 𝑇𝑖𝑚𝑒+4×𝑅𝑒𝑎𝑙𝑖𝑠𝑡𝑖𝑐 𝑇𝑖𝑚𝑒+𝑃𝑒𝑠𝑖𝑚𝑖𝑠𝑠𝑡𝑖𝑐 𝑇𝑖𝑚𝑒

6
 [6]

Table 6: Initial Cost Estimation
Part Optimistic Cost ($) Realistic Cost ($) Pessimistic Cost ($) Expected Cost ($)

Electric Motor 10 50 100 51.67

Arm Brace 20 50 80 50

Wheels 5 20 50 22.5

Casings 20 50 150 61.67

Total Cost ($) 185.84

The actual cost accumulated over the project can be seen in Table 7 below.

Table 7: Final Cost

Part Cost ($)

Linear Actuator 110.54

Potentiometer 9.80

Wire 10.79

PCB 2.69

Wood Blocks Free (Scrap)

Total Cost 133.82

Comparing Table 6 to Table 7, the initial cost estimate came to $185.84, and the actual cost for the
finished product came to $133.82. This ignores the cost of the microcontroller, which the designer already

had before the project began, but whose cost is around $25. This make the total cost of the project around

$158.82. The engineers designing and testing the project handle the major costs of the project during the
initial design process. The design process required various kinds of equipment, such as DC power

supplies, multimeters, and oscilloscopes. Since the design process occurred at Cal Poly San Luis Obispo,

where these devices are readily available, they did not add any additional costs.

How much the product earns relies on how the product is sold, which is discussed more in the next

section. However, if sold at the $250 rate, with the $158.82 production cost, and with an estimated 100

units sold annually, the net profit would yield $9,118. The designer, therapist or research companies that
endorse this product would profit.

Products can emerge late into the design process, if human testing takes place during the design process to
receive feedback on the project’s functionality. Operation costs would come in the form of power

requirements, for both the device and computer required to run the user interface. Maintenance may need

to occur for the wood blocks that weigh down the linear actuator and potentiometer, The LabView
protocol could potentially be updated, or have later installments. Replacement parts for the actuator,

potentiometer, or even microcontroller may also require consideration. The design process for this project

42

was influenced by the Cal Poly quarter system, nonetheless the expected development time and tasks can

be seen in the Gantt chart in Figure 35 below, with the actual timeline in Figure 36.

Figure 35: Expected Timeline Gantt Chart

Figure 36: Actual Timeline Gantt Chart

43

Comparing Figure 35 to Figure 36, the work in EE 461 focused primarily around finding and

characterizing the linear actuator, as well as going through two design/build/test cycles to optimize the
training algorithm and the programming of the microcontroller. Two reports were also required in EE 461

in Figure 36, not one in Figure 35. EE 462 was mostly spent around the user interface and finishing the

loose ends of the project.

After the project ends, the report goes into the digital commons of the Cal Poly library, to be seen by

future students for reference or to inspire their future projects. Cal Poly will also have access to the

software and programs used for this design. If researchers or therapists find the project and deem it
worthy to get a hold of a prototype or seek out and invest in similar projects, then the lifespan of this

project or similar projects will persist.

4. If Manufactured on a Commercial Basis

If this project becomes available on a commercial basis, then the main customers of the project as

outlined previously are the main beneficiaries. If the project receives support from organizations for
research or to further this project or similar projects, then this anticipation may occur sooner. However,

only a few organizations may initially consider giving projects like this support, even if the project is

considered product ready. As such, the projected number of devices sold per year expects around 100
initially. This project may also inspire future similar projects and products to appear, if successful. Since

little specific patents on stroke therapy of this nature currently exist, this stands as a greater potential

market [9].

Since the individual components of the project come from their respective manufacturers, the components

continued presence in the market allows for the continuation of this project. From these components, the

manufactured cost came out to $133.82 at the end of the design process. Because this requires acquiring
the rights from the companies who manufactured these parts, designing and reverse engineering these

parts for a commercial basis seems like a more viable solution to reduce the cost per unit. With the

manufactured cost above, however, and with the few amount of products sold, the cost of each individual
device would likely fall in the $250 range, resulting in a net annual profit of:

($250 – $158.82) × 100 units = $9,118.

The power required to work the device determines the cost for the user to operate the device. Both a DC
12 V supply and external computer (which the user is likely to already have) are required. Thus the cost to

operate the device comes from the cost used to power these instruments. With the average power

consumption of the project estimated at 0.12 W (from 12 V and 100 mA draw) and the average power

consumption of a computer being 130 W [10], and for a time interval of an hour a day, three days a week,
for a total three hours, the energy usage comes to 0.39036 kWh per week or 1.5624 kWh per month. The

actual cost to run, would therefore be determined by the user’s cost of power in their home.

5. Environmental

The environmental manufacturing costs mainly come from the companies who design and manufacture
the parts needed for the project. The IC’s and PCB’s used to create the microcontroller and inner

workings of the linear actuator require raw materials such as silicon and packaging materials, causing an

environmental concern for the manufacturers. The material used for the linear actuator arm also has its

own manufacturing environmental concerns based on the eventual material used. The actual resources and
specific environments and species affected become difficult to determine as they vary between the

companies involved. Shipping costs and transportation fuel also affect the environment based on the

companies, locations, and vehicles used for these steps. The wood blocks require the wood from trees,
which can affect the environment and various species through deforestation. The power the system

44

requires causes the main environmental concern as the project requires power during and after the design

process. Originally power outlets, function generators, computers, and oscilloscopes that need wall outlets
for the design and testing process consume power. The power each of the tools use and their

environmental concerns from the power companies involved supplement the interests for this project.

With most of the testing occurring at Cal Poly San Luis Obispo, both the university and PG&E become

responsible for these costs.

After the design process, the project requires similar power needs. The 12 V supply for the linear actuator

could come from an external DC supply, or a 12 V battery that would supply adequate amount of current
levels. Both cases require more raw materials and chemicals to construct, and each has different energy

efficiencies and performance levels which affect the longevity and sustainability of the supply. Each

addition of new materials required affects the environments and surrounding species that supply these
resources. All of the concerns raised ultimately harm the environment, as most deplete Earthly resources

and offer little sustainability. The wood blocks used to mount the device can be a sustainable resource, if

farmed properly.

6. Manufacturability

The manufacturing issues derived mainly from the companies who manufacture the components for the
project. Since the companies sell these products on a commercial basis, as long as they are on the market,

most of the manufacturing planning and sustainability concerns are of secondary. Choosing the right

components to fit within the dimensions specified in Table 1 offered some concern. The wood blocks
used came from a scrap pile of a local mill, but the criteria to choose them relied on their weight, and

potential friction on a table or flat surface.

7. Sustainability

Since the project mostly consists of components from various companies, as long as these products, or

similar products, are on the market, the project could continue to be produced and allow for replacement
parts. Reverse engineering or designing original components that offer similar functionality may be a

viable route to defend against these components going out of sale. It also offers a more thorough

understanding on how these components work, and how to properly debug or address issues in the design.

Currently the device is fairly durable with its individual components; however wear may affect the wood
blocks used for the potentiometer and to weigh down the linear actuator, such that they may require

replacements. The sliding potentiometer also sees a fair amount of human interaction, and is thus more

likely to break and require a replacement.

Since the project mostly consists of components from various companies, the sustainability of the project

depends on the materials that make up these components. If each material used does not offer sustainable
production, it hampers the overall sustainability. Currently most of the materials used are raw materials

with limited Earthly resources. The power and size concerns of the design process affect the sustainability

of the project. The project is portable, and thus fairly small and able to fit on a desk, but the current size

may not be an economic use of resources. The power limitations may hamper the sustainability of the
project if the sources used are not sustainable. The supply required to run the external CPU may use

inefficient or non-sustainable methods, depending on the utility company or sources used.

Improvements can be made in creating more efficient power usage, and determining a 12 V supply that

operates on an efficient and sustainable manner. More research can be made into the different components

that make up the system, and whether a more sustainable option is present. Reverse engineering the
various components required would also allow for preferable upgrades, however doing so may be costly.

45

8. Ethical

According the IEEE Code of Ethics [11], this system ensures that the health and safety of those using the

system falls under the concerns of the main designer. Exaggeration of the findings and effectiveness of

the system or mishandling information in order to give the project more notoriety does not occur during
the production of this project. No bribery affects the development of the project. No discrimination of

different customs, cultures, or orientations inherently exists with the project, and assistance from

colleagues occurred when relevant.

Using Rawls’ Contractarianism [12], this project upholds equal liberty as its intention does not

discriminate against anyone. Stroke patients that the project seeks to aid get the most out of the project
capabilities, however. Limitations may occur based on the society this product enters and how well

received the project or similar projects become in the medical community. These limits may include the

prescription, insurance availability, or limited researchers or therapists who use the device. Individual

economic status may also affect who can use the device. In practicality, not everyone has the most
immediate access to the project initially, but in theory, the project does not inherently discriminate against

anyone in its design. Since the project helps people move their affected arm more effectively, the project

gives people a better chance to advance in society. It more accurately addresses the disparaging rights of
people affected by stroke or equivalent by offering differing or more effective treatment. If this project (or

similar projects) does not succeed, it could distract research and treatment away from more viable

solutions, affectively jeopardizing the opportunity of the individuals who need it. The inequalities of the
least advantaged in society are not given much more flexibility with this project beyond the groups it

directly affects. As stated before, the project can give people more opportunity with effective treatment,

which improves the lesser advantaged in society, but it is not an absolute solution to the difference

principle. Many of the facets of fairness and inequality this project creates depend on the society the
project integrates to. The project does not seek to change any of those tenants, but instead change the

lifestyle of those who benefit and engage with the product.

9. Health and Safety

Providing better health defines the essence of this project, and the health and safety implications of the

project guide every facet. The project potentially gives the recipients movement they might never have
again, and allowing them to do so acts as this project’s top priority. As such, the project aims to help the

customers’ well-being than harm. And since the project has the customers act physically during their

participation, the potential harm to their arm becomes a main concern. Economically, the product sells
with these factors as marketing principles. Thus the health and safety concerns affect the design,

manufacturing, and economic facets of the system and permeates its purpose for existing.

10. Social and Political

The stakeholders of this project include the patients, therapists, researchers, and engineers involved. The
medical community and any political party that backs such treatment potentially benefits from the project.

More notoriety may also be given to stroke treatment and potentially more compelling research. The

project could also negatively affect these institutions if the product offers questionable performance.
Public reception also dictates the longevity, lasting impact, and reputation of those involved. Physical

therapists might become more obsolete if this kind of treatment becomes effective and more widespread.

If the stroke therapy from this device succeeds, then drug and pharmaceutical companies potentially acts
as competition or their medicine becomes outdated. Welfare and insurance companies may be affected by

the device as they either endorse or deny such treatment. Limited patents for such products currently exist

46

[6], and if an increase in the number patents for this brand of therapy occurs it could prove more

complicated for different products to arise and for other parties to get involved. Patients with certain
conditions benefit most from the functionality of the project, and physical therapy may not be as adequate

a treatment for some. Depending on potential insurance costs, customers may even be locked out of this

kind of treatment. Thus this project favors those with a more steady income. Some knowledge of

computers and running software is also required to run the device, thus those living in more First World
countries who more readily have that kind of knowledge may benefit more.

11. Development

This project allowed for the exploration of many facets surrounding the design and development of a

functional product, while building upon an unfinished project from an internship. Research into the
design process and what it entailed began early into the planning of the project [6]. This also required

investigation into therapy techniques and data gathering in order to accurately address and identify

customer needs [2-5]. Finding and characterizing components also allowed for a more detailed probing

and deciphering of datasheets [7], [8]. The project also allowed for the consideration of additional
elements of a product, such as aesthetics, which are not often considered in hardware and circuit based

design. Thorough documentation proved valuable as a skill during the design process.

