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ABSTRACT 
 
This paper discusses the design and implementation of a solar-powered hot tub. The 

concept of this project was to design an independently-operated hot tub powered by 

a 12V rechargeable battery, charged during the day by a single 400W solar panel. 

For this purpose, a twenty-year-old name-brand hot tub was purchased, in used 

condition. The plumbing, AC electrical wiring, and mechanical pumps were all 

removed and replaced with new components to meet our design specifications. 

Additionally, a solar water-heater was designed and integrated into the system to 

directly apply the sun’s heat to water pumped in and out of the tub, which 

significantly reduced the power budget for the system. Furthermore, the tub 

structure was fitted with energy efficient LED lighting for night-time use. Lastly, a 

user-friendly control and display unit was designed and embedded into the tub’s 

mechanical structure to allow owners to adjust and set modes of operation, jet and 

heat cycle times, and lighting options. Our design allows an owner to continually 

power their hot tub at no additional cost every month. This project served as a 

channel through which much of our studies in microelectronic, embedded system, 

and power system design got put into practice.  
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1.  INTRODUCTION 
 
The hot tub industry has made huge strides in profitability since its inception in the 

1960s[5]; however, over the past five-year period hot tubs sales have steadily 

declined (average annual rate of 9.3%) as homeowners slowly recover from the 

latest economic recession[7]. Figure 1.1 displays the amount of hot tub owners 

during the time period since the recession. 

 

 
Figure 1.1: Study on Hot Tub and Pool Owners in the U.S. [10] 

 
Aside from the initial cost of purchasing a hot tub, owners must also incur a high 

cost of electrical energy each month to continually power the tubs; thus there exists 

a new market for low-energy consumption hot tubs.  

 

Most hot tub manufacturers have realized the need to make their designs more 

energy efficient. Without completely redesigning their products and overhauling 

their manufacturing processes, most companies have only made minor changes to 

existing designs, which results in minor energy savings for consumers. These minor 
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changes include: swapping out incandescent lighting with energy efficient LED 

lighting, using higher density foam for insulation, and making more airtight tub 

covers. Each of these improvements do cut-down the cost of energy, but not on a 

level that makes hot tubs once again affordable for the general public; in fact, hot 

tubs featuring these improvements cost more than they did beforehand. 

 

What the hot tub market needs is a complete redesign of hot tub power-

management systems. The current electrical grid is set-up to provide residential 

homes with AC power; thus high-energy consumption devices such as refrigerators, 

washing machines, and hot tubs require an AC connection in order to be powered 

from a residential home.  However, purchasing regulated AC power from energy 

providers, such as electric utilities, is very costly and comes with additional fees. 

One way to eliminate energy costs and fees is to generate power off grid using free 

sources of energy, such as the sun or wind. 

 

Interestingly enough, the solar industry has experienced extraordinary growth 

throughout the economic crisis (a 78% increase in sales from 2006-2011) as 

consumers demand more and more for “green” solutions[14].  

 

However, providing an entire home with off-grid, or even grid-tied, DC power can be 

very costly: typically ranging from 15k-30k dollars. What makes the most 

economical sense when powering a single high energy-consumption device, is to 

power only the device (hot tub) with a small yet adequately sized and affordably 

priced off-grid solar system.  
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Therefore, the goal of this project is to design an all-inclusive hot tub that features a 

solar powered off-grid power management system which currently is not offered by 

any other hot tub manufacturer. This product could enter the hot tub market at its 

lowest point in the past decade, taking advantage of a minimal competitor situation 

and an ever-increasing consumer demand for sustainable appliances. 
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2.  BACKGROUND  

The hot tub will consist of the following major subsystems: a 12V 175Ah battery for 

system power, a 400W solar panel for battery recharging, a direct sunlight heat exchanger 

with a 15W DC pump for heating and circulation, a 1/8 HP AC pump for main 

circulation, LED lighting, and a user interface controlled by an embedded MSP430 

microcontroller. Table 2.1 displays the system specifications for each subsystem. 

Table 2.1 System Specifications 
 

SUBSYSTEM SPECIFICATION 

Battery 
• Nominal 12V 
• Capacity: 175Ah 
• Power: 2100Whr 

Water Temperature 
• Temperature Range: 80-110°F  
• Not selectable within range 
• Increased temperature is a result of heat pump run time 

Heat Pump 
• Nominal Operating Voltage: 12VDC 
• Flow Rate: 3 GPM 
• Rated Power: 15W 

Jet Pump 

• Nominal Operating Voltage: 120VAC 
• Max Amperage: 4A 
• Flow Rate: 45 GPM 
• Rated Power: ⅛ HP 

LED Lighting 

• Nominal Operating Voltage Range: 9V~14.8V 
• Max Current Draw: 8A 
• Rated Power: 4.9W per strip (10 strips total) 
• Average Intensity: 402 Lumens per strip 
• Dimmable: Yes 
• LED Lifetime: 40,000 hours 

Solar Panels 

• Max Voltage: 91V 
• Max Amperage: 8.39A 
• Rated Power: 400W 
• Weight: 44.1 lbs 
• Dimensions: 52” x 78” x 1.5” 
• Series Fuse Rating: 40A 
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3.  DESIGN 
 
 
The hardware of the project will consist of three major systems: The hot tub itself, a 

solar panel assembly, and a solar water heater assembly. The solar panel will be 

used to charge the battery that will power all of the pumps and electronics used in 

the hot tub while the solar water heater will be used to regulate the water 

temperature. The high-level block diagram of the entire system is shown in Figure 

3.1, followed by a model of the overall system in Figure 3.2 and a table describing its 

components (Table 3.1). 

 

 
Figure 3.1: Hardware High Level Block Diagram 

 
 
 

 

 
Figure 3.2: Hardware High Level Model 
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Table 3.1: High Level Block Diagram Descriptions 
 

BLOCK 
NAME 

BLOCK 
DESCRIPTION 

FUNCTIONALITY 

Hot Tub 
• Hot Tub 
• Spa Pump 
• Accessories 

Provides the housing of the user interface, the 
jets, battery, and other accessories. 

Solar Panel 

• Solar Panel 
• Charge 

Controller 
• 12V Battery 
• Inverter 

Provides all of the necessary electrical power 
to the hot tub and all of its accessories. 

Solar Water 
Heater 

• Solar Water 
Heater 

• 12V DC Pump 
Provides all of the hot water for the hot tub. 

 
 
 
HOT TUB STRUCTURE 
 
The hot tub structure portion of the high-level block diagram consists of all of the 

accessories associated with the housing of the tub. These include things such as the 

user interface, the jets, and the lighting. Although there are a lot of components 

involved with the hot tub portion of the project there are truly only three major 

inputs. These are the power for the tub, the hot water for the tub, and all of the user 

inputs through the user interface. A simple block diagram of this is shown in Figure 

3.3 followed by a more detailed model (Figure 3.4). A table describing all of the 

labels is provided in Table 3.2. 
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Figure 3.3: Hot Tub Block Diagram 
 
 
 
 

 
 
 

 
Figure 3.4: Hot Tub Model 
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Table 3.2: Hot Tub Model Descriptions 
 

LABEL FUNCTIONALITY 

User Interface 
• Displays temperature and menu options 
• Controls run modes and lighting functions 

LED Lighting 
• Exterior lighting and one interior light 
• Dimmable control through the user interface 

Spa/AC Pump 
• Manual control for 1, 10, and 15 minute operation 
• Automatic control for 40 minute operation 
• Automatic control for 24 hour operation 

Heat/DC Pump 
• Manual control for 30sec, and 5-15 minute operation 
• Automatic control for 40 minute operation 
• Automatic control for 24 hour operation 

Battery 
• Power source for pumps, lights, and controller 
• Connected to the solar panel assembly 
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SOLAR PANEL ASSEMBLY 

 
The solar panel assembly is responsible for providing all of the electrical power to 

the system. It is comprised of three major components: a solar panel itself, a charge 

controller, and a battery. Note that the battery is apart of both the solar panel 

assembly and the hot tub structure because one powers it and the other houses it. It 

operates by having the solar panel produce electrical power from the sun. Once this 

power is harvested it is stored in the battery so that the hot tub can be used at all 

times of the day. The charge controller plays a vital role because it regulates the 

power flow in the system by ensuring that the battery is properly charged and any 

excess power is properly taken care of. A simple block diagram of the system is 

provided in Figure 3.5 while the model and associated part descriptions are shown 

in Figure 3.6 and Table 3.3 respectively. 

 

  

 
Figure 3.5: Solar Panel Assembly Block Diagram 
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Figure 3.6: Solar Panel Assembly Model 

 
 
 
 
 
 
 
 

Table 3.3: Solar Panel Model Descriptions 
 

LABEL FUNCTIONALITY 

Solar Panel • Provides power for the entire hot tub 

Charge Controller 
• Regulates the power supplied by the solar panel 
• Ensures proper charging of the battery 

Battery • Stores the power to be used by the hot tub 
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SOLAR WATER HEATER ASSEMBLY 
 
The solar water heater assembly is responsible for providing the hot water to the 

system. It does this using a single 12 volt DC pump and 10 solar vacuum tubes. The 

pump carries the water out of the hot tub and into a heat exchanger built out of 

copper tubing and solar vacuum tubes. While in the heat exchanger the water is 

warmed up by the heat transfer from the copper pipes and is pumped back into the 

hot tub. By repeating this process throughout the day the water is continuously 

heated until an appropriate temperature is reached. Once this temperature is 

reached the pump can be turned off in order to keep the water from getting any 

hotter. The block diagram showing the system setup is provided in Figure 3.7 while 

a more detailed model is shown in Figure 3.8. Table 3.4 provides descriptions of the 

components. 

 

 
 

 
Figure 3.7: Solar Water Heater Assembly Block Diagram 
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Figure 3.8: Solar Water Heater Assembly Model 

 

 

 

 

 

Table 3.4: Solar Water Heater Model Descriptions 
 

LABEL FUNCTIONALITY 

Solar Water Heater • Provides the hot water for the hot tub 

Pump • Control the water flow throughout the system 
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USER INTERFACE 
 
The user interface is a physical unit, which allows the user to view system 

diagnostics and adjust system settings. Upon power-up, the main-menu of control 

options as well as the current temperature reading will be displayed. From here, the 

user will be able to adjust the mode of operation, the jets’ running-time, lighting 

control, and heat pump running time, as shown in Figure 3.10.  

 
 

Figure 3.10: User-Interface High-Level Programming Flow-Diagram 
 
 

A complete list of system settings and descriptions for each setting can be found in 

Table 3.7. The source code developed for the complete control and automation of 

the user-interface is documented in Appendix F. 
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Table 3.7: User Interface System Settings 
 

SETTING NAME SETTING DESCRIPTION 

POWER 
Energizes user-interface and initializes software 
instructions 

MAIN MENU Displays each of the main control settings 

TEMPERATURE 
STATUS 

Displays the current temperature of the water 

RUN MODE SETTINGS 
Displays two modes of operation: Auto-Run and Manual 
Control 

AUTO-RUN 
Displays “AUTO-RUNNING” when selected 
Energizes both heat (DC)  and jet (AC) pumps for 40 
minutes 

MANUAL CONTROL Displays two options for control: Jets and Heat 

JETS 

Displays 3 pre-set time settings: “1 minute”, “10 minutes”, 
and “15 minutes” 
Displays running time for selected pre-set 
Energizes the AC pump for selected time 

HEAT 

Displays 3 pre-set time settings: “30 seconds”, “1 minute”, 
and “15 minutes” 
Displays running time for the selected pre-set time 
Energizes the DC pump for the selected time 

SLEEP 

Displays “SLEEPING” when selected 
Energizes heat (DC)  pump for 30 minutes ON and 30 
minutes OFF 
Energizes jet (AC) pump for 1 hour ON and 2 hours OFF 
Cycles continuously 24 hours/day and 7 days/week until 
powered off 

LIGHTING Potentiometer-controlled dimmable intensity-range 
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The user interface (Figure 3.11) will consist of an LCD screen, a temperature display 

screen, 4 buttons (for control and making selections), two potentiometers, an 

embedded microcontroller (MSP 430), associated wiring, and support circuitry 

(Figures 3.12 and 3.13). 

 

 
Figure 3.11: User-Interface Schematic 

 
 

Table 3.8 describes each of the function blocks and input/output ports shown in 

Figure 3.11. 
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Table 3.8: User Interface Schematic Port Descriptions 
 

BLOCK 
NAME 

BLOCK DESCRIPTION 
PORT 
NAME 

PORT DESCRIPTION 

POWER Energizes the unit 5V 
Switch between USB and 5V 
devices 

SELECT 
BUTTON 

Scroll through options P1.3 Connects to MSP input 

ENTER 
BUTTON 

Command to select an item P1.2 Connects to MSP input 

HOME 
BUTTON 

Return to Main-Menu P1.1 Connects to MSP input 

MSP 
Microcontroller used for 

processing 

P1.0 
P1.1 
P1.2 
P1.3 
P1.4 
P1.5 
P1.6 
P1.7 
P2.0 
P2.1 
P2.2 
P2.3 
P2.4 
P2.5 

GPIO Input → POWER 
GPIO Input → HOME 
GPIO Input → ENTER 
GPIO Input → SELECT 
GPIO Input → LCD 11 
GPIO Input → LCD 12 
GPIO Input → LCD 13 
GPIO Input → LCD 14 
GPIO Input → LCD 4 
GPIO Input → LCD 5 
GPIO Input → LCD 6 
GPIO Output → LIGHTS 
GPIO Output → DC Pump 
GPIO Output → AC Pump 

LCD Display unit 

1, 16 
2, 15 

3 
4 
5 
6 

11 
12 
13 
14 

LCD ground → MSP ground 
LCD power → 5v power switch 
LCD intensity control → S POT 
R/S control → MSP P2.0 
R/W control → MSP P2.1 
Enable control → MSP P2.2 
Data bit 0 → MSP P1.4 
Data bit 1 → MSP P1.5 
Data bit 2 → MSP P1.6 
Data bit 3 → MSP P1.7 
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Table 3.8 (Continued): User Interface Schematic Port Descriptions 

 

BLOCK 
NAME 

BLOCK DESCRIPTION 
PORT 
NAME 

PORT DESCRIPTION 

TEMP Display unit 5V Connected to 5V switch 

L POT Lights Potentiometer P2.3 12V power for lights 

S POT LCD screen potentiometer 3 Control arm of potentiometer 

 
 
 
 
 

 
Figure 3.12: Relays Schematic 

 
 
Figure 3.12 shows how digital output pins from the microcontroller are used to 

energize each relay, allowing the required amount of power to safely flow from each 

source to each load. 



 18 

 
 
 

 
Figure 3.13: Switch-Debounce Circuitry Schematic 

 
 
Figure 3.13 shows how low-pass filters were used to mitigate bouncing of the 

mechanical switches. 
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4.  CONSTRUCTION 
 
 
HOT TUB STRUCTURE 
 
To begin construction on this project an existing two-person hot tub was purchased 

to work with. The first step consisted of stripping the old hot tub of all of its existing 

mechanical and electrical parts. This included removing the existing 3 horsepower 

motor along with all of its electrical control wiring, which would be replaced with 

the earlier discussed design. The cleared out electrical compartment is shown in 

Figure 4.1. 

 
Figure 4.1: Hot Tub with Pump and Wiring Removed 

 
 
After the hot tub had been cleared the design for the new pump and associated 

piping was installed. The construction of this involved sizing the existing pipes (2” 

piping) that were going to be utilized and making sure the appropriate connections 

were bought so that the new spa pump (1 ½” ports) could be properly installed.  
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Figure 4.2 shows the preliminary piping model. 

 

Figure 4.2: AC Pump Plumbing (Preliminary Model) 
 

After putting more thought into the piping it was decided to modify the preliminary 

design in order to add valves on either end of the spa pump. This would allow the 

user to isolate the spa pump in case any repairs needed to be made, without having 

to drain the entire tub. An additional valve was also added just above the input port 

of the spa pump so that the user can add water directly into the spa pump. This 

allows the user to ensure that the pipes leading into the pump are full of water and 

not air; therefore, avoiding any possibility of having air lock when starting the 

pump. The final design that was used is shown in Figure 4. 
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Figure 4.3: Pre-Pump-Installation Plumbing Connections 

 
With the main connections to the new spa pump complete it was time to find piping 

that could be utilized for the hot water heater assembly. This involved removing a 

majority of the insulation on the bottom of the tub in order to get a good look at the 

rest of the existing plumbing. Figure 4.4 shows the bottom of the hot tub with most 

of the insulation removed. After determining the function of each pipe it was 

decided to repurpose two existing drain ports (Figure 4.5) in the bottom of the tub 

as the input and output of the hot water heater. These ports were chosen because 

they didn’t effect the current functionality of the tub and because they provided a 

short, clean route for the plumbing of the hot water heater. 
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The next step in the construction of the tub was to install all of the hot water heater 

plumbing. The same general design that was used for the spa pump was used for the 

hot water heater pump. Two valves on either end of the pump were included so that 

the hot water heater itself could be isolated from the pump and the internal 

plumbing connecting it to the hot tub. Therefore, the user could remove the hot 

water heater as they pleased, allowing them to store it in a safer place when not in 

use. 

 
 

Figure 4.4: Existing Hot Tub Plumbing (Insulation Removed) 
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Figure 4.5: Existing Port chosen for Hot Water Heater Assembly 
 
 

After designing the plumbing for the water heater, it was installed along with the 

associated pump and valves. Figure 4.6 shows the valves and the mounted pump for 

the finished plumbing.  
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Figure 4.6: Final Plumbing for Hot Water Heater Assembly 
 
 

With the design and construction of the plumbing and the pumps complete, the next 

step was to test the existing plumbing that was going to be kept in order to ensure 

that there were no leaks. After dropping the hot tub into its normal position and 

filling it with insulation and water it was found that there were many leaks in the 

existing pipes. This lead to a long process of tracking the leaks, cutting out the faulty 

pipes, and replacing them with new PVC pipes. Pictures of the repairs made are 

provided in Figure 4.7. Once all of the leaks were repaired the base of the tub was 

filled with insulation and covered with two by fours and plywood to give it some 
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structural integrity. The side panels of the hot tub were also covered with plywood 

in order to give the finished product a clean look. The last step to completing all of 

the hardware on the tub itself consisted of mounting the spa pump and connecting it 

to the rest of the plumbing. The finished pictures of the hot tub are provided in 

Figures 4.8, 4.9, and 4.10. 

 

 

 

 
 

Figure 4.7: Hot Tub Plumbing Leak Repairs 
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Figure 4.8: Finished Hot Tub Base 
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Figure 4.9: Pre and Post Finished Side Panel 
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Figure 4.10: Finished Spa Pump and Plumbing with Flow Control and Bleed Valves 
 
 
 
 

  



 29 

SOLAR WATER HEATER ASSEMBLY 
 
 

It was decided to use solar vacuum tubes to heat the water in order to reduce the 

amount of electrical energy needed. The selected solar vacuum tubes collect 

sunlight and use reflective layers to trap the light within the tubes. This allows for a 

very efficient use of the sun’s heat. Table 4.1 shows the measured water 

temperature in one of these tubes over a period of time. 

 

Table 4.1: Solar Vacuum Tube Temperature Data 
 

Time Elapsed (minutes): 0 15 30 45 60 75 

Water Temp. (°F): 73 89 100 109 119 126 

 
 
 

In order to use the solar vacuum tubes an apparatus needed to be built, which could 

hold them. In addition to that the apparatus needed to be adjustable so that the 

solar vacuum tubes could be repositioned throughout the day to remain 

perpendicular with the sun. The final product is shown in Figure 4.11. One thing to 

note is that a reflective styrofoam backing was used on the apparatus for two 

reasons: the reflective surface provided more sun for the solar tubes and the 

styrofoam provided additional padding between the wood backing and the glass 

tubes.  
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Figure 4.11: Water Heater Apparatus 
 
 

With the apparatus built, the next step was to create the heat exchanger that would 

sit on the apparatus. It was decided to build the heat exchanger out of pressurized 

copper pipes that would sit inside of the solar vacuum tubes. Another set of copper 

pipes, for the water to flow through, would be soldered across the tops of the solar 

vacuum tubes in order to allow the heat from the pressurized tubes to be 

transferred into the flowing water. The construction began with soldering together 

the pressurized copper pipes that would sit inside of the solar vacuum tubes along 

with the two pipes that would sit on top of them. Figure 4.12 shows this 

construction while Figure 4.13 shows the final product. 

 

One thing to note about the completed copper tubing is that they were pressurized 

using acetone. By doing this it allows for the copper tubing to be more efficient 

when transferring heat. While the pressurized pipes are sitting inside of the vacuum 
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tubes the acetone will begin to boil and focus the heat up towards the top of the 

pipe, closer to where the water will flow. 

 

 
 

Figure 4.12: Heat Exchanger Construction 
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Figure 4.13: Completed Copper Tubing for Heat Exchanger 
 
 

With the heat exchanger complete, the copper piping needed to be prepped, in order 

to be fit into the solar vacuum tubes. This was done by wrapping each individual 

pipe in steel wool (Figure 4.14), which will allow it to transfer heat more effectively. 

The last step to finish the heat exchanger was to mount the solar vacuum tubes to 

the bottom of the apparatus. The completed heat exchanger unit is shown in Figure 

4.15. 
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Figure 4.14: Prepped Copper Tubing 
 
 
 
 
 

 

 
 

Figure 4.15: Completed Heat Exchanger 
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SOLAR PANEL ASSEMBLY 
 
 

The solar panel assembly is the last major component of the project. One thing that 

was needed was a storage box that could house all of the necessary equipment: the 

battery, the inverter, and the MPPT charge controller. Therefore, one was designed 

to fit in between the legs of the heat exchanger so that it would allow for a clean look 

when the whole system was put away. 

 
  

 

 
 

Figure 4.16: Completed Housing for Electrical Components 
 
 
The pictures in Figure 4.16 above show the completed box that will be used to house 

the battery, charge controller and inverter. It was built out of 2x4s and plywood. The 

design features 3” of ground clearance to protect the equipment from any water that 

may be on the ground, while also allowing for better heat dissipation. The box was 

tested to ensure that it could handle the 175-200 pound weight of the equipment 

that it will house. 
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With the housing for all of the electrical components complete, the last step was to 

create the appropriate wire connections between each component. This involved 

assessing the loads that each run was going to see and sizing the wire appropriately. 

Using the load calculations and the NEC allowed the correct wire size to be chosen. 

 
After determining wire sizes, all of the wires were cut to the desired length, tinned, 

and soldered to their appropriate connectors. Conduit was ran from the spa pump 

and water heater pump to the storage box so that the wires could be safely ran 

between the controls and the pumps. Once all of the connecting wires were finished 

there was only the matter of grounding the system that needed to be handled. In 

order to make the system a truly stand-alone one an 8 foot copper rod would have 

had to be driven into the earth in order to provide ground for the system. For the 

sake of this project, a solid copper ground wire was run from the house panel to the 

ground connection on the spa pump. 
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USER INTERFACE 

 
With all of the major components complete, the construction shifted to building the 

user interface. This section highlights the steps involved with building the hardware 

of the system, while the User Interface section under the Design heading goes 

through the software processes (Note that the code for the user interface can be 

found in Appendix F). To start, an electrical box and a piece of sheet metal (Figure 

4.17) were used to house the user interface and all of the control circuitry needed. 

Once the layout of the screens and buttons were figured out the sheet metal was cut 

to allow all of the pieces to fit nicely (Figure 4.18). 

 

 
 

Figure 4.17:  Materials for Control Circuitry Housing 
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Figure 4.18:  Completed Hardware for User Interface 
 
 
With all of the hardware finished it was time to solder all of the power/control 

wires to their appropriate terminals. This included soldering together all of the 

schematics shown in Figures 3.11, 3.12, and 3.13. The pinout shown in Table 3.8 

was used as a guide. Figure 4.19 shows a picture of some of the connections being 

made. 
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Figure 4.19:  Control Wiring for User Interface 
 
 
With the final touches of the hardware finished, the electrical box was sealed and 

installed on the wooden lip of the hot tub (Figure 4.20). Conduit was then ran from 

the underside of the control unit to the wooden box housing all of the electrical 

components to finish up all of the necessary control wiring, thus completing the 

construction of the hot tub. The only remaining construction from this point on was 

purely cosmetic. 
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5.  DATA 
 
Power Calculations: 

In order to verify that the 175Ah 12V battery was large enough to power the whole 

system it was necessary to calculate the total load of all of the components. This 

included the power draw from the spa pump, the hot water pump, the lighting, and 

the control panel. Table 5.1 shows these components and their total power draw. 

Table 5.1: Breakdown of Power Consumption 
 

LOAD OPERATING CONDITIONS POWER CONSUMPTION 

SPA PUMP 
1.3A at 120V AC 
(13A at 12V DC) 

(1.3A * 120V) = 156W 

HOT WATER 
PUMP 

1.25A at 12V DC (1.25A * 12V) = 15W 

LIGHTING 4A at 12V DC (4A * 12V) = 48W 

CONTROL 
PANEL 

~5mA at 5V 
(Powered through USB) 

(5mA * 5V) = 25mW 
(Negligible) 

Total Wattage Consumed: 220W 

Total Wattage Stored in Battery: (175Ah * 12V) = 2100Wh 

 

 

With the battery’s ability to store 2100Wh and a system power demand of 220W it 

can be expected to get about 9.5 hours (2100Wh / 220W = 9.55 hours) of use before 

the battery is completely drained. In order to avoid a complete drain on the battery 

the system cycle schedule was designed for 8 hours of use per day. Since the system 
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should be available for use at all times of the day the pumps will be on a regular 

schedule of being on for 1 hour and then off for 2 hours. This allows the tub to 

consistently circulate the water throughout the day. With the hot tub holding 

approximately 400 gallons of water and the spa pump being able to push 45 GPM it 

is expected that all of the water can be circulated through the system 6.75 times an 

hour (45 GPM * 60 minutes = 2700 gallons) (2700 gallons / 400 gallons per tub = 

6.75 tubs). This is good because stagnant water is never a good thing to have for a 

long period of time, so being able to circulate the water through the system 6.75 

times an hour should avoid this. 
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System Testing: 

Each of the system specifications listed in the Specifications Section was tested and 

verified in accordance with the following test methods and procedures. 

 
 
BATTERY POWER: 
 
The hot tub system shall operate off of a 12V rechargeable battery. The battery shall 

be able to charge to a minimum of 95% of the 12V capability (11.4V). Procedure 

outlined in Table 5.2. Battery voltage data along with voltage and amperage data 

from the spa pump were taken over a period of time to monitor the performance of 

the system. Table 5.3 shows the results while Figure 5.1 displays them in a plot. 

 

Table 5.2: Test Conditions for System Power 
 

OPERATION TEST  RESULT EXPECTED 

OFF MODE 
Open Circuit Voltage Test: 

Monitor voltage across 
terminals 

12.85V 
 
Shall be greater than 
11.4V 

SLEEP 
MODE 

Partial load test: 
Monitor voltage across 

terminals 
12.4V 

 
Shall be greater than 
11.4V 

RUN MODE 
Full load test: 

Monitor voltage across 
terminals 

12.2V 
 
Shall be greater than 
11.4V 
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Table 5.3: Battery and Spa Pump Data 
 

TIME BATTERY VOLTAGE  SPA PUMP 
VOLTAGE 

SPA PUMP 
CURENT 

SPA PUMP 
WATTAGE 

1:30 PM 12.85V DC - - - 

1:45 PM 12.65V DC 116.2V AC 1.267A 147.23 W 

2:00 PM 12.48V DC 116.2V AC 1.267A 147.23 W 

3:00 PM 12.34V DC 116.2V AC 1.76A 204.51 W 

3:15 PM 12.29V DC 116.3V AC 1.66A 193.06 W 

3:30 PM 12.25V DC 116.3V AC 1.67A 194.22 W 

3:45 PM 12.22V DC  116.4V AC 1.69A 196.72 W 

4:00 PM 12.20V DC 116.4V AC 1.68A 195.55 W 

4:15 PM 12.16V DC 116.3V AC 1.62A 188.41 W 

4:30 PM 12.12V DC 116.3V AC 1.62A 188.41 W 
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Figure 5.1:  Battery Discharge Rate 
 

 

Looking at Figure 5.1 it can be seen that after the initial startup of the pumps the 

battery discharge rate is rather linear. Following this trend it can be concluded that 

the system could run for 7.5 hours straight on a full battery charge (assuming a 

complete drain to 11.4V). These calculations are shown on the next page, following 

the trend of losing 0.4V every 15 minutes. 
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 12.12V – 11.4V = 0.72V remaining 

 0.72V / 0.04V = 18 periods until completely drained 

 18 * 15 min = 270 min remaining (4.5 hours)   

 3 hours running + 4.5 hours remaining = 7.5 hours of total run time 

Comparing these results with the expected 9.55 hours of total run time shows that 

the initial expectations were reasonable. One reason that they were incorrect was 

the fact that the spa pump was assumed to use 156W but actual measurements 

showed that it consumed around 200W. Re-calculating the expected run time with 

the actual wattage used by the spa pump produces an expected run time of 7.98 

hours which is a lot closer to what was seen. The ½ hour of run time difference 

between expected and actual is most likely due to the inefficiencies of the solar 

water heater pump and the inverter. 

 
SOLAR PANEL POWER: 

The next calculations include the solar panel and recharging the battery. In order for 

the system to work properly the battery must be able to be charged (at the very 

least) the same amount that it had been drained that day. Since the battery can store 

2100W a solar panel large enough to produce that in one day is necessary. Using a 

MatLab script (Appendix G) from a previous course (EE 420 – Sustainable Electric 

Energy Conversion) allowed for the calculations of average kilowatt hours produced 

per square meter on any given day along with the amount of daylight hours for that 
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day. Choosing a day in mid-December as a baseline for worst possible energy output 

yielded the result that there are approximately 9.61 hours of daylight that produce 

about 852.81 watt-hours per meter squared. Dividing this by the number of daylight 

hours gives the result that an average of 88.74 watts can be produced per square 

meter of solar panel throughout the day. These calculations were ran assuming a 

20% efficiency of the solar panel used. 

 

Using the dimensions of the solar panel found in Table 2.1 it can be concluded that 

the area of the solar panel is 2.588 meters squared. Multiplying this by the average 

watts per square meter provides an estimated 229.71 watts can be produced per 

hour by the 400 watt solar panel. Multiplying this again by the number of daylight 

hours produces a daily yielding of approximately 2208 watts per day. Therefore, 

even on a short winter day the 400W solar panel could completely recharge the 

battery of the system if needed. In order to ensure that the solar panel is run as 

efficiently as possible a max power point tracking charge controller was purchased 

to allow the solar panel to perform at a higher rate.  
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PUMP OPERATION: 
 
Both jet and heat pumps are controlled by user selected power modes on the user 

interface. The pumps shall only operate in the SLEEP and RUN power modes. The 

circulation pump shall operate within 10% of the manufacturer's rated output in 

both modes. Procedure outlined in Table 5.4. 

Table 5.4: Test Conditions for Control of Pumps 
 

OPERATION TEST  RESULT EXPECTED 

SLEEP 
MODE 

No load test:  
Measure current  

 
Zero current 

DC pump test: 
Measure current 
Monitor running 

time 
Monitor cycling 

1.32A 
 

 

 
1.2A 
30 min ON  /  30 min OFF 
Cycle continuously until powered 
off 

AC pump test: 
Measure current 
Monitor running 

time 
Monitor cycling 

~1.7A 
 

 

 
1.3A 
1 hour ON  /  2 hours OFF 
Cycle continuously until powered 
off 
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Table 5.4 (Continued): Test Conditions for Control of Pumps 

 

OPERATION TEST  RESULT EXPECTED 

RUN MODE 

No load test: 
Measure current  

 
Zero current 

DC pump test: 
Measure current 
Monitor running 

time 
Monitor cycling 

1.32A 
 

 

 
1.2 A 
30 min ON  /  30 min OFF 
Cycle continuously until powered 
off 

AC pump test: 
Measure current 
Monitor running 

time 
Monitor cycling 

~1.7A 
 

 

 
1.3A 
1 hour ON  /  2 hours OFF 
Cycle continuously until powered 
off 

Pre-set time test: 
Monitor 30 second 

Monitor 1 minute 
Monitor 5 minute 

Monitor 10 minute 
Monitor 15 minute 

 

 
 
 
 

 
30 second ON then OFF, no cycle 
1 minute ON then OFF, no cycle 
5 minute ON then OFF, no cycle 
10 minute ON then OFF, no cycle 
15 minute ON then OFF, no cycle 
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LIGHTING CONTROL OPERATION: 
 
The hot tub features 10 LED light bulbs. All 10 LEDs shall illuminate upon user 

selection on the user interface. Electrical current being supplied to each LED shall be 

tested and shall not exceed the manufacturer’s rated input current value. Procedure 

outlined in Table 5.5. 

 

Table 5.5: Test Conditions for Lighting Control Operation 
 

OPERATION TEST  RESULT EXPECTED 

RUN MODE 

LED test: 
Illuminate all LEDs by cycling through 

full range 
 

 
Dim to full 
intensity 

Current Test: 
Measure current to lighting 

throughout range 
 

 
Not to exceed 8A 
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USER INTERFACE OPERATION: 
 
The user interface shall control every operation of the hot tub as well as display 

temperature, charge percentage, and each feature within the system settings of the user 

interface itself. Procedure outlined in Table 5.6. 

Table 5.6: Test Conditions for the User Interface (Display Modes) 
 

OPERATION TEST  RESULT 

DISPLAY 
TEMPERATURE 

Observe: Temperature on temperature screen  

Verify temperature with secondary measurement 
device (acceptable within 1℉)  

DISPLAY MAIN 
MENU 

Observe: Main menu options and verify that 
selection of each option navigates to each sub 
setting options 

 

DISPLAY POWER 
MODES 

Observe: Run, Sleep, Lighting  

DISPLAY FULL JET 
TIME-RANGE 

Observe: Values (1, 10, 15 minutes)  

DISPLAY FULL 
LIGHTING-RANGE 

Observe: Intensity change throughout 
potentiometer range  

CLEAR DISPLAYS Observe: Clear screens when powered off  
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6.  ANALYSIS 
 
PRELIMINARY DESIGN CONSIDERATIONS 
 
 
There are multiple ways to go about designing a solar powered hot tub however 

they all must include three major subsystems. These subsystems include: the tub 

itself, a way to power it, and a way to heat the water. Within these three subsystems 

is where the variation in design will occur. The following paragraphs go through 

some of the more common design variations in detail while Table 6.1 sums up all of 

the ideas. 

 

The first major design variation includes how to power the hot tub. It can either be 

completely solar powered or grid tied. The advantages of having the system 

completely solar powered include not having to plug it into an outlet and not having 

any added expenses on the monthly electric bill. These two advantages are weighted 

more heavily than others because they are some of the main reasons for why people 

don’t buy hot tubs. The cons of using solar panels are the fact that they can take up a 

lot of space. Whereas a plug-in takes up practically no space a solar panel is about 

3’x5’ on average and needs to be in direct sunlight. This means that it must be 

elevated above the rest of the system; however, this can be used as an advantage. By 

putting the solar panel on top of a cabinet it will allow it to remain in direct sunlight 

while also providing storage space for the user. 

 

The alternative for powering the hot tub includes tying the system to the grid. By 

doing this the user will never have to worry about running out of power; however, it 
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will cost them a lot more to install the system. By grid tying the hot tub the user will 

need to include an inverter to transform the DC voltage into AC voltage so that it can 

be put back onto the grid. The user will also have to install protection equipment in 

order to ensure that they are properly attached to the grid and that they are not 

back powering anything if the power were to go out. Lastly, there is the possibility 

that the user will have to pay a monthly electric bill if the system is grid tied. 

 

The next major design variation includes the pumps used in the system. They can 

either be DC powered or AC powered. If they are DC powered then the system will 

be able to run directly off of the 12V battery source from the solar panel assembly. 

This is convenient because the battery is necessary in the system anyways. The only 

downfall to the DC pumps is the fact that they are more expensive to buy. However, 

since an inverter would be needed to power AC pumps it is safe to say that using DC 

pumps wouldn’t cost significantly more than an AC setup. The only clear advantage 

to using AC pumps is the fact that they are cheaper; however, as stated, additional 

hardware would be necessary in order to make them run. 

 

The last major design variation includes heating the water. It can either be done 

using a solar water heater or an electric water heater. The advantage of a solar 

water heater is the fact that it uses a lot less electrical power than an electric heater. 

The major disadvantage to the solar water heater is the fact that, like the solar panel, 

it is going to take up a lot of extra space. However, if this extra space can be utilized 

then it will reduce the negative effects of it. 
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Preliminary design decision includes going completely solar powered while using 

DC pumps and a solar water heater. By utilizing the space that the solar panels and 

solar water heater need the design will be completely self-sustainable while 

providing nice amenities to the user. We saw that the advantages of completely 

eliminating any monthly electric bill outweighed the size disadvantages. As for the 

pumps we decided to use the DC powered ones in order to maximize the energy 

achieved using the solar panels. This way there is no worry about running out of 

power. The design variations are summarized in Table 6.1 while the current design 

aspects are in bold. 

Table 6.1: Design Options Summary 
 

SUBSYSTEM VARIATION PROS CONS 

Powering 
the System 

• Completely 
Solar Powered 

•  No plug 
necessary 
•  No added 
monthly cost to 
the electric bill 

•  Need room for a solar 
panel 
•  Overall system is 
larger 

•  Grid Tied System 
•  No worry about 
running out of 
power 

•  Adds more parts to 
the system (inverter 
and protection circuits) 
•  More expensive 

Pumps 

• All DC Powered Pumps •  More energy 
efficient •  More expensive 

•  All AC Powered Pumps •  Cheaper •  Inverter needed to 
convert power 

Heating the 
Water 

• Solar Water Heater 
•  More energy 
efficient than an 
electric water 

•  Need room for a solar 
panel 
•  Overall system is 
larger 

•  Electric Water Heater •  Takes up less 
space •  Use a lot of power 
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FINAL DESIGN 
 
After extensively weighing out the pros and cons addressed in our preliminary 

analysis, we decided to go with an off-grid DC powered system with solar heat tubes 

as opposed to using electric heating. These two choices afforded us the ability to run 

the system off of only one solar panel and one 12V battery, significantly reducing the 

overall physical size and complexity of the system. 

 

Additionally, we ended up going with one DC pump and one AC pump. The DC pump 

was selected to circulate water between the tub and the heater because this is a low 

flow dependent operation requiring very little power (15W) to operate. Operation 

of the main circulation pump (jets pump) on the other hand, requires a considerable 

amount of power (⅛ HP) to operate, which demands approximately 13A of current 

from a 12V battery...taking the efficiency of the pump into consideration. The 

increased safety risk associated with the higher current is one major reason why we 

decided to go with an AC pump. The other reason we decided against a DC pump for 

main circulation (jets) is because there weren’t any ⅛ HP DC pumps available for 

general purchase, it would have to be special ordered driving up the cost 

significantly. 
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FINAL PRODUCT 
 
Unfortunately we ran out of time and budget before we could integrate the solar 

panel into the system. The hot tub runs solely off of the 12V battery with the solar 

panel only serving as a mean to recharge the battery, so we didn’t lose out on proof 

of concept by not incorporating it. Even still, it would have been beneficial to 

monitor the charging of the battery in real-time to verify that initial power 

consumption calculations (shown in DATA section with MATLAB code displayed in 

Appendix G) were within acceptable accuracy. That being said, the maximum 

power-point tracker automatically monitors any solar panel connected to it and 

displays, records, and adjusts supply voltage as necessary. Therefore, if we had 

connected a solar panel to the MPPT and determined that the system draws more 

power from the battery than the solar panel can recharge during any one day…then 

we would have simply adjusted the duty cycle of each pump (duty cycle adjusted in 

software) thereby reducing the energy consumption to meet recharging capability.  
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7.  CONCLUSION 
 
Overall the project was successful in proving that a completely stand-alone solar 

powered hot tub is achievable. All of the individual systems worked as expected. 

The amount of energy provided by the 175Ah 12V battery was very close to what 

was expected and it had no problem powering the whole system for a continuous 7 

hour stretch of time. The heat exchanger was very effective in heating up moderate 

amounts of water between 100-104°F (typical for a hot tub) and the user interface 

provided a clean, easy way for the user to control all aspects of the hot tub. 

 

Although the individual components worked as expected they weren’t as effective as 

they could have been once they were all combined into one system. The main 

problems seemed to be with the heating of the tub and the pressure of the jets. The 

size of the tub played a large role in both of these problems. With such a large 

amount of water in the hot tub the heat exchanger had to be run for a longer period 

than expected in order to get the water temperature up to an acceptable level. The 

large size of the tub also meant that there were a lot more jet ports to push water 

through which the smaller spa pump had some trouble with. Even though the spa 

pump was powerful enough to circulate the water it didn’t produce as much 

pressure as expected. Additionally, all insulation was removed during system 

testing due to water leaks in the plumbing, which had a significant effect on the tub’s 

ability to retain heat. A smaller tub would provide an easy fix to both of these 

problems. This analysis, along with other possible design changes, are visited in the 

next section titled Future Work. 
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Another large problem that was encountered was the poor condition of the existing 

plumbing of the hot tub. Initially the existing plumbing was kept in order to save 

money on having to replace it; however, this backfired because of the numerous 

leaks that were encountered in the existing tubes. This lead to a large amount of 

time being spent tracking down and repairing leaks. 

 

In the end the project came out over budget. It was expected to have spent about 

$1150 total but the major components ended up costing around $1250. Including all 

of the tools and small items that were necessary to complete the job it is estimated 

that the complete project cost around $1500 to produce. While this was over budget 

it was still in a respectable range considering many modern hot tubs cost anywhere 

from $2000 - $5000 plus the additional monthly electric bill to run them. 

 

In conclusion the project was a success and provided an excellent platform to build 

off of in the future. With a few design changes the efficiency of the hot tub could be 

maximized in order to produce a completely stand-alone solar powered hot tub that 

has the same functionality as commercially produced products however uses a 

fraction of the energy. 
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8.  FUTURE WORK 
 
In order to create a better version of the solar powered hot tub there are a few 

design changes that could be implemented. To begin, a smaller hot tub would be 

ideal. The one used in this project was a 3 person tub that held somewhere around 

400 gallons of water. Due to the method of heating that was used it was very 

difficult to get the entire hot tub up to the desired temperature. A 1-2 person tub 

that holds about 100-150 gallons would work the best with the current setup. 

Another recommendation would be to install all new plumbing. Leaking pipes were 

consistently a problem throughout this entire project and installing all new 

plumbing would have saved a lot of time. Insulation is another key feature that must 

be addressed during the initial stages of design, it is recommended that a spray on 

foam be used to completely seal the space between the outside of the tub and the 

structure used to house the tub; this being done only after the plumbing has been 

leak and pressure checked. 

 

Electrically there were a couple of changes that could be made. One problem seen in 

the current setup was that there was a lack of pressure in the jets. This was due to 

the amount of jets and the smaller sized spa pump (1/8 HP). Since the spa pump 

was the largest possible with the battery used the only other option was to cut out 

some of the existing jets. However, it was seen that the smaller 15W water heater 

pump provided a good amount of pressure to the 2 ports it was connected to. One 

major change that could be made is to remove the larger spa pump (1/8 HP) 

completely and install an additional 15W water pump for each pair of jets. With the 
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200W consumed by the spa pump (1/8 HP) an extra 12 15W  DC water pumps could 

have been used, providing much more pressure for the jets without using any extra 

energy. This would also provide much more selectivity for the user when controlling 

which jets to turn on and off. 

 

Making this design change would initially save $200 because there would be no 

need to buy an inverter to run the spa pump. This money could be used to buy the 

additional 15W water pumps leading to the conclusion that 6-7 extra water pumps 

would be ideal in order to break even on the cost of everything while reducing the 

overall energy used by the system. With the system using less overall energy the 

idea of a smaller battery could be entertained, providing even more savings. With 

more 15W water pumps the controller could also be modified to provide even more 

control over the entire system. By adding additional relays for the extra water 

pumps the user could potentially control each jet individually in order to get the 

system to perform exactly how they want it. 

 

Another change that could be made was in the design of the heat exchanger. The 

current deign consisted of only running water along the tops of the solar vacuum 

tubes; however, an alternate option would be to run flex copper piping into and out 

of the vacuum tubes so that the water would actually travel the length of each tube. 

The setback with this design is that smaller diameter piping would be needed to run 

through the tubes, meaning that less water is flowing through the system and might 

therefore lead to it taking longer to heat the entire tub of water. However, it would 
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be worth building and testing in order to see which method performs better for a 

smaller tub application. 

 

With a smaller tub and a more efficient heat exchanger the controller could be 

improved in order to allow more control over the water temperature of the tub. This 

could be done by using the readout of the temperature sensor and using that to 

control the relay of the single 15W water heater pump. By allowing the user to 

select a target temperature the system can turn on the water heater pump and leave 

it on until the temperature sensor reads the desired output. 

 

Overall, the tub size, pump setup, and heat exchanger design are the main 

components that could use some adjustments in order to provide a solar powered 

hot tub that could perform at a higher level than the current one. All of these 

changes would allow for further advancements in the user interface to allow for 

more control over the system as a whole. 
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APPENDIX A:  DIVISION OF LABOR 
 

TASK DESCRIPTION ANTHONY JONATHAN 

POWER SYSTEM DESIGN: 

SOLAR PANEL SIZING X X 

THERMAL HEATER SIZING X X  

PUMP SIZING X X  

ELECTRICAL CONDUCTOR SIZING X   

POWER BUDGET X        X 

PIPING DESIGN X   

WIRE HARNESS DESIGN X        X 

CAD  X        X 

AUTOMATION AND EMBEDDED SYSTEM DESIGN: 

USER INTERFACE SOFTWARE DESIGN   X 

USER INTERFACE HARDWARE DESIGN   X 

LIGHTING CONTROLLER DESIGN  X X 

TEMPERATURE CONTROLLER DESIGN  X X 

SYSTEM INTEGRATION: 

SOLAR PANEL INSTALLATION X X 

THERMAL HEATER INSTALLATION X X  

LIGHTING INSTALLATION X  

PUMPING UNITS INSTALLATION X X  

WIRE HARNESS INSTALLATION X        X 

BATTERY INSTALLATION         X X 

USER INTERFACE INSTALLATION   X 
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APPENDIX B:  SCHEDULE 

 
 
PRELIMINARY MILESTONE BREAKDOWN: 
 
1st Milestone:  January 9, 2016  All power system parts on order. 
 
2nd Milestone:  February 22, 2016  Test completion of integrated     
                                                                                               power-system components. 
 
3rd Milestone:  April 29, 2016  Test completion of all user- 
                                                                                                interface controls. 
 
Final Milestone: May 20, 2016   Test completion of full-system run. 
 
Project Expo:  May 27, 2016   Live Demonstration 
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FINAL MILESTONE ANALYSIS: 
 

The first milestone slid back all the way to February 20th due to difficulties finding 

pumps and electronics that met our system specifications. Originally we wanted to 

go with a DC pump for both circulation and heating, but DC pumps under ½ HP and 

above 1/16 HP do not exist unless specially ordered, which costs more than we 

could budget.  

The second milestone slid back to May 5th due to significant issues with the hot tub 

leaking due to age and poor condition of the used tub. This was the biggest issue we 

encountered during the project because the system could not be tested until the tub 

could hold water and be pressurized.  

The third milestone slid back to May 15th due to the prior milestones sliding back. 

The final milestone slid back to May 27th, which caused us to fail to meet out project 

expo milestone.  
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APPENDIX C:  COST ANALYSIS 
 

Table C.1 displays a breakdown of the expected cost of the project and a description 

for how each cost will be paid for. A complete itemized breakdown of every 

component’s cost can be found in the Bill of Materials Section. 

Table C.1: Project Cost Analysis 
 

ITEM COST PAID FOR BY 

System Components $1050 

Cal Poly EE Department                $400 

Jon Peterson                                      $325 

Anthony Zepeda                               $325 

Tools $100 

Jon Peterson                                      $50 

Anthony Zepeda                               $50 

                                                                                                                                                                  
TOTAL: $1150 
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APPENDIX D:  BILL OF MATERIALS 
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APPENDIX E:  ANALYSIS OF SENIOR PROJECT DESIGN 
 
Project Title: Solar Powered Hot Tub 
Student’s Name:  Jon Peterson                   Signature:                                            . 
Student’s Name:  Anthony Zepeda            Signature:                                            . 
Advisor’s Name:  Dr. Ali Shaban                Initials:                 . 
Date:                                     . 
 
Summary of Functional Requirements 
 
The solar powered hot tub operates off of a rechargeable 12V battery which is 
charged during the day by a 400W solar panel, allowing it to operate independently 
from the grid. The hot tub features a user interface which provides the user with full 
control of the hot tub’s temperature, lighting, jet operation time, and power mode. 
 
Economic Impacts 
 
Natural Capital:  
One of the key objectives of this project was to reduce the reliance on electrical 
power from commercial utilities, which create pollution and harm to the 
environment during the generation and transmission of power.  
 
This project meets that objective in two ways: the first is by establishing a system 
that operates independently from the electrical grid, and the second is by using a 
natural resource (the sun) to power the system. 
 
Human Capital: 
Hot tubs are used by many for therapeutical purposes. Heated water relaxes tense 
and aching muscles, which helps relieve physical and mental stresses.  
 
By developing a less expensive to operate hot tub, more consumers may take 
advantage of these stress relieving benefits and may become more effective at work, 
allowing them to be more productive and therefore more marketable.. 
 
 
 
Commercial Manufacturing Financials 

 
This project is not intended to be sold for profit as a marketable product; however, 
for the right entrepreneur, this could be a profitable venture. 
 
The cost to build a single unit is high, due to all the expensive subsystem 
components: solar panels, solar heaters, DC pumps, the tub, etc. Therefore in order 
to earn a profit, the hot tub would need to be manufactured in a facility that is 
equipped to construct several units in the same time that one unit normally could be 
constructed. This would require an automated manufacturing system and a large 
warehouse to store completed units, which would be a very large production costs. 
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Additionally, it would be imperative for the entrepreneur to establish business 
partners in the solar equipment industry and pump manufacturing industry so to 
buy units in bulk at a reduced price. 
 
With the correct business model, it may be possible to reduce manufacturing costs 
from $1300 per unit down to $500 per unit. The expected retail price for a solar 
powered hot tub is $5500, which suggests that there is money to be made here. 
However, it would require a lot of capital to get production started. 
 
Environmental Impacts 
 
As mentioned earlier, this project was designed with environmental concerns as the 
driving factors. By operating off-grid these hot tubs are helping reduce the pollution 
created by electrical generation and distribution providers, as well as utilizing 
natural resources. 
 
However, the system does operate off of rechargeable batteries which typically have 
a lifetime of 4-6 years, which means that a battery would have to be disposed of at 
those time intervals, adding to the build up of hazardous chemical waste at landfills. 
 
Manufacturability 
 
As mentioned earlier, there is a high cost associated with the manufacturing of hot 
tubs and it is imperative to partner with other companies in order to integrate their 
products at a reduced cost. 
 
Sustainability 
 
Maintenance of the hot tub is relatively simple, other than the battery change every 
4-6 years, the system only requires regular water treatment. 
 
The system could be designed to be more sustainable if the battery was replaced by 
some form of energy harvesting device, which does not contain hazardous chemicals 
and require to be replaced periodically. 
 
Additionally, if salt water were used in place of fresh water then there would be no 
need to routinely treat the water. 
 
Ethical Concerns 
 
Due to the size of a hot tub it may be ethically questionable whether or not it is right 
to purchase a product which creates pollution due to manufacturing processes and 
adds harmful chemical waste (batteries) to the environment, when an extra long 
soak in a bathtub may suffice. 
 
Regular bathtubs can be purchased that feature soothing jets comparable to those 
found in a hot tub, so there is a case to be made here. However, when considering 
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the extra water usage required to routinely be filling up and draining a bathtub, 
ethical concerns of water usage abuse arise. 
 
Health and Safety Concerns 
 
Hot tubs present a drowning and ingestion of overly chlorinated water  hazard 
when used by unsupervised children. Additionally, special personal protective 
equipment and care must be taken when changing out batteries. 
 
Social Concerns 
 
Hot tubs are a luxury item used for recreation and relaxation by those who can 
afford the high ticket price. As such, the hot tub creates inequality among different 
communities with citizens earning drastically different incomes than others.  
 
The average hot tub consumer is a middle class home-owner. Often times, hot tubs 
are purchased as a status symbol, just as purchasing green products has become 
because it cost more to buy these items. Thus, by developing an expensive status 
symbol, this product has added to the widening inequality gap. 
 
Personal Development 
 
This project allowed us to use much of the knowledge we had gained during our 
academic career and then some! Aside from using computer engineering skills 
gained in CPE courses to design the software of the user-interface, microelectronic 
course skills to design debounce and transistor-switch circuits in support of the 
user-interface hardware, and power systems course skills to size higher wattage 
electronics and design a safe system free from overcurrent conditions...we also got 
to learn a long list of new skills as well. Some of the new skills we gained include: 
plumbing design and repair, welding, carpentry, cost analysis to meet budget 
constraints, metalsmithing, and thermodynamics associated with heat exchange. 
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APPENDIX F:  USER-INTERFACE SOURCE CODE     
 
/*******************************************************************   
   Senior Project: Solar Powered Hot Tub  
   Designed by: Jonathan Peterson and Anthony Zepeda 
   May 20, 2016 
 
   This program was designed to both display and control 
   the operation of the hot tub. 
*******************************************************************/ 
 
#include <msp430.h>  
#include <stdio.h> 
 
/*****************************CONSTANTS****************************/ 
 
int sec1 = 0; 
int min1 = 0; 
int hr1 = 0; 
int sec2 = 0; 
int min2 = 0; 
int hr2 = 0; 
 
int counter = 0; 
int counter_DC_sleep = 0; 
int counter_AC_sleep = 0; 
int counter_jets = 0; 
int counter_heat = 0; 
 
int Auto_counter_30 = 1800; 
 
int DC_sleep_counter_30 = 1800; 
int AC_sleep_counter_hour = 3600; 
int AC_sleep_counter_2 = 7200; 
 
 
int AC_sleep_loop = 0; 
 
int Jet_1_counter = 60; 
int Jet_10_counter = 600; 
int Jet_15_counter = 900; 
 
int Heat_30_counter = 30; 
int Heat_5_counter = 300; 
int Heat_15_counter = 900; 
 
 
int set_auto = 0; 
int set_sleep = 0; 
 
int set_jet_1 = 0; 
int set_jet_10 = 0; 
int set_jet_15 = 0; 
 
int set_heat_30 = 0; 
int set_heat_5 = 0; 
int set_heat_15 = 0; 
 
/*******************************************************************/ 
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/*****************************MAIN PROGRAM**************************/ 
int main(void) 
{ 
   WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer 
 
   // set ports 
   P1DIR |=  0xF1;  //set upper four bits of P1 to ouputs will act as data bus (nibble mode) 
                    //and set LED on P1.0 as output 
   P1DIR &=  ~0x0E; //set as inputs (BTNS) 
   P2DIR |=  0x3F;  //set first 3 bits of P2 as output to drive RS, R/W, E for p2.0 p2.1 p2.2 respectively, 
                    //and 2.3 as lights, 2.4 as DC pump, 2.5 as AC pump 
   P2OUT = 0x00;  //make sure outputs are cleared 
 
   //set clk to be used to 16MHz 
   if (CALBC1_16MHZ==0XFF) 
       { 
           while(1); 
       } 
   DCOCTL = 0; 
   BCSCTL1 = CALBC1_16MHZ; 
   DCOCTL = CALDCO_16MHZ; 
 
   CCTL0 = CCIE;  //Parameters for Interrupts 
   P1OUT &= 0x00; 
   CCR0 = 32768; 
   BCSCTL3 = XT2S_0 + LFXT1S_0; 
   TACTL = TASSEL_1 + MC_1; 
 
   //Screensaver(); 
 
   for(;;) 
   { 
       MAIN_MENU();  //call systems main menu infinitely 
   } 
} 
 
/*******************************************************************/ 
 
 
 
/*****************************INTERRUPT-BASED TIMER*****************/ 
 
#pragma vector=TIMER0_A0_VECTOR 
__interrupt void Timer_A (void) 
{ 
 
/* Test Blinking LED 
 if ((P1OUT & 0x01) == 0x01) 
   { 
    P1OUT &= ~0x01; 
   } 
   else 
   { 
    P1OUT |= 0x01; 
   } 
*/ 
 
 static char OutString[9]; 
   Clear_Disp(); 
 
//Convert integer variables to string variables inside a character array, 
//which will then be sent to LCD Driver to display time. 
   sprintf(OutString,"%d%d:%d%d:%d%d", hr2, hr1, min2, min1, sec2, sec1); 
 
 
   counter++; 
   counter_DC_sleep++; 
   counter_AC_sleep++; 
   counter_jets++; 
   counter_heat++; 
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//Establish seconds, minutes, hours variables for operation of a digital clock 
//Using two variables for each two-digit second, minute, and hour display. 
 
   if(sec1 < 9) //Count seconds 
   { 
       sec1++; 
   } 
   else 
   { 
       sec1 = 0; 
       if(sec2 < 5) 
       { 
           sec2++; 
       } 
       else 
       { 
           sec2 = 0; 
           if( min1 < 9) //Count minutes 
           { 
            min1++; 
           } 
           else 
           { 
               min1 = 0; 
               if (min2 < 5) 
               { 
                   min2++; 
               } 
               else 
               { 
                   min2 = 0; 
                   if(hr1 < 9) //Count hours 
                   { 
                     hr1++; 
                   } 
                   if ((hr1 == 3) & (hr2 == 2)) //Reset clock at 23:59 
                   { 
                       sec1 = 0; 
                       min1 = 0; 
                       hr1 = 0; 
                       sec2 = 0; 
                       min2 = 0; 
                       hr2 = 0; 
                   } 
                   else 
                   { 
                       hr1 = 0; 
                       if (hr2 < 2) 
                       { 
                           hr2++; 
                       } 
                       else 
                       { 
                           sec1 = 0; //Additional handling for overrun hour 
                           min1 = 0; 
                           hr1 = 0; 
                           sec2 = 0; 
                           min2 = 0; 
                           hr2 = 0; 
                       } 
                   } 
               } 
           } 
       } 
   } 
 
 
   if (set_auto == 1) 
   { 
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    Init_Big();  //initializing func to reset screen 
 
       char auto_message[] = "    AUTO-RUNNING    "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( auto_message, sizeof(auto_message) ); 
 
 
       if (counter > Auto_counter_30) 
       { 
        P1OUT &= ~0x01;  //P2OUT &= ~0x10; 
        //P2OUT &= ~0x20; 
        set_auto = 0; 
        counter = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
       } 
       else 
       { 
        P1OUT |= 0x01;  //P2OUT |= 0x10; 
        //P2OUT |= 0x20; 
       } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
        P1OUT &= ~0x01;  //P2OUT &= ~0x10; 
        //P2OUT &= ~0x20; 
        set_auto = 0; 
        counter = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
        __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
   } 
   if (set_sleep == 1) 
   { 
 
       char sleep_message[] = "      SLEEPING      "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( sleep_message, sizeof(sleep_message) ); 
 
       if (counter_DC_sleep > DC_sleep_counter_30) 
       { 
        if ((P2OUT & 0x10) == 0x10) 
        { 
         P1OUT &= ~0x01;  //P2OUT &= ~0x10; 
        } 
           else 
           { 
            P1OUT |= 0x01;  //P2OUT |= 0x10; 
           } 
        counter_DC_sleep = 0; 
       } 
 
       if (AC_sleep_loop == 0) 
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       { 
        if (counter_AC_sleep > AC_sleep_counter_hour) 
        { 
         P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
         AC_sleep_loop = 1; 
        } 
        else 
        { 
         P1OUT |= 0x01;  //P2OUT |= 0x20; 
        } 
       } 
       if (counter_AC_sleep > AC_sleep_counter_2 && AC_sleep_loop == 1) 
       { 
           counter_AC_sleep = 0; 
           AC_sleep_loop = 0; 
       } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
        P1OUT &= ~0x01;  //P2OUT &= ~0x10; 
        //P2OUT &= ~0x20; 
        set_sleep = 0; 
        counter_DC_sleep = 0; 
        counter_AC_sleep = 0; 
        AC_sleep_loop = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
        __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
 
   } 
 
   if (set_jet_1 == 1 ) 
   { 
    Init_Big();  //initializing func to reset screen 
 
       char timer_message[] = "    Running Time:     "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( timer_message, sizeof(timer_message) ); 
 
    Set_Curs_loc( 0x1A ); 
    Write_word(OutString, 9); 
 
 
    if (counter_jets > Jet_1_counter) 
    { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_jet_1 = 0; 
     counter_jets = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
 
    } 
    else 
    { 
     P1OUT |= 0x01;  //P2OUT |= 0x20; 
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    } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_jet_1 = 0; 
     counter_jets = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
   } 
 
   if (set_jet_10 == 1 ) 
   { 
    Init_Big();  //initializing func to reset screen 
 
       char timer_message[] = "    Running Time:     "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( timer_message, sizeof(timer_message) ); 
 
    Set_Curs_loc( 0x1A ); 
    Write_word(OutString, 9); 
 
 
    if (counter_jets > Jet_10_counter) 
    { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_jet_10 = 0; 
     counter_jets = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
    } 
    else 
    { 
     P1OUT |= 0x01;  //P2OUT |= 0x20; 
    } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_jet_10 = 0; 
     counter_jets = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
 
   } 
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   if (set_jet_15 == 1 ) 
   { 
    Init_Big();  //initializing func to reset screen 
 
       char timer_message[] = "    Running Time:     "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( timer_message, sizeof(timer_message) ); 
 
    Set_Curs_loc( 0x1A ); 
    Write_word(OutString, 9); 
 
 
    if (counter_jets > Jet_15_counter) 
    { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_jet_15 = 0; 
     counter_jets = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
    } 
    else 
    { 
     P1OUT |= 0x01;  //P2OUT |= 0x20; 
    } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_jet_15 = 0; 
     counter_jets = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
 
   } 
 
   if (set_heat_30 == 1 ) 
   { 
    Init_Big();  //initializing func to reset screen 
 
       char timer_message[] = "    Running Time:     "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( timer_message, sizeof(timer_message) ); 
 
    Set_Curs_loc( 0x1A ); 
    Write_word(OutString, 9); 
 
 
    if (counter_heat > Heat_30_counter) 
    { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_heat_30 = 0; 
     counter_heat = 0; 



 75 

        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
    } 
    else 
    { 
     P1OUT |= 0x01;  //P2OUT |= 0x20; 
    } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_heat_30 = 0; 
     counter_heat = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
 
   } 
 
   if (set_heat_5 == 1 ) 
   { 
    Init_Big();  //initializing func to reset screen 
 
       char timer_message[] = "    Running Time:     "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( timer_message, sizeof(timer_message) ); 
 
    Set_Curs_loc( 0x1A ); 
    Write_word(OutString, 9); 
 
 
    if (counter_heat > Heat_5_counter) 
    { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_heat_5 = 0; 
     counter_heat = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
    } 
    else 
    { 
     P1OUT |= 0x01;  //P2OUT |= 0x20; 
    } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_heat_5 = 0; 
     counter_heat = 0; 
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        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
 
   } 
 
   if (set_heat_15 == 1 ) 
   { 
    Init_Big();  //initializing func to reset screen 
 
       char timer_message[] = "    Running Time:     "; 
 
       Clear_Disp(); //clear out disp 
       Set_Curs_loc( 0x40 ); 
       Write_word( timer_message, sizeof(timer_message) ); 
 
    Set_Curs_loc( 0x1A ); 
    Write_word(OutString, 9); 
 
 
    if (counter_heat > Heat_15_counter) 
    { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_heat_15 = 0; 
     counter_heat = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
    } 
    else 
    { 
     P1OUT |= 0x01;  //P2OUT |= 0x20; 
    } 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
     P1OUT &= ~0x01;  //P2OUT &= ~0x20; 
     set_heat_15 = 0; 
     counter_heat = 0; 
        sec1 = 0; 
        min1 = 0; 
        hr1 = 0; 
        sec2 = 0; 
        min2 = 0; 
        hr2 = 0; 
 
     __delay_cycles(8000000); // 0.5s 
     __bic_SR_register_on_exit(LPM0_bits + GIE);   //__disable_interrupt(); 
  } 
 
   } 
   return; 
} 
 
/*******************************************************************/ 
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/*************************PRINT SCREENSAVER*************************/ 
int Screensaver() 
{ 
   Init_Big();  //initializing func to reset screen 
 
   char screensaver[] = "     A & J  Spas     "; 
   Clear_Disp(); //clear out disp 
   Set_Curs_loc( 0x40 ); 
   Write_word( screensaver, sizeof(screensaver) ); 
   __delay_cycles(80000000); // 5sec wait 
 
   return 0; 
} 
 
/*******************************************************************/ 
 
/************************MAIN MENU SUBROUTINE***********************/ 
int MAIN_MENU() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
   Init_Small(); 
 
   int loop_flag2 = 0; 
 
   char line1[] = "**** MAIN MENU ****"; 
   char line2[] = "RUN"; 
   char line3[] = "SLEEP"; 
   char line4[] = "LIGHTS"; 
 
 
   //print out menu 
   Clear_Disp(); //clear out disp 
   Write_word( line1, sizeof(line1) ); 
   Set_Curs_loc( 0x40 ); 
   Write_Letter( 0x7E ); 
   Write_word( line2, sizeof(line2) ); 
   Set_Curs_loc( 0x15 ); 
   Write_word( line3, sizeof(line3) ); 
   Set_Curs_loc( 0x55 ); 
   Write_word( line4, sizeof(line4) ); 
 
   int op_marker = 0; 
   int Op_Sel = 0; 
 
   while (loop_flag2 != 2) 
   { 
  if ((P1IN & 0x08) != 0x08 ) //Selection Button 
  { 
   if (op_marker == 0) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //clear arrow from line 1 
      Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x7E ); //write arrow to line 2 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 3 
 
      Op_Sel = 1;           //option two selected 
      op_marker = 1;        //remember that arrow is on line 2 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 1) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 1 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //clear arrow from line 2 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x7E ); //write arrow to line 3 
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      Op_Sel = 2;           //option two selected 
      op_marker = 2;        //remember that arrow is on line 3, will loop back to line 1 next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 2) 
   { 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x10 ); //clear arrow from line 3 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x7E ); //write arrow back to line 1 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 2 
 
      Op_Sel = 0;           //option two selected 
      op_marker = 0;        //remember that arrow is on last line and should loop to top next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
 
  } 
 
 
  if((P1IN & 0x04) != 0x04 )     //Enter button 
  { 
   loop_flag2 = 2; 
 
   if (Op_Sel == 0)           //selects option one 
   { 
               RUN(); 
   } 
   else if (Op_Sel == 1)           //selects option two 
   { 
               SLEEP(); 
   } 
   else 
   { 
               LIGHTS(); 
   } 
  } 
   } 
   return 0; 
} 
 
/*******************************************************************/ 
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/***************************RUN SUBROUTINE**************************/ 
int RUN() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
   int Op_Sel = 0; 
 
   int loop_flag3 = 0; 
 
   Init_Small(); 
   char line1[] = "*** RUN OPTIONS ***"; 
   char line2[] = "AUTO-RUN"; 
   char line3[] = "MANUAL CONTROL"; 
 
 
   //print out menu 
   Clear_Disp(); //clear out disp 
   Write_word( line1, sizeof(line1) ); 
   Set_Curs_loc( 0x40 ); 
   Write_Letter( 0x7E ); 
   Write_word( line2, sizeof(line2) ); 
   Set_Curs_loc( 0x15 ); 
   Write_word( line3, sizeof(line3) ); 
 
   int op_marker = 0; 
 
 
   while (loop_flag3 != 3) 
   { 
  if ((P1IN & 0x08) != 0x08 ) //Selection Button 
  { 
   if (op_marker == 0) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //clear arrow from line 1 
      Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x7E ); //write arrow to line 2 
 
      Op_Sel = 1;           //option two selected 
      op_marker = 1;        //remember that arrow is on line 2 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 1) 
   { 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //clear arrow from line 2 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x7E ); //write arrow to line 1 
 
      Op_Sel = 0;           //option two selected 
      op_marker = 0;        //remember that arrow is on line 2, will loop back to line 1 next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
  } 
 
 
  if((P1IN & 0x04) != 0x04 )     //Enter button 
  { 
   loop_flag3 = 3; 
   if (Op_Sel == 0)           //selects option one 
   { 
               AUTO_RUN(); 
   } 
   else 
   { 
               MANUAL_CONTROL(); 
   } 
  } 
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  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
           return;  //MAIN_MENU(); 
  } 
   } 
   return 0; 
} 
 
/*******************************************************************/ 
 
 
 
 
 
 
 
/**********************AUTO-RUN SUBROUTINE**************************/ 
int AUTO_RUN() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
 set_sleep = 0; 
 set_auto = 1; 
 set_jet_1 = 0; 
 set_jet_10 = 0; 
 set_jet_15 = 0; 
 set_heat_30 = 0; 
 set_heat_5 = 0; 
 set_heat_15 = 0; 
   counter = 0; 
 
 
   __bis_SR_register(LPM0_bits + GIE); 
 
   return 0; 
} 
 
 
 
 
int MANUAL_CONTROL() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
   int Op_Sel = 0; 
 
   int loop_flag4 = 0; 
 
   Init_Small(); 
   char line1[] = "** MANUAL CONTROL **"; 
   char line2[] = "JETS"; 
   char line3[] = "HEAT"; 
 
 
   //print out menu 
   Clear_Disp(); //clear out disp 
   Write_word( line1, sizeof(line1) ); 
   Set_Curs_loc( 0x40 ); 
   Write_Letter( 0x7E ); 
   Write_word( line2, sizeof(line2) ); 
   Set_Curs_loc( 0x15 ); 
   Write_word( line3, sizeof(line3) ); 
 
   int op_marker = 0; 
 
 
   while (loop_flag4 != 4) 
   { 
  if ((P1IN & 0x08) != 0x08 ) //Selection Button 
  { 
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   if (op_marker == 0) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //clear arrow from line 1 
      Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x7E ); //write arrow to line 2 
 
      Op_Sel = 1;           //option two selected 
      op_marker = 1;        //remember that arrow is on line 2 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 1) 
   { 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //clear arrow from line 2 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x7E ); //write arrow to line 1 
 
      Op_Sel = 0;           //option two selected 
      op_marker = 0;        //remember that arrow is on line 2, will loop back to line 1 next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
  } 
 
 
  if((P1IN & 0x04) != 0x04 )     //Enter button 
  { 
   loop_flag4 = 4; 
   if (Op_Sel == 0)           //selects option one 
   { 
               JETS(); 
   } 
   else 
   { 
               HEAT(); 
   } 
  } 
 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
          return;  // MAIN_MENU(); 
  } 
  } 
   return 0; 
} 
 
/*******************************************************************/ 
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/**************************JETS SUBROUTINE**************************/ 
 
int JETS() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
   int Op_Sel = 0; 
 
   int loop_flag5 = 0; 
 
   counter = 0; 
   counter_DC_sleep = 0; 
   counter_AC_sleep = 0; 
   counter_jets = 0; 
   counter_heat = 0; 
 
   Init_Small(); 
   char line1[] = "******* JETS *******"; 
   char line2[] = " 1 Minute"; 
   char line3[] = "10 Minutes"; 
   char line4[] = "15 Minutes"; 
 
 
   //print out menu 
   Clear_Disp(); //clear out disp 
   Write_word( line1, sizeof(line1) ); 
   Set_Curs_loc( 0x40 ); 
   Write_Letter( 0x7E ); 
   Write_word( line2, sizeof(line2) ); 
   Set_Curs_loc( 0x15 ); 
   Write_word( line3, sizeof(line3) ); 
   Set_Curs_loc( 0x55 ); 
   Write_word( line4, sizeof(line4) ); 
 
   int op_marker = 0; 
 
 
   while (loop_flag5 != 5) 
   { 
  if ((P1IN & 0x08) != 0x08 ) //Selection Button 
  { 
   if (op_marker == 0) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //clear arrow from line 1 
      Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x7E ); //write arrow to line 2 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 3 
 
      Op_Sel = 1;           //option two selected 
      op_marker = 1;        //remember that arrow is on line 2 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 1) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 1 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //clear arrow from line 2 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x7E ); //write arrow to line 3 
 
      Op_Sel = 2;           //option two selected 
      op_marker = 2;        //remember that arrow is on line 3, will loop back to line 1 next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 2) 
   { 
      Set_Curs_loc( 0x54 ); 
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      Write_Letter( 0x10 ); //clear arrow from line 3 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x7E ); //write arrow back to line 1 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 2 
 
      Op_Sel = 0;           //option two selected 
      op_marker = 0;        //remember that arrow is on last line and should loop to top next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
  } 
 
 
  if((P1IN & 0x04) != 0x04 )     //Enter button 
  { 
   loop_flag5 = 5; 
   set_sleep = 0; 
   set_auto = 0; 
 
   if (Op_Sel == 0)           //selects option one 
   { 
               set_jet_1 = 1; 
   } 
   else if (Op_Sel == 1)           //selects option one 
   { 
               set_jet_10 = 1; 
   } 
   else 
   { 
               set_jet_15 = 1; 
   } 
 
 
     __bis_SR_register(LPM0_bits + GIE); 
 
           //(); 
  } 
 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
          return; // MAIN_MENU(); 
  } 
   } 
   return 0; 
} 
 
/*******************************************************************/ 
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/**************************HEAT SUBROUTINE**************************/ 
 
int HEAT() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
   int Op_Sel = 0; 
 
   int loop_flag6 = 0; 
 
   counter = 0; 
   counter_DC_sleep = 0; 
   counter_AC_sleep = 0; 
   counter_jets = 0; 
   counter_heat = 0; 
 
   Init_Small(); 
   char line1[] = "******* HEAT *******"; 
   char line2[] = "30 Seconds"; 
   char line3[] = " 5 Minutes"; 
   char line4[] = "15 Minutes"; 
 
 
   //print out menu 
   Clear_Disp(); //clear out disp 
   Write_word( line1, sizeof(line1) ); 
   Set_Curs_loc( 0x40 ); 
   Write_Letter( 0x7E ); 
   Write_word( line2, sizeof(line2) ); 
   Set_Curs_loc( 0x15 ); 
   Write_word( line3, sizeof(line3) ); 
   Set_Curs_loc( 0x55 ); 
   Write_word( line4, sizeof(line4) ); 
 
   int op_marker = 0; 
 
 
   while (loop_flag6 != 6) 
   { 
  if ((P1IN & 0x08) != 0x08 ) //Selection Button 
  { 
   if (op_marker == 0) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //clear arrow from line 1 
      Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x7E ); //write arrow to line 2 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 3 
 
      Op_Sel = 1;           //option two selected 
      op_marker = 1;        //remember that arrow is on line 2 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 1) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 1 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //clear arrow from line 2 
      Set_Curs_loc( 0x54 ); 
      Write_Letter( 0x7E ); //write arrow to line 3 
 
      Op_Sel = 2;           //option two selected 
      op_marker = 2;        //remember that arrow is on line 3, will loop back to line 1 next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 2) 
   { 
      Set_Curs_loc( 0x54 ); 
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      Write_Letter( 0x10 ); //clear arrow from line 3 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x7E ); //write arrow back to line 1 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //make sure cleared arrow from line 2 
 
      Op_Sel = 0;           //option two selected 
      op_marker = 0;        //remember that arrow is on last line and should loop to top next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
  } 
 
 
  if((P1IN & 0x04) != 0x04 )     //Enter button 
  { 
   loop_flag6 = 6; 
   set_sleep = 0; 
   set_auto = 0; 
 
   if (Op_Sel == 0)           //selects option one 
   { 
               set_heat_30 = 1; 
   } 
   else if (Op_Sel == 1)           //selects option one 
   { 
               set_heat_5 = 1; 
   } 
   else 
   { 
               set_heat_15 = 1; 
   } 
 
 
     __bis_SR_register(LPM0_bits + GIE); 
 
           //(); 
 
  } 
 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
           return;  //MAIN_MENU(); 
  } 
   } 
   return 0; 
} 
 
/*******************************************************************/ 
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/*************************SLEEP SUBROUTINE**************************/ 
 
int SLEEP() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
 set_sleep = 1; 
 set_auto = 0; 
 set_jet_1 = 0; 
 set_jet_10 = 0; 
 set_jet_15 = 0; 
 set_heat_30 = 0; 
 set_heat_5 = 0; 
 set_heat_15 = 0; 
   counter_AC_sleep = 0; 
   counter_DC_sleep = 0; 
 
 
   __bis_SR_register(LPM0_bits + GIE); 
 
   //(); 
   return 0; 
} 
 
 
 
 
int LIGHTS() 
{ 
 __delay_cycles(8000000); // 0.5s 
 
 
   Init_Small(); 
 
   int loop_flag7 = 0; 
 
   char line1[] = "****** LIGHTS ******"; 
   char line2[] = "ON"; 
   char line3[] = "OFF"; 
 
 
   //print out menu 
   Clear_Disp(); //clear out disp 
   Write_word( line1, sizeof(line1) ); 
   Set_Curs_loc( 0x40 ); 
   Write_Letter( 0x7E ); 
   Write_word( line2, sizeof(line2) ); 
   Set_Curs_loc( 0x15 ); 
   Write_word( line3, sizeof(line3) ); 
 
   int Op_Sel = 0; 
   int op_marker = 0; 
 
 
   while (loop_flag7 != 7) 
   { 
  if ((P1IN & 0x08) != 0x08 ) //Selection Button 
  { 
   if (op_marker == 0) 
   { 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x10 ); //clear arrow from line 1 
      Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x7E ); //write arrow to line 2 
 
      Op_Sel = 1;           //option two selected 
      op_marker = 1;        //remember that arrow is on line 2 
      while((P1IN & 0x08) != 0x08 ); 
   } 
   else if (op_marker == 1) 
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   { 
    Set_Curs_loc( 0x14 ); 
      Write_Letter( 0x10 ); //clear arrow from line 2 
      Set_Curs_loc( 0x40 ); 
      Write_Letter( 0x7E ); //write arrow to line 1 
 
      Op_Sel = 0;           //option two selected 
      op_marker = 0;        //remember that arrow is on line 2, will loop back to line 1 next 
      while((P1IN & 0x08) != 0x08 ); 
   } 
  } 
 
 
  if((P1IN & 0x04) != 0x04 )     //Enter button 
  { 
   loop_flag7 = 7; 
   if(Op_Sel == 0)           //selects option one 
   { 
    P1OUT |= 0x01;          //turn lights on P2 2.3 as control x08...or 1.0 x01 for testing 
   } 
   else 
   { 
    P1OUT &= ~0x01;          //turn lights off 
   } 
  } 
 
 
  if ((P1IN & 0x02) != 0x02 ) // toggle arrow to top, clear bottom arrow 
  { 
           return;  //MAIN_MENU(); 
  } 
   } 
   return 0; 
} 
 
/*******************************************************************/ 
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/***************WRITE WORD TO LCD SCREEN SUBROUTINE*****************/ 
int Write_word(char *word, int l_word ) 
{ 
 int i = 0; //counter 
 for (i = 0; i < l_word - 1; i++ ) 
 { 
  char up_let = 0b11110000 & word[i]; 
  char lo_let = 0b00001111 & word[i]; 
  lo_let = lo_let << 4; //bit shift 4 to upper 4 
 
  //write a letter 
  P1OUT &= 0x0F; // clear Data bus 
  P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1 
  P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1 
  P1OUT |= up_let; // put data out (function set - upper nible) 
  __delay_cycles(16); // 1us -tw delay 
  P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
  P1OUT &= 0x0F; // clear Data bus 
 
  P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1 
  P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1 
  P1OUT |= lo_let; // put data out (function set - lower nible) 
  __delay_cycles(16); // 1us -tw delay 
  P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
  P1OUT &= 0x0F; // clear Data bus 
  __delay_cycles(960); // 60us 
 } 
 return 0; 
} 
 
/*******************************************************************/ 
 
 
/***************SET CURSOR ON LCD SCREEN SUBROUTINE*****************/ 
 
int Set_Curs_loc(char loc) 
{ 
 char up_loc = 0b11110000 & loc; 
 char lo_loc = 0b00001111 & loc; 
 up_loc |= 0x80; //mask upper bit to set it toa DDRAM write 
 lo_loc = lo_loc << 4; //bit shift 4 to upper 4 
 
 //set to write to  DDRAM 
 P1OUT &= 0x0F; // clear Data bus 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= up_loc; // put data out (function set - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= lo_loc; // put data out (function set - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 __delay_cycles(960); // 60us 
 return 0; 
} 
 
/*******************************************************************/ 
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/***************WRITE LETTER TO LCD SCREEN SUBROUTINE*****************/ 
 
int Write_Letter(char letter) 
{ 
   char up_let = 0b11110000 & letter; 
   char lo_let = 0b00001111 & letter; 
 
   lo_let = lo_let << 4; //bit shift 4 to upper 4 
 
 //write a letter 
 P1OUT &= 0x0F; // clear Data bus 
 P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1 
 P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1 
 P1OUT |= up_let; // put data out (function set - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 P2OUT |= 0x01; //E = 0, R/W = 0, RS = 1 
 P2OUT |= 0x05; //E = 1, R/W = 0, RS = 1 
 P1OUT |= lo_let; // put data out (function set - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x04; //E = 0, R/W = 0, RS = 1 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 __delay_cycles(960); // 60us 
 
 return 0; 
} 
 
/*******************************************************************/ 
 
 
 
 
 
/*************SHIFT LETTER ON LCD SCREEN SUBROUTINE*****************/ 
 
int shift_Disp_Left(void) 
{ 
 //Display Clear 
 P1OUT &= 0x0F; // clear Data bus 
 P2OUT |= 0x01; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x00; // put data out (Display Clear - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x10; // put data out (Display Clear - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
__delay_cycles(48000); // 3ms 
 
return 0; 
} 
 
/*******************************************************************/ 
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/***************CLEAR THE LCD SCREEN SUBROUTINE*****************/ 
 
int Clear_Disp(void) 
{ 
 //Display Clear 
 P1OUT &= 0x0F; // clear Data bus 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x00; // put data out (Display Clear - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x10; // put data out (Display Clear - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 __delay_cycles(48000); // 3ms 
 
return 0; 
} 
 
/*******************************************************************/ 
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/*****INITIALIZE THE LCD SCREEN FOR 5X8 DOT MATRIX SUBROUTINE*******/ 
 
int Init_Small(void) { 
 //start up sequence 
 //unt on 
   __delay_cycles(960); // 60us 
 
   //Functions set 
 P1OUT &= 0x0F; // clear Data bus 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x20; // put data out (function set - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x80; // put data out (function set - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 __delay_cycles(960); // 60us 
 
 //Display Function 
 P1OUT &= 0x0F; // clear Data bus 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x00; // put data out (Display set - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0xC0; // put data out (Display set - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 __delay_cycles(960); // 60us 
 
 //Display Clear 
 P1OUT &= 0x0F; // clear Data bus 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x00; // put data out (Display Clear - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x10; // put data out (Display Clear - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 __delay_cycles(48000); // 3ms 
 
 return 0; 
} 
 
 
 
/*******************************************************************/ 
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/*****INITIALIZE THE LCD SCREEN FOR 5X11 DOT MATRIX SUBROUTINE*******/ 
 
int Init_Big(void) { 
 //start up sequence 
 //unt on 
   __delay_cycles(960); // 60us 
 
   //Functions set 
 P1OUT &= 0x0F; // clear Data bus 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x20; // put data out (function set - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0xC0; // put data out (function set - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 __delay_cycles(960); // 60us 
 
 //Display Function 
 P1OUT &= 0x0F; // clear Data bus 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x00; // put data out (Display set - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0xC0; // put data out (Display set - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 __delay_cycles(960); // 60us 
 
 //Display Clear 
 P1OUT &= 0x0F; // clear Data bus 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x00; // put data out (Display Clear - upper nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
   P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
   P2OUT |= 0x04; //E = 1, R/W = 0, RS = 0 
 P1OUT |= 0x10; // put data out (Display Clear - lower nible) 
 __delay_cycles(16); // 1us -tw delay 
 P2OUT &= ~0x07; //E = 0, R/W = 0, RS = 0 
 P1OUT &= 0x0F; // clear Data bus 
 
 __delay_cycles(48000); // 3ms 
 
 // init complete 
 return 0; 
} 
/*******************************************************************/ 
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APPENDIX G:  MATLAB SCRIPT FOR ENERGY CALCULATIONS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Senior Project: Solar Powered Hot Tub 
%Designed by: Jonathan Peterson and Anthon Zepeda 
%May 20, 2016 
% 
%This script was created in order to perform data 
%calculations aiding in determining the power output 
%from a 400W solar panel 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Latitude, Longitude, and Day Definitions 
Lat = 35.484; 
Long = 120.672; 
Day = 359; 
  
%Declination Calculation 
Dec = (23.45 * sind((360/365)*(Day-81))); 
  
%Hour Angle Calculation 
t = (0:1:1440); 
Hour = (t/60); 
H_B4_N = -(Hour-12); 
HA = ((15).*H_B4_N); 
  
%Part 1 
%Altitude Calculation 
Alt = asind((sind(Dec)*sind(Lat))+(cosd(Dec)*cosd(Lat)*cosd(HA))); 
  
%Azimuth Calculation 
Azm = asind((cosd(Dec).*sind(HA))./(cosd(Alt))); 
  
for i = 1:1441 
    if cosd(HA(i)) >= (tand(Dec)/ tand(Lat)) 
        Azm(i) = Azm(i); 
    else 
        if Azm(i) <= 0 
            Azm(i) = (-180-Azm(i)); 
        else 
            Azm(i) = (180-Azm(i)); 
        end 
    end 
end 
  
Alt(Alt<0.1)=0.1; 
%plot(Azm,Alt,'b'); 
  
  
  
%Part 2 - Irradaiance versus Time 
AMR = (1./(sind(Alt))); 
  
I = (1377 .* (0.7.^(AMR.^0.678))); 
  
%plot(t,I2,'b'); 
  
  
  
%Part 3 - Incident Energy 
W = t(2:1440)-t(1:1439); 
H = ((I(2:1440)+I(1:1439))/2); 
IE_Array = W.*H; 
IE = sum(IE_Array); %Wmin/m2 
IE = (IE/(60000)) %kWh/m2 
  
%Day Light Hours 
HSR = acosd((-tand(Lat))*(tand(Dec))); 
SR = (HSR/15); 
Day_Light_Hour = (SR*2); 
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%Average Incident Energy per Daylight Hour 
Avg_IE = (IE/Day_Light_Hour); 
  
  
  
%Part 4 - Power from Panels 
PWR_Array = (IE_Array .* 0.2 .* t(1:1439) .* (1/1000)); %kW/m2 
PWR = sum(PWR_Array); %Total kW 
  
%plot(t(1:1439),PWR_Array,'b'); 
  
  
  
%Part 5 - Temperature Problem 
Sum_Temp = (((30*sin(0.0043633.*(t-200)))+75)-32)*(5/9); %Degrees C 
Wint_Temp = (((30*sin(0.0043633.*(t-50)))+51)-32)*(5/9); %Degrees C 
  
Sum_Pan_Temp = (((52.5*sin(0.0043633*(t-200)))+97.5)-32)*(5/9); %Degrees C 
Wint_Pan_Temp = (((24*sin(0.0043633*(t-50)))+56)-32)*(5/9); %Degrees C 
  
Operating_Temp = 25; 
  
Sum_Eff = 0.20*(1-((Sum_Pan_Temp - Operating_Temp).*0.0038)); 
Wint_Eff = 0.20*(1-((Wint_Pan_Temp - Operating_Temp).*0.0038)); 
  
PWR_Array_Eff = (IE_Array .* Wint_Eff(1:1439) .* t(1:1439) .* (1/1000)); %kW/m2 
PWR = sum(PWR_Array_Eff); %Total kW 
  
plot(t(1:1439),PWR_Array,'b',t(1:1439),PWR_Array_Eff,'k'); 
  
  
  
%Part 6 - Total Energy Generated for both Part 4 and 5 
PW = t(2:1439)-t(1:1438); 
PH = ((PWR_Array(2:1439)+PWR_Array(1:1438))/2); 
Tot_Energy_Array = PW.*PH; 
Tot_Energy = sum(Tot_Energy_Array); %Wmin/m2 
Tot_Energy = (Tot_Energy/(60)) %Wh/m2 
  
PWE = t(2:1439)-t(1:1438); 
PHE = ((PWR_Array_Eff(2:1439)+PWR_Array_Eff(1:1438))/2); 
Tot_Energy_Array_Eff = PWE.*PHE; 
Tot_Energy_Eff = sum(Tot_Energy_Array_Eff); %Wmin/m2 
Tot_Energy_Eff = (Tot_Energy_Eff/(60)) %Wh/m2 
  
%Average Generated Energy per Daylight Hour 
Avg_Gen_Energy = (Tot_Energy/Day_Light_Hour) 
Avg_Gen_Energy_Eff = (Tot_Energy_Eff/Day_Light_Hour) 
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