
Senior Project:

SOLAR-POWERED HOT TUB

Designed by:

Jonathan Peterson and Anthony Zepeda

Advised by:

Dr. Ali Shaban

May 29, 2016

Electrical Engineering Department

California Polytechnic State University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/77510582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

TABLE OF CONTENTS

TABLE OF CONTENTS ii

TABLE OF FIGURES iii

TABLE OF TABLES v

ABSTRACT vi

1. INTRODUCTION 1

2. BACKGROUND 4

3. DESIGN 5

4. CONSTRUCTION 19

5. DATA 39

6. ANALYSIS 50

7. CONCLUSION 55

8. FUTURE WORK 57

APPENDIX A: DIVISION OF LABOR 60

APPENDIX B: SCHEDULE 61

APPENDIX C: COST ANALYSIS 63

APPENDIX D: BILL OF MATERIALS 64

APPENDIX E: ANALYSIS OF SENIOR PROJECT DESIGN 65

APPENDIX F: USER-INTERFACE SOURCE CODE 68

APPENDIX G: MATLAB SCRIPT FOR ENERGY CALCULATIONS

APPENDIX H: WORKS CITED

93

95

https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2yatf9uu80zk
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2yatf9uu80zk
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2yatf9uu80zk
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2yatf9uu80zk
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.el9sdqokor39
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.shnqozv4teb1
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.lq9nd82hlp0d
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.1xy56g3yrqk
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.o9nilvmau3u8
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2bpcdjegai4v
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.tl9eymizlllk
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.tjlg9abwew56
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2vfz3uenn1re
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.8mhz2eygcp3l
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.xrquqa59whoc
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.e9xk9wrfmjaa
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.w74spjj4j8ox
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.gy4939l5mh7u
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.5qtwg3nfpdcj

 iii

TABLE OF FIGURES

Figure 1.1: Study on Hot Tub and Pool Owners in the U.S. [10]

1

Figure 3.1: Hardware High Level Block Diagram 5

Figure 3.2: Hardware High Level Model 5

Figure 3.3: Hot Tub Block Diagram 7

Figure 3.4: Hot Tub Model 7

Figure 3.5: Solar Panel Assembly Block Diagram 9

Figure 3.6: Solar Panel Assembly Model 10

Figure 3.7: Solar Water Heater Assembly Block Diagram 11

Figure 3.8: Solar Water Heater Assembly Model 12

Figure 3.10: User-Interface High-Level Programming Flow-Diagram 13

Figure 3.11: User-Interface Schematic 15

Figure 3.12: Relays Schematic 17

Figure 3.13: Switch-Debounce Circuitry Schematic 18

Figure 4.1: Hot Tub with Pump and Wiring Removed 19

Figure 4.2: New Spa Pump Piping 20

Figure 4.3: Pre-Pump-Installation Plumbing Connections 21

Figure 4.4: Existing Hot Tub Plumbing (Insulation Removed) 22

Figure 4.5: Existing Ports chosen for Hot Water Heater Assembly 23

Figure 4.6: Final Plumbing for Hot Water Heater Assembly 24

Figure 4.7: Hot Tub Plumbing Leak Repairs 25

Figure 4.8: Finished Hot Tub Base 26

Figure 4.9: Pre and Post Finished Side Panel 27

28

https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.9w8xspt9jk8y
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.4ud05aa75jza
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.nkbfkft4ri4w
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.1p00ssieuiur
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.5bwhgaecq1ot
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.dl9bhtfmqfuo
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.c8qsx680md1c
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.qt37k6kjh2nd
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.aw2a0fp1ifia
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.1icz27wuhnlt
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.btc2q2kkbv66
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.23tmf4ql0h8
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.5puffkdn5ft
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.rx4f3cuds4i4
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.k3fhgnrgne5
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.nt15tw5758eg
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.frbsl0o9yoi5
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.s7q7e6eqevxc
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.6trm0o2y2bxq
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.z8taren7z726
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.ig2zsfw6easu
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.aqym0u7lc27w

 iv

TABLE OF FIGURES (CONTINUED)

Figure 4.10: Finished Spa Pump and Plumbing with Flow Control and Bleed Valves 28

Figure 4.11: Preliminary and Final Water Heater Apparatus 30

Figure 4.12: Heat Exchanger Construction 31

Figure 4.13: Completed Copper Tubing 32

Figure 4.14: Prepped Copper Tubing 33

Figure 4.15: Completed Heat Exchanger 33

Figure 4.16: Completed Housing for Electrical Components 34

Figure 4.17: Materials for Control Circuitry Housing 36

Figure 4.18: Completed Hardware for User Interface 37

Figure 4.19: Control Wiring for User Interface

Figure 5.1: Battery Discharge Rate

38

43

https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.c2gblb1kn9a
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.rqona8uw5t8m
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.2t54namebf4s
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.fbx5gk3dgvrh
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.fbx5gk3dgvrh
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.629ve2lz4by3
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.y56bktr2zjt9
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.sidpbpuokheh
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.wxlln9y8a0d3
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.pmvt8gxfnxv0
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.pmvt8gxfnxv0

 v

TABLE OF TABLES

Table 2.1 System Specifications 4

Table 3.1: High Level Block Diagram Descriptions 6

Table 3.2: Hot Tub Model Descriptions 8

Table 3.3: Solar Panel Model Descriptions 10

Table 3.4: Solar Water Heater Model Descriptions 12

Table 3.7: User Interface System Settings 14

Table 3.8: User Interface Schematic Port Descriptions 16

Table 4.1: Solar Vacuum Tube Temperature Data 29

Table 5.1: Breakdown of Power Consumption 39

Table 5.2: Test Conditions for System Power 41

Table 5.3: Battery and Spa Pump Data 42

Table 5.4: Test Conditions for Lighting Control Operation 42

Table 5.5: Test Conditions for Control of Pumps 48

Table 5.6: Test Conditions for the User Interface (Display Modes)

Table 6.1: Design Options Summary

Table C.1: Project Cost Analysis

49

52

63

https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.9dmkz9gruwc2
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.nkbfkft4ri4w
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.uxmfg9dscwbf
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.c8qsx680md1c
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.x72bkbwbjhqs
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.tcm2jic8rcr0
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.4y8x32ut5bp6
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.m7eghb2x1n2j
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.yqe1wmsx7hjb
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.upiwi4k90p34
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.p8bwjhbuavuh
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.w5gihj960u9z
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.rk3v7nyemnvg
https://docs.google.com/document/d/1OnUVTmHGRowR56P6sG5zVGYMEZwFRjiqPJ8Sa4Y_lnw/edit#heading=h.zb6x6l94cpnf

 vi

ABSTRACT

This paper discusses the design and implementation of a solar-powered hot tub. The

concept of this project was to design an independently-operated hot tub powered by

a 12V rechargeable battery, charged during the day by a single 400W solar panel.

For this purpose, a twenty-year-old name-brand hot tub was purchased, in used

condition. The plumbing, AC electrical wiring, and mechanical pumps were all

removed and replaced with new components to meet our design specifications.

Additionally, a solar water-heater was designed and integrated into the system to

directly apply the sun’s heat to water pumped in and out of the tub, which

significantly reduced the power budget for the system. Furthermore, the tub

structure was fitted with energy efficient LED lighting for night-time use. Lastly, a

user-friendly control and display unit was designed and embedded into the tub’s

mechanical structure to allow owners to adjust and set modes of operation, jet and

heat cycle times, and lighting options. Our design allows an owner to continually

power their hot tub at no additional cost every month. This project served as a

channel through which much of our studies in microelectronic, embedded system,

and power system design got put into practice.

 1

1. INTRODUCTION

The hot tub industry has made huge strides in profitability since its inception in the

1960s[5]; however, over the past five-year period hot tubs sales have steadily

declined (average annual rate of 9.3%) as homeowners slowly recover from the

latest economic recession[7]. Figure 1.1 displays the amount of hot tub owners

during the time period since the recession.

Figure 1.1: Study on Hot Tub and Pool Owners in the U.S. [10]

Aside from the initial cost of purchasing a hot tub, owners must also incur a high

cost of electrical energy each month to continually power the tubs; thus there exists

a new market for low-energy consumption hot tubs.

Most hot tub manufacturers have realized the need to make their designs more

energy efficient. Without completely redesigning their products and overhauling

their manufacturing processes, most companies have only made minor changes to

existing designs, which results in minor energy savings for consumers. These minor

 2

changes include: swapping out incandescent lighting with energy efficient LED

lighting, using higher density foam for insulation, and making more airtight tub

covers. Each of these improvements do cut-down the cost of energy, but not on a

level that makes hot tubs once again affordable for the general public; in fact, hot

tubs featuring these improvements cost more than they did beforehand.

What the hot tub market needs is a complete redesign of hot tub power-

management systems. The current electrical grid is set-up to provide residential

homes with AC power; thus high-energy consumption devices such as refrigerators,

washing machines, and hot tubs require an AC connection in order to be powered

from a residential home. However, purchasing regulated AC power from energy

providers, such as electric utilities, is very costly and comes with additional fees.

One way to eliminate energy costs and fees is to generate power off grid using free

sources of energy, such as the sun or wind.

Interestingly enough, the solar industry has experienced extraordinary growth

throughout the economic crisis (a 78% increase in sales from 2006-2011) as

consumers demand more and more for “green” solutions[14].

However, providing an entire home with off-grid, or even grid-tied, DC power can be

very costly: typically ranging from 15k-30k dollars. What makes the most

economical sense when powering a single high energy-consumption device, is to

power only the device (hot tub) with a small yet adequately sized and affordably

priced off-grid solar system.

 3

Therefore, the goal of this project is to design an all-inclusive hot tub that features a

solar powered off-grid power management system which currently is not offered by

any other hot tub manufacturer. This product could enter the hot tub market at its

lowest point in the past decade, taking advantage of a minimal competitor situation

and an ever-increasing consumer demand for sustainable appliances.

 4

2. BACKGROUND

The hot tub will consist of the following major subsystems: a 12V 175Ah battery for

system power, a 400W solar panel for battery recharging, a direct sunlight heat exchanger

with a 15W DC pump for heating and circulation, a 1/8 HP AC pump for main

circulation, LED lighting, and a user interface controlled by an embedded MSP430

microcontroller. Table 2.1 displays the system specifications for each subsystem.

Table 2.1 System Specifications

SUBSYSTEM SPECIFICATION

Battery
• Nominal 12V
• Capacity: 175Ah
• Power: 2100Whr

Water Temperature
• Temperature Range: 80-110°F
• Not selectable within range
• Increased temperature is a result of heat pump run time

Heat Pump
• Nominal Operating Voltage: 12VDC
• Flow Rate: 3 GPM
• Rated Power: 15W

Jet Pump

• Nominal Operating Voltage: 120VAC
• Max Amperage: 4A
• Flow Rate: 45 GPM
• Rated Power: ⅛ HP

LED Lighting

• Nominal Operating Voltage Range: 9V~14.8V
• Max Current Draw: 8A
• Rated Power: 4.9W per strip (10 strips total)
• Average Intensity: 402 Lumens per strip
• Dimmable: Yes
• LED Lifetime: 40,000 hours

Solar Panels

• Max Voltage: 91V
• Max Amperage: 8.39A
• Rated Power: 400W
• Weight: 44.1 lbs
• Dimensions: 52” x 78” x 1.5”
• Series Fuse Rating: 40A

 5

3. DESIGN

The hardware of the project will consist of three major systems: The hot tub itself, a

solar panel assembly, and a solar water heater assembly. The solar panel will be

used to charge the battery that will power all of the pumps and electronics used in

the hot tub while the solar water heater will be used to regulate the water

temperature. The high-level block diagram of the entire system is shown in Figure

3.1, followed by a model of the overall system in Figure 3.2 and a table describing its

components (Table 3.1).

Figure 3.1: Hardware High Level Block Diagram

Figure 3.2: Hardware High Level Model

 6

Table 3.1: High Level Block Diagram Descriptions

BLOCK
NAME

BLOCK
DESCRIPTION

FUNCTIONALITY

Hot Tub
• Hot Tub
• Spa Pump
• Accessories

Provides the housing of the user interface, the
jets, battery, and other accessories.

Solar Panel

• Solar Panel
• Charge

Controller
• 12V Battery
• Inverter

Provides all of the necessary electrical power
to the hot tub and all of its accessories.

Solar Water
Heater

• Solar Water
Heater

• 12V DC Pump
Provides all of the hot water for the hot tub.

HOT TUB STRUCTURE

The hot tub structure portion of the high-level block diagram consists of all of the

accessories associated with the housing of the tub. These include things such as the

user interface, the jets, and the lighting. Although there are a lot of components

involved with the hot tub portion of the project there are truly only three major

inputs. These are the power for the tub, the hot water for the tub, and all of the user

inputs through the user interface. A simple block diagram of this is shown in Figure

3.3 followed by a more detailed model (Figure 3.4). A table describing all of the

labels is provided in Table 3.2.

 7

Figure 3.3: Hot Tub Block Diagram

Figure 3.4: Hot Tub Model

 8

Table 3.2: Hot Tub Model Descriptions

LABEL FUNCTIONALITY

User Interface
• Displays temperature and menu options
• Controls run modes and lighting functions

LED Lighting
• Exterior lighting and one interior light
• Dimmable control through the user interface

Spa/AC Pump
• Manual control for 1, 10, and 15 minute operation
• Automatic control for 40 minute operation
• Automatic control for 24 hour operation

Heat/DC Pump
• Manual control for 30sec, and 5-15 minute operation
• Automatic control for 40 minute operation
• Automatic control for 24 hour operation

Battery
• Power source for pumps, lights, and controller
• Connected to the solar panel assembly

 9

SOLAR PANEL ASSEMBLY

The solar panel assembly is responsible for providing all of the electrical power to

the system. It is comprised of three major components: a solar panel itself, a charge

controller, and a battery. Note that the battery is apart of both the solar panel

assembly and the hot tub structure because one powers it and the other houses it. It

operates by having the solar panel produce electrical power from the sun. Once this

power is harvested it is stored in the battery so that the hot tub can be used at all

times of the day. The charge controller plays a vital role because it regulates the

power flow in the system by ensuring that the battery is properly charged and any

excess power is properly taken care of. A simple block diagram of the system is

provided in Figure 3.5 while the model and associated part descriptions are shown

in Figure 3.6 and Table 3.3 respectively.

Figure 3.5: Solar Panel Assembly Block Diagram

 10

Figure 3.6: Solar Panel Assembly Model

Table 3.3: Solar Panel Model Descriptions

LABEL FUNCTIONALITY

Solar Panel • Provides power for the entire hot tub

Charge Controller
• Regulates the power supplied by the solar panel
• Ensures proper charging of the battery

Battery • Stores the power to be used by the hot tub

 11

SOLAR WATER HEATER ASSEMBLY

The solar water heater assembly is responsible for providing the hot water to the

system. It does this using a single 12 volt DC pump and 10 solar vacuum tubes. The

pump carries the water out of the hot tub and into a heat exchanger built out of

copper tubing and solar vacuum tubes. While in the heat exchanger the water is

warmed up by the heat transfer from the copper pipes and is pumped back into the

hot tub. By repeating this process throughout the day the water is continuously

heated until an appropriate temperature is reached. Once this temperature is

reached the pump can be turned off in order to keep the water from getting any

hotter. The block diagram showing the system setup is provided in Figure 3.7 while

a more detailed model is shown in Figure 3.8. Table 3.4 provides descriptions of the

components.

Figure 3.7: Solar Water Heater Assembly Block Diagram

 12

Figure 3.8: Solar Water Heater Assembly Model

Table 3.4: Solar Water Heater Model Descriptions

LABEL FUNCTIONALITY

Solar Water Heater • Provides the hot water for the hot tub

Pump • Control the water flow throughout the system

 13

USER INTERFACE

The user interface is a physical unit, which allows the user to view system

diagnostics and adjust system settings. Upon power-up, the main-menu of control

options as well as the current temperature reading will be displayed. From here, the

user will be able to adjust the mode of operation, the jets’ running-time, lighting

control, and heat pump running time, as shown in Figure 3.10.

Figure 3.10: User-Interface High-Level Programming Flow-Diagram

A complete list of system settings and descriptions for each setting can be found in

Table 3.7. The source code developed for the complete control and automation of

the user-interface is documented in Appendix F.

 14

Table 3.7: User Interface System Settings

SETTING NAME SETTING DESCRIPTION

POWER
Energizes user-interface and initializes software
instructions

MAIN MENU Displays each of the main control settings

TEMPERATURE
STATUS

Displays the current temperature of the water

RUN MODE SETTINGS
Displays two modes of operation: Auto-Run and Manual
Control

AUTO-RUN
Displays “AUTO-RUNNING” when selected
Energizes both heat (DC) and jet (AC) pumps for 40
minutes

MANUAL CONTROL Displays two options for control: Jets and Heat

JETS

Displays 3 pre-set time settings: “1 minute”, “10 minutes”,
and “15 minutes”
Displays running time for selected pre-set
Energizes the AC pump for selected time

HEAT

Displays 3 pre-set time settings: “30 seconds”, “1 minute”,
and “15 minutes”
Displays running time for the selected pre-set time
Energizes the DC pump for the selected time

SLEEP

Displays “SLEEPING” when selected
Energizes heat (DC) pump for 30 minutes ON and 30
minutes OFF
Energizes jet (AC) pump for 1 hour ON and 2 hours OFF
Cycles continuously 24 hours/day and 7 days/week until
powered off

LIGHTING Potentiometer-controlled dimmable intensity-range

 15

The user interface (Figure 3.11) will consist of an LCD screen, a temperature display

screen, 4 buttons (for control and making selections), two potentiometers, an

embedded microcontroller (MSP 430), associated wiring, and support circuitry

(Figures 3.12 and 3.13).

Figure 3.11: User-Interface Schematic

Table 3.8 describes each of the function blocks and input/output ports shown in

Figure 3.11.

 16

Table 3.8: User Interface Schematic Port Descriptions

BLOCK
NAME

BLOCK DESCRIPTION
PORT
NAME

PORT DESCRIPTION

POWER Energizes the unit 5V
Switch between USB and 5V
devices

SELECT
BUTTON

Scroll through options P1.3 Connects to MSP input

ENTER
BUTTON

Command to select an item P1.2 Connects to MSP input

HOME
BUTTON

Return to Main-Menu P1.1 Connects to MSP input

MSP
Microcontroller used for

processing

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5

GPIO Input → POWER
GPIO Input → HOME
GPIO Input → ENTER
GPIO Input → SELECT
GPIO Input → LCD 11
GPIO Input → LCD 12
GPIO Input → LCD 13
GPIO Input → LCD 14
GPIO Input → LCD 4
GPIO Input → LCD 5
GPIO Input → LCD 6
GPIO Output → LIGHTS
GPIO Output → DC Pump
GPIO Output → AC Pump

LCD Display unit

1, 16
2, 15

3
4
5
6

11
12
13
14

LCD ground → MSP ground
LCD power → 5v power switch
LCD intensity control → S POT
R/S control → MSP P2.0
R/W control → MSP P2.1
Enable control → MSP P2.2
Data bit 0 → MSP P1.4
Data bit 1 → MSP P1.5
Data bit 2 → MSP P1.6
Data bit 3 → MSP P1.7

 17

Table 3.8 (Continued): User Interface Schematic Port Descriptions

BLOCK
NAME

BLOCK DESCRIPTION
PORT
NAME

PORT DESCRIPTION

TEMP Display unit 5V Connected to 5V switch

L POT Lights Potentiometer P2.3 12V power for lights

S POT LCD screen potentiometer 3 Control arm of potentiometer

Figure 3.12: Relays Schematic

Figure 3.12 shows how digital output pins from the microcontroller are used to

energize each relay, allowing the required amount of power to safely flow from each

source to each load.

 18

Figure 3.13: Switch-Debounce Circuitry Schematic

Figure 3.13 shows how low-pass filters were used to mitigate bouncing of the

mechanical switches.

 19

4. CONSTRUCTION

HOT TUB STRUCTURE

To begin construction on this project an existing two-person hot tub was purchased

to work with. The first step consisted of stripping the old hot tub of all of its existing

mechanical and electrical parts. This included removing the existing 3 horsepower

motor along with all of its electrical control wiring, which would be replaced with

the earlier discussed design. The cleared out electrical compartment is shown in

Figure 4.1.

Figure 4.1: Hot Tub with Pump and Wiring Removed

After the hot tub had been cleared the design for the new pump and associated

piping was installed. The construction of this involved sizing the existing pipes (2”

piping) that were going to be utilized and making sure the appropriate connections

were bought so that the new spa pump (1 ½” ports) could be properly installed.

 20

Figure 4.2 shows the preliminary piping model.

Figure 4.2: AC Pump Plumbing (Preliminary Model)

After putting more thought into the piping it was decided to modify the preliminary

design in order to add valves on either end of the spa pump. This would allow the

user to isolate the spa pump in case any repairs needed to be made, without having

to drain the entire tub. An additional valve was also added just above the input port

of the spa pump so that the user can add water directly into the spa pump. This

allows the user to ensure that the pipes leading into the pump are full of water and

not air; therefore, avoiding any possibility of having air lock when starting the

pump. The final design that was used is shown in Figure 4.

 21

Figure 4.3: Pre-Pump-Installation Plumbing Connections

With the main connections to the new spa pump complete it was time to find piping

that could be utilized for the hot water heater assembly. This involved removing a

majority of the insulation on the bottom of the tub in order to get a good look at the

rest of the existing plumbing. Figure 4.4 shows the bottom of the hot tub with most

of the insulation removed. After determining the function of each pipe it was

decided to repurpose two existing drain ports (Figure 4.5) in the bottom of the tub

as the input and output of the hot water heater. These ports were chosen because

they didn’t effect the current functionality of the tub and because they provided a

short, clean route for the plumbing of the hot water heater.

 22

The next step in the construction of the tub was to install all of the hot water heater

plumbing. The same general design that was used for the spa pump was used for the

hot water heater pump. Two valves on either end of the pump were included so that

the hot water heater itself could be isolated from the pump and the internal

plumbing connecting it to the hot tub. Therefore, the user could remove the hot

water heater as they pleased, allowing them to store it in a safer place when not in

use.

Figure 4.4: Existing Hot Tub Plumbing (Insulation Removed)

 23

Figure 4.5: Existing Port chosen for Hot Water Heater Assembly

After designing the plumbing for the water heater, it was installed along with the

associated pump and valves. Figure 4.6 shows the valves and the mounted pump for

the finished plumbing.

 24

Figure 4.6: Final Plumbing for Hot Water Heater Assembly

With the design and construction of the plumbing and the pumps complete, the next

step was to test the existing plumbing that was going to be kept in order to ensure

that there were no leaks. After dropping the hot tub into its normal position and

filling it with insulation and water it was found that there were many leaks in the

existing pipes. This lead to a long process of tracking the leaks, cutting out the faulty

pipes, and replacing them with new PVC pipes. Pictures of the repairs made are

provided in Figure 4.7. Once all of the leaks were repaired the base of the tub was

filled with insulation and covered with two by fours and plywood to give it some

 25

structural integrity. The side panels of the hot tub were also covered with plywood

in order to give the finished product a clean look. The last step to completing all of

the hardware on the tub itself consisted of mounting the spa pump and connecting it

to the rest of the plumbing. The finished pictures of the hot tub are provided in

Figures 4.8, 4.9, and 4.10.

Figure 4.7: Hot Tub Plumbing Leak Repairs

 26

Figure 4.8: Finished Hot Tub Base

 27

Figure 4.9: Pre and Post Finished Side Panel

 28

Figure 4.10: Finished Spa Pump and Plumbing with Flow Control and Bleed Valves

 29

SOLAR WATER HEATER ASSEMBLY

It was decided to use solar vacuum tubes to heat the water in order to reduce the

amount of electrical energy needed. The selected solar vacuum tubes collect

sunlight and use reflective layers to trap the light within the tubes. This allows for a

very efficient use of the sun’s heat. Table 4.1 shows the measured water

temperature in one of these tubes over a period of time.

Table 4.1: Solar Vacuum Tube Temperature Data

Time Elapsed (minutes): 0 15 30 45 60 75

Water Temp. (°F): 73 89 100 109 119 126

In order to use the solar vacuum tubes an apparatus needed to be built, which could

hold them. In addition to that the apparatus needed to be adjustable so that the

solar vacuum tubes could be repositioned throughout the day to remain

perpendicular with the sun. The final product is shown in Figure 4.11. One thing to

note is that a reflective styrofoam backing was used on the apparatus for two

reasons: the reflective surface provided more sun for the solar tubes and the

styrofoam provided additional padding between the wood backing and the glass

tubes.

 30

Figure 4.11: Water Heater Apparatus

With the apparatus built, the next step was to create the heat exchanger that would

sit on the apparatus. It was decided to build the heat exchanger out of pressurized

copper pipes that would sit inside of the solar vacuum tubes. Another set of copper

pipes, for the water to flow through, would be soldered across the tops of the solar

vacuum tubes in order to allow the heat from the pressurized tubes to be

transferred into the flowing water. The construction began with soldering together

the pressurized copper pipes that would sit inside of the solar vacuum tubes along

with the two pipes that would sit on top of them. Figure 4.12 shows this

construction while Figure 4.13 shows the final product.

One thing to note about the completed copper tubing is that they were pressurized

using acetone. By doing this it allows for the copper tubing to be more efficient

when transferring heat. While the pressurized pipes are sitting inside of the vacuum

 31

tubes the acetone will begin to boil and focus the heat up towards the top of the

pipe, closer to where the water will flow.

Figure 4.12: Heat Exchanger Construction

 32

Figure 4.13: Completed Copper Tubing for Heat Exchanger

With the heat exchanger complete, the copper piping needed to be prepped, in order

to be fit into the solar vacuum tubes. This was done by wrapping each individual

pipe in steel wool (Figure 4.14), which will allow it to transfer heat more effectively.

The last step to finish the heat exchanger was to mount the solar vacuum tubes to

the bottom of the apparatus. The completed heat exchanger unit is shown in Figure

4.15.

 33

Figure 4.14: Prepped Copper Tubing

Figure 4.15: Completed Heat Exchanger

 34

SOLAR PANEL ASSEMBLY

The solar panel assembly is the last major component of the project. One thing that

was needed was a storage box that could house all of the necessary equipment: the

battery, the inverter, and the MPPT charge controller. Therefore, one was designed

to fit in between the legs of the heat exchanger so that it would allow for a clean look

when the whole system was put away.

Figure 4.16: Completed Housing for Electrical Components

The pictures in Figure 4.16 above show the completed box that will be used to house

the battery, charge controller and inverter. It was built out of 2x4s and plywood. The

design features 3” of ground clearance to protect the equipment from any water that

may be on the ground, while also allowing for better heat dissipation. The box was

tested to ensure that it could handle the 175-200 pound weight of the equipment

that it will house.

 35

With the housing for all of the electrical components complete, the last step was to

create the appropriate wire connections between each component. This involved

assessing the loads that each run was going to see and sizing the wire appropriately.

Using the load calculations and the NEC allowed the correct wire size to be chosen.

After determining wire sizes, all of the wires were cut to the desired length, tinned,

and soldered to their appropriate connectors. Conduit was ran from the spa pump

and water heater pump to the storage box so that the wires could be safely ran

between the controls and the pumps. Once all of the connecting wires were finished

there was only the matter of grounding the system that needed to be handled. In

order to make the system a truly stand-alone one an 8 foot copper rod would have

had to be driven into the earth in order to provide ground for the system. For the

sake of this project, a solid copper ground wire was run from the house panel to the

ground connection on the spa pump.

 36

USER INTERFACE

With all of the major components complete, the construction shifted to building the

user interface. This section highlights the steps involved with building the hardware

of the system, while the User Interface section under the Design heading goes

through the software processes (Note that the code for the user interface can be

found in Appendix F). To start, an electrical box and a piece of sheet metal (Figure

4.17) were used to house the user interface and all of the control circuitry needed.

Once the layout of the screens and buttons were figured out the sheet metal was cut

to allow all of the pieces to fit nicely (Figure 4.18).

Figure 4.17: Materials for Control Circuitry Housing

 37

Figure 4.18: Completed Hardware for User Interface

With all of the hardware finished it was time to solder all of the power/control

wires to their appropriate terminals. This included soldering together all of the

schematics shown in Figures 3.11, 3.12, and 3.13. The pinout shown in Table 3.8

was used as a guide. Figure 4.19 shows a picture of some of the connections being

made.

 38

Figure 4.19: Control Wiring for User Interface

With the final touches of the hardware finished, the electrical box was sealed and

installed on the wooden lip of the hot tub (Figure 4.20). Conduit was then ran from

the underside of the control unit to the wooden box housing all of the electrical

components to finish up all of the necessary control wiring, thus completing the

construction of the hot tub. The only remaining construction from this point on was

purely cosmetic.

 39

5. DATA

Power Calculations:

In order to verify that the 175Ah 12V battery was large enough to power the whole

system it was necessary to calculate the total load of all of the components. This

included the power draw from the spa pump, the hot water pump, the lighting, and

the control panel. Table 5.1 shows these components and their total power draw.

Table 5.1: Breakdown of Power Consumption

LOAD OPERATING CONDITIONS POWER CONSUMPTION

SPA PUMP
1.3A at 120V AC
(13A at 12V DC)

(1.3A * 120V) = 156W

HOT WATER
PUMP

1.25A at 12V DC (1.25A * 12V) = 15W

LIGHTING 4A at 12V DC (4A * 12V) = 48W

CONTROL
PANEL

~5mA at 5V
(Powered through USB)

(5mA * 5V) = 25mW
(Negligible)

Total Wattage Consumed: 220W

Total Wattage Stored in Battery: (175Ah * 12V) = 2100Wh

With the battery’s ability to store 2100Wh and a system power demand of 220W it

can be expected to get about 9.5 hours (2100Wh / 220W = 9.55 hours) of use before

the battery is completely drained. In order to avoid a complete drain on the battery

the system cycle schedule was designed for 8 hours of use per day. Since the system

 40

should be available for use at all times of the day the pumps will be on a regular

schedule of being on for 1 hour and then off for 2 hours. This allows the tub to

consistently circulate the water throughout the day. With the hot tub holding

approximately 400 gallons of water and the spa pump being able to push 45 GPM it

is expected that all of the water can be circulated through the system 6.75 times an

hour (45 GPM * 60 minutes = 2700 gallons) (2700 gallons / 400 gallons per tub =

6.75 tubs). This is good because stagnant water is never a good thing to have for a

long period of time, so being able to circulate the water through the system 6.75

times an hour should avoid this.

 41

System Testing:

Each of the system specifications listed in the Specifications Section was tested and

verified in accordance with the following test methods and procedures.

BATTERY POWER:

The hot tub system shall operate off of a 12V rechargeable battery. The battery shall

be able to charge to a minimum of 95% of the 12V capability (11.4V). Procedure

outlined in Table 5.2. Battery voltage data along with voltage and amperage data

from the spa pump were taken over a period of time to monitor the performance of

the system. Table 5.3 shows the results while Figure 5.1 displays them in a plot.

Table 5.2: Test Conditions for System Power

OPERATION TEST RESULT EXPECTED

OFF MODE
Open Circuit Voltage Test:

Monitor voltage across
terminals

12.85V

Shall be greater than
11.4V

SLEEP
MODE

Partial load test:
Monitor voltage across

terminals
12.4V

Shall be greater than
11.4V

RUN MODE
Full load test:

Monitor voltage across
terminals

12.2V

Shall be greater than
11.4V

 42

Table 5.3: Battery and Spa Pump Data

TIME BATTERY VOLTAGE SPA PUMP
VOLTAGE

SPA PUMP
CURENT

SPA PUMP
WATTAGE

1:30 PM 12.85V DC - - -

1:45 PM 12.65V DC 116.2V AC 1.267A 147.23 W

2:00 PM 12.48V DC 116.2V AC 1.267A 147.23 W

3:00 PM 12.34V DC 116.2V AC 1.76A 204.51 W

3:15 PM 12.29V DC 116.3V AC 1.66A 193.06 W

3:30 PM 12.25V DC 116.3V AC 1.67A 194.22 W

3:45 PM 12.22V DC 116.4V AC 1.69A 196.72 W

4:00 PM 12.20V DC 116.4V AC 1.68A 195.55 W

4:15 PM 12.16V DC 116.3V AC 1.62A 188.41 W

4:30 PM 12.12V DC 116.3V AC 1.62A 188.41 W

 43

Figure 5.1: Battery Discharge Rate

Looking at Figure 5.1 it can be seen that after the initial startup of the pumps the

battery discharge rate is rather linear. Following this trend it can be concluded that

the system could run for 7.5 hours straight on a full battery charge (assuming a

complete drain to 11.4V). These calculations are shown on the next page, following

the trend of losing 0.4V every 15 minutes.

12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Battery
Voltage

(V)

Time (15 minute intervals)

 44

 12.12V – 11.4V = 0.72V remaining

 0.72V / 0.04V = 18 periods until completely drained

 18 * 15 min = 270 min remaining (4.5 hours)

 3 hours running + 4.5 hours remaining = 7.5 hours of total run time

Comparing these results with the expected 9.55 hours of total run time shows that

the initial expectations were reasonable. One reason that they were incorrect was

the fact that the spa pump was assumed to use 156W but actual measurements

showed that it consumed around 200W. Re-calculating the expected run time with

the actual wattage used by the spa pump produces an expected run time of 7.98

hours which is a lot closer to what was seen. The ½ hour of run time difference

between expected and actual is most likely due to the inefficiencies of the solar

water heater pump and the inverter.

SOLAR PANEL POWER:

The next calculations include the solar panel and recharging the battery. In order for

the system to work properly the battery must be able to be charged (at the very

least) the same amount that it had been drained that day. Since the battery can store

2100W a solar panel large enough to produce that in one day is necessary. Using a

MatLab script (Appendix G) from a previous course (EE 420 – Sustainable Electric

Energy Conversion) allowed for the calculations of average kilowatt hours produced

per square meter on any given day along with the amount of daylight hours for that

 45

day. Choosing a day in mid-December as a baseline for worst possible energy output

yielded the result that there are approximately 9.61 hours of daylight that produce

about 852.81 watt-hours per meter squared. Dividing this by the number of daylight

hours gives the result that an average of 88.74 watts can be produced per square

meter of solar panel throughout the day. These calculations were ran assuming a

20% efficiency of the solar panel used.

Using the dimensions of the solar panel found in Table 2.1 it can be concluded that

the area of the solar panel is 2.588 meters squared. Multiplying this by the average

watts per square meter provides an estimated 229.71 watts can be produced per

hour by the 400 watt solar panel. Multiplying this again by the number of daylight

hours produces a daily yielding of approximately 2208 watts per day. Therefore,

even on a short winter day the 400W solar panel could completely recharge the

battery of the system if needed. In order to ensure that the solar panel is run as

efficiently as possible a max power point tracking charge controller was purchased

to allow the solar panel to perform at a higher rate.

 46

PUMP OPERATION:

Both jet and heat pumps are controlled by user selected power modes on the user

interface. The pumps shall only operate in the SLEEP and RUN power modes. The

circulation pump shall operate within 10% of the manufacturer's rated output in

both modes. Procedure outlined in Table 5.4.

Table 5.4: Test Conditions for Control of Pumps

OPERATION TEST RESULT EXPECTED

SLEEP
MODE

No load test:
Measure current 

Zero current

DC pump test:
Measure current
Monitor running

time
Monitor cycling

1.32A



1.2A
30 min ON / 30 min OFF
Cycle continuously until powered
off

AC pump test:
Measure current
Monitor running

time
Monitor cycling

~1.7A



1.3A
1 hour ON / 2 hours OFF
Cycle continuously until powered
off

 47

Table 5.4 (Continued): Test Conditions for Control of Pumps

OPERATION TEST RESULT EXPECTED

RUN MODE

No load test:
Measure current 

Zero current

DC pump test:
Measure current
Monitor running

time
Monitor cycling

1.32A



1.2 A
30 min ON / 30 min OFF
Cycle continuously until powered
off

AC pump test:
Measure current
Monitor running

time
Monitor cycling

~1.7A



1.3A
1 hour ON / 2 hours OFF
Cycle continuously until powered
off

Pre-set time test:
Monitor 30 second

Monitor 1 minute
Monitor 5 minute

Monitor 10 minute
Monitor 15 minute



30 second ON then OFF, no cycle
1 minute ON then OFF, no cycle
5 minute ON then OFF, no cycle
10 minute ON then OFF, no cycle
15 minute ON then OFF, no cycle

 48

LIGHTING CONTROL OPERATION:

The hot tub features 10 LED light bulbs. All 10 LEDs shall illuminate upon user

selection on the user interface. Electrical current being supplied to each LED shall be

tested and shall not exceed the manufacturer’s rated input current value. Procedure

outlined in Table 5.5.

Table 5.5: Test Conditions for Lighting Control Operation

OPERATION TEST RESULT EXPECTED

RUN MODE

LED test:
Illuminate all LEDs by cycling through

full range


Dim to full
intensity

Current Test:
Measure current to lighting

throughout range


Not to exceed 8A

 49

USER INTERFACE OPERATION:

The user interface shall control every operation of the hot tub as well as display

temperature, charge percentage, and each feature within the system settings of the user

interface itself. Procedure outlined in Table 5.6.

Table 5.6: Test Conditions for the User Interface (Display Modes)

OPERATION TEST RESULT

DISPLAY
TEMPERATURE

Observe: Temperature on temperature screen 

Verify temperature with secondary measurement
device (acceptable within 1℉) 

DISPLAY MAIN
MENU

Observe: Main menu options and verify that
selection of each option navigates to each sub
setting options



DISPLAY POWER
MODES

Observe: Run, Sleep, Lighting 

DISPLAY FULL JET
TIME-RANGE

Observe: Values (1, 10, 15 minutes) 

DISPLAY FULL
LIGHTING-RANGE

Observe: Intensity change throughout
potentiometer range 

CLEAR DISPLAYS Observe: Clear screens when powered off 

 50

6. ANALYSIS

PRELIMINARY DESIGN CONSIDERATIONS

There are multiple ways to go about designing a solar powered hot tub however

they all must include three major subsystems. These subsystems include: the tub

itself, a way to power it, and a way to heat the water. Within these three subsystems

is where the variation in design will occur. The following paragraphs go through

some of the more common design variations in detail while Table 6.1 sums up all of

the ideas.

The first major design variation includes how to power the hot tub. It can either be

completely solar powered or grid tied. The advantages of having the system

completely solar powered include not having to plug it into an outlet and not having

any added expenses on the monthly electric bill. These two advantages are weighted

more heavily than others because they are some of the main reasons for why people

don’t buy hot tubs. The cons of using solar panels are the fact that they can take up a

lot of space. Whereas a plug-in takes up practically no space a solar panel is about

3’x5’ on average and needs to be in direct sunlight. This means that it must be

elevated above the rest of the system; however, this can be used as an advantage. By

putting the solar panel on top of a cabinet it will allow it to remain in direct sunlight

while also providing storage space for the user.

The alternative for powering the hot tub includes tying the system to the grid. By

doing this the user will never have to worry about running out of power; however, it

 51

will cost them a lot more to install the system. By grid tying the hot tub the user will

need to include an inverter to transform the DC voltage into AC voltage so that it can

be put back onto the grid. The user will also have to install protection equipment in

order to ensure that they are properly attached to the grid and that they are not

back powering anything if the power were to go out. Lastly, there is the possibility

that the user will have to pay a monthly electric bill if the system is grid tied.

The next major design variation includes the pumps used in the system. They can

either be DC powered or AC powered. If they are DC powered then the system will

be able to run directly off of the 12V battery source from the solar panel assembly.

This is convenient because the battery is necessary in the system anyways. The only

downfall to the DC pumps is the fact that they are more expensive to buy. However,

since an inverter would be needed to power AC pumps it is safe to say that using DC

pumps wouldn’t cost significantly more than an AC setup. The only clear advantage

to using AC pumps is the fact that they are cheaper; however, as stated, additional

hardware would be necessary in order to make them run.

The last major design variation includes heating the water. It can either be done

using a solar water heater or an electric water heater. The advantage of a solar

water heater is the fact that it uses a lot less electrical power than an electric heater.

The major disadvantage to the solar water heater is the fact that, like the solar panel,

it is going to take up a lot of extra space. However, if this extra space can be utilized

then it will reduce the negative effects of it.

 52

Preliminary design decision includes going completely solar powered while using

DC pumps and a solar water heater. By utilizing the space that the solar panels and

solar water heater need the design will be completely self-sustainable while

providing nice amenities to the user. We saw that the advantages of completely

eliminating any monthly electric bill outweighed the size disadvantages. As for the

pumps we decided to use the DC powered ones in order to maximize the energy

achieved using the solar panels. This way there is no worry about running out of

power. The design variations are summarized in Table 6.1 while the current design

aspects are in bold.

Table 6.1: Design Options Summary

SUBSYSTEM VARIATION PROS CONS

Powering
the System

• Completely
Solar Powered

• No plug
necessary
• No added
monthly cost to
the electric bill

• Need room for a solar
panel
• Overall system is
larger

• Grid Tied System
• No worry about
running out of
power

• Adds more parts to
the system (inverter
and protection circuits)
• More expensive

Pumps

• All DC Powered Pumps • More energy
efficient • More expensive

• All AC Powered Pumps • Cheaper • Inverter needed to
convert power

Heating the
Water

• Solar Water Heater
• More energy
efficient than an
electric water

• Need room for a solar
panel
• Overall system is
larger

• Electric Water Heater • Takes up less
space • Use a lot of power

 53

FINAL DESIGN

After extensively weighing out the pros and cons addressed in our preliminary

analysis, we decided to go with an off-grid DC powered system with solar heat tubes

as opposed to using electric heating. These two choices afforded us the ability to run

the system off of only one solar panel and one 12V battery, significantly reducing the

overall physical size and complexity of the system.

Additionally, we ended up going with one DC pump and one AC pump. The DC pump

was selected to circulate water between the tub and the heater because this is a low

flow dependent operation requiring very little power (15W) to operate. Operation

of the main circulation pump (jets pump) on the other hand, requires a considerable

amount of power (⅛ HP) to operate, which demands approximately 13A of current

from a 12V battery...taking the efficiency of the pump into consideration. The

increased safety risk associated with the higher current is one major reason why we

decided to go with an AC pump. The other reason we decided against a DC pump for

main circulation (jets) is because there weren’t any ⅛ HP DC pumps available for

general purchase, it would have to be special ordered driving up the cost

significantly.

 54

FINAL PRODUCT

Unfortunately we ran out of time and budget before we could integrate the solar

panel into the system. The hot tub runs solely off of the 12V battery with the solar

panel only serving as a mean to recharge the battery, so we didn’t lose out on proof

of concept by not incorporating it. Even still, it would have been beneficial to

monitor the charging of the battery in real-time to verify that initial power

consumption calculations (shown in DATA section with MATLAB code displayed in

Appendix G) were within acceptable accuracy. That being said, the maximum

power-point tracker automatically monitors any solar panel connected to it and

displays, records, and adjusts supply voltage as necessary. Therefore, if we had

connected a solar panel to the MPPT and determined that the system draws more

power from the battery than the solar panel can recharge during any one day…then

we would have simply adjusted the duty cycle of each pump (duty cycle adjusted in

software) thereby reducing the energy consumption to meet recharging capability.

 55

7. CONCLUSION

Overall the project was successful in proving that a completely stand-alone solar

powered hot tub is achievable. All of the individual systems worked as expected.

The amount of energy provided by the 175Ah 12V battery was very close to what

was expected and it had no problem powering the whole system for a continuous 7

hour stretch of time. The heat exchanger was very effective in heating up moderate

amounts of water between 100-104°F (typical for a hot tub) and the user interface

provided a clean, easy way for the user to control all aspects of the hot tub.

Although the individual components worked as expected they weren’t as effective as

they could have been once they were all combined into one system. The main

problems seemed to be with the heating of the tub and the pressure of the jets. The

size of the tub played a large role in both of these problems. With such a large

amount of water in the hot tub the heat exchanger had to be run for a longer period

than expected in order to get the water temperature up to an acceptable level. The

large size of the tub also meant that there were a lot more jet ports to push water

through which the smaller spa pump had some trouble with. Even though the spa

pump was powerful enough to circulate the water it didn’t produce as much

pressure as expected. Additionally, all insulation was removed during system

testing due to water leaks in the plumbing, which had a significant effect on the tub’s

ability to retain heat. A smaller tub would provide an easy fix to both of these

problems. This analysis, along with other possible design changes, are visited in the

next section titled Future Work.

 56

Another large problem that was encountered was the poor condition of the existing

plumbing of the hot tub. Initially the existing plumbing was kept in order to save

money on having to replace it; however, this backfired because of the numerous

leaks that were encountered in the existing tubes. This lead to a large amount of

time being spent tracking down and repairing leaks.

In the end the project came out over budget. It was expected to have spent about

$1150 total but the major components ended up costing around $1250. Including all

of the tools and small items that were necessary to complete the job it is estimated

that the complete project cost around $1500 to produce. While this was over budget

it was still in a respectable range considering many modern hot tubs cost anywhere

from $2000 - $5000 plus the additional monthly electric bill to run them.

In conclusion the project was a success and provided an excellent platform to build

off of in the future. With a few design changes the efficiency of the hot tub could be

maximized in order to produce a completely stand-alone solar powered hot tub that

has the same functionality as commercially produced products however uses a

fraction of the energy.

 57

8. FUTURE WORK

In order to create a better version of the solar powered hot tub there are a few

design changes that could be implemented. To begin, a smaller hot tub would be

ideal. The one used in this project was a 3 person tub that held somewhere around

400 gallons of water. Due to the method of heating that was used it was very

difficult to get the entire hot tub up to the desired temperature. A 1-2 person tub

that holds about 100-150 gallons would work the best with the current setup.

Another recommendation would be to install all new plumbing. Leaking pipes were

consistently a problem throughout this entire project and installing all new

plumbing would have saved a lot of time. Insulation is another key feature that must

be addressed during the initial stages of design, it is recommended that a spray on

foam be used to completely seal the space between the outside of the tub and the

structure used to house the tub; this being done only after the plumbing has been

leak and pressure checked.

Electrically there were a couple of changes that could be made. One problem seen in

the current setup was that there was a lack of pressure in the jets. This was due to

the amount of jets and the smaller sized spa pump (1/8 HP). Since the spa pump

was the largest possible with the battery used the only other option was to cut out

some of the existing jets. However, it was seen that the smaller 15W water heater

pump provided a good amount of pressure to the 2 ports it was connected to. One

major change that could be made is to remove the larger spa pump (1/8 HP)

completely and install an additional 15W water pump for each pair of jets. With the

 58

200W consumed by the spa pump (1/8 HP) an extra 12 15W DC water pumps could

have been used, providing much more pressure for the jets without using any extra

energy. This would also provide much more selectivity for the user when controlling

which jets to turn on and off.

Making this design change would initially save $200 because there would be no

need to buy an inverter to run the spa pump. This money could be used to buy the

additional 15W water pumps leading to the conclusion that 6-7 extra water pumps

would be ideal in order to break even on the cost of everything while reducing the

overall energy used by the system. With the system using less overall energy the

idea of a smaller battery could be entertained, providing even more savings. With

more 15W water pumps the controller could also be modified to provide even more

control over the entire system. By adding additional relays for the extra water

pumps the user could potentially control each jet individually in order to get the

system to perform exactly how they want it.

Another change that could be made was in the design of the heat exchanger. The

current deign consisted of only running water along the tops of the solar vacuum

tubes; however, an alternate option would be to run flex copper piping into and out

of the vacuum tubes so that the water would actually travel the length of each tube.

The setback with this design is that smaller diameter piping would be needed to run

through the tubes, meaning that less water is flowing through the system and might

therefore lead to it taking longer to heat the entire tub of water. However, it would

 59

be worth building and testing in order to see which method performs better for a

smaller tub application.

With a smaller tub and a more efficient heat exchanger the controller could be

improved in order to allow more control over the water temperature of the tub. This

could be done by using the readout of the temperature sensor and using that to

control the relay of the single 15W water heater pump. By allowing the user to

select a target temperature the system can turn on the water heater pump and leave

it on until the temperature sensor reads the desired output.

Overall, the tub size, pump setup, and heat exchanger design are the main

components that could use some adjustments in order to provide a solar powered

hot tub that could perform at a higher level than the current one. All of these

changes would allow for further advancements in the user interface to allow for

more control over the system as a whole.

 60

APPENDIX A: DIVISION OF LABOR

TASK DESCRIPTION ANTHONY JONATHAN

POWER SYSTEM DESIGN:

SOLAR PANEL SIZING X X

THERMAL HEATER SIZING X X

PUMP SIZING X X

ELECTRICAL CONDUCTOR SIZING X

POWER BUDGET X X

PIPING DESIGN X

WIRE HARNESS DESIGN X X

CAD X X

AUTOMATION AND EMBEDDED SYSTEM DESIGN:

USER INTERFACE SOFTWARE DESIGN X

USER INTERFACE HARDWARE DESIGN X

LIGHTING CONTROLLER DESIGN X X

TEMPERATURE CONTROLLER DESIGN X X

SYSTEM INTEGRATION:

SOLAR PANEL INSTALLATION X X

THERMAL HEATER INSTALLATION X X

LIGHTING INSTALLATION X

PUMPING UNITS INSTALLATION X X

WIRE HARNESS INSTALLATION X X

BATTERY INSTALLATION X X

USER INTERFACE INSTALLATION X

 61

APPENDIX B: SCHEDULE

PRELIMINARY MILESTONE BREAKDOWN:

1st Milestone: January 9, 2016 All power system parts on order.

2nd Milestone: February 22, 2016 Test completion of integrated
 power-system components.

3rd Milestone: April 29, 2016 Test completion of all user-
 interface controls.

Final Milestone: May 20, 2016 Test completion of full-system run.

Project Expo: May 27, 2016 Live Demonstration

 62

FINAL MILESTONE ANALYSIS:

The first milestone slid back all the way to February 20th due to difficulties finding

pumps and electronics that met our system specifications. Originally we wanted to

go with a DC pump for both circulation and heating, but DC pumps under ½ HP and

above 1/16 HP do not exist unless specially ordered, which costs more than we

could budget.

The second milestone slid back to May 5th due to significant issues with the hot tub

leaking due to age and poor condition of the used tub. This was the biggest issue we

encountered during the project because the system could not be tested until the tub

could hold water and be pressurized.

The third milestone slid back to May 15th due to the prior milestones sliding back.

The final milestone slid back to May 27th, which caused us to fail to meet out project

expo milestone.

 63

APPENDIX C: COST ANALYSIS

Table C.1 displays a breakdown of the expected cost of the project and a description

for how each cost will be paid for. A complete itemized breakdown of every

component’s cost can be found in the Bill of Materials Section.

Table C.1: Project Cost Analysis

ITEM COST PAID FOR BY

System Components $1050

Cal Poly EE Department $400

Jon Peterson $325

Anthony Zepeda $325

Tools $100

Jon Peterson $50

Anthony Zepeda $50

TOTAL: $1150

 64

APPENDIX D: BILL OF MATERIALS

 65

APPENDIX E: ANALYSIS OF SENIOR PROJECT DESIGN

Project Title: Solar Powered Hot Tub
Student’s Name: Jon Peterson Signature: .
Student’s Name: Anthony Zepeda Signature: .
Advisor’s Name: Dr. Ali Shaban Initials: .
Date: .

Summary of Functional Requirements

The solar powered hot tub operates off of a rechargeable 12V battery which is
charged during the day by a 400W solar panel, allowing it to operate independently
from the grid. The hot tub features a user interface which provides the user with full
control of the hot tub’s temperature, lighting, jet operation time, and power mode.

Economic Impacts

Natural Capital:
One of the key objectives of this project was to reduce the reliance on electrical
power from commercial utilities, which create pollution and harm to the
environment during the generation and transmission of power.

This project meets that objective in two ways: the first is by establishing a system
that operates independently from the electrical grid, and the second is by using a
natural resource (the sun) to power the system.

Human Capital:
Hot tubs are used by many for therapeutical purposes. Heated water relaxes tense
and aching muscles, which helps relieve physical and mental stresses.

By developing a less expensive to operate hot tub, more consumers may take
advantage of these stress relieving benefits and may become more effective at work,
allowing them to be more productive and therefore more marketable..

Commercial Manufacturing Financials

This project is not intended to be sold for profit as a marketable product; however,
for the right entrepreneur, this could be a profitable venture.

The cost to build a single unit is high, due to all the expensive subsystem
components: solar panels, solar heaters, DC pumps, the tub, etc. Therefore in order
to earn a profit, the hot tub would need to be manufactured in a facility that is
equipped to construct several units in the same time that one unit normally could be
constructed. This would require an automated manufacturing system and a large
warehouse to store completed units, which would be a very large production costs.

 66

Additionally, it would be imperative for the entrepreneur to establish business
partners in the solar equipment industry and pump manufacturing industry so to
buy units in bulk at a reduced price.

With the correct business model, it may be possible to reduce manufacturing costs
from $1300 per unit down to $500 per unit. The expected retail price for a solar
powered hot tub is $5500, which suggests that there is money to be made here.
However, it would require a lot of capital to get production started.

Environmental Impacts

As mentioned earlier, this project was designed with environmental concerns as the
driving factors. By operating off-grid these hot tubs are helping reduce the pollution
created by electrical generation and distribution providers, as well as utilizing
natural resources.

However, the system does operate off of rechargeable batteries which typically have
a lifetime of 4-6 years, which means that a battery would have to be disposed of at
those time intervals, adding to the build up of hazardous chemical waste at landfills.

Manufacturability

As mentioned earlier, there is a high cost associated with the manufacturing of hot
tubs and it is imperative to partner with other companies in order to integrate their
products at a reduced cost.

Sustainability

Maintenance of the hot tub is relatively simple, other than the battery change every
4-6 years, the system only requires regular water treatment.

The system could be designed to be more sustainable if the battery was replaced by
some form of energy harvesting device, which does not contain hazardous chemicals
and require to be replaced periodically.

Additionally, if salt water were used in place of fresh water then there would be no
need to routinely treat the water.

Ethical Concerns

Due to the size of a hot tub it may be ethically questionable whether or not it is right
to purchase a product which creates pollution due to manufacturing processes and
adds harmful chemical waste (batteries) to the environment, when an extra long
soak in a bathtub may suffice.

Regular bathtubs can be purchased that feature soothing jets comparable to those
found in a hot tub, so there is a case to be made here. However, when considering

 67

the extra water usage required to routinely be filling up and draining a bathtub,
ethical concerns of water usage abuse arise.

Health and Safety Concerns

Hot tubs present a drowning and ingestion of overly chlorinated water hazard
when used by unsupervised children. Additionally, special personal protective
equipment and care must be taken when changing out batteries.

Social Concerns

Hot tubs are a luxury item used for recreation and relaxation by those who can
afford the high ticket price. As such, the hot tub creates inequality among different
communities with citizens earning drastically different incomes than others.

The average hot tub consumer is a middle class home-owner. Often times, hot tubs
are purchased as a status symbol, just as purchasing green products has become
because it cost more to buy these items. Thus, by developing an expensive status
symbol, this product has added to the widening inequality gap.

Personal Development

This project allowed us to use much of the knowledge we had gained during our
academic career and then some! Aside from using computer engineering skills
gained in CPE courses to design the software of the user-interface, microelectronic
course skills to design debounce and transistor-switch circuits in support of the
user-interface hardware, and power systems course skills to size higher wattage
electronics and design a safe system free from overcurrent conditions...we also got
to learn a long list of new skills as well. Some of the new skills we gained include:
plumbing design and repair, welding, carpentry, cost analysis to meet budget
constraints, metalsmithing, and thermodynamics associated with heat exchange.

 68

APPENDIX F: USER-INTERFACE SOURCE CODE

/***
 Senior Project: Solar Powered Hot Tub
 Designed by: Jonathan Peterson and Anthony Zepeda
 May 20, 2016

 This program was designed to both display and control
 the operation of the hot tub.
***/

#include <msp430.h>
#include <stdio.h>

/*****************************CONSTANTS****************************/

int sec1 = 0;
int min1 = 0;
int hr1 = 0;
int sec2 = 0;
int min2 = 0;
int hr2 = 0;

int counter = 0;
int counter_DC_sleep = 0;
int counter_AC_sleep = 0;
int counter_jets = 0;
int counter_heat = 0;

int Auto_counter_30 = 1800;

int DC_sleep_counter_30 = 1800;
int AC_sleep_counter_hour = 3600;
int AC_sleep_counter_2 = 7200;

int AC_sleep_loop = 0;

int Jet_1_counter = 60;
int Jet_10_counter = 600;
int Jet_15_counter = 900;

int Heat_30_counter = 30;
int Heat_5_counter = 300;
int Heat_15_counter = 900;

int set_auto = 0;
int set_sleep = 0;

int set_jet_1 = 0;
int set_jet_10 = 0;
int set_jet_15 = 0;

int set_heat_30 = 0;
int set_heat_5 = 0;
int set_heat_15 = 0;

/***/

 69

/*****************************MAIN PROGRAM**************************/
int main(void)
{
 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 // set ports
 P1DIR |= 0xF1; //set upper four bits of P1 to ouputs will act as data bus (nibble mode)
 //and set LED on P1.0 as output
 P1DIR &= ~0x0E; //set as inputs (BTNS)
 P2DIR |= 0x3F; //set first 3 bits of P2 as output to drive RS, R/W, E for p2.0 p2.1 p2.2 respectively,
 //and 2.3 as lights, 2.4 as DC pump, 2.5 as AC pump
 P2OUT = 0x00; //make sure outputs are cleared

 //set clk to be used to 16MHz
 if (CALBC1_16MHZ==0XFF)
 {
 while(1);
 }
 DCOCTL = 0;
 BCSCTL1 = CALBC1_16MHZ;
 DCOCTL = CALDCO_16MHZ;

 CCTL0 = CCIE; //Parameters for Interrupts
 P1OUT &= 0x00;
 CCR0 = 32768;
 BCSCTL3 = XT2S_0 + LFXT1S_0;
 TACTL = TASSEL_1 + MC_1;

 //Screensaver();

 for(;;)
 {
 MAIN_MENU(); //call systems main menu infinitely
 }
}

/***/

/*****************************INTERRUPT-BASED TIMER*****************/

#pragma vector=TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
{

/* Test Blinking LED
 if ((P1OUT & 0x01) == 0x01)
 {
 P1OUT &= ~0x01;
 }
 else
 {
 P1OUT |= 0x01;
 }
*/

 static char OutString[9];
 Clear_Disp();

//Convert integer variables to string variables inside a character array,
//which will then be sent to LCD Driver to display time.
 sprintf(OutString,"%d%d:%d%d:%d%d", hr2, hr1, min2, min1, sec2, sec1);

 counter++;
 counter_DC_sleep++;
 counter_AC_sleep++;
 counter_jets++;
 counter_heat++;

 70

//Establish seconds, minutes, hours variables for operation of a digital clock
//Using two variables for each two-digit second, minute, and hour display.

 if(sec1 < 9) //Count seconds
 {
 sec1++;
 }
 else
 {
 sec1 = 0;
 if(sec2 < 5)
 {
 sec2++;
 }
 else
 {
 sec2 = 0;
 if(min1 < 9) //Count minutes
 {
 min1++;
 }
 else
 {
 min1 = 0;
 if (min2 < 5)
 {
 min2++;
 }
 else
 {
 min2 = 0;
 if(hr1 < 9) //Count hours
 {
 hr1++;
 }
 if ((hr1 == 3) & (hr2 == 2)) //Reset clock at 23:59
 {
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;
 }
 else
 {
 hr1 = 0;
 if (hr2 < 2)
 {
 hr2++;
 }
 else
 {
 sec1 = 0; //Additional handling for overrun hour
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;
 }
 }
 }
 }
 }
 }

 if (set_auto == 1)
 {

 71

 Init_Big(); //initializing func to reset screen

 char auto_message[] = " AUTO-RUNNING ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(auto_message, sizeof(auto_message));

 if (counter > Auto_counter_30)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x10;
 //P2OUT &= ~0x20;
 set_auto = 0;
 counter = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x10;
 //P2OUT |= 0x20;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x10;
 //P2OUT &= ~0x20;
 set_auto = 0;
 counter = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 }
 if (set_sleep == 1)
 {

 char sleep_message[] = " SLEEPING ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(sleep_message, sizeof(sleep_message));

 if (counter_DC_sleep > DC_sleep_counter_30)
 {
 if ((P2OUT & 0x10) == 0x10)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x10;
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x10;
 }
 counter_DC_sleep = 0;
 }

 if (AC_sleep_loop == 0)

 72

 {
 if (counter_AC_sleep > AC_sleep_counter_hour)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 AC_sleep_loop = 1;
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;
 }
 }
 if (counter_AC_sleep > AC_sleep_counter_2 && AC_sleep_loop == 1)
 {
 counter_AC_sleep = 0;
 AC_sleep_loop = 0;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x10;
 //P2OUT &= ~0x20;
 set_sleep = 0;
 counter_DC_sleep = 0;
 counter_AC_sleep = 0;
 AC_sleep_loop = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }

 }

 if (set_jet_1 == 1)
 {
 Init_Big(); //initializing func to reset screen

 char timer_message[] = " Running Time: ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(timer_message, sizeof(timer_message));

 Set_Curs_loc(0x1A);
 Write_word(OutString, 9);

 if (counter_jets > Jet_1_counter)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_jet_1 = 0;
 counter_jets = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();

 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;

 73

 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_jet_1 = 0;
 counter_jets = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 }

 if (set_jet_10 == 1)
 {
 Init_Big(); //initializing func to reset screen

 char timer_message[] = " Running Time: ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(timer_message, sizeof(timer_message));

 Set_Curs_loc(0x1A);
 Write_word(OutString, 9);

 if (counter_jets > Jet_10_counter)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_jet_10 = 0;
 counter_jets = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_jet_10 = 0;
 counter_jets = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }

 }

 74

 if (set_jet_15 == 1)
 {
 Init_Big(); //initializing func to reset screen

 char timer_message[] = " Running Time: ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(timer_message, sizeof(timer_message));

 Set_Curs_loc(0x1A);
 Write_word(OutString, 9);

 if (counter_jets > Jet_15_counter)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_jet_15 = 0;
 counter_jets = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_jet_15 = 0;
 counter_jets = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }

 }

 if (set_heat_30 == 1)
 {
 Init_Big(); //initializing func to reset screen

 char timer_message[] = " Running Time: ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(timer_message, sizeof(timer_message));

 Set_Curs_loc(0x1A);
 Write_word(OutString, 9);

 if (counter_heat > Heat_30_counter)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_heat_30 = 0;
 counter_heat = 0;

 75

 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_heat_30 = 0;
 counter_heat = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }

 }

 if (set_heat_5 == 1)
 {
 Init_Big(); //initializing func to reset screen

 char timer_message[] = " Running Time: ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(timer_message, sizeof(timer_message));

 Set_Curs_loc(0x1A);
 Write_word(OutString, 9);

 if (counter_heat > Heat_5_counter)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_heat_5 = 0;
 counter_heat = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_heat_5 = 0;
 counter_heat = 0;

 76

 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }

 }

 if (set_heat_15 == 1)
 {
 Init_Big(); //initializing func to reset screen

 char timer_message[] = " Running Time: ";

 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(timer_message, sizeof(timer_message));

 Set_Curs_loc(0x1A);
 Write_word(OutString, 9);

 if (counter_heat > Heat_15_counter)
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_heat_15 = 0;
 counter_heat = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }
 else
 {
 P1OUT |= 0x01; //P2OUT |= 0x20;
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 P1OUT &= ~0x01; //P2OUT &= ~0x20;
 set_heat_15 = 0;
 counter_heat = 0;
 sec1 = 0;
 min1 = 0;
 hr1 = 0;
 sec2 = 0;
 min2 = 0;
 hr2 = 0;

 __delay_cycles(8000000); // 0.5s
 __bic_SR_register_on_exit(LPM0_bits + GIE); //__disable_interrupt();
 }

 }
 return;
}

/***/

 77

/*************************PRINT SCREENSAVER*************************/
int Screensaver()
{
 Init_Big(); //initializing func to reset screen

 char screensaver[] = " A & J Spas ";
 Clear_Disp(); //clear out disp
 Set_Curs_loc(0x40);
 Write_word(screensaver, sizeof(screensaver));
 __delay_cycles(80000000); // 5sec wait

 return 0;
}

/***/

/************************MAIN MENU SUBROUTINE***********************/
int MAIN_MENU()
{
 __delay_cycles(8000000); // 0.5s

 Init_Small();

 int loop_flag2 = 0;

 char line1[] = "**** MAIN MENU ****";
 char line2[] = "RUN";
 char line3[] = "SLEEP";
 char line4[] = "LIGHTS";

 //print out menu
 Clear_Disp(); //clear out disp
 Write_word(line1, sizeof(line1));
 Set_Curs_loc(0x40);
 Write_Letter(0x7E);
 Write_word(line2, sizeof(line2));
 Set_Curs_loc(0x15);
 Write_word(line3, sizeof(line3));
 Set_Curs_loc(0x55);
 Write_word(line4, sizeof(line4));

 int op_marker = 0;
 int Op_Sel = 0;

 while (loop_flag2 != 2)
 {
 if ((P1IN & 0x08) != 0x08) //Selection Button
 {
 if (op_marker == 0)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //clear arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x7E); //write arrow to line 2
 Set_Curs_loc(0x54);
 Write_Letter(0x10); //make sure cleared arrow from line 3

 Op_Sel = 1; //option two selected
 op_marker = 1; //remember that arrow is on line 2
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 1)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //make sure cleared arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //clear arrow from line 2
 Set_Curs_loc(0x54);
 Write_Letter(0x7E); //write arrow to line 3

 78

 Op_Sel = 2; //option two selected
 op_marker = 2; //remember that arrow is on line 3, will loop back to line 1 next
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 2)
 {
 Set_Curs_loc(0x54);
 Write_Letter(0x10); //clear arrow from line 3
 Set_Curs_loc(0x40);
 Write_Letter(0x7E); //write arrow back to line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //make sure cleared arrow from line 2

 Op_Sel = 0; //option two selected
 op_marker = 0; //remember that arrow is on last line and should loop to top next
 while((P1IN & 0x08) != 0x08);
 }

 }

 if((P1IN & 0x04) != 0x04) //Enter button
 {
 loop_flag2 = 2;

 if (Op_Sel == 0) //selects option one
 {
 RUN();
 }
 else if (Op_Sel == 1) //selects option two
 {
 SLEEP();
 }
 else
 {
 LIGHTS();
 }
 }
 }
 return 0;
}

/***/

 79

/***************************RUN SUBROUTINE**************************/
int RUN()
{
 __delay_cycles(8000000); // 0.5s

 int Op_Sel = 0;

 int loop_flag3 = 0;

 Init_Small();
 char line1[] = "*** RUN OPTIONS ***";
 char line2[] = "AUTO-RUN";
 char line3[] = "MANUAL CONTROL";

 //print out menu
 Clear_Disp(); //clear out disp
 Write_word(line1, sizeof(line1));
 Set_Curs_loc(0x40);
 Write_Letter(0x7E);
 Write_word(line2, sizeof(line2));
 Set_Curs_loc(0x15);
 Write_word(line3, sizeof(line3));

 int op_marker = 0;

 while (loop_flag3 != 3)
 {
 if ((P1IN & 0x08) != 0x08) //Selection Button
 {
 if (op_marker == 0)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //clear arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x7E); //write arrow to line 2

 Op_Sel = 1; //option two selected
 op_marker = 1; //remember that arrow is on line 2
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 1)
 {
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //clear arrow from line 2
 Set_Curs_loc(0x40);
 Write_Letter(0x7E); //write arrow to line 1

 Op_Sel = 0; //option two selected
 op_marker = 0; //remember that arrow is on line 2, will loop back to line 1 next
 while((P1IN & 0x08) != 0x08);
 }
 }

 if((P1IN & 0x04) != 0x04) //Enter button
 {
 loop_flag3 = 3;
 if (Op_Sel == 0) //selects option one
 {
 AUTO_RUN();
 }
 else
 {
 MANUAL_CONTROL();
 }
 }

 80

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 return; //MAIN_MENU();
 }
 }
 return 0;
}

/***/

/**********************AUTO-RUN SUBROUTINE**************************/
int AUTO_RUN()
{
 __delay_cycles(8000000); // 0.5s

 set_sleep = 0;
 set_auto = 1;
 set_jet_1 = 0;
 set_jet_10 = 0;
 set_jet_15 = 0;
 set_heat_30 = 0;
 set_heat_5 = 0;
 set_heat_15 = 0;
 counter = 0;

 __bis_SR_register(LPM0_bits + GIE);

 return 0;
}

int MANUAL_CONTROL()
{
 __delay_cycles(8000000); // 0.5s

 int Op_Sel = 0;

 int loop_flag4 = 0;

 Init_Small();
 char line1[] = "** MANUAL CONTROL **";
 char line2[] = "JETS";
 char line3[] = "HEAT";

 //print out menu
 Clear_Disp(); //clear out disp
 Write_word(line1, sizeof(line1));
 Set_Curs_loc(0x40);
 Write_Letter(0x7E);
 Write_word(line2, sizeof(line2));
 Set_Curs_loc(0x15);
 Write_word(line3, sizeof(line3));

 int op_marker = 0;

 while (loop_flag4 != 4)
 {
 if ((P1IN & 0x08) != 0x08) //Selection Button
 {

 81

 if (op_marker == 0)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //clear arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x7E); //write arrow to line 2

 Op_Sel = 1; //option two selected
 op_marker = 1; //remember that arrow is on line 2
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 1)
 {
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //clear arrow from line 2
 Set_Curs_loc(0x40);
 Write_Letter(0x7E); //write arrow to line 1

 Op_Sel = 0; //option two selected
 op_marker = 0; //remember that arrow is on line 2, will loop back to line 1 next
 while((P1IN & 0x08) != 0x08);
 }
 }

 if((P1IN & 0x04) != 0x04) //Enter button
 {
 loop_flag4 = 4;
 if (Op_Sel == 0) //selects option one
 {
 JETS();
 }
 else
 {
 HEAT();
 }
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 return; // MAIN_MENU();
 }
 }
 return 0;
}

/***/

 82

/**************************JETS SUBROUTINE**************************/

int JETS()
{
 __delay_cycles(8000000); // 0.5s

 int Op_Sel = 0;

 int loop_flag5 = 0;

 counter = 0;
 counter_DC_sleep = 0;
 counter_AC_sleep = 0;
 counter_jets = 0;
 counter_heat = 0;

 Init_Small();
 char line1[] = "******* JETS *******";
 char line2[] = " 1 Minute";
 char line3[] = "10 Minutes";
 char line4[] = "15 Minutes";

 //print out menu
 Clear_Disp(); //clear out disp
 Write_word(line1, sizeof(line1));
 Set_Curs_loc(0x40);
 Write_Letter(0x7E);
 Write_word(line2, sizeof(line2));
 Set_Curs_loc(0x15);
 Write_word(line3, sizeof(line3));
 Set_Curs_loc(0x55);
 Write_word(line4, sizeof(line4));

 int op_marker = 0;

 while (loop_flag5 != 5)
 {
 if ((P1IN & 0x08) != 0x08) //Selection Button
 {
 if (op_marker == 0)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //clear arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x7E); //write arrow to line 2
 Set_Curs_loc(0x54);
 Write_Letter(0x10); //make sure cleared arrow from line 3

 Op_Sel = 1; //option two selected
 op_marker = 1; //remember that arrow is on line 2
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 1)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //make sure cleared arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //clear arrow from line 2
 Set_Curs_loc(0x54);
 Write_Letter(0x7E); //write arrow to line 3

 Op_Sel = 2; //option two selected
 op_marker = 2; //remember that arrow is on line 3, will loop back to line 1 next
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 2)
 {
 Set_Curs_loc(0x54);

 83

 Write_Letter(0x10); //clear arrow from line 3
 Set_Curs_loc(0x40);
 Write_Letter(0x7E); //write arrow back to line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //make sure cleared arrow from line 2

 Op_Sel = 0; //option two selected
 op_marker = 0; //remember that arrow is on last line and should loop to top next
 while((P1IN & 0x08) != 0x08);
 }
 }

 if((P1IN & 0x04) != 0x04) //Enter button
 {
 loop_flag5 = 5;
 set_sleep = 0;
 set_auto = 0;

 if (Op_Sel == 0) //selects option one
 {
 set_jet_1 = 1;
 }
 else if (Op_Sel == 1) //selects option one
 {
 set_jet_10 = 1;
 }
 else
 {
 set_jet_15 = 1;
 }

 __bis_SR_register(LPM0_bits + GIE);

 //();
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 return; // MAIN_MENU();
 }
 }
 return 0;
}

/***/

 84

/**************************HEAT SUBROUTINE**************************/

int HEAT()
{
 __delay_cycles(8000000); // 0.5s

 int Op_Sel = 0;

 int loop_flag6 = 0;

 counter = 0;
 counter_DC_sleep = 0;
 counter_AC_sleep = 0;
 counter_jets = 0;
 counter_heat = 0;

 Init_Small();
 char line1[] = "******* HEAT *******";
 char line2[] = "30 Seconds";
 char line3[] = " 5 Minutes";
 char line4[] = "15 Minutes";

 //print out menu
 Clear_Disp(); //clear out disp
 Write_word(line1, sizeof(line1));
 Set_Curs_loc(0x40);
 Write_Letter(0x7E);
 Write_word(line2, sizeof(line2));
 Set_Curs_loc(0x15);
 Write_word(line3, sizeof(line3));
 Set_Curs_loc(0x55);
 Write_word(line4, sizeof(line4));

 int op_marker = 0;

 while (loop_flag6 != 6)
 {
 if ((P1IN & 0x08) != 0x08) //Selection Button
 {
 if (op_marker == 0)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //clear arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x7E); //write arrow to line 2
 Set_Curs_loc(0x54);
 Write_Letter(0x10); //make sure cleared arrow from line 3

 Op_Sel = 1; //option two selected
 op_marker = 1; //remember that arrow is on line 2
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 1)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //make sure cleared arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //clear arrow from line 2
 Set_Curs_loc(0x54);
 Write_Letter(0x7E); //write arrow to line 3

 Op_Sel = 2; //option two selected
 op_marker = 2; //remember that arrow is on line 3, will loop back to line 1 next
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 2)
 {
 Set_Curs_loc(0x54);

 85

 Write_Letter(0x10); //clear arrow from line 3
 Set_Curs_loc(0x40);
 Write_Letter(0x7E); //write arrow back to line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //make sure cleared arrow from line 2

 Op_Sel = 0; //option two selected
 op_marker = 0; //remember that arrow is on last line and should loop to top next
 while((P1IN & 0x08) != 0x08);
 }
 }

 if((P1IN & 0x04) != 0x04) //Enter button
 {
 loop_flag6 = 6;
 set_sleep = 0;
 set_auto = 0;

 if (Op_Sel == 0) //selects option one
 {
 set_heat_30 = 1;
 }
 else if (Op_Sel == 1) //selects option one
 {
 set_heat_5 = 1;
 }
 else
 {
 set_heat_15 = 1;
 }

 __bis_SR_register(LPM0_bits + GIE);

 //();

 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 return; //MAIN_MENU();
 }
 }
 return 0;
}

/***/

 86

/*************************SLEEP SUBROUTINE**************************/

int SLEEP()
{
 __delay_cycles(8000000); // 0.5s

 set_sleep = 1;
 set_auto = 0;
 set_jet_1 = 0;
 set_jet_10 = 0;
 set_jet_15 = 0;
 set_heat_30 = 0;
 set_heat_5 = 0;
 set_heat_15 = 0;
 counter_AC_sleep = 0;
 counter_DC_sleep = 0;

 __bis_SR_register(LPM0_bits + GIE);

 //();
 return 0;
}

int LIGHTS()
{
 __delay_cycles(8000000); // 0.5s

 Init_Small();

 int loop_flag7 = 0;

 char line1[] = "****** LIGHTS ******";
 char line2[] = "ON";
 char line3[] = "OFF";

 //print out menu
 Clear_Disp(); //clear out disp
 Write_word(line1, sizeof(line1));
 Set_Curs_loc(0x40);
 Write_Letter(0x7E);
 Write_word(line2, sizeof(line2));
 Set_Curs_loc(0x15);
 Write_word(line3, sizeof(line3));

 int Op_Sel = 0;
 int op_marker = 0;

 while (loop_flag7 != 7)
 {
 if ((P1IN & 0x08) != 0x08) //Selection Button
 {
 if (op_marker == 0)
 {
 Set_Curs_loc(0x40);
 Write_Letter(0x10); //clear arrow from line 1
 Set_Curs_loc(0x14);
 Write_Letter(0x7E); //write arrow to line 2

 Op_Sel = 1; //option two selected
 op_marker = 1; //remember that arrow is on line 2
 while((P1IN & 0x08) != 0x08);
 }
 else if (op_marker == 1)

 87

 {
 Set_Curs_loc(0x14);
 Write_Letter(0x10); //clear arrow from line 2
 Set_Curs_loc(0x40);
 Write_Letter(0x7E); //write arrow to line 1

 Op_Sel = 0; //option two selected
 op_marker = 0; //remember that arrow is on line 2, will loop back to line 1 next
 while((P1IN & 0x08) != 0x08);
 }
 }

 if((P1IN & 0x04) != 0x04) //Enter button
 {
 loop_flag7 = 7;
 if(Op_Sel == 0) //selects option one
 {
 P1OUT |= 0x01; //turn lights on P2 2.3 as control x08...or 1.0 x01 for testing
 }
 else
 {
 P1OUT &= ~0x01; //turn lights off
 }
 }

 if ((P1IN & 0x02) != 0x02) // toggle arrow to top, clear bottom arrow
 {
 return; //MAIN_MENU();
 }
 }
 return 0;
}

/***/

 88

/***************WRITE WORD TO LCD SCREEN SUBROUTINE*****************/
int Write_word(char *word, int l_word)
{
 int i = 0; //counter
 for (i = 0; i < l_word - 1; i++)
 {
 char up_let = 0b11110000 & word[i];
 char lo_let = 0b00001111 & word[i];
 lo_let = lo_let << 4; //bit shift 4 to upper 4

 //write a letter
 P1OUT &= 0x0F; // clear Data bus
 P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1
 P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1
 P1OUT |= up_let; // put data out (function set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1
 P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1
 P1OUT |= lo_let; // put data out (function set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(960); // 60us
 }
 return 0;
}

/***/

/***************SET CURSOR ON LCD SCREEN SUBROUTINE*****************/

int Set_Curs_loc(char loc)
{
 char up_loc = 0b11110000 & loc;
 char lo_loc = 0b00001111 & loc;
 up_loc |= 0x80; //mask upper bit to set it toa DDRAM write
 lo_loc = lo_loc << 4; //bit shift 4 to upper 4

 //set to write to DDRAM
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= up_loc; // put data out (function set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= lo_loc; // put data out (function set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(960); // 60us
 return 0;
}

/***/

 89

/***************WRITE LETTER TO LCD SCREEN SUBROUTINE*****************/

int Write_Letter(char letter)
{
 char up_let = 0b11110000 & letter;
 char lo_let = 0b00001111 & letter;

 lo_let = lo_let << 4; //bit shift 4 to upper 4

 //write a letter
 P1OUT &= 0x0F; // clear Data bus
 P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1
 P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1
 P1OUT |= up_let; // put data out (function set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1
 P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1
 P1OUT |= lo_let; // put data out (function set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x04; //E = 0, R/W = 0, RS = 1
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 __delay_cycles(960); // 60us

 return 0;
}

/***/

/*************SHIFT LETTER ON LCD SCREEN SUBROUTINE*****************/

int shift_Disp_Left(void)
{
 //Display Clear
 P1OUT &= 0x0F; // clear Data bus
 P2OUT |= 0x01; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x00; // put data out (Display Clear - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x10; // put data out (Display Clear - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

__delay_cycles(48000); // 3ms

return 0;
}

/***/

 90

/***************CLEAR THE LCD SCREEN SUBROUTINE*****************/

int Clear_Disp(void)
{
 //Display Clear
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x00; // put data out (Display Clear - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x10; // put data out (Display Clear - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 __delay_cycles(48000); // 3ms

return 0;
}

/***/

 91

/*****INITIALIZE THE LCD SCREEN FOR 5X8 DOT MATRIX SUBROUTINE*******/

int Init_Small(void) {
 //start up sequence
 //unt on
 __delay_cycles(960); // 60us

 //Functions set
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x20; // put data out (function set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x80; // put data out (function set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(960); // 60us

 //Display Function
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x00; // put data out (Display set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0xC0; // put data out (Display set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(960); // 60us

 //Display Clear
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x00; // put data out (Display Clear - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x10; // put data out (Display Clear - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(48000); // 3ms

 return 0;
}

/***/

 92

/*****INITIALIZE THE LCD SCREEN FOR 5X11 DOT MATRIX SUBROUTINE*******/

int Init_Big(void) {
 //start up sequence
 //unt on
 __delay_cycles(960); // 60us

 //Functions set
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x20; // put data out (function set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0xC0; // put data out (function set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(960); // 60us

 //Display Function
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x00; // put data out (Display set - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0xC0; // put data out (Display set - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus
 __delay_cycles(960); // 60us

 //Display Clear
 P1OUT &= 0x0F; // clear Data bus
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x00; // put data out (Display Clear - upper nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0
 P1OUT |= 0x10; // put data out (Display Clear - lower nible)
 __delay_cycles(16); // 1us -tw delay
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0
 P1OUT &= 0x0F; // clear Data bus

 __delay_cycles(48000); // 3ms

 // init complete
 return 0;
}
/***/

 93

APPENDIX G: MATLAB SCRIPT FOR ENERGY CALCULATIONS
%%
%Senior Project: Solar Powered Hot Tub
%Designed by: Jonathan Peterson and Anthon Zepeda
%May 20, 2016
%
%This script was created in order to perform data
%calculations aiding in determining the power output
%from a 400W solar panel
%%

%Latitude, Longitude, and Day Definitions
Lat = 35.484;
Long = 120.672;
Day = 359;

%Declination Calculation
Dec = (23.45 * sind((360/365)*(Day-81)));

%Hour Angle Calculation
t = (0:1:1440);
Hour = (t/60);
H_B4_N = -(Hour-12);
HA = ((15).*H_B4_N);

%Part 1
%Altitude Calculation
Alt = asind((sind(Dec)*sind(Lat))+(cosd(Dec)*cosd(Lat)*cosd(HA)));

%Azimuth Calculation
Azm = asind((cosd(Dec).*sind(HA))./(cosd(Alt)));

for i = 1:1441
 if cosd(HA(i)) >= (tand(Dec)/ tand(Lat))
 Azm(i) = Azm(i);
 else
 if Azm(i) <= 0
 Azm(i) = (-180-Azm(i));
 else
 Azm(i) = (180-Azm(i));
 end
 end
end

Alt(Alt<0.1)=0.1;
%plot(Azm,Alt,'b');

%Part 2 - Irradaiance versus Time
AMR = (1./(sind(Alt)));

I = (1377 .* (0.7.^(AMR.^0.678)));

%plot(t,I2,'b');

%Part 3 - Incident Energy
W = t(2:1440)-t(1:1439);
H = ((I(2:1440)+I(1:1439))/2);
IE_Array = W.*H;
IE = sum(IE_Array); %Wmin/m2
IE = (IE/(60000)) %kWh/m2

%Day Light Hours
HSR = acosd((-tand(Lat))*(tand(Dec)));
SR = (HSR/15);
Day_Light_Hour = (SR*2);

 94

%Average Incident Energy per Daylight Hour
Avg_IE = (IE/Day_Light_Hour);

%Part 4 - Power from Panels
PWR_Array = (IE_Array .* 0.2 .* t(1:1439) .* (1/1000)); %kW/m2
PWR = sum(PWR_Array); %Total kW

%plot(t(1:1439),PWR_Array,'b');

%Part 5 - Temperature Problem
Sum_Temp = (((30*sin(0.0043633.*(t-200)))+75)-32)*(5/9); %Degrees C
Wint_Temp = (((30*sin(0.0043633.*(t-50)))+51)-32)*(5/9); %Degrees C

Sum_Pan_Temp = (((52.5*sin(0.0043633*(t-200)))+97.5)-32)*(5/9); %Degrees C
Wint_Pan_Temp = (((24*sin(0.0043633*(t-50)))+56)-32)*(5/9); %Degrees C

Operating_Temp = 25;

Sum_Eff = 0.20*(1-((Sum_Pan_Temp - Operating_Temp).*0.0038));
Wint_Eff = 0.20*(1-((Wint_Pan_Temp - Operating_Temp).*0.0038));

PWR_Array_Eff = (IE_Array .* Wint_Eff(1:1439) .* t(1:1439) .* (1/1000)); %kW/m2
PWR = sum(PWR_Array_Eff); %Total kW

plot(t(1:1439),PWR_Array,'b',t(1:1439),PWR_Array_Eff,'k');

%Part 6 - Total Energy Generated for both Part 4 and 5
PW = t(2:1439)-t(1:1438);
PH = ((PWR_Array(2:1439)+PWR_Array(1:1438))/2);
Tot_Energy_Array = PW.*PH;
Tot_Energy = sum(Tot_Energy_Array); %Wmin/m2
Tot_Energy = (Tot_Energy/(60)) %Wh/m2

PWE = t(2:1439)-t(1:1438);
PHE = ((PWR_Array_Eff(2:1439)+PWR_Array_Eff(1:1438))/2);
Tot_Energy_Array_Eff = PWE.*PHE;
Tot_Energy_Eff = sum(Tot_Energy_Array_Eff); %Wmin/m2
Tot_Energy_Eff = (Tot_Energy_Eff/(60)) %Wh/m2

%Average Generated Energy per Daylight Hour
Avg_Gen_Energy = (Tot_Energy/Day_Light_Hour)
Avg_Gen_Energy_Eff = (Tot_Energy_Eff/Day_Light_Hour)

 95

APPENDIX H: WORKS CITED

1. "Best Hot Tubs for 2015 - ConsumerAffairs." ConsumerAffairs. N.p., n.d. Web.

26 Oct. 2015.

2. "Consumer Perspectives on Sustainability Choices." EcoFocus Worldwide. N.p.,

n.d. Web. 26 Oct. 2015.

3. Deziel, Chris. "How to Change My Hot Tub From Electric to Solar." Home

Guides. SF Gate, n.d. Web. 26 Oct. 2015.

4. "Evolving Smart Technologies Across Home Appliance and Consumer

Electronics Markets." Appliance Design Magazine RSS. Intertek Testing Services.

Web. 26 Oct. 2015.

5. Hammel, Cailley. "A History of Innovation: Hot Tubs." AQUA. AQUA

Magazine, 1 Sept. 2013. Web. 26 Oct. 2015.

6. "How And Where To Buy a Swimming Pool Solar Heater." Solar Energy For

Homes. N.p., n.d. Web. 26 Oct. 2015.

7. "Industry Reports." Market Research Reports. N.p., n.d. Web. 26 Oct. 2015.

8. "Jacuzzi Hot Tubs & Spas | Jacuzzi.com." Jacuzzi Hot Tubs. N.p., n.d. Web. 26

Oct. 2015.

9. "The Most Eco Friendly Hot Tub Spas." Energy Efficient Hot Tubs. Jacuzzi® Hot

Tubs, n.d. Web. 26 Oct. 2015.

10. "People Living in Households That Own a Pool, Hot Tub or Spa, USA 2014."

Statista. N.p., n.d. Web. 26 Oct. 2015.

11. Siegal, RP. "Study Shows Bright Green Future for Smart Appliances." Triple

Pundit People Planet Profit. N.p., 09 Mar. 2010. Web. 26 Oct. 2015.

 96

12. "Solar Hot Tub." SOLAR HOT TUB.COM. ABC Solar Incorporated, n.d. Web. 26

Oct. 2015.

13. "Solar Markets Around The World." Solar Markets. N.p., n.d. Web. 26 Oct. 2015.

14. Wedgeworth, Cicely. "Where in America You'll Find Homes With Hot Tubs, in 2

Maps." Real Estate News and Advice Realtorcom. N.p., 21 May 2015. Web. 26

Oct. 2015.

	ABSTRACT
	1. INTRODUCTION
	Figure 1.1: Study on Hot Tub and Pool Owners in the U.S. [10]

	2. BACKGROUND
	The hot tub will consist of the following major subsystems: a 12V 175Ah battery for system power, a 400W solar panel for battery recharging, a direct sunlight heat exchanger with a 15W DC pump for heating and circulation, a 1/8 HP AC pump for main cir...
	Table 2.1 System Specifications
	Figure 3.1: Hardware High Level Block Diagram
	Figure 3.2: Hardware High Level Model
	Table 3.1: High Level Block Diagram Descriptions

	Figure 3.3: Hot Tub Block Diagram
	Figure 3.4: Hot Tub Model
	Table 3.2: Hot Tub Model Descriptions

	Figure 3.5: Solar Panel Assembly Block Diagram
	Figure 3.6: Solar Panel Assembly Model
	Table 3.3: Solar Panel Model Descriptions

	Figure 3.7: Solar Water Heater Assembly Block Diagram
	Figure 3.8: Solar Water Heater Assembly Model
	Table 3.4: Solar Water Heater Model Descriptions

	Figure 3.10: User-Interface High-Level Programming Flow-Diagram
	Table 3.7: User Interface System Settings

	Figure 3.11: User-Interface Schematic
	Table 3.8: User Interface Schematic Port Descriptions
	Table 3.8 (Continued): User Interface Schematic Port Descriptions

	Figure 3.12: Relays Schematic
	Figure 3.13: Switch-Debounce Circuitry Schematic

	4. CONSTRUCTION
	Figure 4.1: Hot Tub with Pump and Wiring Removed
	Figure 4.2: AC Pump Plumbing (Preliminary Model)
	Figure 4.4: Existing Hot Tub Plumbing (Insulation Removed)
	Figure 4.5: Existing Port chosen for Hot Water Heater Assembly
	Figure 4.6: Final Plumbing for Hot Water Heater Assembly
	Figure 4.7: Hot Tub Plumbing Leak Repairs
	Figure 4.8: Finished Hot Tub Base
	Figure 4.9: Pre and Post Finished Side Panel
	Figure 4.10: Finished Spa Pump and Plumbing with Flow Control and Bleed Valves
	Table 4.1: Solar Vacuum Tube Temperature Data

	Figure 4.11: Water Heater Apparatus
	Figure 4.12: Heat Exchanger Construction
	Figure 4.13: Completed Copper Tubing for Heat Exchanger
	Figure 4.14: Prepped Copper Tubing
	Figure 4.15: Completed Heat Exchanger
	Figure 4.16: Completed Housing for Electrical Components
	Figure 4.17: Materials for Control Circuitry Housing
	Figure 4.18: Completed Hardware for User Interface
	Figure 4.19: Control Wiring for User Interface

	5. DATA
	Table 5.1: Breakdown of Power Consumption
	Table 5.2: Test Conditions for System Power
	Table 5.3: Battery and Spa Pump Data
	Figure 5.1: Battery Discharge Rate
	Table 5.4: Test Conditions for Control of Pumps
	Table 5.4 (Continued): Test Conditions for Control of Pumps
	Table 5.5: Test Conditions for Lighting Control Operation
	Table 5.6: Test Conditions for the User Interface (Display Modes)

	6. ANALYSIS
	Table 6.1: Design Options Summary

	7. CONCLUSION
	8. FUTURE WORK
	APPENDIX A: DIVISION OF LABOR
	APPENDIX B: SCHEDULE
	APPENDIX C: COST ANALYSIS
	Table C.1: Project Cost Analysis

	APPENDIX D: BILL OF MATERIALS
	APPENDIX E: ANALYSIS OF SENIOR PROJECT DESIGN
	APPENDIX F: USER-INTERFACE SOURCE CODE
	APPENDIX G: MATLAB SCRIPT FOR ENERGY CALCULATIONS
	APPENDIX H: WORKS CITED

