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Xi i i 
Limitations and Uniformity of Conditions 

The recommendations in this report are based on the assumption that 
environmental conditions do not deviate significantly from those that existed 
at the time of field sampling and observation. If any important natural or 
anthropogenic (human-induced) changes occur to the alluvial floodplains, 
dams, lake, mine sites, reservoirs, roads, soils, or other locations mentioned 
in this report, the State Water Resources Control Board should conduct 
additional on-site investigations to refine any of our recommendations. 

The data contained in this report for sediments, soils, and water 
relative to the sampling locations are valid as of the date the materials were 
collected. Some environmental changes occur with the passage of time at 
each sampling location, whether they are due to natural or anthropogenic 
processes. In addition changes in applicable or appropriate standards or 
practices may occur, whether they result from legislation or the expansion of 
knowledge. Accordingly, the findings and recommendations of this report 
may be modified wholly or partially by changes outside our control. 
Therefore, we recommend that this report be subject to review and 
modification as necessary. 
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EXECUTIVE SUMMARY 

On April 26, 1955, the voters of Zone 2 of the Monterey County 

Flood Control and Water Conservation District approved a $7,000,000 

general obligation bond issue for the construction of a 350,000 acre-foot 

reservoir on the Nacimiento River for municipal and irrigation water supply, 

flood control, and recreational purposes. The dam construction project, 

completed in April, 1957, has fostered the expansion of irrigated lands on 

terraces and upland areas below the Nacimiento dam as a result of a 

sustained groundwater recharge program. 

Lake Nacimiento is presently an important local recreational area that 

provides opportunities for fishing, water sports, and permanent and vacation 

living. There is also increasing interest in expanding water usage from the 

lake for direct human consumption. 

The California Department of Health Services (DHS) has posted a 

health advisory calling for reduced consumption of largemouth bass and 

white bass because of high tissue mercury concentrations, up to 1.80 mg· kg

1 in the filets, exceeding the Food and Drug Administration (FDA) action 

limit of 1.00 mg·kg-1 (Rasmussen and Starrett, 1987). 

Two routes for sediment-borne mercury conveyance from watershed 

sources to Lake Nacimiento were investigated: 1) fluvial transport, and 2) 

eolian transport. Sediment and water sampling strategy and laboratory 

protocol are discussed in the Quality Assurance Project Plan for this study 

which is on file at the RWQCB offices in San Luis Obispo. The estimate 

developed for the average annual mercury transport rate via each route 

indicated total estimated contributions for the entire Lake Nacimiento 

watershed of about twenty one (21) pounds of mercury per year from fluvial 
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transport. The estimated mercury contribution from eolian transport to the 

lake was found to be negligible; although local eolian contributions to 

topsoils immediately adjacent to mercury mines and associated roads can be 

significant (Bigley, 1993). 

The primary sediment mercury sources in the Lake Nacimiento 

watershed that were identified in this study (listed in order from the highest 

contributing source to the lowest) include the inactive Buena Vista mercury 

mine, the inactive Klau mercury mine, a dam east of Klau Mine on the Klau 

Branch of Las Tab las Creek that was constructed of a mixture of mercury

rich materials, the abandoned Bonanza Group mercury mines, the abandoned 

Pine Mountain Group mercury mines, roads in the vicinities of some of these 

mines that were paved with mine wastes, the abandoned Sycamore Creek 

(Botts) mercury mine, soils in the vicinities of abandoned and inactive mines 

and/or close to geologic source areas, and naturally occurring geologic 

deposits that are enriched in mercury but were never exploited by mining. 

Additional monies became available through the RWQCB in 1993 to 

assess possible mercury contamination in certain components of the biotic 

community of the Las Tab las creek drainage. The biological sampling and 

analysis were largely restricted to aquatic organisms in the Las Tab las Creek 

watershed. A total of 120 fish representing 10 species were captured and 

sampled for biochemical assay for total tissue mercury. The biological data 

demonstrate a significant bioaccumulation of mercury in several fish species. 

The biological results and analyses clearly show that elevated mercury 

levels exist in the fish communities of Las Tablas Creek. Data from FGL 

laboratories show total mercury from 35 fish samples range from 6.4 to 

<0.01 ppm. The parallel CDFG laboratory data based on 81 samples show a 

range of 2.0 to 0.03 ppm. The locations where the highest biological 
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mercury contamination occurs are the Buena Vista reservoir and the 

Harcourt reservoir. The biological data suggest a continuing supply of 

mercury-bearing materials entering Las Tablas Creek system. The results of 

this biological study confirm the conclusions of the prior sediment sampling 

study that the primary mercury contamination source locations in the Las 

Tablas Creek watershed are the two inactive mercury mines, the Buena Vista 

and the Klau. 

Prevention of additional lake mercury loading from waterways, 

especially Las Tablas Creek, appears to be the best strategy to decrease 

mercury levels in the lake sediments and water column and, subsequently, in 

the lake fish population (Chamberlin et al., 1990; Gavis and Ferguson, 1972; 

Rudd et al., 1983). Consequently, effective source control measures should 

result in reducing rates of fluvial transport of mercury-bearing suspended 

sediments to Lake Nacimiento. 

The focus of the source control remediation measures is on two 

inactive mercury mines, the Buena Vista and Klau, which have been 

previously identified as "problem mines" (Mining Waste Study Team, 1988) 

and which we have identified as the primary point sources for mercury and 

acid mine drainage pollution in the Lake Nacimiento watershed. 

Specific remediation measures that were considered include: 

1. Physical Remediation Methods 
A. 	 cut back slopes to reduce erosion and prevent slope failures on 


tailings piles; 

B. 	 vegetate bare soil surfaces to reduce erosion; 
C. 	 riprap streambanks to protect them from undercutting; 
D. 	 mine seals placement; 
E. 	 grout the mine wastes; 
F. 	 cap the mine wastes with soil-cement; 
G. 	 cover the mine wastes with a flexible geotextile cap; 
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H. 	 cover the mine wastes with a concrete blanket; 
I. 	 cover the mine wastes with a webbed geotextile; 
J. 	 solidify the mine wastes; 
K. 	 vitrify the mine wastes; 
L. 	 excavate and dispose of the mine wastes; 
M. 	 sediment trap construction and maintenance; and 
N. 	 wetlands establishment. 

2. Chemical Remediation Methods 
A. 	 acid mine drainage neutralization; 
B. 	 bactericides; inhibition of sulfur oxidation; 
C. 	 oxidation processes; 
D. 	 reduction processes; and 
E. 	 ion exchange methods. 

3. Biological Remediation Methods 
A biological oxidation. 

Control of mercury-laden sediment loads to the lake from abandoned 

and inactive mercury mines and contaminated roads will provide direct 

source control strategies for improving Lake Nacimiento water quality. 

However, the mercury already stored in watershed stream alluvium and in 

the sediments of the lake may continue to cause mercury bioaccumulation by 

fish and wildlife species for many decades, or even centuries. Therefore, in

lake pollution abatement measures have also been developed and evaluated. 

A wide range of pollution abatement and control options for the lake 

was considered: 
A. 	 Do nothing; 
B. 	 Implement a source control program at the mine sites but do nothing in 

the lake; 
C. 	 Dredge, remove and treat contaminated Lake Nacimiento and/or 

Harcourt Reservoir sediments; 
D. 	 Cover mercury-rich Lake Nacimiento sediments in situ.; and 
E. 	 Establish a bounty system to reduce human consumption of the most 

mercury-contaminated fish. 



1.0 INTRODUCTION 


Lake Nacimiento is an important recreational area that provides 

opportunities for bass fishing, water sports, and vacation living. The 

California Department of Health Services (DHS) has posted a health 

advisory calling for reduced consumption of fish because of high mercury 

concentrations found in largemouth bass and white bass. Largemouth bass 

taken from the Las Tablas Creek Arm of Lake Nacimiento showed Hg 

concentrations up to 1.80 mg ·kg-1 in the filets, exceeding the Food and Drug 

Administration (FDA) action limit of 1.00 mg·kg-1 (Rasmussen and Starrett, 

1987). Any increased bioaccumulation of mercury in the fish population 

could cause serious health effects for humans and predatory animals 

consuming the contaminated fish. On the other hand, if fishing is curtailed, 

then some local sport fishing interests may suffer economically. 

1.1 Location & Features of Lake Nacimiento and Watershed 

Lake Nacimiento is located in San Luis Obispo County, California. 

The approximate center location of the lake is 1200 56' north latitude and 

350 40' west longitude. At full water capacity, the maximum depth is about 

55 meters (180 feet) with a mean depth of 30 meters (98 feet). The 

maximum water surface area is 2,173 hectares (1 ,758 acres) with a 

maximum volume of 4.32 x 108 cubic meters (about 350,000 acre-feet). 

Nacimiento Lake water temperatures result in a summer thermocline. The 

major hydrologic inflows and outflows are from the Nacimiento River. 

The Nacimiento River has long been considered one of the most 

productive streams in the California Central Coast area. The Nacimiento 

and San Antonio Rivers together contribute over 75 percent of the flow of 
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the Salinas River at Monterey Bay, and are responsible for a substantial 

portion of the historic flood damage along the lower Salinas River. Studies 

by the California Division of Water Resources during the period from 1952 

to 1958, leading to the formulation of The California Plan, conclusively 

demonstrated that engineering large reservoirs on the Nacimiento and San 

Antonio Rivers was feasible and economically justified. Consequently, San 

Luis Obispo and Monterey County interests considered the Nacimiento and 

San Antonio rivers as potential water supply sources and dams have been 

constructed. (San Luis Obispo Co. Rood and Water Conservation District, 

1965). 

1.2 History of Development and Nacimiento Water Claims 

On April 26, 1955, the voters of Zone 2 of the Monterey County 

Flood Control and Water Conservation District approved a $7,000,000 

general obligation bond issue for the construction of a 350,000 acre-foot 

reservoir on the Nacimiento River for municipal and irrigation water supply, 

flood control and recreational purposes. The dam construction project, 

completed in April, 1957, has fostered the expansion of irrigated lands 

primarily in the Salinas Valley as a result of a sustained groundwater 

recharge program. 

There are several existing contracts in San Luis Obispo County for 

Lake Nacimiento water. Small lakeside water users contract for 82 acre

feet (A.F.) of water (personal communication, S.L.O. Co. Engineering 

Dept., 11115/92). Heritage Ranch development in the Snake Creek 

watershed is contracted for 1,200 A.F. This leaves about 16,300 A.F. of 

water entitled to users in San Luis Obispo County that is not presently 

being used due to a lack of pipelines and aqueducts to transport the water to 
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potential contractors. A pipeline is presently being considered by the 

Cambria Community Services District (CCSD) to move water from the Las 

Tab las Creek Arm of the lake west over the crest of the Santa Lucia Range 

to the San Simeon Creek watershed for groundwater recharge purposes 

(Read, 1992). An additional pipeline construction project study to serve 

other county municipalities is in its preliminary stages and is being 

conducted by Boyle Engineering, San Luis Obispo (Bunin, 1993). County 

demands for Lake Nacimiento water are expected to continue into the 

future and many decisions remain to be made (Dalrymple, 1993). 

Monterey County contractors get the bulk of Lake Nacimiento water. 

A maximum annual lake water withdrawal of 180,000 A.F. by release over 

the dam has been reported (Dupuis, 1991). Most of the water percolates into 

the Salinas River aquifer to be pumped out as groundwater by agricultural, 

municipal, and private users downstream from the dam. 

1.3 General Watershed Conditions 

The Lake Nacimiento watershed encompasses approximately 82 

square miles (52,480 acres) located about half in northern San Luis Obispo 

Co. and half in southern Monterey County (Figure 1-1). Land use in the 

watershed is about 50% grazing, 47% open space, 1% housing, 1% 

camping, and 1% inactive mines. Most of the land in the watershed is 

publicly owned as Hunter Liggett Military Reservation and Los Padres 

National Forest. Public access to the lake is available by way of 17 private 

boat launch ramps, 2 public launch ramps, and 20 launch areas from private 

lands accessible by four-wheel drive vehicles. 
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The individual drainage basins within this watershed can be divided 

into two groups: the lower basins that drain directly to the lake, and the 

upper basins that drain to the Nacimiento River which then flows into the 

lake. The lower basins include Las Tablas, Franklin, Town, Dip, Snake, and 

Kavanaugh Creeks. The upper basins include Little Burnett, Tobacco, 

Salmon, Las Berros, San Miguel, Stony, El Piojo, Waller, and Sapaque 

Creeks. The crest of the Santa Lucia Range forms the southwestern 

boundary of the watershed, and the San Antonio River watershed divide 

bounds it on the northeast (Figure 1-2). 

Physiographically and vegetatively, the Nacimiento River watershed 

can be considered as consisting of two relatively distinct parts. The 

southwesterly half is that part located generally between the Nacimiento 

River and the crest of the Santa Lucia Range. It consists of mountainous 

terrain characterized by steep slopes and a thick cover of chaparral and 

mixed evergreen forest. 

This area is primarily used as watershed with limited cattle grazing, and is 

being increasingly subdivided into rural homesite parcels. The 

northwesterly half of the watershed is characterized by more level terrain 

than in the Santa Lucia Range to the west, and has a vegetative cover 

composed typically of oak-grass savannah. This portion of the watershed is 

used for cattle grazing, dryland farming, rural homesite parcels and military 

operations on the Hunter Liggett Military Reservation. 



5 

f 

\ 

' ' 

Figure 1-1: Regional Map of Lake Nacimiento Area 
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1.4 Beneficial Uses 

The "Water Quality Control Plan, Central Coast Basin," (called the 

Basin Plan), was adopted by the Regional Water Quality Control Board 

(RWQCB) on March 14, 1975, and was approved by the State Water 

Resources Control Board on March 20, 1975. The Basin Plan incorporates 

statewide plans and policies by reference and contains a strategy for 

protecting beneficial uses of surface waters in the Central Coast Region. 

The Basin Plan lists beneficial uses for Las Tab las Creek as follows: 
a. Intermittent municipal supply; e. Non-contact water 

recreation; 

b. 
c. 

d. 

Intermittent agricultural supply; 
Intermittent groundwater recharge; 

Intermittent water contact recreation; 

f. 
g. 

h. 

Wildlife habitat; 
Intermittent warm water 

habitat; and 
Intermittent spawning 

habitat. 
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2.0 MERCURY LITERATURE REVIEW 

2.1 Introduction 

Many lakes, reservoirs, and river systems worldwide are contaminated by 

mercury (Hg). Both point and non-point sources of Hg contamination contribute 

to the Hg loading of water bodies. Soils and sediments high in Hg are known to 

be associated with some Hg-bearing geologic deposits, Hg mining operations, 

and Hg-utilizing industries. These Hg-rich soils may erode and be transported as 

alluvial sediment to rivers, lakes, or reservoirs where the Hg can be transformed 

to more toxic forms that can bioaccumulate, resulting in severe impacts on animal 

and human populations. 

Most Hg transformations depend on various interrelated chemical, 

physical, and microbiological processes that operate in both the terrestrial and 

aquatic environments. Chemical transformations within the Hg cycle are 

regulated by the forms of Hg present and by the chemical, physical, and 

biological reactions existing in the environment. 

This literature review is organized to discuss several topics in the following 

order: Hg toxicity concerns, Hg levels in the environment, Hg forms in the 

environment, and environmental Hg processes and reactions. 

2.2 Mercury Toxicity Concerns 

The U.S. classification ofHg toxicity is determined by the Federal EPA-EP 

(Extraction Procedure) Toxicity Test (SW-846, Method 1310), documented in 

EPA 40 CFR Part 261. In this test a sample is treated with acetic acid at pH 5, in 

a 16:1 acid:waste ratio for 24 hours. The pH is maintained at 5 by the addition of 

glacial acetic acid. If the Hg content of the sample extract exceeds 0.2 mg · L -1, 

the material is considered toxic and therefore hazardous. 
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The California Department of Health Services (DHS) classifies waste as 

hazardous using procedures specified in Title 22, Chapter 30, of the Code of 

California Regulations (CCR). Article 11 defines the criteria for the 

identification of hazardous wastes. Section 66696 specifies general toxicity 

criteria, while Section 66699 of Article 11, which deals with persistent and 

bioaccumulative toxic substances, is directly relevant to mining waste. Any 

waste is considered hazardous if its Hg levels, as determined by the Waste 

Extraction Test (WET), exceed a soluble threshold limit concentration (STLC) of 

0.2 mg·L-1, or exceed a total threshold limit concentration (TILC) of20 mg·kg-1, 

(wet weight). An excellent critical review of the testing procedures for the 

classification of mining wastes was recently completed (Mining Waste Study 

Team, 1988). 

The majority of Hg poisonings are due to ingestion of the short-chained 

alkyl mercurials, especially methyl mercury (CH3Hg+). These organic Hg 

compounds are absorbed faster by organisms than elemental mercury (HgO), and 

act as neurotoxins that attack the central nervous system (D'Itri, 1972). They can 

be stored in body tissues and eventually accumulate in the brain where they 

destroy brain cells (D'Itri, 1972). 

Methyl mercury (CH3Hg+) is a poison that builds up in biological systems 

by bioaccumulation. Beginning at low concentrations in the lower trophic levels 

of algae and phytoplankton, it is biomagnified through the aquatic food chain and 

results in higher methyl mercury concentrations in larger predatory fish, and, 

eventually in humans that consume contaminated fish. Very low concentrations 

of Hg are capable of completely inhibiting ovarian recrudescence in fish. 

Exposure of catfish to HgCb for 180 days completely arrested ovarian 

recrudescence (Kirubagarum and Joy, 1988). Birds and mammals can be affected 

when eating Hg-contaminated fish or other Hg-tainted foodstuffs. A dietary level 
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of 5.0 mg· kg-1 of CH3Hg+ was sufficient to cause a certain degree of 

neurological impairment and death in zebra finches (Schenhammer, 1988). 

Elemental mercury (HgO), if taken orally, is not absorbed quickly by the 

human body, and once ingested is excreted in urine (D'Itri, 1972). However, HgO 

vapors which are absorbed through the lungs and accumulate in brain tissues are 

adverse to human health (D'Itri, 1972). For example, in the early 1900's, furriers . 
who used Hg to improve felting qualities inhaled mercury vapor and developed 

persistent tremors and permanent brain damage; therefore, the phrase "mad as a 

hatter' was coined (D'Itri, 1972). Also, some miners in San Luis Obispo County, 

California who smelted cinnabar (HgS) in open-air smelters were exposed to Hg 

vapors and were described as having the shakes (personal communication, 

Raymond Dodd, Sr.; 10/31192). 

Mercury is able to form solid solutions with all the common metals, except 

for iron and platinum, becoming alloys called amalgams. In mercuric amalgams, 

the chemical reactivity of the metal dissolved is lowered. The chlor-alkali 

industry utilizes this principle to produce chlorine and caustic soda, and has been 

one of the largest Hg polluters (Adriano, 1986). 

Factories producing polyvinyl chloride (PVC), using Hg as a·catalyst, 

dumped mercuric chloride (HgCh) into Minamata Bay, Japan in the 1950's. 

Measurements of the sediment showed Hg concentrations up to 630 mg·kg-1 

(Kudo and Hart, 1974). The HgCI2 was biologically changed to CH3Hg+ and 

bioaccumulated in the fish and shellfish of the bay. Thirty six people died and 

110 people developed Hg poisoning symptoms after eating Hg-contaminated fish 

and shellfish (D'Itri, 1972). High levels of CH3Hg+ still exist in the fish and 

shellfish of Minamata Bay (Nakamura et al., 1988). 

Hg amalgams (Hg-silver alloys) used in dentistry accounted for the largest 

single release of Hg into the California environment (California Dept. of Public 
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Health, 1973). There are many current studies being conducted on the risks to 

dentists and patients of the use of Hg amalgams in dental fillings. One-third of 

all latex house paints sold today contain some Hg. The heavy Hg vapors 

concentrate close to the floor, resulting in a relatively high exposure risk for 

young children (Agocs et al., 1990) 

Unborn fetuses of pregnant women are at high risk to CH3Hg+ poisoning. 

If pregnant women consume methyl mercury it can be transferred through the 

placenta into the fetus resulting in birth defects (Skertving, 1988). Infants may 

first be exposed to methyl mercury which occurs in the breast milk of their 

mothers. At an intake of 0.3 JJg · Hg· kg-1 body weight per day by the mother, the 

CH3Hg+ level in breast milk will be about 1.0 JJg· Hg· g-1. An infant's intake of 

breast milk may be as high as 0.15 L·kg-1 body weight per day which equals a 

CH3Hg+ exposure of 0.15 JJg ·Hg· kg-1 body weight per day (Skerfving, 1988). 

Recent reports state that Hg poisoning of local human populations in 

Hg mining areas in California has not been documented (Mining Waste 

Study Team, 1988). It might appear that chronic Hg poisoning is not 

presently a problem for humans due to mining activities. Nevertheless, in 

study conclusions of California mines, mercury contamination was 

considered to be the second most serious threat posed by state mining wastes 

(the principal threat was considered to be acid mine drainage) (Mining 

Waste Study Team, 1988). Mercury was thought to be a problem due to its 

persistent nature and its potential to biomagnify in the aqueous environments 

of lakes and reservoirs. 

In spite of the Minamata case in Japan, no controlled studies of 

humans has been conducted in California to establish whether significant Hg 

uptake is taking place, or whether long term chronic exposure is leading to 

subtle health affects in potentially vulnerable human populations. In 
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contrast, studies of fish populations in California lakes and reservoirs have 

found Hg levels in their tissues that exceed the FDA action limit (i.e., >1.0 

mg·kg-1) (RWQCB, 1987). 

2.3 Mercury Levels in the Environment 

The focus of this section is to discuss the Hg concentration values 

reported in the literature for Hg found in the atmosphere, rocks, soils, 

sediments, and water. These values will be used later in the report for 

comparison w~th the Hg values found in the sediments, soils, and water in 

the Lake Nacimiento watershed. 

2.3.1 Mercury in the Atmosphere 

Mercury enters the atmosphere in both gaseous and particulate forms. The 

mobility of metallic Hg is greatly enhanced by its relatively high vapor pressure 

(Jenne, 1970). Mineral prospectors and public health inspectors use "mercury 

sniffers", instruments to detect airborne Hg, to detect the presence of atmospheric 

Hg. 

Elemental Hg (HgO) is released into the atmosphere as a gas during organic 

matter decomposition, vegetative transpiration, and by soil heating. At an air 

temperature of 25°C, emission rates of Hg from a bare soil near the Almaden 

mine, Spain were 0.32 to 0.34 !Jg·m-2.hf-l; much greater than for vegetated soils 

which showed rates of0.07 to 0.09 !Jg·m-2-hr-1 (Lindberg et al., 1979). 

Volcanoes are a major source of gaseous Hg release into the atmosphere. 

Volcanic derived soils in Hawaii have Hg concentrations double that of non

volcanic soils in the same region (Adriano, 1986). 

Elemental Hg (HgO) is highly volatile, whereas the mercuric ion (Hg2+) 

may be adsorbed to negatively charged colloids (Hoover, 1978). Concentrations 
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of HgO as high as 20 Jlg·m-3 have been measured in the atmosphere immediately 

over known Hg deposits (Gavis and Ferguson, 1972). In contrast, concentrations 

of Hg in the uncontaminated atmosphere range from 1 to 10 ng· m-3 (Adriano, 

1986). 

Dimethyl mercury ((CH3)2) is very volatile and escapes directly· from soil 

or sediment. Methyl mercury is also volatile, but can be complexed with thiol 

groups of protein-derived organics and adsorbed to clay mineral particles. In an 

aerated microbasin of the Wabigoon River, a CH3Hg+ release of60 ng·m-2·day-1 

(Wright and Hamilton, 1982). 

Mercury contamination of remote lakes in Wisconsin and Minnesota, 

where no terrestrial Hg sources are known, has been attributed to increasing 

deposition of atmospheric Hg over the past one hundred years (Swain et al., 

1992). 

2.3.2 Mercury Levels in Rocks 

Mercury concentration values in rocks, sediments, and soils are 

reported in many different units in the literature, including parts per million 

(ppm), parts per billion (ppb), mg ·kg-1 and Jlg· kg-1 (where I ppm Hg in rock 

= 1 mg Hg·kg-lrock; and I ppb Hg in rock= I Jlg Hg·kg-1 ). Throughout this 

report the values, mg·kg-1 and Jlg·kg-1, will be used to discuss the Hg levels 

in all solid inorganic or organic materials. 

Levels of Hg in the environment, especially in rocks, soil, and 

sediment, vary according to the location and geology present. Since 

"background" Hg levels vary according to geographic location, it is difficult 

to predict what levels are normal and what levels are high. However, an 

estimate can made by examining reported Hg levels in the literature. 
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A wide range of Hg levels (0.01-6.0 mg · kg-1) has been reported for 

rock samples collected (Pierce et al., 1970). This variability indicates that 

the levels of natural Hg concentrations are relatively complex functions of 

geological mineralization. Therefore, criteria for either Hg mineralization or 

abnormal Hg contamination should be evaluated separately in any single 

area of interest. 

Concentrations of 0.05-0.2 mg· kg-1 Hg are common in rocks. Values 

tend to be much higher in areas with known Hg concentrations. Data 

collected near a mine in the Aurora district, along the California-Nevada 

border, showed Hg levels in non-ore rocks of 0.01-0.8 mg· kg-1, with 90% of 

the samples having levels of <0.49 mg·kg-1 Mercury ore samples taken 

from the mine showed levels of 1,000-8,000 mg· kg-1, (0.1-0.8% Hg); this 

represents an increase by a order of magnitude of 4 (i.e., an increase of 104), 

comparing rocks near the mine with the ore body rocks (Pierce et al., 1970). 

Other reports show that Hg concentration in rock ranges from 0.005 to 1.0 

mg·kg-1, averaging <0.20 mg· kg-1 , with sedimentary shales showing higher 

concentrations than igneous rocks (Adriano, 1986). Hg levels, calculated 

from reports on the ore deposits in San Luis Obispo county, California, 

range from 1,000 to 15,000 mg·kg-1 (Eckel et al., 1941). Mine wastes have 

been reported to contain up to 125 to 4,500 mg·kg-1 (SWRCB, 1991). 

Weathering and erosion expose the mineral cinnabar, (mercuric sulfide, 

HgS), to physical, chemical, and biological processes, which can alter HgS to 

HgO, Hg 2+, or to organa-derivatives. Transport and deposition of eroded HgS is 

an important factor in Hg contamination of river drainage systems (Harsh and 

Doner, 1981). It is estimated that ten billion (1 0 1 0) metric tons of rock of all 

kinds are weathered per year on earth (Gavis and Ferguson, 1972). Worldwide, 

at a conservative rock Hg content of 0.080 mg· kg-1, 800 metric tons of Hg are 
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released from weathering rock each year into the environment (Gavis and 

Ferguson, 1972). 

2.3.3 Mercury Levels in Soils 

The average background Hg level of U. S. surface soils are estimated 

to be 0.071 mg·kg-l (National Research Council, 1978; Dudas and Pawluk, 

1976). Another report stated that, in most soils, background Hg levels range 

from 0.030 to 0.20 mg · kg-1; the amount of Hg depending on the type of 

parent material present (Adriano, 1986). Mean natural background levels of 

Hg in Ontario, Canada agricultural soils derived from Paleozoic sedimentary 

rocks composed of I imestones and red shales were 0.080 mg ·kg-1 

(Lockwood and Chen, 1973). 

The average concentration of Hg in California surface soils is 0.070 

mg·kg-1 (Calif. Dept. of Public Health, 1973). California soils in 

unmineralized areas were reported to contain Hg levels from 0.02-0.04 

mg·kg-1 (Williston, 1968), and up to 0.04-0.06 mg·kg-1 (Friedrich and 

Hawkes, 1966). The Franciscan Formation is the California geologic unit 

where known deposits of cinnabar occur. Hg levels in soils associated with 

the Franciscan Formation rocks are reported to be 0.1-0.2 mg· kg-1, up to 3 

times the average Hg levels reported (Williston, 1968). 

Hg is concentrated in the soils adjacent to Hg ore mining areas through 

atmospheric and erosional deposition. Surface soils near the Almaden mine in 

Spain showed a two- to three-fold increase in concentrations ofHg compared to 

soils in non-mined areas (Lindberg et al., 1979). Soil near a Hg mine in Nifu, 

Japan showed a Hg concentration of 100 mg· kg-1 (Adriano, 1986). Total Hg 

extracted from an alluvial soil on the banks of James Creek, Napa Co., California 

where Hg tailings from the Oat Hill Mine had accumulated, were recorded at 

http:0.04-0.06
http:0.02-0.04
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approximately 540 mg·kg-1 (Harsh and Doner, 1981). Major sources ofHg in 

mining areas include the chemical weathering of residual cinnabar, wet and dry 

deposition of HgO released during mining/roasting operations, and the fallout of 

resuspended mine tailings (Lindberg et al., 1979). The average Hg content of 

soils collected near mercury mine sources ranges from 2.5 to 10.0 mg·kg-1 

(Pierce et al., 1970). 

The mercury content of soils varies considerably. Soils unaffected by Hg 

contamination varied from 0.01 to 0.05 mg·kg-l. In contrast, soils near Hg 

deposits had Hg levels from 0.25 to 2.50 mg·kg-1 (Warren et al., 1966). In other 

Hg mineralization areas, soils commonly contained 10.0 to 20.0 mg· kg-l Hg, but 

ranged from 1.0 to 50.0 mg·kg-l Hg (Jenne, 1970). It has been suggested that in 

regions where the soil Band C horizons (subsoils) contain more Hg than in A 

horizons (topsoils) it is probable that there is Hg mineralization in the immediate 

(Warren et al., 1966). 

Mercury laden dust is removed from the atmosphere and reaches the earth's 

surface soils as precipitation condensation nuclei. The average concentration of 

Hg in rainwater is 0.2 1-1g· kg-1 (Eichholz et al., 1988). When Hg enters the soil, it 

can be adsorbed by soil mineral colloids or organic complexes, precipitated as 

insoluble compounds, leached to lower depths, evaporated back to the 

atmosphere, or slowly absorbed by plants. 

2.3.4 Mercury Levels in Natural Water Systems and Aqueous Sediments 

Mercury concentration values in water are reported in many different 

units in the literature, including parts per million (ppm), parts per billion 

(ppb), mg·L-1, and J.lg·L-1 (where 1 ppm Hg in water= 1 mg Hg·L-1 water; 

and 1 ppb Hg in water= 1 J.lg Hg ·L-1 water). Throughout this report the 

values, mg·L-1 and J.lg·L-1, will be used to discuss the Hg levels in water. 
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Mercury enters natural water systems in various chemical forms via 

rainwater, dust fallout, or water and sediment runoff. Most of the Hg in 

natural water systems is associated with suspended particulates (Gavis and 

Ferguson, 1972; Mining Waste Study Team, 1988). Mercury levels are 

usually less in natural waters draining from abandoned Hg mines as 

compared with the Hg levels found in adjacent sediments (Hines, 1971). 

The Hg content of fresh waters in the United States rarely exceed 5 J,tg· L-1 

with typical values usually less than 1 J,tg·L-1 (Mining Waste Study Team, 1988). 

There have been reported instances where Hg values in water were as high as 80 

J,tg· L-1 associated in active Hg mines (Mining Waste Study Team, 1988). 

In stream sediments studied by the U.S. Geological Survey, less than 20% 

of the samples had Hg concentrations higher than 1.0 mg · kg-1. Freshwater 

sediment levels tend to be similar to the levels found in soils (Pierce et al., 1970). 

Concentrations of total Hg in most natural water systems range from 0.03 to 0.08 

mg · L -1, but in polluted waters concentrations may range as high as 37.0 mg· L -1 

(National Research Council, 1978). 

The sediments of reservoirs and lakes act as chemical sinks, especially 

when located in deep troughs or cavities that restrict the removal of sediments by 

currents. In deep sediments of the Puget Sound, Washington, Hg concentrations 

were 0.511 mg·kg-1 (Crecelius et al., 1975). In Lake Powell, Arizona, Hg in 

bottom sediments near the dam averages 0.049 mg·kg-1, whereas rock strata near 

the lake averages 0.021 mg·kg-1 (Potter et al., 1975). 

Inorganic and organic Hg-laden particles can settle in water and 

accumulate in bottom sediments. In the Southern Indian Lake-Totigi Reservoir 

area, Manitoba, Canada, mean total Hg concentrations (in units of mg · kg-1) of 

various source materials were as follows; moss, detritus, and humus (0.095), soil 
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A horizon (0.090), soil C horizon (0.041 ), lake sediment (0.036), suspended 

sediment (0.255), and water (<5.0 x I0-6) (Bodaly et al., 1984). 

2.4 Forms of Mercury Found in the Environment 

The following section will focus on the many mercury forms 

potentially found in the environment. There will be some brief discussion of 

the conditions and reactions that determine the presence of any one mercury 

form. Discussions in later sections will expand on the many processes and 

reactions of mercury in the environment. Much of the following discussion 

on the forms of mercury found in the environment is derived from Lindsay, 

1979 and unless otherwise stated is from this reference. 

2.4.1 Mercury Measurement 

Measurement of mercury levels in the environment usually involves 

assaying a sample for total mercury. A speciation analysis of different 

mercury forms present in the sample is not a normal procedure, and is 

difficult to perform. However, knowledge of the speciation of mercury in 

the environment is often important. The type of Hg species found in water, 

sediment, soil, rock and the atmosphere allows a better understanding of the 

possible pathways of mercury interaction in the environment. 

2.4.2 Mercury Elemental and Ionic Forms 

Mercury can exist in three oxidation states, the mercuric ion (Hg2+), 

the mercurous ion (Hg+), and in the elemental state (HgO). The ability for 

mercury to exist in these three oxidation states allows for many reactions to 

occur under various environmental conditions. The ability for a certain 

species to form depends on many factors such as redox potential, pH, ion 
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concentration, type of ions present, bacterial concentration and type, organic 

matter concentration, and other factors (Gavis and Ferguson, 1972). The 

combination of these factors makes prediction of the Hg species present 

under any set of environmental conditions very difficult. 

In the aqueous phase, Hg2+ is the stable species under most conditions, 

while HgO is oxidized under oxygenated conditions. The Hg 2+ ion is complexed 

with inorganic ligands in aqueous solutions. In natural waters, Hg2+ behavior is 

dependent on precipitation, complexation, chelation, redox, sorption, and 

methylation (Newton et al., 1976). In oxidizing sediments that have Hg 

concentrations of 2 to 10 mg · kg-1, the rate of Hg loss appears to follow first order 

kinetics with a half-life of about 1.3 years (Crecelius et al., 1975). 

Hg0 is volatile with a vapor pressure of 1.2 x 10-3 mm of Hg. Elemental 

Hg is nearly insoluble, with a commonly accepted solubility limit being 70 JJg·kg

1; thus soilleachates are usually low in elemental Hg (Eichholz et al., 1988). The 

Hg(l) state is much less stable than the Hg2+ ion, with Hg212 being the most 

stable of the Hg(l) minerals (Lindsay, 1979). Hg(l) acts as an intermediate in the 

oxidation or reduction of the HgO and Hg2+ forms. The Hg2+ ion is the most 

stable of the three oxidation states, and increases with an increase in the redox 

potential (Lindsay, 1979). 

Many mercury compounds are readily precipitated from aqueous 

solutions. Therefore, mercury levels are typically higher in sediment 

samples than in adjacent water samples. Soluble Hg compounds are mostly 

weak electrolytes. Hg(II) complexes are generally more stable than the same 

complexes of Hg(1), since the addition of complexing agents to Hg(l) 

compounds in aqueous solutions often leads to the disproportionation 

reaction to HgO(Iiq) and Hg2+. Hg exists as discrete Hg22+ ions and these 
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Hgz2+ (aq) ions are important components in aqueous solutions (Hepler and 

Olofsson, t974.) 

2.4.3 Mercury Halides and Oxides 

In the soil, the halides of mercury, HgCl2 and HgBQ, are usually more 

soluble than the oxides and hydroxides. The oxides of Hg(II), in order of 

decreasing solubility, are; Hg(OH)2 > HgO(red, hexagonal)> HgO(yellow, 

orthorhombic) > HgO(red, orthorhombic). Below a pH of 6, HgCl2 and 

HgBQ may be more stable than the HgO minerals depending on the Cl- and 

Br- activities. 

Of the Hg{II) minerals listed above, Hgl2 is the most insoluble. The 

ability of this compound to control the level of Hg activity in the soil 

depends on whether the molar ratio of Hg to I is >0.5; then the Hg would 

utilize all of the available I- and HgO(red) would form and control the 

Hg(II) activity. 

Other oxides, such as Fe- and Mn-oxides, can affect Hg levels in soils 

and sediments. When Fe- and Mn-oxides are formed (under high redox 

potentials), Hg can be co-precipitated and be included in the insoluble 

complexes. When redox potential is lowered, these oxides can be 

redissolved and Hg can be released (Fagerstrom and Jemelov, 1972). 

The concentration of other anions in the solution will affect the type 

and amount of Hg minerals that will form. For instance, before HgO(red) 

can form, the complex Hg(OH)20 must reach equilibrium. HgO(red) will 

form when the soil concentration is ~3.61 mg·kg-1 Hg. Therefore, 

important factors affecting the Hg species that will form include the types of 

anions present and the ambient mercury levels. 
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2.4.4 Mercury Inorganic Complexes 

The Hg(l) minerals also form complexes in the soil, with Hg2h being 

the most stable. The compounds, Hg2S04, HgCO), and Hg2(0H)2, are too 

soluble to precipitate in soils. HgHP04 can form small amounts of 

precipitates in most soils and formation depends on the soil phosphate 

activity. Hg(l) species are sufficiently weak that Hg22+ is the major species 

in solution. 

Ammonia (NH3) and ammonium (NH4+) are products of aerobic 

organic matter decomposition in soils. Ammonia complexes of Hg occur 

only after equilibrium with HgO(red) is attained. Hg(NH4)2 complex is the 

most stable of the different complexes that include Hg(NH3)22+, 

Hg(NH3)32+, and HgNH32+. 

The interaction ofHg(Il), Hg(l), and liquid Hg to form specific 

complexes make prediction of Hg precipitate formation very difficult. 

However, under general conditions, 97.5% of the species in soil solution will 

be Hgho, the Hg(II) form, with the remaining 2.5% being Hg(l) and liquid 

Hg. Under conditions ofHg levels <0.013 mg·kg-1, Hg2I2 would not 

precipitate. Soils with higher levels of Hg will tend to precipitate Hg as 

Hg(l) species and liquid Hg. 

2.4.5 Liquid Mercury 

Elemental mercury exists as a liquid at ordinary temperatures and 

pressures, and as such, maintains a vapor pressure of2xl0-3 mm ofHg, 

which can supply a significant amount of Hg cycling into the atmospheric 

environment. Liquid mercury can oxidize to Hg22+, but Hg0 will form only 

at Eh>314 mV (pE>5.3). Therefore, liquid Hg can be oxidized only under 
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highly oxidative conditions, rarely found under normal ambient 

environmental conditions. 

2.4.6 Mercury Sulfides and Sulfates 

Mercuric sulfide has an extremely low solubility in water and forms 

when divalent mercury (Hg2+) and sulfide (S2-) ions are present. HgS can 

also form from methyl mercury if sulfide ions are present. The equilibrium, 

(2 CH3Hg+ + Hg2+ <=> (CH3)2Hg ), can be moved to the right ifHg2+ is 

removed from solution through the formation of HgS. Divalent mercury 

ions (Hg2+) can be. released from HgS in connection with the oxidation of 

sulfide to sulfate (HgS + 202 <=> Hg2+ + S042-) (Fagerstrom and Jemelov, 

1972). When soils that contain sulfate (S042-) are reduced, S2- levels 

increase, and most metals are precipitated as sulfides. 

Both pH and Eh (pE) affect the formation and precipitation of Hg as 

sulfide complexes. At high Eh levels and increasing pH levels the most 

significant form is liquid Hg. As Eh and pH decrease even more, Hg 

precipitates as Hg2S or Hg(l). As pH and Eh decrease, Hg precipitates in 

the form of HgS (cinnabar, red). 

2.4.7 Organo-mercurial Compounds 

Through the process of methylation, both anaerobic and aerobic 

bacteria transform Hg2+ into the methyl- and dimethyl-mercury (CH3Hg+ 

and CH3HgCH3) forms. The CH3HgCH3 form is much more volatile than 

the CH3Hg+ form. Both forms diffuse through the water, and because both 

forms are highly soluble in lipids, their absorption by aquatic organisms is 

facilitated (Gavis and Ferguson, 1972). 
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Formation of organomercurial compounds has been shown to occur by 

several different pathways. Methylation of Hg(II) to methyl mercury has 

received the most attention in the literature, due to the fact that methyl 

mercury was the first major organic compound found to be the cause of 

serious environmental health hazards. The Minamata Bay case in Japan 

discussed earlier, which involved human death by methyl mercury 

poisoning, brought attention to this newly identified form of mercury which 

could adversely affect environmental quality and human health (D'Itri, 

1972). 

Other forms of organic mercury found in the environment are 

dimethyl mercury, diethyl mercury, and other alkyl chained mercury 

compounds. Not as much information has been gathered on these 

compounds as for methyl mercury. The organomercurials listed below are 

several of the most common forms: 

Arylmercurial: benzene ring Hg; 

Alkylmercurial: R-Hg, where R can be methyl, ethyl, etc.; 

Alkoxyalkylmercurial: R-0-Hg, where R can be methyl, ethyl, etc. 

2.4.8 Mercury in Open Environmental Systems 

Many of the chemical reactions and mercury forms discussed above 

were studied under controlled laboratory conditions, which will likely vary 

from open system conditions. Chemical remediation of Hg contamination in 

an open environment must take into account open system variation and 

realize that when conditions, such as molar concentrations of ions in 

solution, pH, Eh, and bacterial levels, vary, the Hg species that forms will 

likely be different. 
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A good example of the complexity of the speciation of Hg can be seen 

in the phase diagram shown in Figure 2-1 (Hem, 1970). 

Certain forms of mercury, such as HgS, Hgl, and HgO, are less 

damaging, more stable, and less likely to react in various environments. The 

ability to stabilize mercury in these less reactive forms allows control of the 

adverse impact of mercury on environmental quality, and may affect 

remediation of Hg mine waste. 

2.5 Mercury Processes in the Environment 

This section will focus on the various processes and reactions that 

determine the forms of mercury found in the environment. The many reactions 

that determine the Hg species which will be found in an environment are complex 

and some reactions are not fully understood. The discussion will also examine 

the processes by which mercury is able to convert between inorganic and organic 

forms that adversely affect environmental quality. 

2.5.1 The Mercury Cycle in Freshwater Systems 

An equilibrium over time exists between the Hg contents in the 

atmosphere, particulate matter, bodies of water, and rocks and soils of the earth's 

surface (Gavis and Ferguson, 1972). In areas where Hg ore is mined and 

processed, and in areas of industrial and agricultural Hg use, the natural Hg cycle 

is altered and may result in detrimental environmental damage. The Hg cycle, 

illustrating Hg pathways to freshwater system organisms, is represented in Figure 

2-2 (Allan, 1986; Chamberlin et al., 1990). 
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Figure 2-1: Fields of stability for aqueous mercury species at 250C and 1 atmosphere. System 

includes water containing 25 ppm CI-, total sulfur 96 ppm as sulfate. Dashed line indicates 
approximate solubility of mercury in this system. (Source: Hem, 1970). 



26 

~c_o_nt_a_m_i_na_n_t~ -----------~--~~~---A-i_r__~ 


Suspended 

Particulates 


(abiotic particles, 
 ... ..colloids, fibrils, 
bacteria, plankton} 

Benthic 

Boundary 


Layer 


n , 

Surficial 

Bottom 


Sediments 

Benthic 


Organisms 


,, 

Deep 


Bottom 

Sediments 


Humans 

ent 1c 
Organism

eat in Birds 

h 


1r 


Nepheloid ....Layer 

Jl ,, 


/ 
... 

Figure 2-2: Mercury Pathways from Sediments to Fish, Birds, and Humans in 
Freshwater Systems (Source: Allen, 1986). 
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2.5.2 Inorganic Chemistry and Equilibria of Mercury 

Many sediments exist under conditions where Eh values range from -200 

to +400 mV, at pH 7 (Wollast et al., 1975). Under these conditions both aerobic 

and anaerobic characteristics are displayed, resulting in a mixed chemistry where 

oxygen and sulfides are not present at eqililibrium. Small changes in redox 

potential (Eh) affect both the mixed microbiology present as well as the mixed 

chemistry (Bartlett and Craig, 1981). 

At low redox potentials, Hg 2+ can be reduced to HgO. Bacteria can 

detoxify Hg2+ in their environment through biological reduction to HgO, which is 

highly volatile. Oxidation of HgO takes place in aquatic environments when 

organic substances and oxygen are present. At a Hg concentration of2 mg·kg-1, 

a redox potential of +80 mV is sufficient to oxidize HgO to Hg2+ (Hahne and 

Kroontje, 1973). Elemental mercury (HgO) oxidizes to Hg2+, then mercuric 

oxide (HgO) forms, and finally hydrolysis results in the formation of relatively 

soluble mercuric hydroxide [Hg(OH)2]. Above pH 7, the uncharged metal oxide 

hydrate, Hg(OH)2, is the dominant species ofHg (Lindsay, 1979). 

In reducing sediments of low redox potential, Hg2+ is immobilized by the 

sulfide ion S2- forming HgS. Below an Eh of -100 mV, HgS becomes more 

stable and little is available for methylation (Bartlett and Craig, 1981). Further 

reduction and decline in pH creates a highly reduced state and increases the 

solubility, resulting in an excess of free S2- ions present that form soluble 

polysulfide complexes (HgS22- ions) (Fagerstrom and Jemelov, 1972; Lindberg 

and Hamss, 1974). Between an Eh of -100 and +100, HgS becomes unstable, and 

CH3Hg+ increases as more Hg2+ becomes available (Bartlett and Craig, 1981). 

Above Eh levels of+100, S2- levels are near zero. 

Mercuric sulfide (HgS) is almost totally insoluble in water with a Ksp 

(equilibrium constant) of about 1 o-53 (Helgeson, 1969). This indicates that HgS 
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is formed not only from Hg2+ and S2- ions (Hg2+ + S2- => HgS), but that Hg also 

may accept the S2- ion from other sulfides like iron sulfides (FeS) and copper 

sulfides (CuS) (Fagerstrom and Jemelov, 1972). Near a neutral pH, HgS is 

unstable in soil solutions in equilibrium with atmospheric oxygen. Thus, in 

alluvium under oxidizing conditions, HgS should not be expected to be a 

thermodynamically stable mineral (Lindsay, 1979). Its persistence as an 

insoluble mineral depends upon the kinetic favorability of oxidation and the 

kinetic favorability of weathering due to its size and structure (Lindsay, 1979). 

Under oxidizing conditions, the oxidation of sulfides to sulfates (conversion of 

HgS) takes place by the following reaction; (HgS + 202 =Hg2+ + S042-). 

The formation of complexes of ferric oxides (Fe203) and manganese 

oxides (Mn02) is dependent on the redox potential and oxygen content of the 

water or sediment. Under reducing conditions, where oxygen concentration is 

below 0.5 to 1 mg· kg-1, iron and manganese are reduced to divalent forms and 

redissolved in water, releasing Hg2+ (Fagerstrom and Jemelov, 1972). An excess 

of ferrous iron in the surface sediments can bind sulfide as iron sulfide (FeS) and 

inhibit its usefulness as a Hg-binding agent (Rudd et al., 1983). 

2.5.3 Mercwy Adsorption by Sediments and Soils 

Mercury can bond to both soil inorganic and organic components and tends 

to accumulate in surface soil horizons. ·In the top 30 em of an Oxbow soil, total 

Hg concentration was 59 J..lg·kg-1, as compared to 24Jlg·kg-1 Hg in soil from a 

depth of 30 to 60 em (Hogg et al., 1978). The retention of Hg in soil and 

sediments is due to ionic adsorption by both inorganic and organic fractions 

(Adriano, 1986). Clay and organic matter particles in soils are negatively 

charged and can attract the positively charged Hg2+ ion (Hannan and Thompson, 

1977). 
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Soil adsorption of Hg depends on the chemical form of Hg present, the 

structural type, amount, and chemical nature of inorganic and organic soil 

colloids, soil pH, soil texture, and the type of cations present on the exchange 

complex (Hogg et al., 1978). The type of clay mineral and soil texture 

determines the rate and amount of Hg adsorption. Smectite clays have higher 

adsorptive capacities for Hg than kaolinitic clays. 

Clay minerals exhibit maximum adsorption of Hg at pH 7, while organic soils 

exhibit maximum adsorption at lower pH's (Newton et al., 1976). More than 

50% of the total Hg content of some soils is found in particles <0.005 mm in size 

(Adriano, 1986). 

In a Brown Chemozem soil (now called Mollisols), the Hg contents of the 

sand, silt, and clay fractions were 13, 18, and 69 J.tg·kg-1, respectively. In a Gray 

Luvisol soil (now called Alfisols), the Hg contents of the sand, silt, and clay 

fractions were 7, 99, and 370 J.tg·kg-1, respectively (Dudas and Pawluk, 1976). In 

coarse-textured soils, the volatilized loss of Hg is greater than in fine-textured 

soils. Sandy soils amended with 20 ug · Hg per 20 g soil, lost 43% of added 

mercury in six days; whereas, the clay soil lost only 20% of the applied Hg 

(Rogers and McFarlane, 1979). 

2.5.4 Effect of Chlorides and Iron on Mercucy Adsorption 

The adsorption of Hg2+ to mineral particles and clays tends to decrease 

with an increase in chloride (CI-) concentrations. The CI- ion reduces the 

stability of Hg in the sediments and maintains the organic and inorganic Hg in a 

chloride complex, unless the pH is high (Reimers and Krenkel, 1974). Chloride 

concentrations of 10,000 mg· kg-1 reduced Hg adsorption by 30 percent on illite, 

and by 60 percent on montmorillonite (Reimers and Krenkel, 1974). The 

adsorption of Hg2+ by hydrous iron oxide gels is inhibited by chlorides because 
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of the linear configuration of the Hg-Cl complexes which make multidentate 

bonding difficult (Kinnibergh and Jackson, 1978). 

The uptake rate and capacity for inorganic HgCh is given in the following 

order: R-SH (mercaptans) >> illite> montmorillonite> R-NH2 (amines) > 

kaolinite > carboxyl groups > fine sand > medium sand >coarse sand (Reimers 

and Krenkel, 1974). Organic functional groups do not show a Cl- effect on their 

adsorption of Hg2+ (Reimers and Krenkel, 1974). 

Below pH 4, a Cl- ion concentration of only 1.1 mg·kg-1 is sufficient to 

convert nearly all Hg2+ to ~gCl2. The result is that precipitation of Hg(OH)2 and 

adsorption of Hg2+ and HgOH + on inorganic sediment and suspended particles is 

prevented (Hahne and Kroontje, 1973). At pH 5, a Cl- ion concentration of 14 

mg·kg-1 is sufficient for all Hg2+ to be in the HgC120 form (Hahne and Kroonlje, 

1973). From pH's 6 to 9, which are common in lakes and streams, partial 

mobilization is possible, depending on the concentration of chlorine present 

(Hahne and Kroontje, 1973). Surface waters of fresh water lakes exhibit Eh 

potentials near 0.5 V (500 mV), since the redox potentials are only sensitive to 

very small dissolved oxygen concentrations. Therefore, Hg(OH)2 and HgCh are 

predominate species in most surface waters (Gavis and Ferguson, 1972). 

It is common in acid mine drainage waters to have pH's below 4. Chloride 

concentrations of acid mine drainages can range from 4 to 35 mg· kg-1. These 

concentrations are high enough to mobilize more than 95% of the soluble 

inorganic Hg2+ in the form ofHgCl2, at pH 5 (Hahne and Kroontje, 1973). 

Chloride complexes compete effectively with the hydroxy complexes of Hg2+. 

In oxygenated water, the solubility of Hg increases as Hg(OH)2 forms in solution. 

In chloride-rich acidic water, Hg increases as undissociated HgCI2 forms (Gavis 

and Ferguson, 1972). 
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The presence of CI- and ferric iron (Fe3+) increased the rate of Hg2+ 

release from HgS (Burkstaller et al., 1975). Cinnabar exposed to a combination 

of 18 mM Fe3+ and 54 mM CI- for 80 days released Hg to solution at a rate of 

>5.0 mg·L-1, as compared to a control sample release rate of0.015 mg·L-1 

(Burkstaller et al., 1975). These rates were more than one order of magnitude 

greater than a system without Fe3+ and with Cl-; and two orders of magnitude 

greater than a system with Fe3+ and without CI- (Burkstaller et al., 1975). Ferric 

iron commonly occurs in acid drainage waters from mining areas. This indicates 

that significant rates of oxidation of cinnabar and release of Hg to solution can 

occur under conditions prevalent in acid mine drainage waters. In the process, 

Hg2+ released may be readsorbed by HgS or combine with Cl- removing the 

anion from solution. Mercuric ions released may also bond to clay- and silt-sized 

suspended sediment. This supports the contention that Hg 2+ is transported in 

water systems in association with sediments (Reimers and Krenkel, 1974). 

2.5.5 Mercury Adsorption by Soil Organic Matter (SOM) and Iron and 

Manganese Oxides 

Mercury (II) is strongly bound to soil organic matter (SOM), 

frequently to amine or thiol groups, and is relatively free of attack by acids, 

chelates, weak bases, or chlorines (Reimers and Krenkel, 1974). Inorganic 

sulfides and long chain alkyl thiols (R-SH) are the most effective Hg binding 

agents (Hannan and Thompson, 1977). Proteins with R-SH groups and the humic 

acid fraction of SOM in sediments contain favorable binding sites for Hg 

(Crecelius et al., 1975). Even low humus contents are sufficient to adsorb large 

amounts of Hg because of an abundance of sites with high bonding energies 

(Lodenius et al., 1987). Oxidation of sediment may reduce the Hg bonding 
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capacity of the large molecular weight humic materials through SOM 

decomposition (Gambrell et al., 1980). 

Asquith and Oxbow soils with 2.98% organic C at 0-15 em depth and 

0.62% organic Cat 15-30 em depth, had levels of total Hg at 37 and 22 J..lg·kg-1, 

respectively (Hogg et al., 1978). The increased amount of total Hg in the surface 

horizon is likely due to more cation exchange sites in the organic matter. 

The Hg2+ ion is also adsorbed by other soil materials, in addition to the 

aluminosilicate clays and SOM. There is specific adsorption of the Hg2+ ion on 

hydrous iron oxides and on hydrous manganese oxides (Harsh and Doner, 1981). 

At pH's between 6.5 and 7 .0, iron oxides adsorb large quantities of Hg 

(Burkstaller et al., 1975). These complexes also co-precipitate heavy metals 

other than Hg. An adsorption selectivity sequence on hydrous iron oxide gels 

(pH 4.5) was determined as follows: Pb > Hg =Cu > Zn > Ni > Cd > Co > Sr > 

Mn (Kinnibergh and Jackson, 1978). 

In freshwater lakes and streams, amorphous manganese oxides (Mn

oxides) have large adsorption capacities, up to 10% by weight (Lockwood and 

Chen, 1973). Adsorption of cations on Mn-oxides is attributed to ion exchange 

on the surface of the precipitate. Mercuric hydroxide [Hg(OH)2] is the main 

actively adsorbed species (Lockwood and Chen, 1973). 

2.5.6 Organic Chemical Bonding of Mercury 

Mercury (II) bonds to sulfhydryl groups (-SH) that are attached to carbon 

atoms within molecules of suspended organic matter. In organic matter, 

sulfhydryl groups are contained in proteins through their incorporation of the 

amino acid cysteine [H2NCH(COOH)CH2SH] (Gavis and Ferguson, 1972). 

These compounds are capable of inactivating many enzyme systems, particularly 

those requiring reduced -SH groups for activity (Rath et al., 1986). The Gibbs 
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free energy of formation (AGO) for Hg2+ and cysteine at 25°C is about -57 

kcal· moi-l (Gavis and Ferguson, 1972). This indicates that Hg2+ will bind to 

organic particles as soon as they are available, and that a large amount of Hg in 

water is associated with suspended organic sediment (Fagerstrom and J emelov, 

1972). 

Mercury also bonds to carbon in organic groups. Mercury combines with 

one carbon atom to form CH3Hg+, and with two carbon atoms to form 

CH3HgCH3. Bacteria synthesize CH3Hg+ and CH3HgCH3 by obtaining Hg2~ in 

solution. These compounds are thermodynamically unstable in water and, 

therefore, do not appear in Eh-pH diagrams. These Hg-containing organic 

compounds are thermodynamically unstable under natural conditions. The Hg-C 

bond is a weak one with an energy of formation of only 15-19 kcal· moi-l, 

depending on the organic residue to which Hg is bound (Gavis and Ferguson, 

1972). 

2.5.7 Methylation of Mercury 

The formation processes of organic mercury compounds are not 

completely understood, although many processes and reactions have been 

studied. Early research studies isolated several bacteria that contained 

enzymes which were able to methylate Hg(IO. Enzymes, methyl-B 12, 

methyltetrahydrofolate, and S-adenosylmethionine were found to methylate 

Hg(II). 

Some early hypotheses thought methylation of Hg could occur only 

under anaerobic conditions, but later studies have shown that methylation 

occurs under both anaerobic and aerobic conditions (D11tri, 1972). When 

sediment containing mercury was exposed to the air, the rate of biological 

methylation increased by 1 Q3 to 104 times the normal methylation rate 
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(Fagerstrom and Jemelov, 1972). This result can be better understood when 

the bacteria involved are identified. When bacteria that normally do not 

methylate under anaerobic conditions are exposed to oxygen, they may use 

the mercury as a energy source and increased methylation can occur. 

Only free Hg2+ is considered directly available for methylation (Jackson, 

1986). The supply of Hg2+ is a function of the following environmental 

variables: redox potential (Eh), temperature, sulfide and oxygen concentration, 

nutrient supply, percent SOM, particle size distribution, and the amount of 

hydrated oxides, chlorines, and other complexing agents which determine the 

oxidation state, speciation, and solubility of the inorganic Hg (Jackson, 1986; 

Bartlett and Craig, 1981). The Hg2+ ion is methylated by both aerobic and 

anaerobic bacteria, primarily in aquatic sediments, suspended sediments and 

particulates in the water column, in the gastrointestinal tracts of fish, and, to a 

lesser extent, within terrestrial soils (Compeau and Bartha, 1984; Furutani and 

Rudd, 1980). 

· Abiotic methylation of mercury has been observed to occur in 

sediment with high levels of organic material. The ability of dissolved 

organic material to methylate Hg is not as fast as biotic methylation, yet . 
production of methyl mercury without biological methylation is important to 

recognize (Miskimmin, 1991). 

2.5.8 Rate of Mercury Methylation 

The most favorable conditions for methylation are reported to be low 

redox potentials (anaerobic conditions), low levels of salinity, high amounts 

of dissolved organic carbon, and low levels of sulfides (Compeau and 

Bartha, 1984; Miskimmin, 1991). 
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The rate of methylation is dependent on microbial activity, temperature, 

pH, nutrient supply, redox potential, and oxygen supply. An increase in 

temperature of roughly 1OOC doubles the rate of methylation (Fagerstrom and 

Jemelov, 1972). An increased nutrient supply provides a source of energy for 

microbial activity increasing methylation. Methylation rates were higher in 

suspended particles and upper layer of sediments, than in deeper bottom 

sediments (Furutani and Rudd, 1980). Oxygenation of fresh water enhances the 

availability of Hg for methylation by promoting the decomposition of organic 

matter and sulfides (Jackson, 1988). Methylation rates in surface sediments 

increased three-fold with the addition of a nutrient source (Rudd et al., 1983). 

Concentrations of CH3Hg+ in sediment are usually very low. The percent 

of Hg in the methyl form averages less than 0.50% in sediment (Mikac et al., 

1985). For example, even at a relatively high concentration of 1.40 mg· kg-1 total 

Hg, concentrations of sediment CH3Hg+ were only 0.003 mg· kg-1 (Mikac et al., 

1985). Total Hg in sediments of the Mersey estuary averaged only 0.46% · 

CH3Hg+ content. Mikac et al. (1985) found a negative correlation between total 

Hg of sediment and the percentages of CH3Hg+, pointing out that when too much 

Hg is introduced into an environment, microorganisms are overwhelmed, cannot 

detoxify Hg (i.e., cannot methylate Hg), and they die. 

2.5.9 Effects of pH and Redox Potential on Mercury Methylation 

A low pH decreases Hg methylation rates due to an increase in 

demethylation (Steffan et al., 1988). Acidification in lakes will increase the net 

CH3Hg+ produced in the water column, while decreasing that produced in the 

anoxic subsurface sediments (Xun et al., 1987). In the water column at a pH near 

4.5, methylation was about seven times faster than at pH 8.5 (Xun et al., 1987). 
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The redox potential at the water-sediment interface affects both the 

speciation of elements present as well as the type of organisms present. When 

Hg exists in mercuric sulfides under anoxic conditions, the Hg2+ ion becomes 

available for methylation only when the sulfide ion is oxidized to the sulfate ion, 

and the Hg2+ ions dissociate. The Eh of sediment on lake bottoms exposed to 

oxygenated water varies near 500 m V, and can extend for several millimeters 

through an oxidized zone of mud referred to as the oxidized microzone. Summer 

stagnation causes a decrease in hypolimnetic oxygen resulting in a diminution of 

the depth of the oxidized microzone (Reid, 1976). 

The oxidized microzone may vanish as the Eh of the interface approaches 

200 mV. Low redox potentials indicate the presence of reducing substances 

capable of utilizing any free 02 brought into solution. From an Eh of -300 to +50 

mV, Clostridia are the most common methylating bacteria (Bartlett and Craig, 

1981). 

2.5.10 Effects of Nutrient Source and Biological Activity on Mercury 

Methylation 

CH3Hg+ levels are highest when nutrient supplies and biological 

productivity are greatest. The decomposition of organic matter stimulates 

bacterial activity by providing an energy source and thus stimulates Hg 

methylation (Furutani and Rudd, 1980). 

Algal blooms and an abundance of organic matter increased CH3Hg+ 

concentrations, even in areas of low Hg2+ concentrations, pointing out a 

dependence of CH3Hg+ production on algal biomass (Jackson, 1986). In Pasqua 

Lake, Canada, positive correlations were reported between the CH3Hg+ content 

of the water column and the population densities of Microcystis wesenbergi (a 

planktonic blue-green alga) and Cyclops bicuspidatus thomasi (a planktonic 
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copepod) (Jackson, 1986). As these microbial populations increase, the total Hg 

and dissolved 0:2 concentrations tended to increase. Eutrophic lakes often have a 

high pH because of high primary productivity. This can result in slower 

methylation rates than would be normally expected (Xun et al., 1987). In anoxic 

sediments, there is a decrease in net methylation, due to the binding of Hg2+ to 

free sulfides and to a lesser extent decreased microbial activity. 

2.5.11 Effects of Sulfates and Sulfides on Mercury Methylation 

Methylation ofHg2+ in anoxic environments is due to the suppression of 

the activity of methanogenic organisms. When sulfates are abundant, actual 

methanogenesis is suppressed by competition with sulfate reducers, and this 

specific inhibition of the methanogens instead stimulates methylation by S042-_ 

reducing bacteria. In studies done on the estuarine Berry Creek, sulfide depletion 

of0.95 mg·kg-1 in dry sediment resulted in an increase in CH3Hg+ produced 

(Berman and Bartha, 1986). 

One sulfate-reducing bacterium was identified as a strain of Desulfoyibrio 

desulficans (Compeau and·Bartha, 1987). The isolate was unable to methylate 

Hg, mainly because the added Hg 2+ ions were precipitated as HgS by the S2-. It 

is of interest that D. desulficans exhibited increased growth and Hg methylation 

in the presence of 0.5M NaCl (Compeau and Bartha, 1987). It shows further the 

dominant role of S042- reducers in Hg methylation. The dominant role is 

ensured in the aqueous Hg biomethylation process because S042- reduction in 

marine sediments is responsible for more degradation of organic matter than 

oxygen respiration and denitrification combined (Compeau and Bartha, 1987). 
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2.5.12 Effects of Salinity on Mercury Methylation 

The presence of soluble salts has a negative effect on Hg methylation. At 

0.4% salinity, 260 mg·kg-1 ofCH3Hg+ were synthesized; while at 2.4% salinity, 

only 120 mg·kg-1 ofCH3Hg+ were synthesized (Compeau and Bartha, 1987). 

Sulfide concentrations increased with high salinity. At 0.03% salinity, sulfides 

measured 0.46 mg·kg-1. At 2.4% salinity, sulfides measured 7.1 mg·kg-1, which 

inhibited the Hg methylation process (Compeau and Bartha, 1987). Thus, high 

salt concentrations found in marine environments tend to reduce the toxicity of 

Hg2+ (Blum and Bartha, t980). 

2.5.13 Microorganism Adaptation and Mercury Methylation 

Microorganisms methylate Hg2+ as a means of detoxification when it is 

present in their food supply (Fagerstrom and Jemelov, 1972). This adaptation 

results in the development of microbial resistance, and the elimination of Hg2+ 

from the immediate environment through eventual volatilization of HgO (Barkay, 

1987). 

Aerobic Hg-resistant bacteria detoxify Hg by producing two enzymes, 

organo-mercurial lyase and mercuric reductase (Tezuka and Takasaki, 1988). 

Lyase first splits the C-Hg bond of organomercury, and the resulting Hg2+ is 

reduced to metallic HgO by the mercuric reductase and is volatilized (Tezuka and 

Takasaki, 1988). The bacteria exhibit broad spectrum resistance if they possess 

both enzymes. Bacteria possessing only mercuric reductase have narrow

spectrum resistance. Broad-spectrum plasmids give both organic and inorganic 

resistance, while narrow-spectrum plasmids only encode Hg2+ resistance (Wang 

et al., 1987). 

Adaptation of bacterial communities to Hg stress are phenotypic and 

genotypic. Phenotypic adaptations are based on the functions and activities of 
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communities or isolated strains. Mechanisms such as gene transfer, transposition, 

legitimate and recombination, and DNA rearrangements may promote genotypic 

adaptation in the environment. Natural bacteria isolated from sediment of 

Onandaga Lake canied cryptic plasm ids and R factors, suggesting that mercury

resistance is common in the indigenous bacterial communities of contaminated 

sediments (Barkay and Olson, 1986). The highly polluted sediments with Hg 

concentrations of 6.45 mg· kg-1 showed the highest number of Hg-resistant 

aerobic heterotrophs, which were 0.55% of the total aerobic heterotrophic 

community (Barkay and Olson, 1986). In Minamata Bay, Japan, sediments with 

mercury concentrations of32.4 mg·kg-1 had 7.5% (of a total of 1068) bacterial 

strains able to volatilize Hg2+ (Nakamura et al., 1988). 

DNA elements, encoding for Hg-resistance that are translocatable, help 

explain the maintenance and dissemination of Hg-resistant populations (Barkay 

and Olson, 1986). At concentrations of 100 1JM HgCl2, the growth rates and 

final yields of Aeromonas hydrophila, Pseudomonas spp., Pseudomonas 

mendocina, and Citrobacter freundi were not reduced (frevors, 1986). 

2.5.14 Demethylation of Mercury 

Demethylation is the reduction of CH3Hg+ to volatile HgO by Hg

resistant microorganisms. Demethylation in sediments can be accomplished 

by S04-2 reducers and methanogens. These can be either anaerobic or 

aerobic depending on the sediment and location (Oremland et al., 1991). 

Mercury resistance is found widely distributed among bacterial genera, 

including the common flavo-bacterium and Pseudomonas spp. (Olsen et al., 

1989). At an Eh from +200 to +300 mV, the aerobic Pseudomonas bacteria are 

dominant demethylators (Bartlett and Craig, 1981 ). Microbial demethylation 

activity in conjunction with methylation influences the equilibrium of CH3Hg+ 
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concentrations. Low salinity conditions coupled with low redox potential inhibits 

demethylation. Conversely, aerobic and high salinity conditions favor 

demethylation (Compeau and Bartha, 1984; Steffan et al., 1988). 

It has been suggested that demethylating organisms may maintain CH3Hg+ 

at a minimum (Spangler et al., 1973a, 1973b ). Nevertheless, the evidence 

showing high CH 3Hg+ levels in fish suggests that the natural demethylation 

process does not degrade equivalent quantities of the CH 3Hg+ produced in the 

sediments, water column, and fish intestines. At least the rate of demethylation is 

not sufficient to prevent Hg accumulation in fish and other ecosystem 

components (D'Itri, 1990). 

2.5.15 Bioaccumulation of Methyl Mercury by Plankton and Benthic 

Invertebrates 

The biogeochemistry of CH3Hg+ indicates an association with 

aquatic biota because of its aqueous and lipid solubility and affinity for 

sulfhydryl groups (Bodaly et al., 1984). The uptake of CH3Hg+ by plankton and 

benthic invertebrates is controlled by the properties of suspended sediment and 

associated Hg-binding particles, such as humus, sulfides, clays, silts, fine sands, 

iron hydroxides (FeOOH), and manganese hydroxides (MnOOH) (D'Itri, 1990; 

Jackson, 1988). 

The bioavailability of Hg in the aquatic environment regulates its uptake· 

by plankton. In aerated environments, Hg concentration of the plankton along 

with the organic C:N ratio of the sediment tends to be the highest (Jackson, 

1988). Aeration and current flow accelerate the breakup of Hg-binding 

substances causing release of Hg2+. Therefore, the Hg content of the lower 

trophic level phytoplankton is not dependent on CH3Hg+ production or 

distribution, but is determined by existing Hg-binding materials and 
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environmental factors. In contrast, at the upper trophic level, with fish such as 

pike and largemouth bass (Micropterus salmoides), the production rate and 

amount of CH3Hg+ determines the levels of CH 3Hg+ present. 

In benthic macroinvertebrates, different uptake rates of Hg reflect varying 

feeding habits between the oligochaetes, nematodes, chronomids, and 

pelecypods. The oligochaetes ingest Hg-laden bottom sediments, whereas 

pelecypods, being filter feeders, consume suspended Hg-laden organic particles 

(Jackson, 1988). 

Bioaccumulation of methyl mercury can result in toxic levels of Hg in 

organisms and is one of the main methods of Hg poisoning of organisms in 

the environment. A knowledge of how methyl mercury (CH3Hg+) 

complexes with organic groups is important in understanding how mercury 

becomes toxic to organisms. One of the most studied reactions is the 

binding of the CH3Hg+ to the sulfide groups of cysteine-containing proteins. 

The S-group on the cysteine readily binds CH 3Hg+ and completes the charge 

requirements of the Hg to make it a stable compound. The binding rate of 

methyl mercury to tissue is faster than the rate of methyl mercury excretion 

from the tissue. Therefore, methyl mercury bioaccumulation results in 

toxicity to susceptible organisms in the environment. 

2.5.16 Bioaccumulation of Mercury by Fish 

Mercury levels of fish are related to lake and watershed size, watershed 

geology, atmospheric deposition of Hg, lake chemistry, supply of CH 3Hg+, and 

size and species of the fish (Phillips et al., 1987; Wren and MacCrimmon, 1986). 

Bodaly et al. (1984) have hypothesized that reservoir construction increases Hg 

concentrations in fish. Inorganic Hg activity and the Hg content in fish can be 

increased if the S2- activity is decreased by lowering pH and/or increasing the 
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redox potential (Bjomberg et al., 1988). An increase in biota Hg accumulation 

may result at low dissolved oxygen levels, due to an increase in methylation of 

Hg under anoxic conditions (Bjornberg et al., 1988). 

Elevated Hg concentrations have been reported in lakes of low pH (Wren 

and Stokes, 1988). In Canada, a third of the lakes are acidic and the fish 

inhabiting them show high Hg contents (Wren and MacCrimmon, 1986). The 

high Hg levels may be due to an increased production of CH3Hg+ due to an 

increase in biologically available Hg2+ (Wren and Stokes, 1988). Lake 

acidification partially inhibited Hg methylation, and it was hypothesized that the 

increased CH 3Hg+ in fish was due to altered gill permeability due to low calcium 

concentrations or altered partitioning of CH3Hg+ between the sediment and water 

column (Steffan, et al., 1988). 

In addition, oligotrophic conditions occur in low pH lakes resulting in 

greater Hg accumulation in the remaining biota (Wren and Stokes, 1988). Fish in 

some eutrophic lakes (high bioproduction) have lower total Hg contents, because 

of the high growth rate of the fish causing a high biological dilution (i.e., the Hg 

dose is spread throughout a larger biomass). 

Total CH3Hg+ concentrations often decrease from the sediment up the 

food chain to fish. The CH 3Hg+ percent of the total Hg increases from less than 

1% in sediment, to 89% of dissolved Hg forms in freshwater systems (Gill and 

Bruland, 1990), and near 100% in fish (D'Itri, 1990). Total Hg levels in large fish 

tend to increase with fish size. For example, Hg levels in pike were higher than 

in pumpkinseed sunfish or perch of a comparable age (Wren and MacCrimmon, 

1986). 

Methyl mercury has a high affinity for -SH groups and is more soluble in 

lipids. This allows CH3Hg+ to penetrate into cells readily and combine with -SH 

groups, resulting in high CH3Hg+ levels in fish. Wren and MacCrimmon (1986) 
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reported that 80-95% of total Hg in fish muscle is in the organic CH3Hg+ form. 

The percent of Hg in the methyl form in samples of muscle tissue of the fish 

species, Gobius cobitis, was 94% (Mikac et al., 1985). Dimethyl mercury is 

more volatile than CH3Hg+ and shows no affinity for -SH groups. Many studies 

have shown low Hg contents in fish which have high concentrations of selenium 

(Se). Rudd and Turner (1983) showed that in low nutrient enclosures there were 

rapid increases in fish Hg levels after a decrease in Se levels after 10 to days of 

exposure. Selenium reduces the Hg uptake by substituting for sulfur in -SH 

groups in organisms, and thus lowering its affinity for Hg (Wren and Stokes, 

1988). 

Mercury transferred up the food chain is mainly CH3Hg+, a reflection that 

the biomagnification of CH3Hg+ is more likely than that of Hg2+ (Chamberlin et 

al., 1990; Figure 2-3). Biomagni:fication in fish has been observed to range 

between 5,000 and 100,000 times the levels in the surrounding water (D'Itri, 

1990) and sediments (Phillips et al., 1987). 
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Figure 2-3: Mercury Pathways from Sediments to Water to Fish (Source: 
Chamberlin et al., 1990). 
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2.5.17 Uptake of Mercury by Plants 

Terrestrial plants rooted in aerated soils have natural barriers limiting 

the uptake of Hg2+ salts and organic Hg complexes. The plants absorb HgO 

and the alkylmercurials much easier than what they absorb of ionic Hg2+ 

(National Research Council, 1978). 

Some plants will preferentially take up Hg from the soil and 

concentrate it in their leaves. Vegetation growing near cinnabar veins may 

contain Hg levels of up to 3.5 mg·kg-1 in their leaves (USGS, 1970). The 

growth, death, and decomposition of plant materials can potentially 

concentrate Hg in topsoil zones. It was hypothesized that Hg migrates into 

some topsoils from subsoil horizons due to native mercury volatilization or 

diffusion ofCH3Hg+ (Mining Waste Study Team, 1988). Grazing animals 

do not appear to be significantly affected by ingestion of vegetation 

containing or exposed to low levels of environmental mercury. Mercury 

does not tend to be passed along to humans consuming meat or milk from 

animals grazing on vegetation growing in soils with low-to-moderate 

mercury contents (i.e., less than 500 mg·kg-1) (Woodward-Clyde 

Consultants, 1987). 

Leaf absmption of HgO vapor may be accelerated due to rise in soil 

temperature resulting in increased Hg volatilization of soil Hg (Lindberg et al., 

1979). Aerobic soils high in decaying sulfides will release HgO resulting in plant 

Hg contents ranging from 0.2 to 10.0 mg· kg-1. In contrast, reducing soils hold 

the Hg in insoluble sulfides or organic complexes resulting in plant Hg contents 

ranging from 0.01 to 0.04 mg·kg-1 (National Research Council, 1978). 

Plants can provide an additional route for Hg movement within an aquatic 

system. Submerged, decomposing snakeweed in Lake Powell, Utah contained 

Hg concentrations of90 mg·kg-1 as compared to 32 mg·kg-1 forunflooded 
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snakeweed. Mercury levels of 43 to 283 mg· kg-1 can concentrate in lake

transported plant debris. Even in areas of sparse vegetation, flooding of plants 

and plant debris can result in an enrichment of Hg levels 1 o4 times that of surface 

water (Potter et al., 1975). 

Water plants that are used to accumulate Hg include Azolla and duckweed. 

Azolla, a water weed, converts Hg into the volatile HgO form and is used in Hg 

contamination cleanups near chlor-alkali factories (Mishra et al., 1987). 

Duckweed of the Lemnaceae family are small vascular hydrophytic plants that 

float on stationaty or slow-moving water. They have been shown to be very 

effective at removing Hg from water. With the addition of 5 ppm Hg in a test 

solution, 4 ppm of Hg were removed by the duckweed after 3 days (Mo et al., 

1989). There are two processes of removal; 1) initial rapid removal of Hg by Hg

binding sites located on the duckweed, and 2) transportation of the Hg from the 

initial binding sites to the duckweed's final target. Hg removal by duckweed was 

prevented in the presence of Cu (Mo et al., 1989). 



47 

3.0 HISTORY OF MINING IN THE LAKE NACIMIENTO 

WATERSHED 

3.1 Introduction 

Most of the information in this discussion was obtained from literature 

published by public agencies between 1918 and 1965 (Bradley, 1918; 

Bureau of Mines, 1965; Eckel et al., 1941; Franke, 1935). Other relevant 

sources are listed in the Bibliography section of this report. 

3.2 Mining Terms 

Most mining in California is by open pit methods. The wastes 

generated by California mines include the following (Hutchison and Ellison, 

1992): 

1.) Overburden. This is the soil and rock that is stripped from the 

top of the ore body. These materials are usually chemically inert and, 

with the exception of surface runoff trubidity, usually do not present 

any risk to water quality. 

2.) Waste Rock. This material includes nonmineralized and low

grade mineralized rock removed either from above or adjacent to the 

ore. this material is usually placed in piles close to the mine. The 

nature and extent of the mineralization, climatic conditions, and 

buffering capacity of the foundation soil beneath the waste rock pile, 

determine the potential of the material to impact water quality. 

3.) Tailings. These are the uniform, fine~y ground rock particles 

from which most of the commercial ore has been extracted in the 

beneficiation and extraction plant. As with waste rock, the potential 
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for tailings to impact water quality depends on the chemistry of the 

material and the specific conditions at the tailings disposal site. 

4.) Heap Leach Residue. This includes run-of-mine, crushed, and 

agglomerated ore piles that have been leached by allowing solutions 

to percolate through the material. Before closure, the ore is rinsed 

and, if necessary, treated to meet specified residual constituent 

concentration standards. The potential for water quality impacts from 

this material depends on site-specific conditions, as well as, as on 

chemical properties of the ore, reagent types, and the extent of rinsing 

and/or treatment. 

5.) Wastewater. This includes liquid wastes that may be 

generated at a floatation, acid leach, or solvent extraction facility, 

from the operation of mechanical equipment, such as boilers, spent 

leach solutions remaining at the end of the active life of a heap leach 

facility, runoff from acid generating ore storage areas, and wash down 

water from recovery plant or maintenance buildings. These wastes 

can contain elevated concentrations of constituents that represent a 

threat to water quality, if the liquids are not adequately contained. 

Wastewaters are also generated in sand and gravel washing 

operations. However, these only contain elevated suspended solids 

and usually can be discharged after temporary detention in settling 

ponds. 

3.3 General Location 

The cinnabar deposits of San Luis Obispo County exist in the Santa 

Lucia Range, of the California Coast Ranges, which lies midway between 



49 

San Francisco and Los Angeles. Most of the deposits are located in an area 

16 miles long by 4 miles wide in the northwestern portion of San Luis 

Obispo County (Eckel et al., 1941). 

The area of investigation is land in the watershed of Lake Nacimiento. 

A study of the Hg mines that were located in the Lake Nacimiento watershed 

was completed. The mines' locations and the key historical facts about the 

mines are provided. 

3.4 Regional Topography 

The California Coast Range is a moderately rugged chain of 

mountains, 2000 to 3500 feet in elevation, which parallels the northwest

trending Pacific Ocean coastline. Land to the west of the range drains into 

the Pacific Ocean. Land to the east ~f the range drains into the Salinas 

River. 

A large portion of the Salinas drainage system forms the headwaters 

of the Nacimiento River, which is fed by several tributaries. The natural 

flow of water into the Salinas River has been altered by a dam on the eastern 

end of the Nacimiento River. Construction of the dam resulted in the 

fonnation of Lake Nacimiento. 

3.5 Geology of the Ore Deposits 

The cinnabar deposits most often occur associated with Franciscan 

Formation rocks and are sometimes injected into Cretaceous or early 

Tertiary sediments. These geological areas have been uplifted due to 

tectonic activity in the area, exposing large blocks of older Franciscan rocks, 

through erosion of younger rocks. The younger faulted rocks crop out along 

side these blocks. Cinnabar deposits, tend to occur in the contact zone 
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between the Franciscan and younger rocks. The northwest trending fault 

zones in the area are sites of past hydrothermal activity. The hydrothermal 

activity has altered the rock in certain areas into silica-carbonate rock or 

"quicksilver rock", which consists of dense quartz, mixed carbonates and 

sulfide-rich minerals. One of these sulfide-rich minerals is cinnabar, 

otherwise known as mercury sulfide (HgS). 

A typical deposit of cinnabar consists of brecciated Franciscan rock 

associated with silica carbonate rock that is interspersed between the 

fractured breccia. Serpentinite, one constituent of the Franciscan Formation 

can be found alongside the cinnabar deposits and can even be part of the 

deposits themselves. The deposits of cinnabar occur mostly as irregular 

masses and lenses in the breccia. They can range in size from small masses, 

veins, and veinlets to large sills and dikes with sizes up to 100 feet long and 

40 feet wide. Several good examples of vein deposits were found in the 

Little Bonanza Group, La Libertad, Klau, and Buena Vista Mines. 

3.6 Early History 

The discovery of cinnabar by non-native Americans in San Luis 

Obispo county dates back to 1862, when the claim at the Little Bonanza 

Mine, on the South Fork of Las Tab las Creek, was made. Previous to the 

discovery of modem mining claims, the native Chumash Indians used 

cinnabar for its pink color as a pigment for decoration and painting. 

3.7 Mercury Mines in the Lake Nacimiento Watershed 

Several factors about the mines are considere~ important, the size of 

the mining operations at each site, the location of the mine with respect to 
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Lake Nacimiento, the time period of operation, the quality of ore that was 

reported, and the method of mining that was performed at each site. 

Four main areas of historical mining activity are located in the Lake 

Nacimiento watershed. The first area is the Klau-Mahoney District, which is 

located south of Lake Nacimiento along the Klau Branch and the North Fork 

of Las Tablas Creek. The second area is the Madrone-Cypress Mountain 

Group, which is further south of Lake Nacimiento than the Klau-Mahoney 

District and is located near the headwaters of the Las Tablas watershed along 

the South Fork of Las Tablas Creek. The third area is the Pine Mountain 

District, which is located west and southwest of Lake Nacimiento near the 

headwaters of Tobacco Creek. The fourth area is the Bryson District, which 

is located northwest of Lake Nacimiento in the Sycamore Creek watershed. 

A list of the mines in each district follows: 

1. 	 Klan-Mahoney District 

Capitola 

Klau (previously known as the Sunderland, Santa Cruz, 

Karl, Carson or Sierra Morena) 

Buena Vista (previously called Mahoney) 

Santa Monica 

Willam Tell 

2. 	 Madrone-Cypress Mountain District 

Cypress Mountain Group 

Kismet Group 

La Libertad 

Little Bonanza Group 
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3. 	 Pine Mountain District 

Buckeye 

Ocean View 

Pine Mountain 

Madrone 

4. 	 Bryson District 

Botts (Sycamore Creek) 

3.7.1 Klau-Mahoney District 

The geology of the district consists of Franciscan, Cretaceous, and 

Tertiary Formations. Most of the rocks along the fault zone have been 

brecciated from the activity along the Las Tablas fault. The fault strikes N 

800 W and parallels Las Tab las Creek. It dips almost vertically, near the 

Klau Mine. Tertiary rock lies to the north of the fault and Franciscan to the 

south. South of Las Tab las fault there are two faults which are east trending 

N 750 Wand dip at 40 to 6QO W. Both faults are mineralized (i.e., 

metamorphosed by hydrothermal intrusion) with the southernmost one 

passing through the Klau and Buena Vista Mines. At the Buena Vista Mine, 

the fault dips 50-600 and is 1000 feet wide. The zone contains breccia 

which is mostly shale and is largely kaolinized. Silica carbonate rock 

surrounds the mine, but is rare in the mine. West of Klau Mine is a sill of 

serpentinite which has been altered on top and bottom to silica carbonate 

rock. Eastward the fault disappears under the sandstone and westward it can 

be traced for several miles. 

3.7 .1.1 Capitola Mine 

Located in Sec 33., T. 26 S., R.lO E., Mount Diablo Baseline and 

Meridian (M.D.B.M.), the mine is 114 mile southeast of the Klau main 

workings and was a part of the Klau Mine. Located in the same breccia zone 
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as the Klau, the rock at the Capitola contains more pyrite and kaolinite. It 

was first mined in 1913, and had activity in 1915-1916, and 1918, and 

intennittently through 1934. The cinnabar in the ore was associated with 

pyrite and was reported to have 5 lbs Hg/ton ore. Between 100 and 999 

flasks (each flask weighs 76lbs) of quicksilver had been removed from the 

mine as of 1940. There was a small1000 lbs ore/day retort on site, but it has 

been removed. As of 1940, 300 ft of workings (tunnels, shafts, adits, drifts, 

and stapes) had been completed. There was also another mine located next 

to the Capitola called the Santa Monica Mine which was most likely an 

extension of the Capitola. 

The mine spoils drain into the Klau Branch of the South Fork of Las 

Tablas Creek. 

3.7.1.2 Klau Mine 

Located in Sec. 33., T. 26 S., R. 10 E., M.D.B.M., the Klau 

(previously known as the Sunderland, Santa Cruz, Karl, Sierra Morena, or 

Carson Mines), includes the Santa Monica and Capitola Mines as part of the 

property, was first mined in 1868. In 1902, it was the fourth largest 

producer in the state and, as of 1940, was the second largest producer of 

quicksilver in San Luis Obispo County (the Oceanic Mine was the largest in 

1940). In 1911, the furnace plant burned down and the mine was idle until 

1915. The years of operation were 1868-1878, 1895-1912, 1917-1924, 

1927-1940, 1943-1947. The ore was reported to contain 5-30 lbs Hglton. 

The total output from the mine, as of 1965, was more than 24,000 flasks of 

Hg. 

The mine is located on the wide (up to 1000 ft), south-dipping fault 

zone which has been kaolinized. The fault breccia consists mostly of shale, 
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with some sandstone, chert, and silica carbonate rock. Pyrite and marcasite 

are prevalent in the rock. 

Originally, the mine contained miles of underground workings. These 

have collapsed resulting in open-pit operations having been used as the more 

recent method of mining. The ore was processed in a 50-ton rotary furnace 

until 1918, after which smaller Rossi retorts were used to process the ore. 

The Rossi retort was designed by Louis Rossi who worked at the Klau Mine 

in 1927. The retort was widely used because it was inexpensive to construct, 

had low fuel requirements, and was relatively efficient in quicksilver 

recovery. The mine was purchased by Klau Mine, Inc. in 1934. A larger ore 

processing facility was then built, which could handle about 40 tons of ore 

per day. 

Runoff water from the mine drains into the Klau Branch of the South 

Fork of the Las Tab las Creek. Presently, eroding mine waste piles are 

located alongside the stream. 

3.7.1.3 Buena Vista (Mahoney) Mine 

Located in Sec. 33, T 26. S., R. 10 E., M.D.B.M, the Buena Vista 

(BV) was first mined in 1876 and has been worked in the years 1876, 1899

1903,1929-1930,1932-1933,1935,1938-1945,1947-1948, 1953-1955,and 

1957-1970. The geology of the mine is similar to the Klau. It is located 

along the same east trending fault zone and is mainly Franciscan sandstone 

and shale breccia. Cinnabar occurs in high grade veins, pockets, and 

disseminations in the sandstone and shale and is reported to be intimately 

associated with pyrite. Deposits range in size from small pods to as much as 

10,000 ton ore bodies. The ore was estimated to contain 5-30 lbs Hg/ton. 

The original workings of the mine consisted of several thousand feet of 

tunnels. As of 1940, about 1 ,800 flasks of Hg had been produced. 
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Not much information was given for the Buena Vista in the early 

reports, due to the belief that the mine was not a good future source of 

quicksilver. However, in 1957, with the assistanve of a contract from the 

Division of Mining Exploration and Assessment (DMEA), an extensive 

exploration of the area south of the original mine workings (using 3,504 ft. 

of rotary drillings in 12 holes at a cost of $5,800), led to the discovery of 

new deposits of cinnabar. Early mining operations consisted of strip mining. 

The ore processed in a 30-ton rotary furnace. About 30 tons of ore a day 

were processed from 1959 to 1970. The total amount of Hg that has been 

removed from the mine is estimated to be 84,300 flasks, with 8,644 flasks 

recovered prior to 1959. The mine ceased operation in 1970 following 

pollution abatement orders from the RWQCB and the closure coincided with 

the dramatic decline of Hg production in California. No active Hg mining 

has taken place in California since 1976 (Mining Waste Study Team, 1988). 

Water from the mine and its waste tailings piles drains into the North 

Fork of Las Tablas Creek. 

3.7.1.4 William Tell Mine 

Located in Sec. 33., T. 26. S., R. 10 E., M.D.B.M, the mine is 112 mile 

west of the Klau Mine It was operated in 1900. The geology is the same as 

the Klau and located on the same fault zone. Only a small amount, 1 to 9 

flasks, were reported to have been removed from the mine. No retort was 

reported on site. Extensive outcrops of silica-carbonate rock are reported to 

exist in the area around the mine. The mine drains into the Klau Branch of 

Las Tablas Creek. 

3.7.2 Madrone-Cypress Mountain Group 

The Madrone-Cypress Mountain Group is located just northeast of the 

crest of the Santa Lucia Range, south of the Klau-Mahoney District. The 
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group of the mines follow a northwest trend parallel to the range, and are 

located near the headwaters of the South Fork of the Las Tab las Creek 

watershed. The mines are located in a zone of highly sheared and altered 

Franciscan rock which varies in width from 100 to 1000 feet. The known 

deposits of cinnabar are located in wide portions of a fault zone and are 

closely associated with silica-carbonate deposits. North and west of the 

group are several small rhyolite outcrops which have intruded into the fault 

zone breccia. 

3.7.2.1 Cypress Mountain Group 

Located in Sec. 1 and 2, T. 27 S., R. 9 E., M.D.B.M., the mine is due 

north of Cypress Mountain and near the largest rhyolite exposure in the area. 

There are several mines in the 167-acre claim which were originally mined 

from 1870-1875. About 60 flasks of quicksilver were recovered during the 

active years of 1870-1875. The cinnabar outcrops are located in highly 

altered serpentinite and are associated with a black clay "alta" and a 

serpentinite footwall. The mines originally had a 5-ton furnace on site, but it 

was removed. Mine workings consisted of tunnels and caves. Drainage 

from the mine enters the South Fork of Las Tab las Creek. 

3.7.2.2 Kismet Group 

Located in Sec. 7, T. 27 S., R. !0 E., M.D.B.M., the group of three 

mines is located between the Little Bonanza Group and Cypress Mountain 

Mines. The mines were active in 1903 with no reported production of 

quicksilver. They are located on a main fault in the area, contains outcrops 

of silica carbonate rock, and are located near a rhyolite plug. Drainage from 

the mine enters a tributary to the South Fork of Las Tab las Creek. 
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3.7 .2.3 La Libertad 

Located in Sec. 21, T. 27 S., R. 10 E., M.D.B.M., the La Libertad 

(previously known as Jacks Mine) was first mined in 1901 and had active 

production from 1901-1903, 1935, 1947-1948, and 1952. The mine lies on 

the Madrone-Cypress fault and is located in a zone of Franciscan breccia 

with small outcrops of silica-carbonate and serpentinite rock. The walls of 

the cinnabar vein were bordered by black gouge or alta, which ranged in 

width of a few inches to three feet. Some of the ore was located in the 

serpentinite with disseminated specks of cinnabar and native mercury. Other 

ore bodies contained associated pyrite and calcite. Ore contained 7-8 lbs 

Hg/ton with some ore in the form of boulders of high grade cinnabar. Most 

of the workings were underground along one main irregular vein. 

Production prior to 1940 was more than 1 ,000 flasks, and after 1952 about 

1,100 flasks. Ore was processed in a 15-ton rotary furnace in 1952. The 

drainage enters Jack Creek, which is part of the South Fork of Las Tab las 

Creek watershed. 

3.7 .2. 4 Little Bonanza Group 

Located in Sec. 17, T. 27 S., R. 10 E., M.D.B.M., the group of mines 

known as the Little Bonanza Group of mines includes the Little Bonanza 

(originally known as the Josephine), and later, the Modoc, Alice, Alice #2, 

Ida, Echo, Elizabeth, Winona, the Tamney Group, Mercury #1, Mercury #2, 

and Mercury #3, and the Mercury. 

The Little Bonanza was the first quicksilver mine to be discovered and 

operated in San Luis Obispo county by non-native Americans. The first year 

of reported operation was 1862 and other years of operation include 1900, 

1902-1905, 1915-1916, 1931-1934, 1938-1939, and 1940. Production from 

these mines was reported to be more than 1 ,000 flasks. It was one of the 6 
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most important mine groups in San Luis Obispo county. The group lies on 

the Madrone-Cypress fault and consists of brecciated Franciscan which was 

reported to be silicified altered setpentine rock with chert, chalcedony, and 

quartz. Other minerals in the gangue are quartz, mixed carbonates, pyrite, 

marcasite, kaolin, green gouge, and hydrocarbons. The ore was estimated to 

contain 3-10 lbs Hg/ton. The ore was processed in a retort, now abandoned 

at the site, and a 15-ton rotary furnace. The method of mining was tunnels 

and caves, with the largest amount of work done in the Little Bonanza Mine. 

Past ore processing was done in a Rossi retort. Drainage from the mine 

enters the South Fork of Las Tab las Creek. 

3.7.2.5 Madrone Mine 

Located in Sec. 22, T. 27 S., R. 10 E., M.D.B.M., the mine is located 

112 mile south of the La Libertad. The mine was first worked in 1900 with 

10-99 flasks produced. Some activity occurred in 1956-1958. The geology 

of the area is similar to the Little Bonanza and La Libertad, with brecciated 

Franciscan rock and outcrops of siliceous gangue. The primary method of 

mining was tunnels and caves. There were also several areas of topsoil that 

contained free mercury. Hg loose in the soil may have been the result of a 

weathered outcrop. The topsoil was panned for Hg, with soil samples 

having 1.5-2.5 lbs Hg/ton. A retort was on the premises in 1940. Drainage 

from the mine enters the South Fork of Las Tab las Creek. 

3.7.2.6 Mercury Mine 

Located in the SW1/4, NWl/4, Sec. 7, T.27 S., R. 10 E., M.D.B.M., 

this 55 acre mine is located on the eastern slope of Cypress Mountain and 

the ore deposit was discovered in 1874. The geology of the area consists of 

setpentinite and altered Franciscan sandstone. The last report of work at the 
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site was in 1940. No record of any ore production was reported in the 

literature. Drainage of the mine is the same as the Little Bonanza. 

3.7.2.7 Mercury Nos. 1, 2, and 3 Mines 

Located in Sec. 17, T. 27 S., R. 10 E., M.D.B.M., these three mines 

are located adjacent to the Little Bonanza Mine. They were worked in 1934 

with no record of quicksilver production. The geology and the mine 

drainage are similar to that at the Little Bonanza. 

3.7.3 Pine Mountain District 

Pine Mountain District is located south-southwest of Lake Nacimiento 

on the eastern side of Pine Mountain. Of the 22 mining claims in this 

district, only three are in the Lake Nacimiento watershed. The Ocean View, 

Buckeye, and the Pine Mountain Group are the three mines. The mines are 

on the east slope of Pine Mountain and are located near the headwaters of 

Tobacco Creek. The geology of the area is northwest trending, following the 

Pine Mountain fault (this may be an extension of the Madrone-Cypress fault 

line). The fault zone extends along the east side of the ridge that is made up 

of Rocky Butte and Pine Mountain. The east side of the fault zone is made 

up of Cretaceous shale. The Franciscan Formation makes up the west side 

of the fault. A cover of Cretaceous rocks overlays the fault zone in areas 

near the Buckeye and Ocean View Mines. The summits of Rocky Butte and 

Pine Mountain are made up of rhyolite plugs that have intruded the fault 

zone. There is a large belt of serpentinite west of Pine Mountain. The 

geology 1/2 mile north of the Ocean View and Little Almaden Mines 

consists of silica carbonate rock with cinnabar appearing as siliceous veinlets 

and disseminations. The richest cinnabar areas are located near the Ocean 

View, Buckeye, and Pine Mountain Mines. The area has produced about 

1,000 flasks of quicksilver. Widespread mineralization of the local rocks is 
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indicated, but full examination of the area has not occurred. The area was 

discovered in 1870 and operated intermittently through 1903, with some 

more activity in 1943-1944. The Ocean View was the principal producer of 

the three mines, with a reported 8-20 lbs Hg/ton ore. 

3.7.3.1 Buckeye Mine 

Located in Sec. 10 and 11, T. 26 S., R. 8 E., M.D.B.M., the mine is 

located due east of Pine Mountain and is on the Pine Mountain fault zone. It 

was actively mined in 1903 with 9 flasks of quicksilver recovered. The 

geology of the area is the same as the Ocean View with outcrops of silica 

carbonate rock containing cinnabar in small veinlets and disseminations. 

The ore dump was reported to contain low grade cinnabar levels. Water 

from the site drains into the Tobacco Creek watershed. 

3.7.3.2 Ocean View Mine 

Located in Sec. 3, T. 26 S., R. 8 E., M.D.B.M., the Ocean View Mine 

is the most northwesterly and the most important Hg producing mine in this 

district. It is located on the north side of Pine Mountain, close to the 

intersection of two faults. One fault separates Franciscan rocks on the north 

from Cretaceous on the south. The other fault is filled by intrusive rhyolite. 

The mine was first discovered around 1871-1872 and was active from 1871

1903 producing about 1 ,(X)() flasks of quicksilver. The ore is in a silica

carbonate rock derived from altered serpentinite. Cinnabar occurs as veins 

and veinlets with some irregular masses of up to 1 ft in diameter. Mining 

operations were tunnels and caves. Ore observed in the dump was medium 

to high grade. An abandoned retort is presently located near the mine. 

Water from the site drains into the Tobacco Creek watershed. 
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3.7.3.3 Pine Mountain Group 

Located in Sec. 10, T. 26 S., R. 8 E., M.D.B.M., Pine Mountain Group 

is located a few hundred feet south of Buckeye Mine. Mine operations 

began in 1871. It was active from 1871-1903 and produced about 100 flasks 

of quicksilver from underground workings. The geology of the area is the 

same as the Ocean View and Buckeye Mines. The ore was reported to 

contain about 8 lbs Hg/ton. 

The mines are located near the crest of the Tobacco Creek watershed, 

so the runoff water flows east and west from the mine. Since there were 

twenty-two claims in the area, some of the mine claims are likely located in 

the Tobacco Creek watershed. 

3.7.4 Bryson District 

The Bryson District is located northwest of Lake Nacimiento. It is 

northwest of the other known quicksilver deposits in the area. The Bryson 

District has only one reported mine in the area located east of the Beartrap 

Flats in the Sycamore Creek watershed. The geology of the area consists of 

coarse-grained sandstone and bituminous shale and siltstone. All of the rock 

is of late Cretaceous age. There is a northeast -trending fault that is said to be 

a tear fault between two major northwest-trending faults on either side of the 

area of Beartrap Flats. 

3.7.4.1 Botts Mine 

Located in Sec. 7, T. 24 S., R. 8 E., M.D.B.M., the Botts Mine is 

located on the south side of Sycamore Creek, which is a tributary to 

Nacimiento River. The mine first operated in 1939 and the only activity 

reported was 1939-1940. The geology at the mine site is brecciated 

sandstone and shale with cinnabar distributed as scales and crusts along the 

fractures in the breccia. Crystallized pyrite was widespread in the area, but 
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not intimately associated with the cinnabar. Crystalline white calcite was 

found in the ore piles. The mine had a retort on the premises and a reported 

production of 10-100 flasks of quicksilver. Mining was done in tunnels and 

trenches. An abandoned retort is presently located along Sycamore Creek 

below the mines. 

The soil on the hillside near the mine and the stream gravels of 

Sycamore Creek have grains and nuggets of nearly pure cinnabar. Runoff 

water drains into Sycamore Creek. 

3.8 General Methods of Mercury Ore Mining and Processing 

The process of mining and ore processing has not changed much 

during the years of cinnabar mining in the area. Some of the methods 

described here will vary in their relative sophistication at various mines. 

Some of the best descriptions come from a report on the operations of the 

Oceanic, Klau, and Buena Vista Mines, all located in SanLuis Obispo 

county, California (Franke, 1935). 

The mining operations start with the discovery of a cinnabar-rich ore 

deposit. Usually the richest ores are found by constructing tunnels and adits 

into areas where cinnabar deposits are found at the surface. Many 

indications of cinnabar can occur in the area. Outcrops of silica carbonate 

rock which represent hydrothermal alteration of the pre-existing rock, 

indicate that cinnabar deposits are near, especially when Hg levels of 

downstream sediments contain >1.0 mg ·kg-1 (Pierce et al., 1970). 

The presence of fractured rock or fault zone breccia along the contact 

zone between two shear planes are important geological prospecting clues 

for deposits. These contact zones are areas where the hydrothermal 

solutions can find their way to the surface through fractures in the rock. 
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Serpentinite deposits can also be very helpful in locating cinnabar deposits, 

since these zones are often directly altered during hydrothermal intrusion 

and receive cinnabar deposition. Also, serpentinite can be the headwall or 

footwall of the zone of cinnabar ore. Finally, rhyolite plugs have been 

observed near deposits of cinnabar, and may be a result of the hydrothermal 

and tectonic activity in an area. 

Once an ore body has been located, the process of following the ore 

deposit down through the rock begins. This is the most difficult part of the 

mining operation, since the cinnabar can be deposited in many different 

forms. Disseminated cinnabar ore deposits may be the most difficult to 

follow since many times the ore cannot be easily seen. The vein and veinlet 

form of deposits allow the miners to follow the deposit visually. However, 

these deposits can twist, turn, dip, and run out in several directions. The sill 

or dike deposits are easiest to follow, and provide the richest source of ore. 

The problem of cinnabar mining is the lack of consistent deposits, the 

inability to determine what is deposited above and below, and the variation 

of ore quality. 

The two most common methods of mining the Hg ore are tunnels 

and caving, and open pit mining. Tunnel and caving is the method by which 

tunnels are used to search for and reach the deposits of ore, and caving is 

used once a deposit is located. Once the cinnabar deposit is reached, the 

mining operations follow the deposits until it runs out or can no longer be 

reached safely. The open pit method results in overburden rock removal 

until a deposit is reached. Then the ore is collected and removed for 

processing. The ore is processed by crushing, roasting, and retorting (Photos 

3-1 and 3-2). Initially, ore taken from a mine is crushed in a jaw-crusher to a 

size of about 2 inches . This is stored in a large ore bin until it is ready for 
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Photo 3-1: Retort furnace from the Oceanic Mine showing the use of natural 
gas and diesel fuel (Source: :Mark Hall-Patton, San Luis Obispo Historical 
Society Museum; early 1900's, exact date unknown). 
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Photo 3-2: Processing buildings from the Klau Mine operations using wood 
as a fuel source (Source: Mark Hall-Patton, San Luis Obispo Historical 
Society Museum; 1904-05, exact date unknown). 
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processmg. The ore is usually processed in a large rotary furnace. 

The rotary furnace size varies with the size of plant operations. Some 

of the largest rotary furnaces processed up to 75 tons of ore per day. 

The ore is heated in the rotary furnace to temperatures up to about 

13()()oF (520°C). which vaporizes the mercury sulfide into HgO and 

S02 gas. The main heating fuel used in recent years was natural gas; 

wood and diesel fuel was used in the 1800's and early 1900's (Photos 

3-1 and 3-2). 

The gases and associated dust from the retort furnace is passed 

through a cyclone condenser, which concentrates the dust and causes 

it to settle. The dust is then discarded (no mention as to the amount of 

mercury left in the dust was reported). The gases are passed through a 

condenser, made up of a system of U-shaped pipes (Photos 3-3 and 3

4). These pipes allow the gases to cool and the Hg vapor 

subsequently precipitates as elemental mercury, or quicksilver. The 

condensers are connected to bottom hoppers which are tanks of water 

that collect the mercury. 

The rotary furnace process removed about 60% of the mercury 

from the ore. In order to recover more Hg, the furnace soot and mercury that 

collected in the bottom hoppers is removed and put on a large tray, where 

lime is mixed in, hence the name "calcined wastes 11 As a general rule of• 

thumb, lime was added to the quicksilver-soot mixture at about a 1:3 

(lime:Hg-soot) ratio. This calcined mixture was further homogenized by 

hoeing the material back and forth over a pan. The remaining soot, after the 

quicksilver had been removed, was added to the dust collected and sent back 

into a retort. The retort was heated, and the remaining Hg was removed by 

vaporization and collected by cooling the vapors in a condenser. The 
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Photo 3-3: Abandoned processing buildings at the Buena Vista Mine 
showing the condenser facility in the foreground (12/10/91). 

Photo 3-4: Abandoned processing buildings at the Ocean View Mine 
showing the condenser facility at the right (3!16/92). 
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working life of most retorts was nine to ten months with continuous use. 

The Hg-rich bricks that enclosed the retorts were often treated like ore to 

remove the Hg, when old retorts were dismantled (Franke, 1935). 

The estimated mercury recovery from this described method 

was 90-95%. The remaining 5-10% Hg would be lost in airborne 

vapors or remain in the retort waste tailings, which were usually 

dumped near the retort operations. 

This reported process varied among the mines in San Luis Obispo. 

Many of the smaller mines did not have a rotary furnace for processing the 

ore. Instead, they relied on a smaller retort, which was easy to build and 

could process small amounts of ore (Photos 3-5 and 3-6). The retort was a 

set of pans that held the ore and these were heated or roasted to remove the 

mercury. The retort was heated by wood or diesel fuel that was burned 

underneath the pans. In older operations, wood was the choice of fuel due to 

the remote mine location. The efficiency of mercury removal in the ore 

depended on the type of ore and the size of crushed ore being retorted. The 

time of retorting the ore varied from several hours to up to a day. No 

mention of the exact percentage of Hg recovery was given for the retort 

method, but if the method was done properly it could be up to 90% recovery. 

Mercuric sulfide is known to occur in two colors and forms, red 

(cinnabar), and black (metacinnabar). The transition temperature of 

red to black is about 3450C. The red form is more thermodynamically 

stable at ambient temperatures, but it is usually the black that 

precipitates from aqueous solutions (Hepler and Olofsson, 1974). The 

calcined waste of the mines is usually gray to black in color and this 

may be cinnabar transformed into metacinnabar after processing. 



Photo 3-5: Small retort near the \Villiam Tell Mine east of the Klau Mine on 
the K1au Branch of Las Tablas Creek (3/24/93). 

Photo 3-6: Small retort near the Botts Mine on Sycamore Creek in Fort 
Hunter Liggett (1117/92). 
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The waste material from the ore processing was usually 

discarded in piles near the mine workings. These waste dumps 

contain the dust, processed ore, and water that was used in the 

mercury removal. If estimated mercury removal was 90-95%, the 

waste dump ore still contains 5-l 0% mercury in the form of cinnabar, 

elemental Hg, and other forms. The average amount of mercury in the 

processed ore ranged from 5-30 lbs Hg/ton. This means that from 

0.25-3.0 lbs Hg/ton still remained in the waste dump materials. 

Material that has 0.25 lbs Hg/ton is equal to 125 mg·kg-1 Hg 

and 3 lbs Hg/ton is 1500 mg·kg-1 Hg. This estimate of Hg levels is 

indicative of the levels to expect in waste materials from the more 

modem mining operations. The older mining operations bad less 

efficient methods of Hg removal, which would result in higher Hg 

levels expected in the waste retort materials. 
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4.0 RESULTS AND DISCUSSION 

4.1 l'\ilercury Values Relative to Lake Nacimiento Watershed Location 

4.1.1 Mercury Occurrence in the Lake Nacimiento Watershed 

Several inorganic mercury forms occur naturally and, when 

combined with anthropogenic materials, some forms can pose severe 

environmental problems. One natural source of mercury is the mineral 

cinnabar (HgS), which was extensively mined in the Santa Lucia Range 

which forms the western divide of the Lake Nacimiento watershed (Eckel 

et al., 1941). Several abandoned and inactive mercury mines are located in 

the Lake Nacimiento watershed and are discussed in Section 3. The most 

recent Hg mining activity occurred in the Las Tablas Creek watershed. 

For the purpose of the following discussion, the term "background," 

as applied to the total Hg levels measured throughout the watershed, is 

defined as "the total Hg concentration that was found in sediments, soils, or 

water upstream from identified point sources for Hg pollution." 

The Hg levels discussed in Section 2 vary with geographic location 

and geology of each study area. In many parts of the Lake Nacimiento 

watershed, the background levels tend to be relatively high since the area has 

numerous natural geologic Hg deposits and associated mercury mines. The 

rocks of the Franciscan Formation associated with mineralized zones in 

California contain a wide range of Hg levels (0.2 to 15,000 mg·kg-1) (Bailey 

et al., 1964). Rocks in the geological formations outside the zone of Hg 

accumulation have Hg levels which range from <0.001 to 0.05 mg·kg-1. Hg 

levels of <0.001 to 0.09 mg·kg-1 have been found in soils in areas that are 

not affected by mineralized deposits; with Hg levels of0.1 to 0.77 mg·kg-1 

in areas of Hg mineralization (Pierce et al., 1970). Stream sediments, in the 
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areas that drain Hg deposits and associated mines, have much higher levels 

(up to 21.0 mg· kg- I) than the estimated 0.3 mg· kg- I average. Implications of 

these Hg values will be discussed in greater detail in the subsequent sections 

of this report. 

The following discussion will examine mercury levels in soils, 

sediments, and water samples collected in different geographic areas within 

the entire watershed. For this discussion, the Lake Nacimiento watershed 

has been subdivided into 4 regions; the Upper Nacimiento River watershed 

north and west of the lake, the Las Tab las Creek watershed, the Snake and 

Dip Creek watersheds, and Lake Nacimiento itself. 

4.2 Upper Nacimiento River Watershed 

4.2.1 Sediment 

Sediment samples were collected from eleven (11) locations in the 

Nacimiento River channel upstream of the lake. The Hg levels ranged from 

<0.()01 to 0.052 mg·kg-1 (Table 4-1). These values are considered ~elatively 

low and are within the range expected from sediments and soils in non

mineralized areas (Pierce et al., 1970). 

Sediment samples were collected from twenty one (21) locations in 

tributaries to the Nacimiento River and upstream of the lake. The Hg levels 

ranged from <0.001 to 0.896 mg· kg-1 (Table 4-1). A relatively high value 

(0.26 mg · kg-1) was found in a Sycamore Creek sample, taken about 30 feet 

downstream from an abandoned Hg retort used as part of the Botts Mine 

operation (Photo 4-1). However, in a sample taken less than one mile 

downstream from the retort, in sediments from the Sycamore Creek 



Table 4·1: Sediment and Soil Data to.,.; !he Upper Lake Nacimiento Watershed. 
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Reservoir, Hg levels dropped to 0.009 mg·kg-1, indicating a large dilution 

effect. 

The highest Hg value (0.896 mg·kg-1) was found in a sample taken in 

a tributary to Tobacco Creek, located in the watershed that drains the Ocean 

View and Buckeye mercury mines in the Pine Mountain District (Eckel et 

al., 1941). This value is considered relatively high compared to expected 

values (0.1 to 0.2 mg· kg-1) from sediments and soils derived from 

Franciscan Formation rocks (Eckel et al., 1941). While sampling in this 

area, an abandoned ore processing building with a Hg condenser unit was 

observed near the Ocean View Mine, and reddish, non-vegetated tailings 

were noticed downhill from the facility (Photo 4-2). The eroding tailings 

pile is a likely source for the Hg in alluvial sediments that are transported 

from the area. The Hg levels in Tobacco Creek sediments dropped to 0.052 

mg·kg-1 just upstream of the confluence with Little Burnett Creek, 

exhibiting a similar dilution effect as the sediments downstream from the 

Botts Mine retort facility (located on Sycamore Creek) (Table 4-1 ). 

These data suggest that large dilution effects occur in sediments from 

drainages from the older, abandoned Hg mine areas in the Upper Lake 

Nacimiento watershed. The Hg levels of the sediments are not high enough 

by the time they reach the Nacimiento River to be considered as major Hg 

sources for the bottom sediments of Lake Nacimiento (see Section 5). 
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Photo 4-1: Abandoned retort below the Botts Mine on Sycamore Creek in 
Fort Hunter Liggett (1117/92). 

Photo 4-2: Abandoned processing buildings near the Ocean View Mine in 
the Tobacco Creek and Little Burnett Creek watersheds (3/16/92). 



76 

4.3 Las Tablas Creek Watershed 

4.3.1 Sediment 

The sediment data for the thirty six (36) samples from the Las Tablas 

Creek watershed will be discussed relative to geographic location. Las 

Tablas Creek will be subdivided into the Klau Branch and South Fork, the 

North Fork, Las Tablas Creek below the confluence of the North and South 

Forks to the Harcourt Reservoir dam, and below the Harcourt Reservoir dam 

to the lake. 

There were seven samples taken in the Klau Branch subwatershed. 

Six sediment samples have total Hg values ranging from 0.08 to 2.50 mg· kg

1 (Table 4-2). The background Hg levels in the Klau Branch are 

approximately between 0.08 and 0.18 mg· kg-1. 

However, one of the samples, taken from the dam south of Buena 

Vista Mine, has a relatively high Hg value of 30.00 mg ·kg-1 (considered 

''hazardous waste" by Title 22, California Code of Regulations (CCR), 

Section 66699). The Buena Vista Mines, Inc. owner claims to have built the 

dam about 1961 using overburden material from the Buena Vista Mine 

operations (personal communication, Mr. Harold J. Biaggini; 10/21/92). 

The dam and half of its reservoir are located on land administered by the 

U.S. Department of the Interior, Bureau of Land Management (BLM). 

BLM personnel from the Toxics Monitoring group of their 

Bakersfield District Office are presently performing a Preliminary 

Assessment (P.A.) of the dam under procedures outlined in the 

"Comprehensive Environmental Response, Compensation, and Liability 

Act" (CERCLA). BLM's P.A. is expected to rely on data 



Table 4-2: Sediment Data from the Klau Branch, South Fork, and North Fork of Las Tablas Creek. 

GENERAL 

6.30 4000 ft. SE of Klau Mine 
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generated in this "Clean Lakes Assistance" project, and other on-going 

RWQCB, Region 3, "mine study" projects (personal communication, Mr# 

Kent Varvel; 1127/93; personal communication, Mr. David Schwartzbart; 

t /31/93). BLM's P.A. is expected to be completed and be available for 

public comment by July 30, 1993 (personal communication, Mr_ Kent 

Varvel; lf27/93). 

There were six sediment samples obtained in the South Fork 

subwatershed. The six samples have total Hg values ranging from 0.06 to 

7.20 mg·kg-1 (Table 4-2). The background Hg levels in the South Fork are 

slightly higher than in the Klau Branch and are approximately between 0.06 

and 0.36 mg · kg-1. The samples from the South Fork contain slightly higher 

Hg levels likely due to the large number of abandoned Hg mines in the 

watershed, primarily the Little Bonanza Group of mines near the headwaters 

of the South Fork (Photo 4-3). The highest value (7.20 mg·tg-1) measured 

in the South Fork alluvial sediments was for a reddish~range, relatively 

clay-rich sample taken from a dry depression just upst:Ieam of the confluence 

with the North Fork and downstream of the confluence with the Klau BiaOCh 

(Photo 4-4). 

There were nine sediment samples taken from the North Folk 

subwatershed. The nine samples have total Hg values ranging from 0.31 to 

near 4,400.00 mg-kg-1 (Table 4-2). The background Hg levels in the North 

Fork are about 0.31 mg· kg-1 for a sample taken upstream from the min~ 

similar to levels found in the South Fork. There are five sediment sampl~ 

all associated with Buena Vista Mine wastes, that have extremely high total 

Hg concentrations ranging from 21.00 to 4,400 mg·kg-1 (>20.00 mg·k:g-1 is 

considered hazardous waste by Title 22 CCR, Section £»699). The Hg 

http:4,400.00


Photo 4-3: Abandoned open pit in the Little Bonanza Group near the 
headwaters of the South Fork of Las Tab las Creek (5/26/92). 

Photo 4-4: Sample LM9S2 taken on the South Fork of Las Tab las Creek 
(12/12/92). 
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levels downstream of the confluence of the Buena Vista Mine drainage 

stream and the North Fork of Las TabJas Creek decrease below the levels 

considered as hazardous waste (i.e., <20.00 mg· kg-1 ), but they are still 

relatively high. upstream of the confluence with the North Fork (12/12/91). 

There were six sediment samples taken from below the confluence of 

the North and South Forks of Las Tablas Creek to the Harcourt Reservoir 

dam (Photo 4-5). These six samples have total Hg values ranging from 1.50 

to 5.00 mg·kg-1 (Table 4-3). The Hg levels decrease steadily as a function 

of increasing distance from Buena Vista Mine, until they rise again in the 

Harcourt Reservoir sediments (Figure 4-1). These data suggest an initial Hg 

dilution effect in the Las Tablas alluvial sediments followed by a 

concentrating of total Hg in the relatively clay- and organic carbon-rich 

bottom sediments in Harcourt Reservoir. 

There were five dry sediment samples and two submerged Lake 

Nacimiento bottom sediment samples taken from the Las Tablas Creek 

drainage below the Harcourt Reservoir dam (Photo 4-6). The five dry 

samples have total Hg values ranging from 0.09 to 1.55 mg·kg-1 (Table 4-3). 

An additional sample taken from the Franklin Creek subwatershed had a 

relatively low total Hg level of 0.04 mg · kg-1. The highest values were found 

in materials identified as either dry lake sediments or submerged lake bottom 

sediments. These data suggest a Hg dilution effect of the sediments below 

Harcourt Reservoir likely due, in part, to the addition of the relatively clean 

(i.e., low in Hg) sediments from Franklin Creek and, further downstream, 

from Town Creek where Hg were found to be 0.018 mg·kg-1 (Table 4-1). 



..I'., 


Photo 4-6: Sampling dry lake sediments along Las Tablas Creek and 
downstream of the Harcourt Reservoir and Franklin Creek (12/16/91). 



Table 4-3: Sediment Data from the North/South Forks Confluence of Las Tablas Creek to Lake Nacimiento. 

GENERAL 
LOCATION 

-----------------·------1 
_ _J:i(l_r:_Co~~-Reserv_ol~~am 

Harcourt Reservoir spillway 
~-----~---4---

Below Franklin Cr. mouth 
Below Franklin Cr. mouth 
L T Cr.· lake sediment 

-!-----!--
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Figure 4-1: Total Hg (mg/kg) in the Las Tab las Creek floodplain 
system as a function of distance (feet) from the Buena Vista Mine 
condenser facility. 
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An augmentation grant study to this Clean Lakes Assistance Program 

was performed under the direction of Dr. Royden Nakamura of the Cal Poly 

Biosciences Department in 1993-94. Fish and benthic invertebrates from the 

Harcourt Reservoir and the Las Tab las watershed were analyzed for total Hg 

contents. Total Hg concentration data from this augmentation study are 

included in Section 8 and Appendix 9 for comparison with the sediment and 

water data and with the Hg level studies of fish tissue in the Las Tab las Arm 

of Lake Nacimiento (Rasmussen and Starrett, 1987). 

Considerable information was available through local newspaper 

reports, scientific studies, and correspondence regarding the two most 

productive mercury mines, the Buena Vista (a.k.a. Mahoney) and the Klau, 

both located in the Las Tablas Creek watershed. Copies of the "Standard 

Provisions and Reporting Requirements for National Pollutant Discharge 

Elimination System (NPDES) Permits," and 1993 RWQCB "Cease and 

Desist Orders," "Waste Discharge Requirements," and "Monitoring and 

Reporting Program" documents for Buena Vista Mine and the Carson Drift 

in the Klau Mine are included in Appendix 1. 

The largest source of information is the huge file collection held in the 

San Luis Obispo offices of the Regional Water Quality Control Board 

(RWQCB), Central Coast Region. Other valuable sources of information 

include in-house files entitled "Quicksilver" in the Reference section of the 

San Luis Obispo City-County Library and reports and maps located in the 

Maps and Documents section of the Cal Poly Kennedy Library. 

We searched all relevant collections and conducted personal 

interviews with the most affected parties in the Lake Nacimiento watershed. 

The authors are grateful to all of you who shared your experiences and 

recollections regarding historical accounts and consequences of mercury 
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mining in the Lake Nacimiento watershed. We have tried to document all 

the important events. We accept full responsibility for any errors or 

omissions. Interested individuals are referred to the original documents for 

complete evidence. All the relevent newspaper articles printed in "The . 

Cambrian," the "Sun Bulletin," and the "San Luis Obispo Telegram

Tribune," from 1966 through 1988, that we could find are located in 

Appendix 2. 

A San Luis Obispo County Planning Commission recommendation, in 

1966, allowed the "limited processing of mercury ore at the Klau Mine" 

(SLO Telegram-Tribune, 2/10/66), an extension to the already active Hg ore 

mining and processing operations at Buena Vista Mine, which coincided 

with a growing United States involvement in the "Vietnam conflict." This 

coincidence of events proved important to the accelerated environmental 

deterioration of the Las Tab las Creek watershed, and, consequently, to Lake 

Nacimiento's natural resources (especially fish and fish-eating predators). 

Hg, and other "strategic metals," prices historically inflate rapidly 

during times of worldwide unrest and conflict, when international metal 

sources can become unreliable (Bradley, 1918; Bureau of Mines, 1965; 

Eckel et al., 1941; Franke, 1935). The rising Hg prices in the early 1960's 

made mining profitable when the price per flask of Hg exceeded $450.00 

(personal communication, Harold J. Biaggini, several dates, most recently, 

10/21/92). 

World events, combined with the discovery of Hg-rich underground 

ore deposits on Buena Vista Mine property in 1957, mark a turning point 

that set the "wheels in motion" for rapid, and largely unregulated, expansion 

of the mercury mining and processing operations at Buena Vista Mine in the 
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years 1957 through 1970, resulting in gross profits of $25,000,000 and 

payroll receipts for up to 58 employees (The Cambrian, 7 /30nO). 

Subsequently, in 1971, the RWQCB issued orders to Buena Vista 

Mines, Inc. to restrict the nmoff of acid mine drainage (AMD) from calcined 

waste tailings piles into Las Tablas Creek (Morro Bay Sun Bulletin, 2111n1; 

SLO Telegram-Tribune, 2/lOnl). Shortly after the RWQCB orders were 

filed, the Buena Vista Mines, Inc. owners shipped a "huge load of mercury" 

from the mine site via trucks and then on secured Southern Pacific Railroad 

cars to a bonded warehouse in Sparks, Nevada. The Hg was reported to be 

worth about $1,300,000 (i.e., about 3,263 flasks at $398.41 per flask 

weighing a total of248,000 pounds) (SLO Telegram-Tribune, 2f24n1; 

personal communication, Harold J. Biaggini, 2/5/93). In 1971, this was the 

"largest stockpile of mercury owned by anyone except the United States 

government" (SLO Telegram-Tribune, 2f24n1). The present location of this 

reported mercury is unknown to us and conflicting rumors persist. Interested 

parties should contact the Buena Vista Mines, Inc. owners regarding the 

whereabouts or the potential transference of this mercury stockpile. 

The 1966 San Luis Obispo County Planning Commission 

recommendation to allow Hg processing at Klau Mine was opposed by one 

local, third-generation landowner (Mr. Raymond "Bunch" Dodd, Sr.) who 

had observed examples of environmental damage in the immediate vicinity 

of Buena Vista Mine (i.e., premature rusting of his barbed-wire fences, 

olfactorially-aggravating yellow fog surrounding the mine processing 

facilities and the local valley, accelerated sedimentation of Las Tab las 

Creek, and AMD into Las Tablas Creek). He warned the commission of 

future environmental degradation of his adjoining property and childhood 

home located mostly north of the Buena Vista Mine operations (SLO 
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Telegram-Tribune, 2/10/66; personal communication, Mr. Raymond Dodd, 

Sr.; several dates, most recently 10/31/92). Nevertheless, Mr. Dodd's 

objections were countered at the Planning Commission meeting by a Morro 

Bay attorney named Mr. Charles E. Ogle who was representing Buena Vista 

Mines, Inc. (SLO Telegram-Tribune, 2110/66). 

Mr. Dodd's 1966 testimony to the Planning Commission has proven to 

be prophetic. Property damage on Mr. Dodd's land was extensive from 1957 

to 1965 (involving deaths of three cattle by sudden live burial under a 

catastrophic rain-induced debris flow from Buena Vista Mine tailings, rusted 

fences and gates, loss of 40 acres of vegetation due to acid precipitation, 

etc.) (see the "Complaint for Injunction, Breach of Contract and for 

Damages" filed as Case No. 31361 in the San Luis Obispo County Superior 

Court). The failure of the Buena Vista Mines, Inc. owners to reimburse Mr. 

Dodd for his damages in a friendly manner lead to the aforementioned 

lawsuit filed by Mr. and Mrs. Raymond (Evelyn) Dodd against Buena Vista 

Mines, Inc. in San Luis Obispo County Superior Court (Case No. 31361; 

initial claim dated August 2, 1965). Mr. and Mrs. Dodd received a favorable 

judgment on April 16, 1968 and restitution in the amount of $4,357.48 was 

paid by Buena Vista Mines, Inc. to the Dodds (a partial record of the lawsuit 

is in Appendix 3; see the full court record on microfiche in the San Luis 

Obispo County Government Center Law Library). Mr. and Mrs. Raymond 

(Evelyn) Dodd's only regret was that they decided to have a judge decide 

their case, rather than to opt for a jury trial (personal communication, Mr. 

and Mrs. Raymond Dodd, Sr., 10/31192). 

Mr. Dodd's adjoining agricultural lands have sustained continuing 

environmental damage (from 1956 to the present; personal communication, 

Mr. Raymond Dodd, Sr., 1/30/93) from Hg-rich vapors from mine 

http:4,357.48
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processing operations that cnrkhcd nearby cropland and rangeland topsoils 

with Hg (Bigfey, 1993) and from accelerated sedimentation, acidification 

and metals deposition in the Buena Vista Mine drainage that flows across the 

Dodd's land and to the North Fork of Las Tab las Creek (several personal 

observations by this study's Project Team as recently as February 24, 1993). 

However, since the 1965-68 lawsuit proceedings, Mr. Dodd has 

decided not to pursue additional legal action against Buena Vista Mines, Inc. 

because of the time, money, and physical and emotional effort required to 

conduct a legal proceeding in today's legal justice system (personal 

communication, Raymond Dodd, Sr., 10/31192). Instead, the Dodd family 

members have put their faith in the belief that the appropriate public 

regulatory agencies (like the RWQCB, Central Coast Region and the 

California Department of Fish and Game) are acting on behalf of the overall 

public good in their dealings with Buena Vista Mines, Inc. (personal 

communication, Mr. and Mrs. Raymond Dodd, Sr., 10/31/92). 

However, a general perception of inaction (for whatever reasons) by 

past and present Regional Water Quality Control Boards and their failure to 

fully enforce "cease and desist" pollution abatement orders (mainly due to 

AMD) against Buena Vista Mines, Inc., has resulted in widespread feelings 

of pessimism and mistrust among several landowners in the Las Tab las 

watershed, who were interviewed independently by this Project Team and 

others (Hubbert, 1991; Waller, 1979; personal communication, Mr. Donn 

Bonnheim, 2/1/93; personal communication, Ms. Donna Harcourt, several 

dates, most recently, 3/3/93; personal communication, Mr. Raymond Dodd, 

Sr., several dates, most recently, 1/31193). 

A series of letters are enclosed (Appendix 4); starting in 1979, from a 

Las Tablas watershed landowner, Ms. Donna M. Harcourt, her father Mr. E. 
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L. Decker, and Ms. Harcourt's attorney Mr. R. Bruce MacKenzie, along with 

the response letters by public employees (the RWQCB Executive Director 

and the California Attorney General). These letters provide a sense of the 

historical record regarding the effects on local landowners from the pollution 

originating at the Buena Vista and Klau Mines. 

One landowner, who actually conducted his own field sampling 

operation of Las Tab las Creek water and sediment during the 1970's and 

1980's, discontinued his efforts because of his perceived "inaction and lack 

of interest among RWQCB staff and Board members" for his well

intentioned labors (personal communication, Mr. Donn Bonnheim, 2/1/93). 

A past RWQCB Executive Director, Kenneth R. Jones, stated that he 

observed "up to one foot of orange-colored sludge, originating from the 

Buena Vista Mine waste tailings, that was deposited in the Las Tablas 

floodplain channel, up to 5 miles downstream of the mine," following 

January 19-21, 1969 rainstorms (totaling over 15 inches of rain in 3 days). 

(precipitation data collected by Louis and Phyllis Bergman, Dover Creek 

Canyon Road). 

Nevertheless, the 1969-1970 Regional Water Quality Control Board 

and, more recently (in 1988), a RWQCB staff employee felt that "the Buena 

Vista Mine operation was only a small part of a much larger Hg pollution 

problem that affected the entire Lake Nacimiento watershed" (personal 

communication, Kenneth R. Jones, 1/31/93; comments by John Goni, 

RWQCB employee, to the SLO Telegram-Tribune, 6/2/88; Dirkx, 1988). It 

was Mr. Jones' belief that there were many small, undocumented mercury 

prospects, in addition to the larger well known mercury mining operations, 

located throughout the Lake Nacimiento watershed and that, collectively, 

these Hg mines were more of a concern than Buena Vista and Klau Mines 
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(personal communication, Kenneth R. Jones, 1131/93). This belief was still 

held in 1988 by at least one RWQCB employee (SLO Telegram-Tribune, 

612/88; Dirkx, 1988). 

Based on comments made by the Buena Vista Mines, Inc. owners and 

some RWQCB Board members at a recent RWQCB meeting held in San 

Luis Obispo (on Friday, November 13, 1992), several people still share the 

misconception that Buena Vista and Klau Mines are insignificant 

contributors of Hg pollution to Las Tab las Creek system and, ultimately, to 

Lake Nacimiento (see the Agenda and minutes of this 11113/92 Board 

meeting). 

In fact, as part of our study we have been able to observe, and 

document by literature search, about 14 major abandoned Hg mine 

operations in the entire Lake Nacimiento watershed. These mines can, for 

discussion purposes, be further subdivided and counted as multiple Hg mine 

claims (based on land ownership maps available in the San Luis Obispo 

County Assessor's office). We found that the Buena Vista and Klau Mines 

are the two major Hg mines in the entire watershed and contribute the largest 

portion of Hg-rich alluvial sediments in the Las Tab las Creek watershed that 

end up as Lake Nacimiento bottom sediments (see Section 5). 

A review of the voluminous files, held in the San Luis Obispo offices 

of the RWQCB regarding Buena Vista and Klau Mines, emphasizes a 

common theme that RWQCB staff and Board members were genuinely 

concerned about citizen complaints and the potential Hg and AMD pollution 

of natural resources in the Lake Nacimiento watershed (Kenneth R. Jones 

letter to Mr. E.L. Decker, (Ms. Donna M. Harcourt's father), 4/12/82). 

However, a past lack of available public monies to conduct a comprehensive 

study of the total watershed-wide Hg problem, combined with several verbal 



91 

and written agreements from Buena Vista Mines, Inc. owners that they 

would make attempts to remediate the AMD problem (Waller, 1979) led 

some public authorities to believe that "good faith" efforts were being 

accomplished by the Buena Vista Mines, Inc. owners (e.g., see Appendix 2 

for California Attorney General George Deukmejian's letter to Mr. E.L. 

Decker, 2124/82). 

Based on a complete review of the RWQCB files regarding Buena 

Vista and Klau Mines, from 1957 to the present, we have come to the belief 

that past Regional Water Quality Control Boards reached decisions based 

largely on anecdotal information, rather than on results from comprehensive, 

rigorous, scientific studies. The RWQCB and, to some extent, the Attorney 

General's staff appeared to behave out of a perceived fear of implementing 

and enforcing any actions against Buena Vista Mines, Inc. that might lead to 

court-ordered pollution abatement obligations by public agencies, including 

the State Water Resources Control Board (WRCB), regarding the AMD and 

Hg pollution problems at Buena Vista and Klau Mines (personal 

communication, Kenneth R. Jones, 1/31193). 

It is our understanding that the Buena Vista Mines, Inc. owners have 

resisted implementation of effective, engineered pollution abatement 

measures and long-term remedial actions if these actions resulted in the 

expenditure of substantial corporation funds (Waller, 1979). In fact, words 

have been exchanged verbally (personal communication, Harold J. Biaggini, 

several dates, most recently 10/21/92), and in writing (Ed Biaggini, III letter 

to RWQCB, 3/20/92, in Appendix 4) that confrrm this perception. 
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4.3.2 Soils 

There were fifteen surface soil samples collected in the Las Tablas 

watershed. The fifteen samples have total Hg values ranging from <0.01 to 

7.30 mg·kg-1 (Table 4-4). The highest value (7.30 mg·kg-1) was obtained 

for a topsoil located immediately adjacent to the intersection of Klau Mine 

Road and Cypress Mountain Road and downhill from the Buena Vista Mine. 

Other relatively high Hg values found in surface soils near the mine 

stimulated additional study (Bigley, 1993). 

A hillslope transect study was conducted coincidentally with this 

project. The study examined three soil profiles located immediately north of 

the Buena Vista Mine. All three soils had the highest Hg values in the 

topsoil (0.17 to 0.77 mg·kg-1) and decreasing values with depth to the soils' 

parent materials {<0.01 to 0.09 mg·kg-1 ). The data suggest an eolian 

enrichment of Hg in these soils. The most probable eolian sources in the 

immediate vicinity are past airborne Hg vapors generated at the Buena Vista 

and Klau Mine processing facilities, dust from roads in the area paved with 

the mine wastes, and dust from the mine site grading operations (Bigley, 

1993). More extensive field sampling and laboratory analysis will have to 

be completed to determine the full extent of the eolian Hg contribution to 

soils in the entire Lake Nacimiento watershed. However, in comparison 

with the alluvial Hg pollution sources, the eolian pollution problem is 

considered minor. 

The second highest value (2.40 mg·kg-1) was determined for an 

overburden soil sample deposited about 40 feet downhill from an eroded 

Cypress Mountain roadbank onto a rangeland pasture (Photo 4-7). We later 

determined that the road material was obtained from the Buena Vista Mine 

Hg retort wastes sometime in the 1960's. It was common knowledge in this 



Table 4-4: Surface Soils Data from the Las Tablas Creek Watershed. 
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area for the San Luis Obispo County Engineering Dept. road maintenance 

crews to use these readily available mercury waste materials on both county

maintained and private roads within about a 10-mile radius of many of the 

region's mines, especially Buena Vista and Klau (Woodward-Clyde 

Consultants, 1987; personal communication, Harold J. Biaggini, 3/14/92; 

letter from Louis Bergman to Harold J. Biaggini, 4/30/92; letter from SLO 

Co. Counsel toT. J. Rice, 5/28/92; letter from SLO Co. Engineering toT. J. 

Rice, 6/8/92; three letters in Appendix 4). Analyses of additional road 

materials from the Las Tab las watershed will be discussed in the next 

portion of this report. 

4.3.3 Road Materials 

When we recognized the possible Hg source contribution to Lake 

Nacimiento sediments from eroding road materials, particularly in the Las 

Tablas watershed, an additional study was undertaken with a supplemental 

financial contribution from the State Water Resources Control Board 

(Bigley, 1993). 

There were nine road samples collected in the Las Tablas watershed. 

The nine samples have total Hg values ranging from 0.05 to 46.00 mg·kg-1 

(Table 4-5). Three of the samples had total Hg values (>20.00 mg·kg-1) that 

define them as hazardous wastes by Title 22 CCR, Section 66699. The road 

materials with the highest Hg levels are located on Cypress Mountain Road 

from the Klau Mine area north to the intersection of Cypress Mountain Road 

and C~imney Rock Road. The common color of the most Hg-rich road 

materials is reddish-brown to orange (Photo 4-8) due mainly to the presence 

of hemetite and goethite which are weathering products of pyrite and other 

Fe-bearing minerals (Mining Waste Study Team, 1988). 
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Photo 4-7: Sediment deposited onto Marion ..Davis' pasture land; 
derived from eroded Cypress Mountain Road materials (2/28/92). 

Photo 4-8: Sampling Cypress Mountain Road materials near the Gean Ranch 
and parallel to Las Tablas Creek (6/18/92). 
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,_LM-41_5_<+___~_5_!_!_6!~~-j·---9.:.~0--t-.?.:.i9_1 N()_Q_~a 23.5 1- _E..:.O 24.0 64.0 Las Tablas Creek (Dodd) 
U.142S_1_j_5_L?__!_92_,__ _9_..:.1_7__J_7.13D.2000 ____?3._&___2 23.9 28.7 47.4 LasTablasCreek(Dodd) 
LM.42S2_L_5/?__1_92 __J .. __ ____j-~5-t-_~5_2_~1---34.~--~=c25.0 29.5 45.5 __o..:.q9 Las Tablas Creek__,('-D od_d_,_)____ 

___LM~?_S.~j __~/7/~_2__L __o.:_0_9_~-~7 1 N()_Datm~_ata No data!~E~~~No d_?tcNo da_~ Las Tablas Creek(Dodd) 
NOTE: • =Hg values >20.0 mg/kg are considered as "hazardous waste" by Title 22 CCR, Sec. 66699 guidelines. 
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Potholes in these roads hold pools of orange colored water after rainstorms. 

The material becomes very dense and compacted following a period of 

wetting and drying, most likely due to the bridging of mineral grains by Fe

oxide crystals, which are common weathering by-products. Iron-cemented 

hardpans called ironstone, Ortstein, or placic horizons, with mineralogies 

similar to these road materials, have been studied throughout the world 

(Fanning and Fanning, 1990). 

San Luis Obispo County Engineering Dept. personnel on this project's 

Technical Advisory Committee stated that more study will 

be necessary to assess the extent of the Hg levels in the area's roads and that 

it would be expensive to pave the Hg-contaminated road materials (Greene, 

1992). 

The lowest value(0.05 mg·kg-1) was obtained for a sample taken 

below a culvert on Chimney Rock Road. The road was thought to be 

previously paved with Hg wastes (personal communication, Allen Ramage, 

5/14/92). The present low Hg value suggests that covering the mercury 

wastes with material low in Hg (like decomposed granite) and sealing the 

road surface with asphalt will effectively reduce Hg pollution from roads in 

this watershed (Bigley, 1993). 

4.3.4 Water 

There were thirty (30) water samples collected in the Las Tablas 

watershed. The thirty samples have total Hg values ranging from <0.01 to 

0.94 J.lg· L-1 (Tables 4-6 and 4-7). The highest total Hg value (0.94 J.lg· L -1) 

was determined for a creek water sample collected about 80 feet below 

http:value(0.05


__ __ __ 

Table 4-6: Las Tablas Creek Water Data for the Klau Branch, South Fork, and North Fork. 

-- L--· i SAMPLIN§_. G_ENERAL_____ 
SAMPLE SAMPLING I DEPTH TOTAL Hg TURBIDITY TEMP. LOCATION 

,_ NUMBiiil~DATE ; (It) (~l!{LY ~I!+_(NJ_!J)__(~C) (See Maps: Appendix 5) 

-----·-····------· ----------------- -~--- ··

L~~}~~\as ~r~,~~=~~~a~ 86r~~a,_d 5~~tr1:'_o/6Ao I __26'-s_o 1.so 4ooo n. sE_Kiau Mine ~ _ 

___CM11W1 12/17/91 0 to 6 <0.01 '6.70 I 51.~~=±~=-5q_r--__R~_ervo_ir,So.ofBVMine 
CM12W1 12/19/911 Oto6 0.01 6.40 5.79 11.90 KlauMineReservoir 

-·-·--·------·r---- ·-- 
CM7W1 12/1 3/91 i 0 to 6 0 34 2.40 ND 12.00 E. of Carson Drift, Klau Mine ,_____ . .. ···---

!-- CM8W1 12/12 1 0 to 6 __:.9J_ __§.:..:!__0J___-1_Q_J_O 1 6.50 So. of Kl~u Minetai~~g-~__ 
1 1 

CM2W1 12/1 0/91 0 to 12 0.15 6.1 <U__O. 52___L 12.00 So. of old Klau Mine retort 
c----CM9w1 12/12/91 o to 6 <0.01 (0.5) 7.20 I 2A8 I 2.50 Mouth of So. Fork, LT Cr. _ 

I j_----+--------------

_L6~T:~~~~,-~-~j~~~t:1()r-~--~~~k6 ______;~o1___ 7.20 7.-63---~ 7.50 I 1000 ft. ab-ove BV mine 
---------·---------- --------· 67~01-·--9-.0-0-+----

0 0 0

:~ ~~;;~---- _/2)~~6/
9

9}]--ci~;_J__ -----~ :...~ ;__ ::~~---~o~---c---1_5~00 ;~ M~~:~~;: t~~m~~~:ft__-= 
_ _l-_~_29_'{'/_1___f-1-~!_19_L9__!__~q to 1 <0.01 4.50 1.23____c---_1_9__._00_--+__B__V Mine retort spoil drain 

LM29W2 12/19/91 I 0 to 5 <0.01 4.50 17.40 14.00 BY__Mine retort SJ?Oil drain _ 
12:o0,~ ~~!~~ ~=:~;:;fC[:==6~~J--=~ ~~~~ ~: ~~ 6 !~~ :vv~~:·d~:~~~·s:~-o~1;;"k--

LM5W1 12/9/91 I 0 to 4 0.94 7.20 61.90 8.50 Belowbridge,NW,BVMine 



Table 4-7: Las Tablas Water Data from the North/South Forks Confluence to Lake Nacimiento. 

~~ SAMPLING 
i GENERAL 

~···~~ ~~~ ~-o~;: 
1--··------- "-------· -~---~ 

TOTAL Hg ! TURBIDITY TEMP. LOCATIONI 

I 
·---- -· 

(ugL~) pH (NTU) co,g> (See Maps: Appendix 5)
I 

Las Tablas Creek: Ugstream from Harcourt Dam i 
.... --. - ........ -, -~-- ·-

LM28W1 12/19/91 1 0 to 12 <0.01 7.20 4.97 9.00 L T Creek meander; Davis 
----~ -

LM8W1 12/12/91 0 to 4 <0.01 (0.70) 6.60 5.05 4.00 L T Cr. above concrete rd.; Gean 
f·--· -~- ' -

LT Cr. below concrete rd.; Gean LM21Wt 1211 B/~0 to 5 f <0.01 6.70 1.01 12.50 
7.40 

5. ~o----tfo-oo Bonnheim reservoir 

_l~~~~~ -~_l~~~~;_: ~ - ~ ~;_;_L-~~~o~1 6.25 19. .00 L T Cr. meander; Bonnheim 

LM_?~J---~-~L!__9_~9_!_L 0 to 12 ' <0.01 6.20 1.84 9.00 L T Cr. roc_~_outcrop; Bonnheim 

1 
__ LM25W1 _ _1_J_?i2_919J___ j_____o t~__ o.11 c:o.o_~) 7.10 16.3~00 L T Cr. above Harcourt reservoir ------

LM2S\N1 f2}~_9_1_!!_l_9_!<?_6 0.11 ( :0.01) 7. tO 1630 . 5.00 Above Harcoutrt reservoir 
11.2"o . 1o.so 

r------- ·
LM12W1 12/13/91 Oto6. 0.11 6.90 So. end of Harcourt reservoir 

··-·· --···• ----··--· -------~----- !I -- -
Las Tablas Creek: Downstream from Harcourt Dam- f ······~ -LM10W1 12/13/91 0 to 6 <0.01 6.60 29.10 7.00 Harcourt reservoir; at dam 
:=t:.M2~_yV1 1_?!_!§/9 1 -oto6 <o. o 1 1.2o I 1.09 9.00 Below Harcourt reservoir 

w-~-•-•• 

LM27W1 r,J19/91 1 0 to 6 <0.01 7.20 2.77 6.50 Below Harcourt reservoir 
·-·-LM11W1_1_2-i1-3t91l-6-to 3-----~o:·a1 ----···-· -

6.75 4.58 11.50 Below Franklin Cr. mouth 

}~-*~~-
1 
~~0~;-}f~ :~-1fi~o~o; 

- -· --
6.40 1.95 11.50 Below Franklin Cr. mouth 
6.90 2.01 11.50 Below Franklin Cr. mouth 

LM13W1 I 12/13/91 I 0 to 6 <0.01 7.10 6.62 8.00 Franklin Cr. 



100 

a Cypress Mountain Road bridge that is located about 400 feet downstream 

of the confluence of the Buena Vista Mine drainage stream and the North 

Fork of Las Tab las Creek. An adjacent sediment sample had a total Hg 

level of 11.00 mg·kg-1 (Table 4-2). 

A relatively high total Hg value (0.34 ~Jg · L -1 ) and the lowest pH 

(2.40) was determined for a water sample collected in a small pool at the 

entrance to Carson Drift in the Klau Mine complex. 

A relatively high total Hg value (0.581-!g·L-1) was obtained for a 

sample collected in a pool that contained about 9 ft.3 of water located on the 

Bonnheim property in the Las Tablas Creek watershed. An adjacent 

sediment sample had a total Hg concentration of 1.4 mg·kg-1 (Table 4-3). In 

all cases, the water samples contained significantly lower Hg concentrations 

than associated sediment samples. These data support earlier studies that 

show Hg is concentrated in the sediments of aqueous systems with relatively 

low Hg levels in the water column (D'ltri, 1990). 

A soluble Hg concentration of>0.20 mg·L-1 is defined as "hazardous 

waste" by Title 22 CCR, Section 66699. These data show that all the water 

samples collected in the Las Tab las watershed are <0.20 mg ·L-1. 

These sediment and water data also suggest that future environmental 

monitoring studies for Hg pollution must require analysis of both water and 

sediment samples to get a complete interpretation of the full pollution effects 

on downstream reservoir and lake organism. Past pollution monitoring 

efforts at the Buena Vista and Klau Mines only required water samples to be 

analyzed for total Hg levels. Therefore, the Las Tablas area mine drainage 

waters were recently found to be in compliance with water quality guidelines 

(Earth Systems Environmental, 1990), in spite of pollution of Las Tab las 

Creek and Lake Nacimiento by sediment-borne Hg. 
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4.3.5 Fractionation Study of Soils and Sediments 

A fractionation study was carried out on two soil samples and four 

alluvial sediment samples. The samples were fractionated into sand, silt, and 

clay subfractions by a combination of sieving and differential settling in a 

Calgon-water suspension. The total Hg levels were then measured for each 

of the subfractions. The data are presented in Table 4-8. 

The sample taken from under the Buena Vista Mine smelter (CM3Sl) 

has an extremely high Hg content in the clay fraction, a relatively high Hg 

level in the clay fraction and a very low Hg level in the silt fraction. The 

data confirm our field observation of some sand-sized cinnabar and 

elemental Hg found in this sample. The low Hg content in the silt fraction is 

difficult to explain and more research would have to be done to reach any 

fmal conclusions. The two soil samples (CM6Sl, CM9Sl) show that most 

of the Hg is associated with the silt and clay fractions. The data suggest that 

very little, if any, sand-sized cinnabar is found in these soils. The Hg found 

in these soils located near the Buena Vista and Klau mines was likely added 

as eolian dust from the nearby roads and Hg waste tailings and may have 

been added from Hg vapors present when the Hg ore processing activities 

were operational in the 1960's. 

Two of the alluvial sediment samples (LM9S2, LM12Sl) taken 

downstream from the Hg mines show that most of the Hg is present in the 

silt and clay fractions. The presence of Hg in these smaller particle sizes 

suggests that there is a general decrease in particle size of cinnabar as a 

function of increasing distance from the mines which would hasten the 

weathering of cinnabar and the release of Hg2+. The Hg2+ may be adsorbed 

on the surfaces of the aluminosilicate and Fe-oxide clays and silts which are 

transported downstream as suspended sediment. The Hg-contaminated 
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Table 4-8: Soils and Sediment Fractionation Data from the Las Tablas Creek Watershed. 

(See Map) 

-~- ~ 

BV Mine Smelter 
BV Mine Smelter 

CM3S1 


CM9S1 

CM9S1 

Sand So. of Klau Mine 
Silt So. of Klau Mine 

So. of Klau Mine 

Harcourt Reservoir 
Harcourt Reservoir 
Harcourt Reservoir 



103 

sediments (LM9S2) then settle in the floodplain channel of Las Tablas Creek 

as flood waters recede. When water flow is excessive, the suspended 

sediments continue to move downstream and will eventually settle in the 

bottom sediments of Harcourt Reservoir (LM12Sl), and when the reservoir 

overflows through its spillway, into Lake Nacimiento bottom sediments. 

4.3.6 Mercury Pathway Flux Experiments 

The original plan to use fifteen total soil and fifteen total water 

samples to determine the mercury flux between soil and water was reduced 

to five soil/sediment and five water samples. The effects of algae on 

mercury flux on the five water samples were not investigated separately. 

To study the movement of mercury from soil to water, five field

collected samples of relatively high mercury content were exposed to clean 

water. After exposure for time intervals of one day, one week and one 

month the water was analyzed to determine the soil to water mercury flux. 

The procedure consisted of combining 20 grams of mercury contaminated 

soil and 200 mL of Type II water in a 250 mL Erlenmeyer flask, sealing the 

flask with a para film wrapped rubber stopper and placing the sample on a 

mechanical shaker. After shaking for the specified time of 1 day, 1 week or 

1 month, the flask was removed from the shaker and the contents allowed to 

settle. A 50 mL aliquot was withdrawn and filtered through Whatman No. 

42 filter paper. The flask and remaining sample were returned to the shaker. 

The filtrate was analyzed for mercury using the standard procedure for water 

samples. 

The results of these experiments are shown in Table 4-9. The soil was 

not sterilized so the flux noted may be due to a combination of chemical and 

biological factors which could operate at very different rates. The amount 
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104 Table 4-9: Lake Nacimiento Mercury Equilibrium and Kinetics Study 

Clean S~diment in Contaminated Water 

Sediment sample i Total Hg Time Sample Origin 
ny[Dbe[ I (mglkg} ldavs\ (all f[gm Fgrt l:lunt~r L.!gg!i!nl 
AP1S1 0.157 1 Stony Creek Reservoir 
AP1S1 0.131 7 Stony Creek Reservoir 
AP1S1 I 

I 0.584 Stony Creek Reservoir 30 

~···--f--------"-~- ----·~ 

AP4S1 ' 0.08 Naclmienmto A.-Stony Cr. 
AP4S1 

1 
0.274 7 Naclmlenmto A.-Stony Cr. 

AP4S1 i 0.065 Naclmlenmto A.-Stony Cr. 30 
I 

BP3S1 1.349 1 Sycamore Cr. Reservoir spillway 
BP3S1 1.284 7 Sycamore Cr. Reservoir spillway 
BP3S1 I 0.596 Sycamore Cr. Reservoir spillway 

! 

J1S1 ! 0.047 

30 

Nacimiento R.-Los Bueyes ford 
J1S1 i 0.06 

1 
Nacimiento R.-Los Bueyes ford 

J1S1 
7 

0.016 Nacimiento R.·Los -Bueyes ford 30 
i 

J2S1 I 0.185 1 Agua Frla Creek 
J2S1 I 

I 1.146 7 Agua Fria Creek 
J2S1 0.324 Agua Frla Creek 

: 
30 

I I 

Clean W~ter/Contaminated Sediment 
I 
I 

Water sample I Total Hg Time Sample 
number 
LM3S1 

' ' . 
(ug/!,.} 
0.110 

~ga~s) 
1 I 

Qrlgln 
BV Mine drain above No. Fork Las Tablas Cr. 

LM3S1 : 0.000 7 ~ BV Mine drain above No. Fork Las Tablas Cr. 

1---
LM3S1 0.417 

I 
30 I 

I BV Mine drain above No. Fork las Tablas Cr. 

-
LM4S1 ' i 0.000 1 

•" 

No. Fork las Tabias Cr. above BV Mine drain 
LM4S1 i 0.000 7 No. Fork Las Tablas Cr. above BV Mine drain 
LM4S1 I 0.140 30 No. Fork Las Tablas Cr. above BV Mine drain 

I 
I 

LM10S1 ' 1.060 I 1 I Harcourt reservoir near dam 
LM10S1 ; 0.000 I 7 Harcourt reservoir near dam 
LM10S1 0.000 I 

I 30 I 
I Harcourt reservoir near dam 

I 
LM12S1 i 0.000 1 Harcourt reservoir 
LM12S1 0.000 7 Harcourt reservoir 
LM12S1 2.140 30 Harcourt reservoir 

i 
CM3S1 

' 
6.960 I - 1 BV Mine mercury retort/condenser 

CM3S1 15.760 I 7 BV Mine mercury retort/condenser 
l 

f CM3S1 7.850 I 30 I BV Mine mercury retort/condenser 
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and kinetics of flux of mercury from soil to water shows pronounced 

differences for different kinds of soil. Sediment from Las Tablas Creek 

(Samples LM3Sl and LM4Sl) and the silt-rich sediment sample from 

Harcourt Reservoir (Sample LM12Sl) showed the highest release after one 

month of exposure which implies that a significant transfer of mercury to 

water would occur only after prolonged exposure of water to these soils in a 

nonflow situation. In marked contrast the relatively quick release from the 

Harcourt Reservoir sediment (Sample LMlOSl) shows this site may be a 

source of mercury in water during runoff. The sample sampled near the 

Buena Vista Mine ore processing buildings (Sample CM3Sl) showed a 

continual release of mercury at relatively high level throughout the 

experiment which signifies an ongoing release of mercury from soil to water 

from these Hg-rich materials. 

In a second set of experiments five field-collected soil samples which 

were essentially mercury-free were exposed to water containing 0.5 ppm 

mercury. After exposure intervals of one day, one week and one month the 

soils were washed with cold water until the wash was mercury free. The 

soils were then analyzed to see if they had accumulated mercury. The 

procedure consisted of combining 20 grams of mercury-free soil and 200 mL 

of Type II water spiked with 0.5 ppm mercury in a 250 mL Erlenmeyer 

flask. The flask was sealed with a parafilm wrapped rubber stopper and 

placed on a mechanical shaker. After the specified time of one day, one 

week or one month a 20 mL aliquot representative of the flask contents was 

withdrawn. The aliquot sample was filtered through a Whatman No. 42 

filter and the soil on the filter washed three times with cold water. The 

filtrate from the third wash was analyzed for mercury content. If mercury 

was detected in the filtrate, washing was repeated until the filtrate was 
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mercury free. After the final washing the soil was dried, weighed and 

analyzed for mercury content using the standard procedure for soil samples. 

The results of these experiments are also shown in Table 4-9. The soil 

used in these studies was not sterilized so the results may be influenced by 

both chemical and biological factors. Differences in soils gave a pronounced 

difference in the rate and amount of mercury flux from water to soiL The 

silt-rich soil (Sample API S1) showed a slow accumulation of mercury 

through the study. It appears that silt may be a slow but significant sink for 

mercury from contaminated water. All three sandy soils (AP4Sl, JlSl, 

J2Sl) gave accumulation that peaked at one week then decreased. This 

indicates some interaction with the mercury of contaminated water but sand 

is not a permanent mercury sink. The clay soil (Sample BP3Sl) showed a 

rapid uptake of mercury from the water and then a gradual release indicating 

that clay may be a significant mercury sink during short term exposure to 

contaminated runoff, but release the mercury back into the water after the 

exposure. 

4.3.7 Mercury Forms and Processes in Las Tablas Creek Watershed 

Mercury likely exists in many different forms and in various size 

fractions in the Las Tablas Creek floodplain. The following discussion will 

aid in the identification of these many possible Hg forms and their potential 

for alluvial transportation downstream to Lake Nacimiento. 

Acid mine drainage waters have pH's below 4 and more than 95% of 

the soluble inorganic Hg2+ is in the form of HgCl2, at pH 5 (Hahne and 

Kroontje, 1973). This is the case with drainage waters from portions of both 

Klau and Buena Vista Mines (Table 4-2). Therefore, it is possible that one 

Hg form in the mine drainages that enter Las Tablas Creek is HgCh. 
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Ferric iron (Fe3+) commonly occurs in acid drainage waters from 

mining areas and this is certainly the case with Buena Vista and Klau mines 

(Photo 4-9). Significant rates of oxidation of cinnabar and release of Hg2+ 

to solution can occur under conditions prevalent in acid mine drainage 

waters (Photo 4-1 0). 

An excess of ferrous iron (Fe2+) in surface alluvial sediments can 

bind sulfide as iron sulfide (FeS) and inhibit its usefulness as a Hg-binding 

agent (Rudd et al., 1983). This may be a mechanism by which some Las 

Tablas Creek Hg-laden sediments from Buena Vista and Klau mines remain 

in the HgS form until Fe levels decrease downstream from the mines. 

Mercuric sulfide (HgS) is almost totally insoluble in water with a Ksp 

(equilibrium constant) of about 1 Q-53 (Helgeson, 1969). This indicates that 

HgS is formed not only from free Hg2+ and free S2- ions in solution (Hg2+ + 

S2- => HgS), but that Hg2+ also may accept the S2- ion from other sulfides 

like iron sulfides (FeS) and copper sulfides (CuS) (Fagerstrom and Jemelov, 

1972). With the high iron sulfide levels (mainly from the minerals pyrite 

and marcasite) reported in the Buena Vista Mine tailings and ore deposits 

(Eckel et al., 1941), it is possible that some Hg2+ reacts with the iron 

sulfides present to form HgS. 

Near a pH of 7, HgS is unstable in soil solutions which are in 

equilibrium with atmospheric oxygen. Thus, in alluvium under oxidizing 

conditions, HgS should be expected to be a thermodynamically unstable 

mineral (Lindsay, 1979). This would suggest that any HgS transported 

downstream from the Hg mines in the Las Tablas Creek becomes more 

unstable and capable of decomposing into Hg2+ as the pH increases from 3.5 

near the mines to about pH 7 within two miles downstream from Buena 



Photo 4-9: Fe-rich, acidic waters draining from the mining wastes at the 
Buena Vista Mine (1/25/92). 

Photo 4-10: Culvert corroded by AMD below Buena Vista Mine at the Klau 
Mine-Cypress Mountain Road intersection (2/29/92). 



109 

Vista Mine. However, the recrystallization of HgS may occur in Harcourt 

Reservoir and Lake Nacimiento between sediments high in FeS or sulfide. 

Grains of HgS can exist in the clay and silt fractions of the sediment, 

as well as coarse-grained fractions. The distribution of Hg in the alluvial 

sediment deposited as HgS from eroded mine spoils in Napa County, 

California, was mostly found in the very fine sand, find sand, and silt 

fractions (Harsh and Doner, 1981). Reported values of 49% total Hg were 

found in the silt size, and 38.9% in the fine and very sand fractions (Harsh 

and Doner, 1981). We observed sand-sized grains of cinnabar as far as three 

miles downstream from Buena Vista Mine in the Las Tablas Creek stream 

channel. It would seem likely that the particle size of the cinnabar grains 

generally decreases as they are transported downstream from the mines and 

other source areas. The subsequent particle size decrease of the cinnabar 

grains would result in a coincident surface area increase, resulting in a more 

rapid HgS decomposition and release of Hg2+. 

There is specific adsorption of the Hg2+ ion on hydrous iron oxides 

and on hydrous manganese oxides (Harsh and Doner, 1981; Jackson, 1989). 

At pH's between 6.5 and 7 .0, iron oxides adsorb large quantities of Hg 

(Burkstaller et al., 1975). This may be a mechanism by which Las Tablas 

Creek Hg2+ released from weathering HgS-rich sediments originating in 

Buena Vista and Klau mines adsorb on hydrous iron oxides and is 

transported downstream from the mines. This would help to explain the 

relatively high Hg levels that we found in reddish-orange (Fe-rich) 

sediments (sample LM9S2: 7.20 mg·kg-1) in Las Tablas Creek downstream 

from Klau and Buena Vista mines when compared with relatively low total 

Hg levels in adjacent brown or gray colored sediments (sample LM9Sl: 0.67 

mg·kg-1) (Photo 4-4; Table 4-3). 
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Mercury( II) bonds to sultbydryl groups ( -SH) that are attached to 

carbon atoms within molecules of suspended organic matter (Gavis and 

Ferguson, t972). In alluvial sediments near mercury source areas, Hg2+ that 

is sorbed to soil constituent surfaces or loosely bound to soil organic matter 

may exist in significant quantities (Harsh and Doner, 1981). Hg2+ will bind 

to organic particles as soon as they are available, and therefore a large 

amount of Hg in water is associated with suspended organic sediment 

(Fagerstrom and Jemelov, 1972). This adsorption process would indicate 

that there is Hg 2+ bo1_1ded to organic-rich alluvial and lacustrine sediments in 

Las Tablas Creek, Harcourt Reservoir, and Lake Nacimiento. 

The organic C content in alluvial sediments is often similar to the 

organic C content of the surrounding surface soils within the adjacent 

watershed. The range of organic C was 0.3 to 5.5%, with a mean of 1.9 + 

1.1 % in 58 small (0.2 to 4,000 km2 in area) reservoirs (Ritchie, 1989). 

Organic C is potentially eroded with surface soils, and is transported as 

alluvial sediment. The total Hg concentration of the sediments increased 

with increasing carbon/nitrogen (C/N) ratios of organic matter (Smith and 

Loring, 1981 ). In sediments of the Everglades, the concentration of Hg in 

the clayey sediment is positively correlated to the organic content of the 

sediment (Lindberg and Harriss, 1984). Therefore, it is important to reduce 

any erosion of Hg-contaminated topsoils in the immediate vicinity of 

mercury mines in the Las Tab las watershed in order to reduce the total Hg 

loading of this creek system. This can best be accomplished by maintaining 

a vegetative soil cover. 

The Hg2+ ion adsorbed to organic-rich sediment can be released into 

solution and be methylated to CH3Hg+ by both aerobic and anaerobic 

bacteria, primarily in aquatic sediments, suspended sediments, and 
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particulates in the water column, in the gastrointestinal tracts of fish, and, to 

a lesser extent, within terrestrial soils (Compeau and Bartha, 1984; Furutani 

and Rudd, 1980). This is likely a mechanism by which CH3Hg+ 

bioaccumulates in fish in both Harcourt Reservoir and Lake Nacimiento. 

The biological study supervised by Nakamura adds information to support 

this belief (see Section 8). 

Methylation of Hg2+ in anoxic environments is due to the suppression 

of the activity of methanogenic organisms. When sulfates are abundant, 

actual methanogenesis is suppressed by competition with sulfate reducers, 

and this specific inhibition of the methanogens instead stimulates 

methylation by S042--reducing bacteria. In studies done on the estuarine 

Berry Creek, sulfide depletion of 0.95 mg· kg-1 in dry sediment resulted in an 

increase in CH3Hg+ produced (Berman and Bartha, 1986). When reduction 

occurs in sediment, the sulfide ion (S2-) immobilizes Hg2+ and forms 

insoluble HgS. The redox potential of the upper layer of sediment is an 

important governing this process. If the redox potential is not low enough to 

keep sulfur in the s2- state, oxidation and formation of mercuric sulfate 

(HgS04) takes place (Lindsay, 1979). The HgS04 dissociates in water 

releasing Hg2+ ions which then become available for methylation by 

bacteria. It would seem likely that as Hg-laden sediments are transported 

further downstream from the more sulfate- and sulfide-rich sediments near 

Klau and Buena Vista mines, resulting in decreased sulfate and sulfide 

levels, that Hg2+ is more susceptible to methylation (from Hg2+ to 

CH3Hg+ ). This process would further result in CH3Hg+ bioaccumulation in 

fish in both Harcourt Reservoir and Lake Nacimiento. 
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4.4 Snake and Dip Creek Watersheds 

4.4.1 Sediment 

Sediment samples were collected from two (2) locations in these 

creeks that drain directly into Lake Nacimiento River. The Hg levels ranged 

from 0.015 to 0.018 mg·kg-1 (Table 4-1). These values are considered 

relatively low and are within the range expected from sediments and soils in 

non-mineralized areas (Pierce et aL, 1970). 

4.5 Lake Nacimiento Water and Sediments 

Earlier reports indicate that Hg enters lake bottom sediments close to a 

point source of pollution (Mikac et al., 1984). In studies of Lake Erie, 

bottom sediment total Hg levels were shown to range from 0.0005-0.0124 

mg ·kg-1 , with higher concentrations found near known point sources of Hg 

pollution. In a lake such as the Nacimiento reservoir, transport and re

distribution of Hg would likely be relative to mercury source areas in the 

watershed, lake sediment characteristics, lake water levels, and prevailing 

water currents in the lake. 

The following discussion will examine Hg levels within four different 

areas of the watershed: 1) the upper Nacimiento River Arm west and north 

of Las Tab las Creek; 2) the Las Tablas Creek Arm; 3) l.ak:e Nacimiento east 

of Las Tab las Creek and west of Dip Creek; and 4) Lake Nacimiento east of 

the mouth of Dip Creek to the dam. 
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4.5.1 Upper Nacimiento River Arm West and North of Las Tablas Creek 

A recent study of sediments in this portion of the lake showed total Hg 

levels ranging from 0.04 to 0.16 mg·kg-1 (Hubbert, 1991). Our values (0.01

0.04 mg·kg-1) fall within this range and compare well with the Hg values we 

found in Nacimiento River samples about 1 mile upstream of our 

westernmost lake site (Table 4-10). 

Our sediments had somewhat lower Hg levels because we sampled in 

June, 1992 at Pebblestone Shut-In which is several miles upstream from the 

Las Tablas Creek watershed, the primary mercury source region in the entire 

watershed, and about 2 miles west of Hubbert's most westerly site. His 

westernmost sample site was less than 0.5 mile west of the Las Tab las Creek 

mouth because he could not gain boat access to the far western part of the 

lake during the months of October and November, 1990, when the lake 

water level was about 6.6% capacity (23,100 A.F.) due to the preceding 5

year drought In contrast, when we sampled lake sediments on June 15, 

1992, the lake water level was at about 26.9% capacity (94,150 A.F.) 

(personal communication, Sharon Graves, KSBY-TV; 1128/93). 

4.5.2 Las Tablas Creek Arm 

Total Hg levels would be expected to be highest in lake sediments 

closest to a Hg pollution source and located in submerged stream channels 

where clay and organic carbon levels are high. Relatively high Hg values 

(1.5 and 1.6 mg· kg-1) in the sediments of the Las Tablas Creek Arm of the 

lake indicate that Las Tablas Creek is the major transport system for 

mercury-laden sediments to the lake (Table 4-10). A previous study ofHg 

levels in Lake Nacimiento bottom sediments from the Las Tab las Arm show 

a range of0.168-0.990 mg·kg-1 (Hubbert, 1991). 
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Table 4-10: Lake Nacimiento Bottom Sediment Data 

_______ ---------~ -~PL~~(3+ro: TOTAL ORG__:_I-~OISTURE CO. GENERAL 

~~~-::_~:i~~~ -!~~~~~tJd~~~f~ CO~ENT F'WS-1._s_~!-b D_-+-S·~--T-+-C-~_Y+-----(-S-ee M~~-~-s_C_:A~~~~-O_P_N_e_nd-_-l_x s)·----------~-~ 
Lake Nacimiento Bottom Sediment Samples--r 
. -- --- --- -- ------- -----. - -- . ---------. - -:-:-T-----T-----t----11-----I----+----+--------------------

'~L-~1_s1__ r---?l919 2_____1_9_____o_._9_l_ _!_ .18+_7_9o__r_?_~:I 2 5 _9_!_5 _ 3. 5.---+_2__.o=--1------- Pebbles tone Shut·l--n_____~ 
r--~K2S~-r-6_1_f!_!_fi_2___~_!!____0.04 6. 71 l--6_3_0_9___ , 91.2 1 38.0 50.0 12.0 Oak Shores area 

LK3S1 6/9/92 10 1.50 6.80 11000 HB.7 1 13.0 69.5 17.5 LasTablasCreekArm 
-Ci<4s1r-619-/92-~33--1--:60- 6.99 13000 78-.9---1--13.o 53.0 34.0 Las Tablas Creek Arm 
-LK5S1___619J92 5_7_____ -0-.-08 6.65 14000 104.9 1 16.0-r-5-3-.0'-+-'3'-1-.0~---M-II_e_1_9c-"-(-l--as-'-T.::.a=-b--la;_;:s-"-C-'-re_;__;_;:ek:_:__A_rm-)--t 
1--· . ~----f----+---+---

LK6S1 6/9/92 4 0.02 6.77 660 39.1 4 73.0 19.0 8.0 Dip Creek shore r- ·- -----r-- -----r----- ---- ---- -----+------ ---+----t--------'-----------1 
_L_K7_~1__--r-~_1_9_19_2_____3 0.18 5.70 9000 __?_'!:.:._'!__ 1 36.0 r-33.0 31.0 Mile 17 (Dip Creek) _____ 
_ l:_~~?l_l---6j_9_1_9_?_r--3 2 0.08 5.68 5900 ~0.0 1 23.0 45.0 32.0 Snake Creek Arm; Heritage Ra_n_c_h__--1 

LK11S1 l 6/23/92 3 0.07 7.36 NoData 41.7 2 51.0 36.0 13.0 DipCreekmouth
~- ~~-+--:_:__~-=--+~~+-'-~~~:_:__~~----~~~-~~~---·----

LK12S1 6/23/92 70 0.13 7.01 NoData 204.0 0 9.0 35.0 56.0 SnakeCreekmouth 

.....-


http:Ci<4s1r-619-/92-~33--1--:60-6.99
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In the earlier study, there were no positive correlations found among 

sediment properties and total Hg levels in the Las Tablas lake sediment 

samples (Hubbert, 1991). One sample had a relatively high Hg content 

(0.990 mg·kg-1) and a high sand content (51.9%). A likely explanation was 

that the sample contained sand-sized cinnabar grains that were transported 

miles downstream from the Hg source areas by strong creek currents 

following high intensity storm events. A Napa, California study of Hg

contaminated rivetWash polluted by Hg mining waste found that more than 

90% of the Hg recovered in alluvium was in the >4.0 g·cm-3 fraction 

(indicating the presence of cinnabar, which has a specific gravity of about 

8.0 g·cm-3) (Harsh and Doner, 1981). 

Hubbert's Hg values are slightly lower than the values we obtained 

because he sampled in the Las Tablas Creek Arm during the months of 

October and November, 1990, when the southernmost lake sediments, closer 

to mine sources, could not be reached by boat because of extremely low 

water levels. 

4.5.3 Lake Nacimiento East of Las Tablas Creek and West of Dip Creek 

Total Hg levels were found to increase in lake bottom sediments 

immediately east of the confluence of Las Tablas Creek and the submerged 

Nacimiento River channel. Hg levels ranged from 0.045 to 1.200 mg·kg-1 

(Hubbert, 1991). Our Hg value (0.080 mg·kg-0 falls within the range that 

Hubbert found, but his values were consistently higher than ours (Table 4

10). The likely reason that he found higher Hg levels was again because he 

collected samples during shallower lake water levels and was able to 

consistently collect bottom sediments high in clay and organic carbon in the 

submerged Nacimiento River channel. 
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Comparison of Hg data from our studies suggests that the best times 

to sample Hg enriched lake sediments is at the lowest possible lake water 

level when clayey organic-rich sediments can be consistently obtained using 

dredge sampling equipment. 

The relatively high sediment Hg levels immediately east of the Las 

Tablas Creek mouth further support our conclusion that Las Tab las Creek 

watershed is the major source of mercury to the lake. Once the Hg

contaminated sediments enter the lake they are likely re-distributed 

downstream (i.e., north and then east) following normal water currents in the 

lake and historic flow patterns of the Nacimiento River. 

4.5.4 Lake Nacimiento East of the Mouth of Dip Creek to the Dam Total 

Hg levels were found to generally decrease in lake bottom sediments as one 

moves east in the lake from the mouth of Dip Creek to the Nacimiento Lake 

dam. Hg levels were found to range from 0.053 to 0.620 mg· kg-1 (Hubbert, 

1991). Our Hg concentrations ranged from 0.02 to 0.18 mg·kg-1 and also 

tended to be slightly lower than Hubbert's because they were sampled 

outside of the immediate submerged river channel in coarser sediments that 

were lower in organic carbon (Table 4-1 0). The data further suggest a 

general decrease in Hg levels of the lake sediments from the mouth of Dip 

Creek to the dam. Additional sampling locations, undistributed sediment 

core samples and laboratory analysis would be needed to fully document this 

preliminary conclusion. 

We noticed that it was impossible to collect bottom sediment samples 

at several lake locations using the Eckman Dredge sampler. The main 

reasons are either a hard rock bottom with a lack of sediment or coarse
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textured nature (i.e., high gravel and sand contents) of the sediment which 

will not stay in the sampler as it is raised from the lake bottom. 

In addition to our observations, the Monterey County Flood Control 

District reported that in the 1970's, SCUBA divers noted underwater rock 

ledges that were relatively clean of sediment near the Nacimiento Water 

Company wells just offshore of the Oak Shores development (Envicom, 

1984). These observations suggest that most of the fine textured lake bottom 

sediments (which would likely be the highest in Hg content) are located in 

deep submerged channels of the old Nacimiento River and are also deposited 

in the several tributary arms that directly enter the lake, mostly from the 

south. 

4.5.5 Lake Water 

There were ten (10) surface water and thirteen (13) bottom water 

samples collected in Lake Nacimiento. The total Hg levels ranged from 

<0.001 to 0.868f..lg·L-1 (Table 4-11). The highest Hg values in both surface 

and bottom water samples were collected in the Las Tablas Creek Arm of 

the lake. These water data follow the trends seen in the sediment data (Table 

4-11). 

A sediment sample collected near the bottom water sample with the 

highest total Hg value (0.868 11g· L -1) had a total Hg value of 0.80 mg· kg-1, 

about 100 times the total Hg concentration of the water (Tables 4-10 and 4

11). In all cases, the water samples contained significantly lower Hg 

concentrations than associated lake bottom sediment samples. This 

observation is consistent with other studies that indicate that Hg is quickly 

removed from solution and is immobilized in sediments or organisms, when 
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Table 4-11: Lake Nacimiento Surface and Bottom Water Data. 

SAMPLING GENERAL 
r--J?AMPLE SAMPLING DEPTH -+-T-O_T_A_L--H·-~9-.~---~---~--+--T-U_R_B_I_D_I_T_Y_DJ+--T-E~M~P~.::~~~~~~~~-L--OCATION 

--~UMBER _, -~-D~TE- -= ~=-J!_t) --~-u~g_!L)__=_ pH ·---~~-~u~ ____c<~_-·_-_c_~)=:_-_----'_(!.....~-~~~-:_!Jps:_ ~ppendix 5). ____::

Surface Lake Water Samples listed by location. from West to East 

--~C~i~f~[ :;~ffi_L~--~i~f-u ~00°o~0, I ;:~~ :::~m- ~-~-:~----1r------p~-:-~-~-e-t~:~-es-~~~!-~n 
LK3W1 : 6/9/92 0 to 1 0.020 6.83 6.01 26.0 So. Las Tablas Creek arm 

--------- !-----·· --~----+--~---t-------t-----r----

LK4W1 6/9/92 0 to 1 0.776 6.92 4.72 26.0 No. Las Tablas Creek arm 
------------r--------

LK5W1 6/9/92 0 to 1 0.817 6.84 5.17 25.0 LasTablasCreekmouth 
---------~ -------+-------+-------+-·---r---------t----+------

LK6W1 ~/_9}_92___ r- 0 to 1 ____o_.O?O 6.94 15.4_0_-+-__2_8_._0-+----D_i-'-p_C_r_ee_k_w_e_s_t_s_h_o_re____---4 

_L~~vy_1 ____6j!}_/_9_?__r-_O_to__!___ __<O_.o__o__1_-+-_6_.8_2--t___3__._6_3__t __2__6_.o_r__N__o_._o_f__~_ake Milepost 17 
LK8W1 6/9/92 0 to 1 <0.001 1 7.08 6.25 26.0 W. of Snake Creek marina 

-------I----------+----+-------+-----+---------------------~ 
LK9W1 6/9/92 0 to 1 <0.001 6.84 4.04 26.0 NW of Lake Milepost 15 

---1---+---------l------+------------'-------1 
LK10W1 6/9/92 0 to 1 0.061 7.31 3.42 26.0 600ft. west of Lake dam ----- ---·- ________, ______,____________i------+-- -----1----+---

_____________j______________ ····--'-------1---------·------------ 

Subsurface Lake Water Samples listed by location. from West to East 
-=--..:::::{""'-~=~'-"'- =,=_"=--=·~==-~=-=-:=-~:...:.-~=-=_~-=~9'='7-=_tf=o':!"1~=a':::"':;"-c---.=.:;---=-~--==~-=~o_-= 1=-=----==r-~·;=:=:~~~-~=-=:==:.:.=-:};=~-=~=-~::---=--~==-~~::::::--·-======.-_--P_;~:=~=~e=fs-~o-~--e-s~-:-~-!--~n------:=-~='--- o~=:_ 5 1
1~~-l.K-3W2~--~i_§_L~~?____ 9 to 10 6~10_2 !_6.8L__ 2_3_.0_ s o_. Las_T_ablas Creek ~r"!___9_~~-- ____ ____ _

1 
LK4W2 6/9/9 2 32 to 33 0.143 1 6. 74 36.90 23.0 No. Las Tablas Creek arm 

I· -------- ---t-- ------- ---1- ------------ --------------------·-- -- -- ---- ----l~·--------

LK5W2 6/9/9 56 to 57 0.868 6.66 30.50 23.0 Las Tablas Creek mouth 
-~ 

-+-----------+------------4----~ 1-- -------- I---------+------
---~K6W2 6 I 9/9____ _____ 18~---~~0 11.70 28.0r----~-to_4 o__. Dip Creek west shore 


LK11W2 6/2392 2 to 3 <0.001 6.85 7.74 19.0 DipCreekmouth 

---+------r---------~---------------

LK7W2 6/9/92 18 to 19 0.020 
1 

6.82 38.90 23.0 ~_o. of Lake Milepost 17 __ _ 

LK8W2 6/9/92 31 to 32 0.102 6.76 27.10 23.0 W.ofSnakeCreekmarina 
------·-------- -

LK1 6/23/92 69 to 70 0.200 6.50 29.20 24.0 Snake Creek mouth
1---- ----1-- --- --·----r------- --+-- ----+-----+------------t------t---------~-----------

LK9W2 6/9/92 39 to 40 <0.001 6.92 5.27 26.0 NW of Lake Milepost 15 
---- --:--- --- -·----------- -----------1----t------+--------+-----

LK13W2 6/23/9 2 84 to 85 <0.001 7.45 14.20 11.0 W. of resort marina 

LK1 OW2 _6/9 /9 2 119 to 120 0.194 6.84 19.40 23.0 600 ft. west of Lake dam ..... ..... 

CD 
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it is found above very low background concentrations, which rarely exceed 

0.1 mg·L-1 (Chamberlin et al., 1990; Gavis and Ferguson, 1972). 

The following discussion will focus on the implications of these 

reported sediment and water data to the environmental quality of Lake 

Nacimiento. 

4.5.6 Factors Influencing the Forms and Occurrence of Mercury in Lake 

Nacimiento Sediments and Water 

When mercury reaches lake bottom sediments, it may be held by the 

following binding mechanisms: 1) sorption on hydrated ferric oxide, 2) 

surface sorption and/or ion exchange with aluminosilicate clays like 

montmorillonite, and 3) sorption and/or complexation with organic matter, 

especially sulfur-containing material (D'Itri, 1990). The distribution of Hg 

has been shown to be strongly correlated with organic carbon, clay, iron, 

phosphorous, and sulfur contents of particulate matter in Lake Ontario and 

with organic carbon, iron, and sulfur in Lake Huron (Thomas 1972, 1973). 

A positive correlation of Hg levels with total organic carbon and clay 

contents was found in a recent study of Lake Nacimiento bottom sediments 

(Hubbert, 1991). 

The pH of all our sediment and water samples (5.68 to 7 .50) was 

higher than the acid pH's (3.5 to 4.5) measured immediately downstream of 

Buena Vista and Klau mines. As pH values rise, the cation exchange 

capacities (CEC) of soils and sediments generally increase. It has been 

shown that the maximum adsorption of Hg2+ by clay minerals occurs near 

pH 7 (Newton et al., 1976). This would indicate a relatively high adsorptive 

capacity for Hg2+ by Lake Nacimiento clayey sediments relative to pH. 
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Bodaly et al. (1984) have hyJX>thesized that reservoir construction 

increases Hg concentrations in fish. Inundated terrestrial soils provide new 

Hg sources, increase retention of inflowing material, and increase microbial 

activities due to decomJX>sition of flooded terrestrial organic matter (Bodaly 

et al., 1984). 

Completion of the Lake Nacimiento dam in 1957 resulted in the 

flooding of mostly terrestrial alluvial sediment. Any pre-existing Hg

bearing river sediment that was covered by the lake was potentially able to 

be biologically methylated and, therefore, serve as a source of CH3Hg+ that 

could be bioaccumulated by aquatic organisms. Also, any post-1957 

sediment input to the lake has likely increased Hg levels in the lake bottom 

sediment. There are no known pre-1957 Hg concentration data for river 

sediments or aquatic organisms in the Lake Nacimiento watershed. 

Therefore, it can be concluded that the present Hg-bearing sediment in 

Lake Nacimiento is a combination of sediment and soils flooded by the 

reservoir water as of 1957, together with bed material and suspended 

sediment that entered the lake waters after construction of the dam. 

Inorganic Hg activity, and the Hg content in fish, can be increased if 

the sulfide activity is decreased by lowering pH and/or increasing the redox 

potential (Bjornberg et al., 1988). An increase in biota Hg accumulation 

may result at low dissolved oxygen levels, due to an increase in 

methylation of Hg under anoxic conditions (Bjornberg et al., 1988). Hg2+ 

methylation will occur when available Hg2+ is released due to current flow 

and aeration causing the decomposition of HgS (cinnabar) (Berman and 

Bartha, 1986). Hg 2+ release will also take place when organic matter 

decomJX>sition releases exchangeable Hg2+ during periods of aeration 

when lake levels drop exposing organic-rich sediments to the air. The 
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Hg2+ may later be available for methylation when the lake levels again rise. 


The annual rise and fall of Lake Nacimiento water levels would be 


expected to result in the release of Hg2+ during the late summer months, 


followed by Hg methylation in the late Spring when the water levels peak 


and temperatures begin to increase. 


It would be too costly to determine all the potential "hot spots" for 

CH3Hg+ production, due the many environmental variables involved. 

However, our data and the scientific literature suggest that clayey 

sediments high in organic carbon and located downstream from Hg source 

areas are the most probable areas to investigate as "hot spots". This would 

be in the Las Tablas Creek Arm of Lake Nacimiento and in the lake 

immediately east of Las Tablas Creek mouth. 

The concentration of dissolved Hg in the Oaks Arm of Clear Lake, 

which receives Hg-rich sediment from the Sulphur Bank Hg Mine, is 

generally below 0.013 pg·L-1 (Chamberlin et al., 1990; Walker, 1988). 

Yet fish are known to accumulate as much as 1.9 mg·kg-1 fish tissue 

(Mining Waste Study Team, 1988). Fish samples collected in the Las 

Tablas Creek Arm by the California Department of Fish and Game have 

shown relatively high Hg levels (up to 1.8 mg·kg-1 fish tissue) in the filets 

of largemouth bass sampled (Rasmussen and Starrett, 1987). This would 

suggest relatively high CH3Hg+ contents available for bioaccumulation in 

this part of the lake. 

Interestingly, the fish in both Clear Lake and Lake Nacimiento have 

comparable Hg levels in their tissues and the Hg levels in the water 

columns are similar at both lakes. However, Hg levels in the sediments in 

the Oaks Arm of Clear Lake are over 50 times higher (up to 100 mg·kg-1; 

Chamberlin et al., 1990) than the Hg levels in the sediments in the Las 
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Tablas Arm of Lake Nacimiento (1.6 mg·kg-l; Table 4-9). A substantial 

body of evidence supports the contention that aquatic organisms directly 

accumulate large CH3Hg+ concentrations primarily from the extremely 

small quantities in the water column (D'Itri, 1990). These facts have 

important implications regarding strategies to reduce the Hg levels in the 

fish of Lake Nacimiento (see a more thorough discussion in Sections 6 and 

7 of this report). 

A mercury speciation study of California lake surface waters, 

including Lake Nacimiento sampled on AprilS, 1987, found that 80% of the 

total mercury (1 0.0 mg· kg-1) in the Las Tab las Creek Arm and 76% of the 

total mercury (5.0 mg·kg-1) in the Snake Creek Arm was dissolved organo

Hg forms, mostly CH3Hg+ (Gill and Bruland, 1990). The methylation of 

Hg2+ in the lake bottom sediments and suspended particulates in the water 

column leads to Hg bioaccumulation by fish in Lake Nacimiento. Because 

of its relative stability in biological systems, CH3Hg+ is more slowly 

metabolized and eliminated by fish than the inorganic forms of Hg 

(Chamberlin et al., 1990; D'Itri, 1990). 

Prevention of additional Hg loading from streams entering the lake 

appears to be the best method to decrease Hg levels in the lake sediments 

and in water column and, subsequently, in the lake fish population 

(Chamberlin et al., 1990; Gavis and Ferguson, 1972; Rudd et aL, 1983). 
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5.0 MERCURY LOADING MODEL FOR LAKE NACIMIENTO 

5.1 Research Strategy 

The watershed that contributes sediment and mercury (Hg) into 

Nacimiento Lake is complex in landform and geology. The number of 

sediment samples that could be taken from different portions of the 

watershed was limited by budgetary constraints, and in some cases by ease 

of access. A sampling strategy was developed that spread the sampling over 

a broad region of the watershed, and over a range of geologic conditions, but 

three contributory drainages (Los Burros, Pozo Hondo, and Salmon Creeks 

in Hunter Liggett Military Reservation) were not sampled due to 

inaccessibility. However, Nacimiento River channel sediments immediately 

downstream of the confluences with these drainages were sampled. The task 

was then to extrapolate the data from sampled drainages to those that were 

unsampled, in order to best calculate the total Hg yield to the lake. 

The extrapolation of information between sampled and unsampled 

areas required first that some correlation of geologic and geographic 

conditions be made. It was therefore critical to understand those conditions 

commonly associated with Hg mineralization in, and close to, the watershed. 

5.2 Parameters Controlling Mercury Mineralization 

Study of relevant geologic maps (Chipping, 1987; Dibble, ; Durham, 

1968; Seiders, 1982; Seiders, 1989) and reports (Eckel et. al., 1941) shows 

that certain geologic features are often associated with Hg and co-associated 

silica-carbonate mineralization. These features were used to indicate the 

possible occurrence of undiscovered Hg deposits within the watershed, or 

the likely extension of mineralization beyond known mining areas. 
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The key features appear to be a combination of more than one of the 

following features: 


1) association with the Nacimiento Fault; 


2) association with the boundary between Cretaceous "Great Valley 


Sequence'' sandstones and shales, and the slightly older 

(Cretaceous/Jurassic) Franciscan Formation melanges; 

3) close spatial association to serpentinite slabs; and 

4) close spatial association to Tertiary or Quaternary volcanics. 

There are exceptions. The Dutra-Polar Star mine/claim complex, 

which lies outside and to the west of the watershed, is entirely within the 

Franciscan Formation, and apparently far from volcanics or the Nacimiento 

Fault. The Botts Mine on Sycamore Creek is entirely within Cretaceous 

sediments, and on a NE-trending fault. Both of these occurrences are, 

however, on faults. 

Hg is usually mobilized in association with hydrothermal activity, 

often co-associated with emplacement of the sulfides of other metals and 

with volcanic activity. Thus possible movement pathways for such fluids, 

and the proximity of an igneous body or other source of heat would be 

prospecting targets for cinnabar. The main mining districts lie across the 

axis of the Santa Lucia Range in a broad zone that is about 20 miles long and 

about 5 miles wide, elongated along a northwest axis that parallels the crest 

of the Santa Lucia Mountains (Eckel et. al., 1941). The deposits occur in 

sheared and brecciated fault zones that show evidence of east-west tensional 

extension and possibly east-west directed right lateral shear. These faults are 

well documented (Eckel et. al., 1941: Plate 78). 

Tertiary rhyolites are mapped throughout the area, and are the most 

probable source of heat and metallic mobilization, although it is possible that 
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the thermal events simply concentrated Hg that was first introduced to the 

area during the original subduction process that created the Franciscan 

Formation. Of less certainty is the role of Quaternary basalts mapped in the 

center of the Burnett Peak Quadrangle (Seiders, 1989). These may have 

generated enough heat to either reactivate original Hg in the Franciscan 

Formation, or Hg deposited in the Tertiary. 

Hg claims are conspicuously absent in nearly all of the watershed to 

the east of the Nacimiento Fault, where either "Great Valley Sequence" 

(Cretaceous) or Tertiary rocks are found, and the implication is that either 

these rocks did not fracture to allow the Hg to enter, or that the rocks were 

not present when the mineralization took place. The introduction of Hg to 

early Tertiary rocks at the Buena Vista and Klau Mines, which is east of the 

Nacimiento Fault but in rock that is faulted parallel to the Nacimiento 

system, tends to suggest that "Great Valley Sequence" and some Tertiary 

strata were present during the introduction of the Hg, and that the absence of 

Hg elsewhere in similar rocks is due to lack of fracturing. 

The Botts Mine on Sycamore Creek is also entirely within Cretaceous 

sediments, but is on or close to a NE-trending fault that might have provided 

a pathway for mineralizing fluids. 

The role of serpentinite in the Hg mineralization is uncertain. 

Serpentinites are considered to be hydrothermally altered ultramafic igneous 

rocks, but the alteration is thought to take place under different conditions 

that the generally epithermal regimes associated with cinnabar 

concentration. Serpentinites associated with Hg mines could either be 

fortuitous, or similar to that of the "Great Valley Sequence" sandstones, such 

that Hg-bearing fluid flow was controlled by the position and orientation of 

dike-like masses of serpentinite. 
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The geologic parameters for known mine districts are listed in Tables 

5-l and 5-2. On the basis ofTables 5-l and 5-2, the following generalities 
, 

can be made. Hg mines are usually within four miles of serpentinite bodies, 

and more frequently within one mile of a serpentinite body. They are up to 

eight miles from igneous bodies, but usually within a mile. They are usually 

within a mile of the boundary between the Franciscan Formation and other 

units, but can be up to 3.5 miles distant. 

5.3 	Extrapolation of Information to Unsampled Watershed 

The first step was to find a correlation, if any existed, between the 

geologic parameters discussed in the previous section with Hg values in 

sampled sediments. The process required the assignment of an artificial 

'value' to each geologic parameter, with the assumption that a real 

correlation with Hg and that "value" would show a tendency toward a linear 

correlation when the "value" and Hg concentrations had a linear regression 

applied. The "value" numeration was adjusted to provide the highest R-value 

on the regression, and then the "value" was applied to all unsampled 

subwatersheds in the system. 

The following geologic parameters and assigned values were used : 

(1) Proximity to igneous rock or thermal source: l(far) to 5(close); 

(2) Proximity to fault line: O(not on fault) or 2(on fault); 

(3) Proximity to serpentinite: O(no serpentinite in watershed), !(melanges 

of Franciscan Formation in watershed), or 2(serpentinite body in 

watershed); and 

(4) 	 Mine proximity: O(no mine/claim in watershed) or l(mine/claim 

present). 
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Table 5-1: Geologic parameters for known mercury mines in the Lake Nacimiento 
watershed. 

DISTRICT PROXIMITY TO 
MINE ON FAULT; DISTANCE TO PROXIMITY TO GVSIFRANCISCAN or 
SITE(S) FAULT STRIKE SERPENTINITE IGNEQUS ROCK TERTIARY/FRANCISCAN 
Botts Possibly 4.0 miles 4.0 miles2 3.5 miles3 

northeast l 

Bonanza Yes; 0.0-l.O mile I.Omile 0.25 mile 
Group northwest 

Buckeye, Yes; 0.25 mile O.Omile O.Omile 
Ocean View, northwest 
&PineMt. 

Buena Vista, Yes; 0.0-0.5 mile 3.0miles O.Omile 
Capitola, west-northwest 
&KJau &northeast 

C}'Pl'eSS Mt. Yes; 1.0 mile O.Omile 0.75 mile 
northwest 

Kismet Yes; 0.5 mile O.Omile 0.75 mile 
northwest 

NOTES; 
I. There is no agreement between geologic maps by Seiders, 1989 and Dibblee, relative to the local 

geologic structure, but field observations during our study did indicate some shearing was present. 
2. This distance is measured from a small Quaternary basalt. All others are measured from Early Tertiary 

volcanics of much larger volume. 
3. The mine lies within Great Valley Sequence rocks, rather than the Franciscan Rocks. 
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Table 5-2: Geologic parameters for known mercury mines near the Lake Nacimiento 
watershed. 

DISTRICT PROXIMITY TO 
MINE ON FAULT; DISTANCE TO PROXIMITY TO GVSIFRANCISCAN or 
SITE(Sl FAULI STRIKE SERPENTINITE IGNEQUS ROCK IERTIAR:YIFRANCIS~AN 
Cambria Yes; 0.0 mile 1.5 mile 0.0 mile 

northwest 

Doty, Yes; O.Omile 0.5 mile 0.75 mile 
Quieo Sabe northwest 

Dulra Unknown l.Omile S.Omilesl None in vicinity 

Fitzhugh Yes; l.Omile 0.0 mile 0.0 mile 
northwest 

Hamilton, Yes; O.Omile O.Omile 1.0 mile 
Warren northwest 

Keystone Yes; 0.5 mile O.Omile 1.0 mile 
northwest 

Lit. Almaden Yes; 0.25 mile 0.0 mile O.Omile 
northwest 

Oceanic Yes; 1.0 mile l.Omile O.Omile 
northwest 

PoleStar Unknown 3.0miles 6.0 miles 1 l.Omile2 

Vulture Yes; 0.75 mile O.Omile 0.25 mile 
northwest 

Wittenberg Yes; 0.25 mile 1.0 mile 0.0 mile 
northwest 

NOTES: 
1. This distance is measured from a small Quaternary basalt. All others are measured from Early Tertiary 

volcanics of much larger volume. 
2. This is the distance to a large block of sandstone that could have acted as an impermeable barrier, similar 

to the Great Valley Sequence. 



129 

The highest possible total for all of the parameter values is 10, the 

lowest 1. These values were calculated for all subwatersheds in the basin for 

which Hg values were obtained, graphed and then the regression equation 

was found. In Figure 5-1, data from Las Tab las Creek were not used as the 

concentrations were orders of magnitude higher than those found elsewhere, 

and statistically oveiWhelmed the data set (i.e., Las Tab las data skewed the 

analysis even when a relatively low value of 0.2 ppm was used, but 

measured Hg levels are much higher). The model was first tested using Las 

Tab las Creek values, to verify if it produced predicted Hg values similar to 

those that were measured in some of the other subwatersheds, but it 

overestimated those values. 

Regression for all data except for Las Tablas Creek 

12~----------------------------------~ 

y =0.695 + 79.393x R =0.57 

10 

0.. ~ 
:
0 8 

.. 
0.. 

6... "' 0 

&: "' ·-.. 
-: .."' 4 

0... 2 

El 

El 

EJ El El El 

0+---~--~----~--~--~--~----~--~ 

0.00 0.02 0.04 0.06 0.08 

Field values (Hg ppm) 

Figure 5-1: Total Hg values (ppm) for field collected samples compared to 
the "values" predicted from the indicator factors. 
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Removal of the Las Tab las Creek data produced a much better match. 

As a result of the correlation between the predicted value and the 

observed values, which can be described only as "fair" rather than "good", 

attempts were made to alter the allocated values contributing to the indicator 

total, but this was unsuccessful. In general, changing the relative values of 

these factors would push another sampling point into outlier status, and there 

was no lowering of the R-value for the correlation. 

This regression curve: 

"(total indicator value)= 0.695 + 79.393 (calculated Hg content of sediments)" 

was applied to the entire assemblage of subwatersheds in the basin, so that 

values of Hg in sediment would be estimated from the indicator value of 

each subwatershed. This also enabled estimated values from the model to be 

compared to field values in the relatively small number of subwatersheds the 

average model error is then measured. Excluding Las Tablas Creek data (at 

0.2 ppm), the average error was 0.00014 ppm for the 25 sites (Spreadsheet 1 

in manila folder). If Las Tab las Creek is included at a value of 0.2 ppm, the 

average error increases to 0.01384 ppm (Spreadsheet 2 in manila folder), and 

if the Las Tab las Creek data is included at 2.0 ppm, the average error 

increases to 0.2067 ppm. Thus the model appears sensitive enough to apply 

to the basin as a whole. Error distribution values are compared to field 

measured values in Tables 5-2 and 5-3. 

It can be seen that the typical error is less than 100%. On first 

inspection, a 100% error seems very large, but it represents errors that hold 

the value at essentially the same order of magnitude. For example, a field 

value of 0.02 ppm would yield a predicted value of 0.04 ppm if the error was 

to the lake a positive 100%. In view of the large variation of values that 
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0.~--------------------------------------~ 

0. 
Field of <100% error 

>100% 
Field of >1 00% error 

O.AI-------..----~~-----.-------..-------r------1 

-0.1 0.0 0.1 0.2 

Difference between real and predicted Hg content 

Figure 5-2: Comparison of prediction error to total Hg value for field collected samples 
(Las Tablas data at 0.20 mg/kg) 
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>100% error 

0.00 

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 

Difference between real and calculated Hg content 

Figure 5-3: Comparison of prediction error to total Hg value for field collected samples 
(Las Tablas data excluded). 
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might be expected from a series of field samples in the same area, as 

illustrated by sampling in the Las Tablas Watershed, it is felt that this error 

amount is reasonable. Note also that the errors are essentially evenly 

distributed between positive and negative values. Thus generated errors 

should be expected to cancel each other out, so that gro~s Hg loadings to the 

lake should be estimated with some accuracy. 

Once the expected Hg content of sediments has been calculated, the 

actual Hg loading to the lake can be estimated from the total sediment input 

5.4 Sediment Production Calculation For Each Subwatershed 

There are no sediment production studies for the Nacimiento 

watershed, but studies have been done elsewhere in the Coast Ranges and 

Transverse Ranges. These studies have been applied to the Nacimiento 

watershed, with the understanding that any figures generated would be an 

approximation. Better evaluations could be made through application of the 

Universal Soil Loss Equation (SCS, 1976) to the watershed, but this requires 

detailed analysis of soil condition, vegetative cover, slope and other factors 

that could not be accommodated in this study's budget. On the other hand, 

the variation in sediment production is extreme in those watersheds that have 

been measured, and in many cases it would be difficult to predict accurately 

the sediment production of any given year using data from previous years. 

Factors such as fire and high intensity storms play a major role in sediment 

production, and these could not be evaluated in this study. 

5.5 Sediment Data Sources 

The sediment discharge was measured in Santa Rita Creek, just south 

and west of Templeton, and in Upper Arroyo Grande Creek, both in San 
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Luis Obispo County (Knott, 1976). The sediment production ranged from 

less than 1 ton/mi. 2 in a dry year to thousands of tons/mi. 2 in a wet year. 

The 1943-1972 average sediment yield for Santa Rita Creek was 

1,800 tons/mi.2 at a gaging station sampling 2.95 mi.2, and 1,100 tons/mi.2 

at a station sampling 18.2 mi.2 (Table 8 in Knott, 1976). The report shows 

that Arroyo Grande Creek above Phoenix Creek yielded an average of 1,200 

tons/mi.2 for a watershed of 13.5 mi.2 over the years 1943-1972 (Table 7 in 

Knott, 1976). Lopez Creek, near Arroyo Grande Creek, yielded a much 

smaller 380 tons/mi.2 for a watershed area of21.6 mi.2 over the same time 

period. 

The sedimentation of Williams Reservoir in Santa Clara County was 

studied (Ritter and Brown, 1972). Using calculations partly derived from 

work on nearby creeks, sediment production averages of 900-970 

tons/mi. 2Jyear were estimated. 

Erosion and resultant sediment yields in the Transverse Ranges of 

southern California were studied (Scott and Williams, 1974; 1978). The 

sediment production figures were given in yd.3/mi.2 (cubic yards per square 

mile), but analysis of the study data show that sediment yield varies 

inversely and exponentially with watershed area. Yields of up to 25,000 

tons/mi.2 were encountered in very small (-0.3 mi.2) watersheds that 

presumably are both steep with unstable soils; like much of the land in the 

Lake Nacimiento watershed. Watershe~s of about 1 mi.2 yield 5,000 

tons/year, while 50 mi. 2 watersheds yield about 1,900 tons/mi. 2 (Scott and 

Williams, 1974; 1978). 

The sediment load in the Ventura River also within the southern 

California Transverse Ranges was studied (Hill and McConaughy, 1988). 

The 188 mi.2 watershed yielded an average 5,660 tons/mi.2 sediment yield 
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over a 1969-1981 sampling period. Annual yield calculations varied from a 

low of 25 tons/mi. 2 to a high in the great 1969 storm year of 35,800 
. 2tonsfmt.. 

The rather different watershed basins of the Trinity, Eel, Mad, and 

Van Duzen Rivers were studied (Hawley and Jones, 1969). These 

watersheds are in very steep, erosive terrain that produce some of the highest 

sediment yields in the nation. Sediment yields of 7,800 tons/mi.2 were 

found in the lower Eel River, 6,900 tons/mi.2 from the Van Duzen River, 

and 3,820 tons/mi.2 in the Mad River. These data are for suspended 

sediment yields, and presumably total (bedload plus suspended) sediment 

loads are considerably higher. The headwaters of the Trinity River had 160 

tons/mi. 2 and 780 tons/mi.2 from the area between the cities of Hoopa and 

Helena, California. 

5.6 Application of Sediment Production to the Nacimiento Watershed 

The value of 1,000 tons/mi.2 (about 1.56 tons/acre) was chosen as a 

relatively conservative sediment yield value for the entire Nacimiento 

Watershed basin. The figure was applied to the entire watershed, for 

although slope steepness was greater on the west side of the river, rocks are 

generally softer and more erodible on the east side of the river. With a 

watershed area of about 82 mi.2 (about 52,480 acres), sediment yield data 

from nearby watersheds would suggest a typical year1s production of about 

1 ,000 tons/mi. 2. 

The Transverse Range data suggests a higher value should be used, 

but those watersheds coincide with some of the fastest geologic uplift rates 

in the country, and with easily eroded, relatively young rocks (Hill and 

McConaughy, 1988; Scott and Williams, 1974; 1978). Therefore, the 
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Transverse Range data have not been applied to this study, except as an 

upper limit for comparison purposes. Similarly the very steep Klamath 

Mountain watersheds are exceptional in their sediment production, although 

some areas underlain by more resistant rocks have lower values (Hawley and 

Jones, 1969). 

The sediment production of 1,000 tons. mi.2 must be adjusted for 

watershed area when the sediment production of each subwatershed is 

calculated. Langbein and Schumm (1958) showed that sediment production 

varied inversely with the 0.15 power of the drainage area (x), such that 
(-X-)Q,ll_
5.25 . 

These numbers have been emplaced into this model to adjust for 

sediment production area, raising the production from small subwatersheds 

and diminishing the production from large subwatersheds. There is an 

inherent risk in this method, as unsampled watersheds were not subdivided 

for areal measurement purposes to the same degree as watersheds which 

were actually sampled, leading to a possible bias toward underestimation of 

sediment production from unsampled watersheds. The spreadsheet-derived 

sediment production figures, using a watershed area correction, were about 

10% smaller than production figures without the Langbein-Schumm 

correction. 

5.7 Subwatershed and Total Watershed Mercury Loadings 

The calculated Hg loadings, derived from the prediction model 

described above, are assumed to be present in all sediment derived from 

each subwatershed. There is no way to know if Hg concentrations would, in 

fact, rise in a linear manner relative to sediment production, but this 

simplistic assumption is used. The sediment production is then converted to 
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a loading value for Hg in terms of pounds of Hg per year. The data from Las 

Tab las Creek was not entered from the model, but was entered at the 

observed values of 0.2, 1.0, and 2.0 ppm, in order to ascertain the relative 

importance of production from the watershed. This was done because the 

predictive model for Hg concentrations does not accurately predict the very 

high Hg values that isolate this subwatershed from the rest. The spreadsheet 

indicates that with an assumed loading from Las Tab las Creek of 0.2 ppm, 

the total loading from Las Tablas Creek would constitute about 25.8% of the 

entire watershed's contribution to the lake. If Las Tablas Creek sediment 

had 1.0 ppm or 2.0 ppm Hg, the contributions would be about 63.3% or 

77.5% of the total annual lake Hg contribution, respectively. These values 

are subject to the qualitative criticism discussed below. 

5.8 Hydrologic Parameters Influencing Mercury Contribution from the 

Las Tablas Arm, and Unknown Factors Relative to Mercury Loading 

Predictions 

5.8.1 Mercury in Sediments Available for Transportation to the Lake 

The sediment flux through the Las Tablas Creek watershed, above the 

level of the lake itself, is controlled by several variables. The most obvious 

variable, discussed at length in other sections of this report, is the continued 

flux from the old Hg mines, including their waste dumps, processing 

facilities, and workings. Both very fine, molecular size Hg is present with 

coarse silt, sand, and gravel-size grains of cinnabar. Thus some of the Hg 

can be expected to be transported in the fines fraction, but a significant 

amount would occur also in the coarser sediment fraction. 
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The soils in vicinity of the Buena Vista Mine are contaminated with 

Hg that is presumed to have been vapor-deposited from smelter gasses (see 

Section 4.3.2 and Appendix 3). This Hg must be assumed to exist at the 

quasi-molecular level, likely adsorbed to individual soil mineral and organic 

particles, and thus could be transported easily in flowing water. The issue of 

these Hg-contaminated soils has also been addressed in Section 4.3.2 of this 

report. 

Below Buena Vista and Klau Mines, Hg-contaminated materials are 

primarily found in Las Tab las Creek sediments. It is presumed that coarser 

materials containing Hg are to be found throughout the sediment between 

the mines and Lake Nacimiento, and thus may be re-exposed, remobilized, 

and will continue to flow to the lake even if the mine facilities and 

surrounding hills cease to be a source of Hg pollution. Annual Hg loadings 

will depend on the proportion of this sediment stockpile that reaches the lake 

in any given year. It is possible that a high level flood event (100-year storm 

or larger) could scour a very significant portion of this sediment from the 

Las Tablas Creek floodplain, although much sediment would be redeposited 

in the floodplain channel as waters recede. Fine sediments would move 

more efficiently, so that a very large percentage of the Hg-contaminated 

fines (silts and clays) will likely reach Lake Nacimiento. 

5.8.2 Harcourt Reservoir as a Sediment Sink 

Harcourt Reservoir is a significant Hg-contaminated sediment sink. 

High Hg levels in the fme sediments of the reservoir indicate that 

contaminated fines are stored on the lake bottom. This storage may be 100% 

efficient for small storm events that do not cause the reservoir to spill, and 

which are followed by a long period in which sediments could settle to the 



138 

bottom of the lake. Lake bottom sediments are anaerobic, and therefore 

conversion to methylated forms of Hg would be possible and is likely 

occurring. In the event of a series of high intensity rainstorms and 

subsequent flooding, Hg-contaminated sediments spill from Harcourt 

Reservoir at the same rate that they enter the reservoir from upper Las 

Tab las Creek. Residence time for the suspended sediments would be longer 

than for a stretch of the river channel of equal length, but would still be short 

enough to enable most fines to move with the flowing water over the 

spillway. In addition, the high turbulence associated with a high intensity 

storm may stir up much of the fine Hg-contaminated sediment on the lake 

bottom, so that some of the stored Hg would be re-released for passage to 

Lake Nacimiento. Coarse sediment bedload would tend to be trapped within 

Harcourt Reservoir, and a well defined debris fan has been observed to be 

building into the upstream end of the reservoir. This deposition is burying 

previously deposited fines at the south end of the reservoir, and as the 

reservoir progressively fills with sediment it will develop an increasingly 

coarser sediment bottom that will eventually seal the fines from further 

downstream transport. In the worst case scenario, any failure of the 

Harcourt Dam would potentially release all of its trapped sediment to Lake 

Nacimiento. 

5.8.3 Remobilization of Fines from the Upper Las Tab las Arm at Low Lake 

Stage 

The level of Lake Nacimiento is seldom allowed to reach maximum 

stage causing Harcourt Reservoir and Lake Nacimiento waters to merge. 

Sediment-rich waters from Las Tablas Creek will deposit their fine 

suspended sediment load in the still waters of the lake. Whenever the lake is 
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at a low level, but receives high level floodwaters via the Las Tablas Creek 

Arm, previously exposed old lake floor sediments will be re-transported 

further north into the Las Tablas Ann and eventually into the main lake 

channel. 

5.9 Dependence of the Annual Mercury Loading Model on Balance of 

Sinks and Sources, and Some Model Limitations 

The sediment flux entering the lake is controlled by the pattern of 

erosion at the mine areas, the pattern of erosion of Hg-contaminated soils 

primarily near Buena Vista and Klau Mines, the pattern of sediment 

remobilization in the Las Tab las floodplain upstream of Harcourt Dam, the 

Harcourt Reservoir water level when a flood event passes through the 

reservoir, the stage of infill of Harcourt Reservoir, the level of Lake 

Nacimiento, and the erosion of lake sediments between Harcourt Reservoir 

and Lake Nacimiento. 

The highest total Hg levels downstream of the Buena Vista and Klau 

Mines are associated with sediment fines in the lake, and the total sediment 

in the Las Tablas Creek alluvium (Tables 4-2 and 4-3). Sediment yield 

calculations assume a mixture of bedload and suspended sediment load in 

lake contributions, and we have applied total Hg levels of 0.2, 1.0, and 2.0 

ppm to the entire sediment load. The amount of field-gathered data does not 

allow for this high degree of sophistication in the model, but it appears valid 

to state that the application of the maximum measured value of 2.0 ppm to 

the entire sediment flux would likely result in an overestimation of the Hg 

contribution from Las Tab las Creek to Lake Nacimiento. Conversely, 

application of the total Hg value of 0.2 ppm will underestimate the 

contribution. Therefore, the estimated Hg contribution value of about 77.5% 
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from Las Tablas Creek to the lake is probably too high, and the 25.8% value 

appears too low. The real Hg contribution value lies somewhere in the range 

25.8% to 77.5% and can only be made more precise by continued sediment 

and water sampling and research study. 

Nevertheless, it can be safely stated that the Las Tablas Creek 

watershed is the primary Hg source contributor for over one-half (50%) of 

the total Hg load to Lake Nacimiento. The Hg pollution source control 

measures to be discussed in Section 6 of this report will, therefore, focus on 

the measures that could be successfully implemented at Buena Vista and 

Klau Mines, the two main "point sources" for Hg sediment and water 

pollution located in the Las Tablas watershed. 
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6.0 SOURCE CONTROL REMEDIATION MEASURES 

6.1 Overview 

Two routes for Hg conveyance from the watershed sources to Lake 

Nacimiento were investigated: 1) fluvial transport, and 2) eolian transport. 

The estimate developed for the average annual Hg transport rate via each 

route indicated total estimated contributions of about twenty one (21) pounds 

of mercury per year (Section 5) from fluvial transport. The estimated Hg 

contribution from eolian transport to the lake was assumed to be negligible; 

although local eolian contributions to topsoils immediately adjacent to Hg 

mines can be significant (Bigley, 1993). Consequently, effective source 

control measures should focus on reducing rates of fluvial transport of Hg

bearing suspended sediments to Lake Nacimiento. The focus of this 

discussion of source control remediation measures will be two inactive Hg 

mines, the Buena Vista and Klau, which have been identified as "problem" 

mines (Mining Waste Study Team, 1988) and which we have identified as 

the primary source pollution locations in the entire watershed. 

6.2 Statement of Problem at Buena Vista and Klau Mines 

Since the mid-1960's, pollution abatement recommendations and 

requirements have been made by California Department of Fish and Game 

and the State Water Resources Control Board (WRCB) to Buena Vista 

Mines, Inc. owners (Mining Waste Study Team, 1988; Waller, 1979). 

Numerous reports, memoranda, letters, and miscellaneous correspondence 

pertaining to the Buena Vista and Klau Mines are available for in-office 

examination in the San Luis Obispo offices of the Regional Water Quality 

Control Board (RWQCB) (see Section 4). For the most part, the remediation 
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measures taken by Buena Vista Mines, Inc. have never been adequately 

designed and/or engineered to achieve appropriate and complete 

implementation of the RWQCB 1
S requirements (Waller, 1979). 

Pollutant soures have not been comprehensively assessed, but several 

problems still exist today. A thorough description, reflecting conditions in 

December 1992, of Buena Vista Mine and a nearby dam on the Klau Branch 

of Las Tablas Creek is found in Appendix 6. The Buena Vista Mine tailings 

pile has been covered with locally available soil material low in Hg, but the 

cover is permeable and water continues to leach through it to the underlying 

acidic and Hg-rich waste materials (Figure 6-1). In February and March, 

1992 following several rainstorms, we observed several locations near the 

interface between the cover and the tailings pile where seepage had 

occurred. Evidence of this phenomenon is the reddish color (Fe-rich) left at 

the soil surface at the lower end of the waste piles following rainstorms in 

February and March, 1992 (Photo 6-1). The underlying waste tailings 

appears to act as an aquitard, presumably due to their slowly permeable 

nature, and water that percolates through the cover perches above the waste 

and moves laterally until it eventually seeps out at some position downslope. 

The waste material in the immediate vicinity (i.e., within about 100 

feet) of the inactive Buena Vista Mine condenser facility contains numerous 

beads of elemental Hg {'1quicksilver11 
) intermixed with the sediment and soil. 

Soil materials sampled near the condenser facility and in the mine waste 

stream sediments are considered hazardous waste according to Title 22 

CAC, Sec. 66699 because their Hg levels exceed 20.0 mg· kg-1 (Table 4-2). 
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Figure 6-1: Generalized Hydrologic Cycle for a Typical Mine Waste Pile 
(Source: Hutchison and Ellison, 1992). 

Photo 6-1: Fe-rich leachate seeping out below Buena Vista Mine tailings pile 
(2/29/92). 
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In February and March, 1992, we observed these Hg-rich sediments 

being transported by runoff waters into the concrete drainage ditch that runs 

downhill parallel to Cypress Mountain Road (Photo 6-2 and 6-3). On 

February 15, 1992, employees of Buena Vista Mines, Inc. attempted to build 

a small earthen diversion dam above the concrete drain in order to contain 

the eroding sediments, but the dam quickly eroded. 

The Hg-laden, acidic, suspended sediments eventually flowed into the 

waste stream drainage below (i.e., to the north of) the buried Buena Vista 

Mine tailings piles and into the North Fork of Las Tab las Creek, to be 

eventually transported downstream and deposited as bottom sediments in 

Las Tablas Creek, Harcourt Reservoir, and Lake Nacimiento. 

As recently as October, 1992, the Buena Vista Mines, Inc. owner 

again applied soil materials, taken primarily from the ridge area south of the 

mine, as a cover for the waste stream sediments and seepage areas below the 

tailings pile. This action is being taken in an attempt to "neutralize" the 

water and sediments' acidity in the waste stream and to provide a cosmetic 

cover (personal communication, Mr. Harold J. Biaggini; 10/21/92). 

The problem with this measure of covering the most Hg-contaminated 

materials with uncompacted fill is that the sediments continue to erode and 

be transported to the North Fork of Las Tab las Creek. The extra cover 

material that is added to the waste materials is in itself suspect relative to its 

natural Hg, S, and Fe contents (our data suggest relatively high Hg and Fe 

levels in most topsoils surrounding Buena Vista Mine) (Table 4-4). 



,

Photo 6-2: Fe-and Hg-rich sediment and water below Buena Vista Mine 
processing buildings (2/29/92). 

Photo 6-3: Erosion gully that carried Fe- and Hg-rich sediment and waters 
down concrete ditch at Buena Vista Mine (2/29/92 ). 
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The Fe-oxides in the cover material can serve as an adsorbent for the Hg2+ 

released from the weathering of cinnabar (HgS). Also, the added sediment 

cover material is not adequately compacted or vegetated and, therefore, 

erodes with the first major rainstorms, adding to the total sedim~nt load of 

the North Fork of Las Tab las Creek. 

Erosion of nearly all the cover material (placed on material below the 

waste pile in October, 1992) and associated Hg-contaminated sediments into 

the North Fork of Las Tablas Creek had occurred by late January, 1993 due 

to heavy rainstorms in late December, 1992 and January, 1993 (19.73 in. of 

rain was recorded from January 7-18, 1993; Figure 6-2; Bergman, 1993). 

The erosion from Buena Vista Mine results in the relatively high suspended 

sediment loads observed in the North Fork of Las Tablas Creek from the 

Buena Vista Mine drainage to below the confluence with the South Fork of 

Las Tablas Creek on Marion Davis' property in January, 1993 and, earlier in 

this study, following heavy precipitation in February, 1992 (11.8 in. of rain 

from February 8-15, 1992; Figure 6-3; Bergman, 1992) (Photos 6-4 and 6-5). 

Klau Mine wastes have not been comprehensively assessed, but some 

of the pollution problems were noticed by the project team members. The 

waste tailings piles to the south of the Klau Mine "Glory Hole" pit are very 

steep and continue to erode directly into the Klau Branch of Las Tab las 

Creek (Photos 6-6, 6-7, 6-8, and 6-9). These steep slopes and pit could be 

regraded, terraced, and stabilized with some artificial or vegetative cover to 

eliminate contaminated sediment loading of the creek system (see later 

recommended measures). As an alternative measure, the waste materials 

along the creek banks and subject to erosion could be completely removed. 

The reservoir dam, constructed by the Buena Vista Mines, Inc. owner 

in 1961-62 on the Klau Branch of Las Tablas Creek, is mostly non-vegetated 
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Figure 6-2: Daily precipitation (in.) for January, 1993 recorded at Dover 
Canyon, San Luis Obispo County, CA. 
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Figure 6-3: Daily precipitation (in.) for February, 1992 recorded at Dover 
Canyon, San Luis Obispo County, CA. 
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Photo 6-4: Las Tablas Creek just below confluence of the North and South 
Forks on 1\1arion Davis' land (2/28/92). 

Photo 6-5: Aerial view of Las Tablas Creek and the confluence of the North 
and South Forks on Marion Davis' land (3/16/92). 
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Photo 6-6: Klau Mine pit with a small pool of acid water following 20 inches 
of cumulative precipitation (2114/92) 

Photo 6-7: Klau Mine pit with acid waters that are draining down the access 
road to the Klau Branch of Las Tablas Creek (2/24/93) 



Photo 6-8: The west access road to Klau Mine pit showing a drainage stream 
to the Klau Branch of Las Tab las Creek (2/24/93 ). 

Photo 6-9: Klau Mine tailings pile eroding directly into the Klau Branch of 
Las Tablas Creek (10/31192). 
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Photo 6-10: Klau Mine tailings pile eroding 

directly into the Klau Branch of Las Tablas Creek (2/24/93). 
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and very steep. The dam materials are considered "hazardous waste" 

according to Title 22 CAC, Sec. 66699 because their Hg levels >20.0 mg·kg

1 (Table 4-2; Sample CM21S1). As a result, the dam's downstream face 

continues to erode directly into the Klau Branch of Las Tab las <;_reek (Photos 

6-11 and 6-12). The dam could be stabilized with some artificial or 

vegetative cover to reduce sediment loading of the creek system or it should 

be removed (see later recommendations and Appendix 6). 

In order to reduce Hg loadings to Lake Nacimiento, and to reduce 

subsequent continued contamination of fish and wildlife, water discharging 

from the mines and mine wastes should ideally be eliminated and Hg-laden 

sediments should be kept at the source areas and be restricted from reaching 

the Las Tab las Creek system and, eventually, Lake Nacimiento. Generally, 

it is necessary to keep storm water runoff velocities low, to protect the mines 

and mine waste areas from storm water runoff and accelerated sediment 

erosion, and to retain contaminated sediment at each mine site or actively 

eroding geologic Hg source area. 

6.3 General Considerations for Active and Abandoned Mines 

Three strategies can be employed to prevent Hg mining wastes from 

polluting the environment (Mining Waste Study Team, 1988). The first, the 

preventive approach, is designed to prevent the pollution from ever forming. 

Where this can be achieved, it is the most desirable and generally the most 

inexpensive approach. Once the pollution has formed the next most 

desirable strategy is to prevent it from contacting either ground or surface 

waters. This is termed the segregative approach. If neither of these methods 

can be used the last resort is to treat the pollution before it is discharged to 
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Photo 6-11: Erosion gully on the downstream face of the dam south of 
Buena Vista Mine; Klau Branch of Las Tablas Creek (1017/92). 

Photo 6-12: Eroded downstream face of the dam south of Buena Vista Mine 
on the Klau Branch of Las Tablas Creek (1017/92). 
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the environment. Generally, the mitigative approach is the least desirable 

and most expensive strategy (Mining Waste Study Team, 1988). 

Several measures have been proposed to reduce Hg and acid mine 

drainage (AMD) contamination in both terrestrial and aquatic ecosystems 

(Hutchison and Ellison, 1992; Mining Waste Study Team, 1988). Mitigative 

water treatment methods must be used ifpreventive and segregative 

measures are not successful in controlling the generation and/or release of 

Hg-contaminated and AMD effluents into the environment (Mining Waste 

Study Team, 1988). 

In general, mitigative treatment methods are expensive due to 

continual operating costs, in addition to the initial investment. Process 

selection usually involves a trade-off between cost and effectiveness of 

pollution abatement. In general, it can be noted that Hg contamination, due 

to the weathering of cinnabar deposits and the historic mining exposing 

these deposits, is now so widespread that "complete" cleanup would be 

impractical in the entire Lake Nacimiento watershed or even in the whole 

length of the Las Tablas Creek riparian zone (Mining Waste Study Team, 

1988). Therefore, a prioritization must be accomplished, based on the Hg 

Loading Model described in Section 5, in order to recommend and 

implement remediation measures at the watershed locations that continue to 

potentially contribute Hg-rich pollutants to waterways that drain to Lake 

Nacimiento. The main contributing point source locations identified in this 

study are Buena Vista Mine, the dam on the Klau Branch of Las Tabhis 

Creek, and Klau Mine. The Harcourt Reservoir contains relatively Hg-rich 

sediments and these sediments flow past the spillway to the Las Tablas Arm 

of the lake during periods of high water flow. Indeed, the Harcourt 
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Reservoir is just above the southernmost part of the Las Tab las Arm of Lake 

Nacimiento when the lake is at maximum capacity. 

A knowledge of the principal mechanisms involved in the 

mobilization, transport, and retardation of Hg from mine waste will aid in 

any pollution control program and can be summarized as follows (Mine 

Waste Study Team, 1988): 

1). mechanisms facilitating Hg mobilization: 

a) the acid oxidation of cinnabar (HgS) to Hg2+ and S2-; 

b) anaerobic bacterial formation of methyl mercury (CH3Hg+) 

from Hg2+; 

c) the reduction ofHg2+ to metallic mercury (HgO) by 

organic nutrients with or without mediation by organic 

nutrients and/or microorganisms. 

2). mechanisms facilitating transport of Hg: 

a) dissolution of native mercury (HgO) in water and volatilization 

of HgO by advective or convective transport in aqueous or vapor 

phases; 

b) transport of volatile methyl mercury (CH3Hg+) compounds, 

in a reducing environment; 

c) particulate transport of cinnabar (HgS), elemental mercury 

(HgO), and sorbed mercury (Hg2+) on suspended clay and organic 

particles. 

3). mechanisms facilitating Hg retardation: 

a) inorganic and organic complexation of Hg; and 

b) reduction ofHg2+ to cinnabar in the presence of S. 
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Due to the Hg contamination that already exists in the Lake 

Nacimiento watershed, preventative, segregative, and mitigative approaches 

may be inapplicable at several locations and remediation measures mshould 

be undertaken. 
Specific remediation measures that will be considered include: 

1. PHYSICAL REMEDIATION METHODS 
A. 	 cut back slopes to reduce erosion and prevent 

slope failures on tailings piles; 
B. 	 vegetate bare soil surfaces to reduce erosion; 
C. 	 riprap streambanks to protect them from 

eroding and undercutting; 
D. 	 mine seals placement; 
E. 	 grout the mine wastes; 
F. 	 cap the mine wastes with soil-cement; 
G. 	 cover the mine wastes with a flexible geotextile cap; 
H. 	 cover the mine wastes with a concrete blanket; 
I. 	 cover the mine wastes with a webbed geotextile; 
J. 	 solidify the mine wastes; 
K. 	 vitrify the mine wastes; 
L. 	 excavate and dispose of the mine wastes; 
M. 	 sediment trap construction and maintenance; and 
N. 	 wetlands establishment. 

2. CHEMICAL REMEDIATION METHODS 
A. acid mine drainage neutralization; 
B. bactericides; inhibition of S oxidation; 
C. oxidation processes; 
D. reduction processes; and 
E. ion exchange methods. 

3. BIOLOGICAL REMEDIATION METHODS 
A. biological oxidation. 
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Each of these measures will be examined to evaluate its potential 

application at the Buena Vista and Klau Mines, as well as at other Hg source 

areas in the Lake Nacimiento watershed, in terms of the estimated decrease 

of Hg loading to Lake Nacimiento. All cost estimates will need to be 

adjusted to present-day dollars by any future implementation contractors 

with the use of the Engineering News Record construction cost index or 

comparable technical and cost guides. 

Based on consultations with RWQCB Staff, it was decided that unit 

costs for each remediation measure shall be reported but that the total costs 

would need to be completed by professional engineers and licensed 

contractors as part of any future implementation projects. 

Where possible, California-based contractors or manufacturers 

experienced or specializing in a specific technology were contacted for unit 

cost estimates. If actual "as built" costs are available for successful 

analogous projects, such costs should be used to alter appropriate adjustment 

for project scale and time. Future contractors or manufacturers giving 

estimates should be informed of (or should be required to document as part 

of their tasks) special conditions at each mine site, such as potential toxic 

metal levels (in addition to Hg), steep unstable slopes, important soil 

chemical and physical properties, and the proximity to Lake Nacimiento. In 

some cases, a range of cost estimates should be provided by the contractors 

where alternative remediation measures have conflicting monetary figures. 

It is not likely that any one strategy or remediation measure would be 

used alone but rather each would be implemented in conjunction with some 

other measures. For example, cutting back a steep waste tailings slope 

would be implemented in conjunction with riprapping of the streambank at 

the base of the tailings pile. In addition, revegetation of the slope should be 
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accomplished in topsoils that are adequately positioned, fertilized, and 

irrigated to allow for optimal vegetative growth. Plant materials adapted to 

the site conditions should be utilized. The topsoil would overlie an 

impermeable geotextile cap that would prevent leaching of precipitation or 

irrigation water to the underlying tailings, and, therefore, prevent generation 

of AMD. This foregoing example is just one generalized scenario of 

successful implementation of a combined (i.e., integrated or holistic) 

remediation strategy. Other potentially successful combinations of measures 

will be presented in later discussions. 

6.3.1 Physical Remediation Methods 

Physical remediation methods generally involve reduction of Hg loading to 

the lake by catchment dam construction and maintenance, slope stabilization, 

erosion control practices, and wetlands establishment. Erosion control measures 

should be implemented in the watershed to prevent any organic sediment, 

nutrient enrichment, and heavy metal loadings of lake and river waters. 

Erosion control reduces lake eutrophication by limiting phosphate and 

nitrate levels in water which reduces CH3Hg+ concentrations in water and 

sediments (Jackson, 1986). Stabilization of soils at abandoned and inactive mine 

sites through revegetation, surface mulching, and slope contouring are favorable 

physical remediation measures that result in a reduction of both sediment and 

toxic metal loadings to receiving waters. 

Because of the tendency of Hg to collect in topsoil zones and be taken 

up by some plants, and for CH3Hg+ and other Hg-organic compounds to 

form in anaerobic zones in the presence of bacteria, plant feeding and stream 

bottom animals are most likely to rapidly assimilate and concentrate 

CH3Hg+ compounds, as are predators that feed on plant eaters and bottom 
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feeders. If there is evidence that such biological concentration (i.e., 

bioaccumulation and/or biomagnification) is occurring in the vicinity of 

abandoned and inactive Hg mines, prohibitions may be required in the 

hunting of game and the consumption of fish in the contaminated area, as is 

already suggested for Lake Nacimiento (California Department of Fish and 

Game Regulations, 1993). 

Each of the physical remediation methods will be examined in greater 

detail in the following discussions. 

6.3.1.1 Cut Back Slopes 

Based on a slope stability analysis using Bishop's Method of Slices, 

Harrington (1988) determined that steep slopes on nonvegetated mine waste 

piles, like those found at Buena Vista and Klau Mines, have a relatively 

stable slopes during dry weather conditions but that slope stability is 

sensitive to observed groundwater table changes. 

The estimated factors of safety ranged from 1.385 to 1.343. All slope 

failure planes appear to intersect the face of the slope at the toe of the slope 

face (Harrington, 1988). During wet conditions with high soil moisture 

levels, the safety factors for the slope drop below 1.0 for failure planes 

associated with surficial failures. Improved stability during wet conditions 

could be obtained by reducing or cutting back the slope angle to <32° (about 

64% slope). Another study recommended reducing slope angles of coal 

mining waste piles to less than 32 o ( Veder, 1979). 

In addition to improving slope stability, cutting back and rounding of 

the slopes is also necessary for successful revegetation efforts. Stair

stepping (i.e., terracing) of the slopes with 8-10ft. benches is desirable to 

obtain luxuriant establishment of vegetation (Chamberlin et al., 1990). 
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In an application more like that anticipated at the Buena Vista and 

Klau Mines, the Homestake Mining Company (1982) used a design slope of 

2.5H: 1 V (i.e., about 36% (20°) slope) for reclaimed waste rock slopes 

associated with the McLaughlin Project located in the southeast corner of 

Lake County, California. Their revegetation efforts on slopes of about 40% 

were successful (Chamberlin et al., 1990). 

The analysis below assumes a reduction or cutback in the slope to 

about 30° (2.5H:1 V or about 58%) or about 20° (2.5H: IV or about 36%) 

along the entire length of the steep mine wastes at the Buena Vista Mine site. 

These slope modifications have been found to result in successful 

revegetation efforts on tailings piles of the Sulphur Bank Mine that had 

historically eroded into Clear Lake, Lake County, California causing Hg 

contamination of fish in the lake (personal communication, C. E. 

Chamberlin, 1118/93; Chamberlin et al., 1990). 

The excavated Hg-rich material could be removed from steep slope 

faces and deposited in abandoned mine tunnels or adits. To the extent 

possible, each abandoned and inactive mine site should be reconstructed to 

hold Hg-contaminated soils and sediments within the site and avoid 

expensive off-site disposal and transportation costs. 

Because the soil surface would be disturbed in any initial restoration 

phase, there is the potential for increased erosion. To mitigate this risk, the 

construction work should be carried out during the dry season (i.e., April 

through October). In addition, geotextile barriers and sediment traps should 

be erected at the base of potentially erodible slopes. Other erosion control 

measures used during restoration activities at environmentally sensitive sites 

(which would include Buena Vista and Klau Mines as well as the Bonanza 
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Mine Group located on the South Fork of Las Tablas Creek) should be 

implemented (California Dept. of Forestry, 1985). 

The estimated volume of material to be excavated in order to achieve 

this slope reduction is specific to each mine site and such detail is beyond 

the scope of this study. Detailed engineering plans should be prepared 

before final project implementation at any of the mine sites in the Lake 

Nacimiento watershed (Appendix 6). 

Given the success of the revegetation efforts at the Homestake Mining 

Company gold mine site (at Lower Lake, Lake County, California) using a 

cutback to 20° (about 36%), a slope cutback to 20° is considered to be the 

most reliable option (Homestake Mining Co., 1983). Estimated heavy 

equipment and labor costs assume a unit cost of $3.00 to $4.00/yd3 of soil 

material (Chamberlin et al., 1990). 

The impact of the slope reduction on Hg discharges from any mine 

site can be estimated using the Universal Soil Loss Equation (USLE) model 

(SCS, 1976). Using the Sulphur Bank Mine as an example, the major effect 

of any slope reduction was to reduce the slopes of the tailings piles from an 

average of about 58% (30°) to about 36% {20°) (Chamberlin et al., 1990). In 

part, this is offset by an increase in the slope length, the L factor in USLE, 

from about 37m to 53m and an increase in the area of the waste slope by 

about 50%. The rainfall erosion index, R, and the soil erodibility factor, K, 

are assumed to be unchanged. In combination with no other measures, the 

cropping management factor, C, and the pollution control practice factor, P, 

would also be unchanged so that simply reducing the slope to 20°, in the 

absence of a revegetation effort, would probably not produce more than a 

10% reduction in Hg loadings caused by so-called "gully and rill" fluvial 

erosion (Chamberlin et al., 1990; SCS, 1976). 
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6.3.1.2 Revegetation 

Vegetation, primarily woody plants, helps to prevent mass movement 

(particularly shallow sliding or surficial failures), rill erosion, and sheet 

erosion (Chamberlin et al., 1990). The major ways vegetation can reduce 

erosion are: 1) interception of rainfall by absorbing the energy of the 

raindrops and reducing runoff; 2) decreasing surface water velocities; 3) 

physical restraint of soil movement; 4) improvement of soil aggregation, 

increased porosity and water permeability caused by plant roots and surface 

plant residue; 5) increased beneficial biological activity in the soil; and 6) 

transpiration of water by plants, which decreases soil moisture levels (during 

the dry season and during winter dry spells) resulting in increased soil water 

storage capacities (Schwab et al., 1981). 

For revegetation efforts to be successful, adaptable plant species must 

be selected and the slopes must be stabilized according to specifications 

discussed above. It is recommended that native plant species rather than 

non-indigenous species be used in the revegetation efforts. Although 

introduced species may rapidly increase short-term productivity and topsoil 

cover as compared with native stands of vegetation, native vegetation have 

been proven to be superior with respect to long-term stability and 

productivity. 

The measure used by the Homestake Mining Company for 

revegetation of mine tailings at their McLaughlin facility located at the 

junction of Lake, Napa, and Yolo counties is to first cut back the slopes of 

their tailings piles to a 2.5H:l V (20° or about 36%) slope (Homestake 

Mining Company, 1983). Native planting stock was acquired from local 

producers who obtain their supplies from the project area ensuring plant 

stock adapted for survival under the prevailing conditions. A year-long lead 
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time is necessary to collect and propagate seed and cuttings from around the 

site. Seeding of local grasses normally takes place in early October to take 

advantage of winter rains. Tree and shrub species are planted either in 

October or in early spring when the soil is trafficable. 

Prior to planting or seeding, a soil testing program should be 

implemented to determine potential nutrient deficiencies as well as the soils' 

overall chemical and physical properties. Analyses should include: 1) pH; 2) 

available and total nitrogen; 3) available phosphorus; 4) available potassium; 

5) available calcium, magnesium, and sulfur; 6) electrical conductivity; 7) 

organic matter content; 8) particle size distribution (USDA textural class); 9) 

exchange acidity; and 10) depending on the soil pH, selected micronutrients 

such as "plant available" Fe, Mn, Cu, and Zn. Fertilizers, agricultural 

minerals, and other soil amendments should be added at the rates indicated 

by the soil tests (Follett et al., 1981). 

Since many of the waste rock, overburden piles, tailings piles, and 

Cypress Mountain Road materials in the Lake Nacimiento watershed have 

low soil pH's (i.e., 2 to 5), it may be necessary to neutralize soil acidity by 

adding limestone (or other alkaline soil amendments) to the soil to raise the 

pH which would reduce the solubility of metal (Cu, Fe, Mn, Ni and Zn) ions 

and reduce their potential for increased solubility and plant toxicity (Smith, 

1985). Each soils' "exchange acidity" data can be used to calculate the soil 

lime requirement (i.e., the amount of alkaline soil amendment needed to 

raise the soil pH to a desired level and expressed in pounds of calcium 

carbonate per acre) (Soil Science Dept. Faculty, 1990; Follett et al., 1981). 

There is a possibility of bioaccumulation of Hg in the food chain. The 

Hg uptake by plants depends upon site and soil conditions in addition to total 

Hg concentrations (National Research Council, 1978). The total Hg in the 
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soil is not always a reasonable indicator of the bioavailable Hg. 

Bioavailable Hg is usually a small portion of total Hg. Hg levels in plants in 

mercury mining areas do not appear to be strongly related to the Hg content 

of soils, reflecting that Hg strongly bonds to soil components, such as humus 

and aluminosilicate clays (Mining Waste Study Team, 1988). 

The main objective of any revegetation effort is to stabilize the Hg

contaminated material and other non-vegetated areas within the mine sites in 

order to reduce fluvial transport of Hg-contaminated suspended sediment. 

Cost estimates for sutface preparation (not including excavation) and 

revegetation using native grasses and woody vegetation have been 

previously reported for 2 abandoned mine sites (Sulphur Bank mercury mine 

and Homes take gold mine, both in Lake County, CA) and for a Redwood 

ecosystem rehabilitation post-logging project (Chamberlin et al., 1990). Any 

cost estimates for revegetation of the waste piles at Buena Vista and Klau 

Mines must take into account comparable factors. The unit costs are 

estimated to be $1,200/acre(A) for hydroseeding, $1,000/A for sutface 

preparation (including grading, fertilizer, soil amendments, etc.), and 

$2,850/A for plants, mainly native shrubs. 

Using the USLE to estimate the impact of revegetation on Hg 

discharges from a mine site, the major effect would be to reduce the 

cropping management factor, C, from 1.0 down to about 0.01 to 0.04, 

thereby reducing discharges by 96% to 99% compared to non-vegetated 

material (SCS, 1976; Chamberlin et al., 1990). However, if the toes of any 

waste material slopes remains susceptible to undercutting by stream erosion, 

the effectiveness of revegetation efforts along the upslope portions would be 

reduced substantially due to potential future slope failure. 
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6.3.1.3 Riprap 

Riprap is used to protect erodible materials and structures from mainly 

water erosion. Riprap structures are commonly constructed by placing 

progressively larger blocks and pieces of rock on a bed of filter cloth or fine 

gravel. The filter cloth is composed of a variety of synthetic materials 

whose primary purpose is to permit the passage of water while preventing 

the transport of sand- and silt-sized particles (Chamberlin et al., 1990). A 6

to 8-inch layer of quarry stone is placed on top of the filter cloth. On top of 

this large annor cover, more stone is placed. 

The final riprap is a dense, unifonn mass of durable angular stone 

with no apparent pockets or voids. Riprap could be used to stabilize the 

most unstable banks of Las Tab las Creek as well as the banks of large gullies 

on steep, barren slopes within the mine sites. The slopes will need to be 

initially free of vegetation and graded to a smooth, unifonn grade. The 

riprap should extend from the floodplain channel to the elevation 

comparable to the 1 00-year floodplain or to the highest point where the 

streambank remains unvegetated and subject to erosion (Chamberlin et al., 

1990). 

Blodgett and McConaughy (1986) identified the nature and causes of 

riprap failure. The major factors contributing to failure were: 

1. 	 design D50 was too small or actual stream velocities were 
larger than expected; 

2. 	 the riprap material was poorly graded with too large a size 
variation; 

3. 	 the material was poorly placed; 
4. 	 the slope was too steep; and 
5. 	 no filter blanket/geotextile was used. 



167 

They reviewed many common design methodologies. The final 

designs to be utilized should follow their recommendations in general and 

the California Department of Transportation (CalTrans) procedure for 

stream bank protection specifically. 

The riprap would be made up of well-graded stone with a specific 

gravity of 2.6 to 2.8. Assuming a design water level of 3 ft based on a 5 mi 

fetch, the design velocity would be 14 ftlsec. Given that velocity, a specific 

gravity of2.65 and a slope of20° (about 36%), then the D50 for the riprap 

should be about 1.25 ft (Blodgett and McConaughy, 1986; Building 

Construction Cost Data, 1988; Chamberlin et al., 1990). The D85ID50 

should be less than 1.5 and the depth of cover should be .:::2.5 ft. For 

example, to cover 1 ,300 ft of creek bank over a width of 40 ft to a depth of 

2.5 ft would require 4,800 yd 3 of rock. 

The unit cost for a streambank riprap project would be about 

$100/linear ft (Chamberlin et al., 1990; Water Resources Administration, 

1984). In combination with slope reduction and revegetation, the riprap 

would reduce Hg loadings from mine site gullies and contaminated creek 

banks by 96% to 99%. 

6.3.1.4 Mine Seals Placement 

Effluent drainage from abandoned and inactive Hg mines is best 

treated by sealing adits and tunnels with concrete plugs and allowing the 

workings to flood. This method has proven to be at least partially effective 

in reducing AMD discharge volumes from the Carson Drift, Klau Mine, but 

some seeps of AMD still occur (personal communication, David 

Schwartzbart, RWQCB, 1/31/93). Flooding ofHg-rich materials will 

prevent ventilation and establish reducing conditions that results in the 
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chemical stabilization of cinnabar and reduces the release of Hg2+ to the 

environment. 

In any abandoned or inactive Hg mine, the goal should be to inhibit 

oxidation of cinnabar to HgO or Hg2+; thereby preventing potential volatile 

or aqueous transport of mercury. All efforts should be made to provide an 

anaerobic environment to encourage the reduction of Hg to cinnabar, or at 

least prevent cinnabar oxidation, while at the same time trapping mobile 

mercury in organic-rich soil zones (Mining Waste Study Team, 1988). 

An important segregative method for underground mines is the use of 

mine seals. This approach can be effective, especially where the entries are 

adits (horizontal tunnels driven into hills or mountains). 

The principal difficulty with this method is that once the entries are 

sealed and the mine floods, the polluted waters, can continue to escape 

through other, previously unknown entries or through discontinuities caused 

by internal rock faults and fractures (Mining Waste Study Team, 1988). 

This is likely the case at the Carson Drift, Klau Mine, where AMD has 

been significantly reduced but not completely eliminated, apparently due to 

seepage of AMD through rock fractures (personal communication, David 

Schwartzbart, RWQCB, 1/31/93; RWQCB meeting agenda, 9/11/92; Photos 

6-13 and 6-14). Effective sealing of all of potential AMD seepage pathways 

is technically difficult and may be expensive (Photo 6-15). 

6.3.1.5 Capping Techniques and Liners 

Typical Hg mine waste, calcined retort ore and mill tailings, should be 

graded and covered with soil, and water flDw through such material should 

be minimized or prevented (Figure 6-4). Properly engineered barriers or 

liners should be incorporated, where feasible. Such barriers must function 
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Photo 6-13: Drainage stream from the Carson 
Drift, Klau Mine, several months after the last 
seasonal rains (6/15/92). 
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Photo 6-15: Acid mine drainage from the Carson Drift, Klau Mine into the 
Klau Branch of Las Tablas Creek (2!24/93). 
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properly over very long periods of time, because Hg will persist for decades 

(Hutchison and Ellison, 1992; Mining Waste Study Team, 1988). The 

purpose for using engineered barriers and covering the waste with fertile 

topsoil is to prevent particulate leaching and retain downward migrating 

dissolved or volatile Hg in the soil zone. 

Although a properly engineered liner will greatly reduce leakage from 

a Hg waste piles, there is some concern about the long term viability of 

liners (Hutchison and Ellison, 1992: Mining Waste Study Team, 1988). The 

integrity of most commercially available liners deteriorates with age, which 

could lead to the discharge of large quantities of polluted water decades after 

a liner was installed. Therefore, leachate collection and removal systems 

should be integrated into the overall design plan. Although the phenomena 

that cause deterioration are not always well understood, it is known that 

exposure to heat and sun over long periods of time will break down synthetic 

liners, and excessive drying will crack clay liners. 

There remains some controversy over the relative merits of synthetic 

versus clay liners. At the present time there are incomplete scientific 

answers to questions related to this controversy. In view of the importance 

of liners in the strategy for regulating mining wastes, more research is 

needed to address these uncertainties regarding the effectiveness of liners 

(Mining Waste Study Team, 1988). 

Tailings impoundments, properly sealed with clay liners which will 

remain water saturated after rehabilitation, together with the addition of a 

thick alkaline soil cover will be adequate in most cases (Figure 6-5; Table 6

1). If feasible, mine waste should be disposed of underground below the 
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LINER 

Figure 6-5: Impoundment Concepts used in Containment Assessments 
(Source: Hutchison and Ellison, 1992). 



Table 6-1: Current Prescriptive Waste Containment Requirements: 

State of California (Source: Hutchison and Ellison, 1992). 


WASTE 
GROUP 

WASTE 
MANAGEMENT 

UNIT 

GEOLOGIC 
SETTING 

LINER(S) 
HYDRAULIC CONDUCTIVITY 

(em/sec) 

LEACHATE 
COLLECTION 

AND REMOVAL 
SYSTEM 

A Waste Pile Natural geologic material <2> 
or single clay lincr(Jl 

$ I X 10'7 Required 

Surface Impoundment 
or Tailings Pond 

Not applicable Double liner system, both liners 
$I X 10 •7 

Outer liner: clay 
Inner liner: clay or geomembrane 

Requircd<4> 

B Waste Pile Natural geologic matcrial<2> 
or single clay lincr(Jl 

$ I X 10-6 Required 

Surface Impoundment 
or Tailings Pond 

Not applicable Double liner system, 
both liners $ I x I 0-6 

Outer liner: clay or natural 
material$ I x 10·6 
Inner liner: clay or geomembrane, 
or single replaceable clay lincr<5> 

Required
(4) 

c Waste Pile, 
Surface Impoundment, 
or Tailings Pond 

Not applicable Not applicable Not applicable 

(I) California Code of Regulations, Title 23, Division 3, Chapttr 15. Article 7. 
(2) Geologic material mus! be of sufficient thickness 10 prevent vertical movement of nuid, including waste and leachate, from the waste management unil to !he waters 

of the SLate so long as such wastes pose a lhrullO water quality. 
(3) Geomembrane liner may be used for short-term cont.ainmen! (see Subsection 2572 (fl[ I Jof this article). 
(4) Liner and leachate collection and removal system for Lailings pond must be able lo withst.and !he ullima!e weigh! of wastes. 
(5) Single clay liner (S I x J-6 em/sec) for surface impoundment, to be removed before !he last 25 percent (minimum I fool thickness) of liner is pcne!Jatcd by nuid. 

including waste and leachate. 
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water table, or if an open pit operation is contemplated, be returned to the 

open pit with the most cinnabar-rich waste placed at the bottom (Mining 

Waste Study Team, 1988). Any excess waste should be disposed of so that 

erosion or mineral oxidation is inhibited. 

If the mine wastes contains abundant pyrite, which is the case at both 

Buena Vista and Klau Mines, then the waste should be inhumed below the 

water table, with added alkaline material if acid is already being produced. 

Under these conditions, an alkaline anoxic environment will be sustained in 

which cinnabar will tend to remain stable and the solubility of Hg will be 

decreased (Mining Waste Study Team, 1988). 

The principal weapon in the mining waste regulator's arsenal is to 

require the use of a liner beneath tailings and other wastes (Hutchison and 

Ellison, 1992). The liner, whether a synthetic material or a layer of clay, 

acts as a barrier to prevent leakage of liquid effluent from the facility. What 

is believed to be the most effective, but is also the most expensive, type of 

liner is the "double liner". This consists of either two synthetic liners 

separated by a permeable bed or a clay base overlain by a permeable bed and 

covered with a synthetic liner (Table 6-2; Figures 6-6 and 6-7). The 

permeable bed serves as a leachate collection system. Occasionally, a "triple 

liner" system has been employed with a groundwater de-watering system 

integrated into the overall design (personal communication, David 

Schwartzbart; 3/20/93). 
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Table 6-2: Design Guidelines for Cover Elements (Source: Hutchison and 
Ellison, 1992). 

LAYEH PURPOSES OF LAYER LAYER 
ALTEJI..'-;ATI\T~ 

TYPICAL 
THICKNESS 

GP-\"ERAL REQCIRL\1C.'\TSIIJ 

lOP LAYER Mtnimiz.e W:ute 
Dlspersion by Surface 
Waa:r or Wmd 
Tra~~spon. 

Granular In Situ 
Mlne Waste 

Vlll'i.able . Slopes un vary from a mi.rumum of 1·1/2 pere<:nt to the 
an~;lc of repose of the malerial. . Slopes and maJerial should be st.'>hle and provide durable 
protectim against erosion. . Surfact c.onlooring to pffvent surfact runoff 
oonc.entra.llon in loc.al areas or ponding of wa1er. 

Vegtl.ation No! Af'plicable Slopes c:.nvaryfrom a minimum of 1·1/2 perc.entto 
~0 percent.. Slopes and vege1a1ion should be stable and provide 
durcible protection against erosion. . Vegewioo should be: 

Persistent. 
Drought resi sunt. 

. Adaptable to loc.al conditions 
Shallow·rooted. 

SurfW! Armor l/2·to S feet . Slopes can vary from 1·1 f2 percent to the angle of repose 

. of the waste pile. 
!·inCh nominal cnvel up IO ooulde~ approJtimaiely Jto 
4 feet in diameter. . Si:u: and lll.iclmess of a:rrnoring layer should be based on 
TaJnfall interuity and slope. 

Suppon VcgcWion. Soil 6 to~~ inches . Slopes c:.n vary from a minimum of 1·1/2 percent to 

. ~0 percent. 
Required lll.iclmess will depend on the vegeWion type, 
end use of reclaimed area, and suit.'U>ility of the 
underlying mine waste to partially suppon vege1a1ive 
growth. 

DRAL"\AGE 
LAYER 

:Vhn.irni:u: Percolation and 
Damage to lnfl.hnl!.ion 
Harrier. Prevent Cpward 
Capillary Rise of Uquids 
From the Cnderlying 
\1/aste. 

Sat>d or Gravel 12 to 24 inches . Slopes range from 1·1 f2 pen:cnt to a maxi mum comroUod 
by stability considernlions. . Adequale capacity to handle a! least fwe times the 
anticipaled infiltration nue through the layer above. . The layer should include a cnveltoe drain or equivalent 
to direct drain4£e flows away from the waste 
mana£ement wut. . In some instances. it may be necess.ary to place a soil 
filter or ge«extile over the dr.umge layer to prevent 
cloggmg by fines. 

Gwcxtile 
Ge.ogrid 
Ge.onct 

Variable 
(.)0 10 1SO miJs) 

Ptrl'ormance should be equivalent to the overlying sand 
or I>T""cllayer. 

I:'\1·1LTR/\TJo:-.; 
HARRIER LA YEH 

~ tn.i rniu: Peroolation Into 
the Waste. 

Geomembrane 20 to 60 mils Slopes range from 1·1!2 percent to a ma.-..i mum oontroUcd 
by stability c.onsideralions. 

Soil With a Low 
Hydraulic 

Conducti,ity 

12to 36 inches Hydnwlic oonductivity ranging from 
lfr' em/sec to 10'1 em/sec depending on site·spocific 
ne.eds.. Should be loc.a!ed below the frost wne. 

SPECIAL LAYER ~! inimi..z.e Damage to 
Infiltration Barrier. 

Biooc Barrier l2 to 24 inches Large maJerials, such as coarse cnvel, cobbles, etc. 

Suppon Cover and 
Promote Drainage, 

Foundalion Layers Minimum 24 inches 
and up to tern of 

feel, &.I required for 
cmtrol of drainage 
and COfllouring of 

swfact. 

. FrequenL!y un be cmstJ'Ucted from mine waste such as 
centnfuged coarse tailings fractions, spent ore, or waste 
rock.. These layer1 may require compaction to assure a.dequale 
suppon of overlying cover !aye~. 

( l) The mu.~~nwn siopc nn&ca have~~~<:~¥« l..~Of...C cpe.cifie.d by EPA (1989), ~ O..w::r minimum 1lopto~ !\alo'c been u.lC('~ tx.c.aw.c of \ht tarac arc:as o( min< v.vtc 
mana&CJT~c.nt uniu and bc.cauu u.ilin.Jt bc.&ch ln,lu a.n: ~ntly in 1ht ran1c of 1~ 1n pcra:nL. 1be f'LC.C:Ptt m.ui.mum 11opcs h•"'c bcc.n t.elc..c:t.c.d ~ •cc:onvnodatc lht itotp 1lopc:s 
l)'J'ltally J:UOC1J:cd wn.."l mine wu:1..c piles. Pnrutc: h.u s.hO'IW'Tl Lhu mine wuLt miJ'I..I&e"t'nenl u.n.lts an bt s..ac.ce.ufullY dou.d \VIth !.his lu'c::r llopt nns,c 

http:s..ac.ce
http:u.ilin.Jt
http:mana&CJT~c.nt
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WASTE 
ROO< OR..~, 
L~CM 
RESIDUE 

<> 

......... 
• • • a ~ • • •. . . . . . . . . 
a 0 • o o o o • 

1::::) •••••••••••••••••. . . . . . . . . . . . . . . . .. . . . . . . . . 
~ . . . . . . . . . . . . . . . . . . ' . 

TAIU....S 

FIUFOA 
COHfe><..f'l .... 
OACO\I'ER 
t;uPPOFIT 

• 0 ••• 0 •• 0 • s ••••• 
• • ~ • • • • 0 • ,. • • • • • 

• 0 * ............. .. . . . . . ~ . . . . . ... .. . . . . . . . . . . . . . . . . ~ 

• • 0 ••••• 0 ....... 0 • 

•••••••••••••••• 0 • 

• •••••••••• 0 ••••• 

••••••••• 0 ••••• 0 •• 

• 0 • 0 ......... 0 •••• 

• • • • • • • • • • 0 •• 0 ..... 

• • 0 •••••••••••••• 

• • 0 • • 0 • • • • • • • ~ • • ? • 
• •••••• 0 ••••••• * • 

• ••••••••••••• 0 ••• 

• ••••••••••••• 0 •• 

(E) Multilayered Soil Cover and Revegetation (F) Surface Recontouring Plus a 
Multilayered Soil Cover and Revegetation 

F'IU FOR 
co-,'TOUR!~(; 
OACOY!R 
Sl..O'POFIT ------li!.-1 

.................. .. . ~ . . ., . . . . . . . . . . . ................. 
• • • • • • • • • • • • • • 0 ••• 

TAIUNGS 
................ 0 •. . . . . . . . . . . . . . . . . . 
• • • • • 0 ••••••••••• 

• 0 •••• 0 ••••••••••• 

(G) Surface Recontouring Plus a 
Multilayered Cover Incorporating 
Infiltration Barrier 

. . . ~ . . . . . ~ . .. .......... "' .. . . . . . . . . . ~ . . . . . .. . ~ . . . . ' . . . . . . . .. ............. .. . . . . . . ~ . . . . . . ... . . . . ~ . . . . . . . .. . 
• • • .. • • 9 • • • • • ~ • • ............... 

(H) EPA Recommended Cover for 
Hazardous Wastes l'l 

'-'!Gf:TATlOHOA 
WAfAC£ Al\1.00<4 
(S-10" COIIBU:$, 
GR.A\Ifl) 

SOCL OR.AIIi"Ge 
~J>Yt:RPn'"' 
CIA CEOS'I'WHE"TlC 

LOW·PI:""~BILil'l' 
SOIL IJ>Yf:R f.l•la' 

TAili~S 

1' 1 EPA (1989). 
12

l Minimum Thickness 

Figure 6-6: Typical Mine Waste Management Unit Covers (Source: 
Hutchison and Ellison, 1992). 
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(I} Tile most common composite liner system involv~ a geomembrane 

overlying a low hydraulic conductivity soil. 


(2)1nese composites also include: a geomembrane: overlying natural low -hydraulic conductivity soil or rock. 
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6.3.1.5.1 Grouting 

Grouting is the injection of gelling and solidifying agents under 

pressure into the ground. Grouting is frequently used to reduce the 

permeability of a mass of material thereby reducing mass movement 

Cement and water is the most widely used grout mixture although clay, clay 

and cement, asphalt, and various chemical solutions are also utilized 

(Bowen, 1981). It is recommended that a sodium silicate derivative 

chemical grout be used for any acidic fine-grained soil types encountered at 

a mine site (Chamberlin et al., 1990; Pressure Grout Company, South San 

Francisco, CA). Sodium silicate solution is generally considered nontoxic 

and noncorrosive. Sodium silicate is commercially available as an aqueous 

solution. It has many industrial uses including adhesives, catalysts, 

deflocculants, and bleaches (Karol, 1983). Most silicate formulations are 

considered permanent although strength varies with grain size of the soil 

being grouted. There is some risk of failure over a 5 to 10 year period. 

Grouting is not effective underwater. Riprapping to protect the toe of the 

slope would be necessary (Chamberlin et al., 1990). 

For a grouting project at any abandoned and inactive mercury mine in 

the Lake Nacimiento watershed, slopes would need to be stabilized by 

cutting back as described above, grout would then be injected to form a four 

to six inch blanket of grouted soil near the surface. Estimated unit costs are 

$1.50tft2 (Chamberlin et al., 1990; Pressure Grout Company, South San 

Francisco, CA). The area to be grouted varies depending on site specific 

conditions at each source area. In combination with slope reduction and 

riprap, grouting would reduce Hg loadings for most mine sites by >90%. 
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6.3.1.5.2 Soil-Cement Cap 

Capping of the mine wastes with a soil-cement serves a similar 

purpose as grouting in that it reduces the permeability of a mass of material 

and associated mass movement. This alternative would require the removal 

of existing vegetation, filling of cracked ground, and application of a soil

cement surface barrier. An estimated unit cost is $725,000/ A 

(Environmental Protection Agency, 1986). In combination with slope 

reduction and riprap, soil-cement caps would reduce Hg loadings from a 

mine site by >90%. 

6.3.1.6 Geotextile Caps 

A variety of commercially available geotextile materials are marketed 

as alternatives to soil-based cover materials. These include flexible 

membranes, concrete blankets, and webbed/cellular materials. At the Buena 

Vista and Klau Mines, the use of this and other remediation and abatement 

approaches should be preceded by a complete site characterization 

considering many factors (Table 6-3; and Appendix 6). 

Grading operations will likely be necessary in some portions of each 

of the mine sites because of the steepness of some of the actively eroding 

slopes. 

6.3.1.6.1 Flexible Geotextile Membranes 

Flexible membranes must be resistant to tearing and should be placed 

over a smooth buffer of soil. Damage to membranes may be caused by 

exposure to sunlight, burrowing animals, and deep plant roots. Therefore, 

trees that have deep, strong tap roots should not be used in any revegetation 

efforts. 
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For erosion control using a geotextile material, a blanket of the 

geotextile is laid down on the slope then covered with a three to six inch 

bedding layer followed by a layer of riprap or revetment (Chamberlin et al., 

1990; Philips Fibers Corporation, Sacramento, CA). Estimated unit costs are 

of $2.00/yd2 for the geotextile and $48.00/yd2 for the revetment 

(Chamberlin et al., 1990; Philips Fibers Corporation, Sacramento, CA; 

Building Construction Cost Data, 1988). 

6.3.1.6.2 Concrete Blankets 

Concrete blankets are constructed of water permeable, double layer, woven 

fabric forms which are pumped full of fine aggregate concrete (Chamberlin 

et al., 1990; Nicolon Corp., Norcross, GA) Site preparation consists of 

removing rocks, brush, roots and large soil clods from the mine site. The 

fabric forms are anchored into a trench approximately two feet deep by one 

foot wide at the top of the slope. The fabric form panels are put into position 

and rolled down the slope, adjacent panels are sewn or zipped together. The 

fabric is then pumped full of concrete to produce a 4-inch thick cap. 

Estimated unit costs are $0.50/ft 2 for the fabric forms, $60.00/yd3 for the 

concrete, and $17.00/yd3 for labor (Chamberlin et al., 1990; Nicolon Corp., 

Norcross, GA). 

The manufacturer of concrete blankets (Nicolon Corporation, 

Norcross, Ga.) claims that the blanket would perform on slopes of 45° or 

steeper so that no slope reduction would be necessary. No independent 

confirmation of this claim has been made (Chamberlin et al., 1990). 
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Table 6-3: Site-Specific Factors to Consider in Liner System Design 
(Source: Hutchison and Ellison, 1992). 

Potential Waste Material Toxicity 
Chemical Propenies of the Waste 
Physical or Chemical Changes Resuhing from Mining or Ore Extraction 
Net Acid Generation Potential 
Soluble Constituents for Anticipated Environmental Conditions 
Special Treaunent or Neutralization Procedures Utilized 
Total Resulting Mass of Soluble Constituents Which Could Be Mobiliz.ed 
Under Site Conditions 

General Water Resource Values at the Site 
• 	 Adequate Quality for Beneficial Use 
• 	 Sufficient Quantity for Beneficial Use 


Existing or Identified Beneficial Uses 

Probable Locations of Future Beneficial Uses 


Leachate Availability to the Em·ironmcnt 
Waste Material Characteristics 

Hydraulic Conductivity Based on Direct Measurement, 
Laboratory Tests, or Grain Siz.e and Density 
Moisture Retention Capacity 

• 	 Thickness of the Waste 

Site Climatic Conditions 

Provisions at Closure to Restrict Infiltration 


Site Factors 
• 	 Topography 

Geology, Including Predictability of Uniformity and/or the Potential 
for Discontinuities 
Unsaturated Zone Thickness, Continuity, Hydraulic Conductivity and 
Natural Water Content 
Potential Migration Time for Seepage to Ground Water 
Effects of Climatic Conditions on Long Term Unsaturated Zone Migration 
Characteristics 
Constituent Auenuation Potential 

Waste Unit Management Practices 

Facility Type 
Waste Placement Method 
Protection of Liner Systems From Environmental or Physical Damage 
Controls on the Hydraulic Head 
Risk Reduction Practices, Such as Placement of Underdrains, Sub-Aerial 
Depositions, Limited Time of Operations 
Non-Liner Barriers, Such as Cutoff Walls 
Installation of Special Early Warning Monitoring Systems 

http:Mobiliz.ed
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6.3.1.6.3 Webbed Geotextiles 

Webbed geotextile material consists of a cellular grid of high density 

polyethylene (Chamberlin et al., 1990; Soil Stabilization Products Co., 

Merced, CA). Installation consists of anchoring the unexpanded material 

with ground stakes to the top of a slope. Each section of material is then 

expanded and then anchored to the toe of the slope with ground stakes. 

Clean fill material is then dropped into the webbed material with a backhoe. 

The fill can then be hydroseeded with grasses. Estimated costs to cover soils 

to a depth of 4 in. include unit costs of $0.79tft2 for geotextile, $0.60/yd2 for 

labor, $14.70 yd3 for topsoil, and $1,200/A for hydroseeding (Soil 

Stabilization Products Co., Merced, CA) . 

6.3.1.7 In-Situ Methods 

The prior alternatives basically cover the mine wastes with vegetation, 

fabric, or other material to form a barrier between the wastes and water. In 

contrast, solidification and vitrification fix the wastes in place by converting 

them to a solid that is not susceptible to erosion or leaching. 

6.3.1.7.1 Solidification 

Solidification of the mine waste piles will convert the tailings into a 

chemically inert stable mass and eliminate pollution from mine wastes to 

any drainage channel. Solidification is achieved by excavating the wastes 

and then mixing or blending of the waste with crystallizing, polymerizing, or 

gelling agents. The estimated unit cost is $50.00/yd3 (Chamberlin et al., 

1990; McLaughlin Enterprises Inc., Claremont, CA). 
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6.3.1.7.2 Vitrification 

Mine wastes may be solidified by the application of sufficient heat to 

cause vitrification (Smith, 1985). Heat can be generated by passing an 

electric current through the ground. At sufficient temperatures soil or rock 

components will melt, organic components will decompose, and metallic 

components will fuse or vaporize. One major disadvantage of this method 

For Hg-bearing wastes is the potential volatilization of Hg vapors and 

consequent air pollution during the initial heating process. Therefore, the 

materials would need to be placed in a closed system chamber. When 

cooled the fused mass will solidify into a crystalline solid. Estimated unit 

costs are $100.00 to $250.00/yd3 (Chamberlin et al., 1990; Smith, 1985). 

Both of these in situ techniques would effectively eliminate >99% of the Hg 

discharges from the mine site by fluvial or eolian transport. 

6.3.1.8 Excavation and Disposal 

Complete excavation of the mine wastes from each abandoned and 

inactive mine in the watershed would significantly reduce the sources of Hg 

contamination to the lake. Disposal of the waste at an approved hazardous 

waste disposal site would be necessary in some cases due to the high levels 

of Hg in the material; especially Cypress Mountain Road materials from 

Klau Mine north to Chimney Rock Road intersection (Bigley, 1993), the 

calcined retort wastes at Buena Vista and Klau Mines, and the dam material 

for the Klau Branch reservoir. 

Costs for this alternative assume that the wastes would be brought to 

the Chemical Waste Management, Inc. Kettleman Hills facility near 

Kettleman City, California. Estimated unit costs include $3.00/yd3 for 

excavation, $12.50 to $25.00/yd3 (i.e., assuming 16 yd3fload, 2-4 hrslload, 
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and $100/hr for hazardous materials transport) for trucking from the mine 

sites to the Kettleman Hills facility and disposal at the Kettleman Kills 

facility at an additional unit cost of $120/yd3 (Chamberlin et al., 1990; 

Chemical Waste Management, Newark, CA; Jackson Equipment Co., 

Middletown, CA; Dutra Trucking, Arcata, CA). 

These costs do not include the necessary restoration costs for the area 

uncovered by the removal of the wastes. However, one can readily calculate 

the enormous total costs of implementing this remediation measure. 

6.3.1.9 Sediment Trap Construction and Maintenance 

In the event that Hg already contaminates stream sediments, as is the 

case in the Las Tablas Creek floodplain, the use of dams and sediment basins 

(traps), in which fine suspended sediments and bed material sediments will 

settle, may provide the best form of containment. The Harcourt Reservoir 

dam on Las Tablas Creek was constructed in the 1950's. It is used as a 

source of water for cattle, as a source of irrigation water for adjoining 

agricultural lands, and for private recreational fishing. It is a state registered 

dam and receives annual inspections from the California Division of Safety 

of Dams. 

The Harcourt Reservoir has served the function of trapping Hg-rich 

suspended and bedload sediments, even though it was not initially intended 

to be used as a sediment retention area for Hg-contaminated sediments 

(personal communication, Ms. Donna M. Harcourt, 1/31/93; Table 4-3; 

Figure 4-1 ). 

Sediments can be removed from mine drainage and tailings pond 

effluents in large, quiescent clarification ponds. Sediments settle by gravity. 
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The detention time of the system should be at least several hours to allow 

finer particles to settle. Ultrafine and colloidal material can be removed by 

aggregation with chemical flocculants, such as the organic polymers widely 

used in mineral processing clarification processes (Mining Waste Study 

Team, 1988). 

Dams or sediment traps can be built on streams and rivers just downstream 

from a Hg point source. We recommend that a study be undertaken to locate 

another potential sediment retention reservoir site closer to Buena Vista and Klau 

Mines. The main reason for locating a site upstream of the Harcourt Reservoir is 

because the reservoir periodically almost becomes part of the Las Tab las Arm of 

Lake Nacimiento when the lake is at full capacity (most recently in Spring, 1983, 

and approaching maximum level in March, 1993). At these times of maximum 

lake water levels, the potential for movement of Hg-laden sediments from 

Harcourt Reservoir out to the Las Tab las Arm and then to other parts of the lake 

is enhanced. Additionally, the Harcourt Reservoir is rapidly filling with sediment 

(Photos 6-16 and 6-17) and an engineered study should be undertaken to 

determine its sediment-bearing capacity so that Hg-rich suspended sediments do 

not continue to be transported over its spillway during periods of high water flow 

(as we observed during late February, 1992, and from early January, 1993 

through March, 1993 following periods of high precipitation totals in the upper 

Las Tablas Creek watershed). 

Depending on dam size and location, some downstream sedimentation of 

Hg-rich sediments can be reduced. The physical mixing of lake sediments can 

potentially dilute sediment Hg concentrations by mixing "hot spots" of high Hg 

concentrations with nearby sediments lower in Hg content (Rudd et al., 1983). 



Photo 6-16: View of the central and southern parts of the Harcourt Reservoir 
at relatively low water levels (12/13/91). ... 

' '~ ... ' 

Photo 6-17: View to the north toward the Harcourt Reservoir, rapidly filling 
with sediment-rich water (2/14/92). 
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Another dam of concern is located in the Klau Branch of Las Tab las 

Creek just upstream of the Klau Mine. It was constructed in 1961-62. It 

first filled with water during the 1962-63 rainy season. 

It has been used as a source of water for cattle. It has been witnessed 

that the Buena Vista Mines, Inc. owners also periodically used water from 

the reservoir until about 1970 in order to spray-irrigate the hot calcined retort 

waste in an attempt to mitigate the evolution of noxious sulfurous odors in 

the vicinity of the tailings piles (personal communication, Mr. Raymond 

Dodd, 1 0/31/92). 

If any reservoir spillway becomes plugged with logs and other debris 

during periods of high runoff, the water may flow over an earthen dam at the 

lowest point along the crest of the dam. Since the flow is concentrated, the 

water velocity is often sufficient to erode the crest of the dam and thus 

increase the overflow rate. Catastrophic dam failures can result. This 

potential failure can be temporarily prevented by maintaining a clear 

spillway. 

The spillways at both the Klau Branch reservoir and the Harcourt 

Reservoir are cut almost completely to native bedrock and if they are 

maintained so as to remove all large "debris plugs" they should function well 

and reduce the potential for breaching of the dams' faces during periods of 

high water. 

However, because of the high salt contents, and perhaps due to metal 

toxicities in the Klau Branch dam material, little or no vegetation covers its 

surface. There are portions of the face that are being actively eroded and 

contaminate downstream portions of the Klau Branch and South Forks of 

Las Tablas Creek with AMD and heavy metals (Photos 6-18 and 6-19). If 
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Photo 6-19: Large gully on the downstream face of the dam south of the 
Buena Vista Mine, Klau Branch, Las Tablas Creek (2/24/93). 
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the dam and reservoir are to remain competent, some integrated grading, 

riprapping, and revegetation effort should be carried out as soon as possible 

to avoid catastrophic failure of this Klau Branch dam. 

Otherwise, a decision should be made to slowly drain the reservoir 

and remove the dam material and reservoir sediments if they are also found 

to be Hg-contaminated. The material could be placed in the abandoned 

tunnels and adits at Buena Vista Mine or they could be placed over the ridge 

to the north in the depressional area above the inactive Buena Vista 

processing buildings (see Appendix 6). 

The lower part of the spillway channel which carries the overflow for 

the Klau Branch reservoir cuts through soft unconsolidated sediments and 

will require armoring or riprapping to reduce further downstream transport 

of Hg-laden alluvial sediments. The channel below the dam could be 

armored using riprap (Dso = 0.5 ft with Dss!Dso < 1.5 to a depth of 1.0 ft), 

with an estimated channel protection unit cost would be $48.00/yd2. 

6.3 .1.1 0 Wetlands Establishment 

The treatment of AMD by chemical means has recently been 

estimated to cost the mining industry over one million dollars a day 

(Kleinmann, 1987). Attempts to find an inexpensive means of treating this 

waste have resulted in increased interest in the use of integrated biological, 

chemical, and physical treatment processes, particularly that of wetlands 

technology, which is not only less expensive than many chemical processing 

technologies, but requires the addition of few or no chemicals (Mining 

Waste Study Team, 1988). 

Wetlands can be effective in treating AMD flows, with pH's as low as 

3, because the vegetation in the ponds removes metals from acid waters by 
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adsorption, uptake, and filtration. A major advantage of the use of wetlands 

is the relatively low cost. 

Wetlands technology may not be suitable for all Hg mine sites in the 

Lake Nacimiento watershed because of unsuitable environmental conditions, 

mainly a lack of a reliable water supply. Wetlands require continuous flow, 

and they have little tolerance for variations in the flow rate (Mining Waste 

Study Team, 1988). The water depth also is critical for marsh-type wetlands 

dominated by Typha (cattails) in that the treatment efficiency is greatest in 

shallow (2-4 inch) waters. 

Nevertheless, the considerable benefits of wetlands technology for 

AMD control, the principal benefit being its affordable nature, warrants their 

application to suitable locations. 

The use of artificial wetlands as a technique for the control of AMD 

has been widely adapted for coal mines in Appalachia, where over 100 such 

systems are in operation (Kleinmann, 1985; Girts and Kleinmann, 1986). A 

survey conducted by the U.S. Bureau of Mines (USBM) indicates that a 

typical wetland site consists of three ponds, treats 20-30 gallons of AMD per 

minute, and contains a total area allocated on the basis of 600 ft2/gpm 

(Kleinmann, 1987). Drainage from the mines is heavily laden with acid, 

iron, manganese, and sulfate. Heavy metal concentrations typical of AMD 

at the Buena and Klau Mines are not typical of coal mine drainage waters, 

and heavy metal effects were not a consideration in any of the mine studies 

cited (Mining Waste Study Team, 1988). The cost of establishing a wetland 

in Appalachia in the early 1980's was given as less than $1.00/ft2, and the 

subsequent maintenance costs are very small (Girts and Kleinmann, 1986). 

The overall environment of wetlands systems is complex. The 

vegetation zone is dominated by species of Sphagnum (moss), Typha 
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(cattails), Equisetum (horsetails), and sedge, which remove metals from acid 

waters via absorption, uptake, and filtration. Iron- and manganese-oxidizing 

bacteria are active in the upper water depths, as are sulfate-reducing bacteria 

in the lower, anoxic depths (Kleinmann, 1987). 

Earlier studies focused on the use of Sphagnum to improve the water 

quality of AMD. Sphagnum recurvans have been shown to tolerate iron 

concentrations up to 500 mg·L-1 for up to four weeks in the laboratory. 

However, tolerance levels in the field are considerably lower ( <150 mg· L -1) 

due to the less than ideal conditions in the field (Kleinmann, 1985). Typha, 

however, have been more successful with respect to their ability to survive 

in AMD, and thus are more commonly used at present (Kleinmann and 

Erickson, 1986). 

Many of the wetland systems adapted to AMD operate at pH's near 3. 

Metal removal is most pronounced in shallow wetlands (two to four inches 

deep) that are dominated by Typha (Kleinmann, 1987). Most of the systems 

treat approximately 80 gallons per minute and have a detention time of 10 

days (with a range from 4 hours to 75 days) (Girts and Kleinmann, 1986). 

Acid removal has been shown to be efficient in systems constructed 

over a layer of limestone; however, this feature is not essential. In these past 

studies, Fe was the metal of most concern and was shown to be removed at 

efficiencies of 34 to 99 percent with 50 percent of the wetlands reducing the 

Fe concentration in water to less than 3,000 J..lg·L-1 (Kleinmann, 1987). All 

systems in use prior to 1987 were partially successful, and some completely 

eliminate the need for further chemical water treatment of applied AMD 

prior to downstream discharge to receiving waters (Kleinmann, 1987). 

The development of artificial wetlands for the treatment of AMD is 

not problem-free. As mentioned earlier, wetlands require continuous water 
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flow, with very little variation in flow tolerated, particularly by Sphagnum. 

Water depth is also critical for marsh-type wetlands dominated by Typha in 

that treatment efficiency is inconsistent in water that is greater than 2 feet 

deep and is very consistent in water that is 2 to 4 inches deep. In a survey of 

20 wetlands constructed prior to 1986 in Pennsylvania, Typha survival was 

100 percent, whereas Sphagnum survival was marginal. In addition to 

vegetation mortality, problems included breached banks, proper water depth 

regulation, sedimentation at the inlet, sedimentation at the outlet, muskrats 

and other burrowing animals, washouts, and channelization within the 

wetlands. Limestone and/or fertilizer additions were required at several of 

the wetlands to maintain optimal vegetative growth (Girts and Kleinmann, 

1986). 

The USBM is currently investigating the applicability of wetland 

systems for the treatment of AMD with elevated concentrations of heavy 

metals such as copper (Kleinmann, 1988). In addition to problems 

associated with heavy metals, treatment of AMD in the Lake Nacimiento 

watershed is further complicated by the seasonally dry environmental 

conditions. Vegetation capable of surviving periods of no flow or even 

periods of drying will have to be examined. Thus, it is necessary to identify 

suitable vegetation for these harsh conditions. 

More general questions pertaining to the efficiency of metal removal 

by wetlands, and to design parameters that will effectively regulate flow 

rates and water depth need to be answered. If adaptable to Lake Nacimiento 

watershed conditions, wetland systems may be applicable as an inexpensive 

means of treating drainage from abandoned, inactive, and active mine 

operations. 
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The successful application of artificial wetlands to treat AMD typical 

of Buena Vista and Klau Mines is more tenuous than that of Appalachian 

mines in that high concentrations of heavy metals, including As, Cd, Cr, Cu, 

Hg, Ni, and Zn, and are associated with the drainage waters (Kleinmann, 

1988). Many of these metals are toxic to plants at levels far lower than those 

typical of AMD found at Buena Vista and Klau Mines. The ability of 

wetland species to survive under these conditions would have to be 

investigated and poses another excellent research study topic for the on

going "Mining Study" being conducted by the Central Coast RWQCB staff. 

An additional problem, which may make this approach to AMD clean 

up infeasible, is that wetlands are attractive areas for birds and other wildlife. 

The high concentrations of heavy metals (notably Hg, Ni, and Cr) associated 

with AMD at some mines like Buena Vista and Klau, may prove toxic to the 

vegetation used in wetlands establishment. Finally, because wetlands are 

attractive to migrating birds, the impact of toxic marshlands on migrating 

bird populations can be detrimental. Special steps would have to be taken to 

prevent fauna from entering these wetlands. 

Biologists from the California Department of Fish and Game should 

be consulted before any full scale implementation of wetlands technology is 

undertaken at the abandoned and inactive Hg mines in the Lake Nacimiento 

watershed, so that approval can be given regarding the long term viability of 

this technology in light of the concerns regarding wildlife. 

6.3.2 Chemical Remediation Methods 

Most successful chemical treatment methods have one objective of 


maintaining the pH of water and sediments near neutral (i.e., 6.5 to 7 .5). The pH 
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will in turn regulate the solubilities of potentially toxic heavy metals like As, Cd, 

Cr, Cu, Hg, Ni and Zn. These metals are most soluble in acid pH's and therefore 

result in gr~ater environmental degradation in acid environments. 

The redox potential (i.e., the Eh; measured in m V or V) is the other 

important chemical property that determines the metal species that is likely to be 

present and, therefore, its relative solubility (Garrels and Christ, 1966). 

Generally, the higher the redox potential, the more aerobic (i.e., more air and 

more gaseous oxygen) the environmental surroundings. Many metals are, 

therefore, oxidized with an increase in Eh and the oxides of most metals are less 

soluble and, subsequently pose less of an environmental hazard. This is not true 

for all metals and the so-called "Eh-pH phase diagrams" that are readily available 

in the chemical literature can be consulted to help one determine which form of 

the metal is to be expected based on the ambient pH and Eh levels of any 

ecosystem (Garrels and Christ, 1965; Lindsay, 1979). 

Many studies that attempt to measure the spatial variabilities of pH and Eh 

in the inherently complex sediment and soil environments indicate that micro

environments exist in natural systems in which there are large pH variations (as 

much as 2 units) and even greater differences in Eh (up to hundreds of millivolts) 

over relatively short distances (Fanning and Fanning, 1989). However, some 

level of "dynamic equilibrium" will be established over time which allows earth 

scientists the ability to generalize about Eh-pH condition differences between 

such diverse environments as "oxidized" hillslope soils and "reduced" lake 

bottom sediments (Garrels and Christ, 1965). 

Chemical remediation methods discussed below include such diverse 

methods as treatment of reservoirs by adding sulfides to stabilize Hg, increasing 

water pH by liming with neutralizing agents, and adding selenium (Se) and 

manganese (Mn) to complex and immobilize Hg. 
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6.3.2.1 Acid Mine Drainage Neutralization 

The production of acid mine drainage (AMD) is accomplished by a 

multi-staged, oxidative process (Table 6.4; Hutchison and Ellison, 1992; 

Mining Waste Study Team, 1988). An understanding of the necessary 

reactants in each step of the total AMD process is fundamental to inhibiting 

the overall process from occurring. 

The most common mitigative measure currently used, or considered 

as a viable economic alternative to other control measures, is neutralization 

of excess acid (Holland et al., 1968; Bialas and Middleton, 1977). This 

measure is appropriate for acid mine drainage (AMD) treatment at active 

and inactive mines, where each component of a mine may generate AMD 

(Table 6.5). Neutralization of acid has the secondary beneficial effect of 

stabilizing soluble heavy metals (Hg, Cr, Ni, etc.) by precipitating them as 

insoluble hydroxides or oxides. 

A major disadvantage of this acid neutralization approach is the 

treatment process must be continued for as long as the acidic effluents are 

produced, which in the case of AMD can be decades. Furthermore, the 

process generates large quantities of heavy metal-laden sludge that pose a 

difficult disposal problem. In fact, the volume of sludge can often exceed 

the volume of the original waste primarily due to the addition of neutralizing 

materials. 

A change from an acidic to alkaline pH by adding neutralizing materials 

might lower concentrations of CH3Hg+ in the water column. This reduction of 

CH3Hg+ in the water column may result in lower Hg accumulation by fish 

species which accumulate Hg through the process of filtering Hg-rich waters 

through their gills (D'Itri, 1990). Hg concentrations in fish are generally greater 

in lakes with acid pH levels than in less acidic lakes (D'Itri, 1990). 
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Table 6.4: Multi-Staged Process of Pyritic Sulfide Oxidation (1) (Source: 
Hutchison and Ellison, 1992). 

REACTIONS 

2. 4Fe2+ + 10 H20 + 0 2=4Fe(OH)J + 8H+ 

STAGED PYRITIC SULFIDE OXIDATION 

STAGE 1 

Reaction 1 proceeds both abiotically and by direct bacterial oxidation. 
Reaction 2 proceeds abiotically and slows as pH falls. 

Chemical Conditions: 	 pH above approximately 4.5, high sulfate and low iron concentrations, 
little or no acidity. 

STAGE 2 

Reaction 1 proceeds both abiotically and by direct bacterial oxidation. 

Reaction 2 proceeds at a rate detennincd primarily by the activity ofT. ferro-oxidans. 


Chemical Conditions: 	Approximate pH range of 2.5 to 4.5, high sulfate levels, acidity, total iron 
increasing, and a low fe3+fFe2+ ratio. 

STAGE 3 

Reaction 3 proceeds at a rate totally detennined by activity ofT. ferro-oxidans. 
Reaction 4 proceeds at a rate primarily detennined by rate of Reaction 3. 

Chemical Conditions: 	pH below approximately 2.5, high sulfate levels, acidity, total iron and high 
fe3+fFe2+ ratio. 

(1) Reference: Kleinmann et al., 1981. 
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Table 6.5: Potential Sources of Samples for Acid Generation PredictionO) 
(Source: Hutchison and Ellison, 1992). 

MIJ\1£ COMPONENT FOR WHICHARD 
TESTING MAY BE REQUTRED 

SOURCES OF SAMPLES FOR ACID GENERATION 
PREDICTION 

Pit Walls Drill Core and Cuttings 

Underground Exploration Passages 

Trenches 

Pit Walls (Existing Mines Only) 

Rock Surrounding Underground 
Workings 

Drill Core 

Underground Exploration Adits 

Mining Faces and Walls (Existing Mines Only) 

Excavated Waste Rock (Existing Mines Only) 

Waste Rock and Overburden Piles Drill Core 

Underground Exploration Adits 

Waste Rock Piles (Existing Mines Only) 

Ore Stockpiles Drill Core 

Underground Exploration Adits 

Ore Stockpile (Existing Mines Only) 

Tailings From Milling Operations Residue From Bench Scale Metallurgical or Pilot Plant 
Tests 

Tailings Impoundment (Existing Mines Only) 

Spent Ore From Heap Leach 
Operations 

Residue From Laboratory Column or Pilot Scale Heap 
Leach Metallurgical Tests 

Heap Leach Residues (Existing Mines Only) 

0) Adapted from B. C. AMD Task Force, 1989. 
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It may not be feasible to continue to operate an effluent treatment 

plant after mine closure because of the problems of staffing and maintaining 

supplies of chemicals, particularly in geographically isolated regions 

(Mining Waste Study Team, 1988). Finally, mitigative techniques often 

themselves generate wastes (e.g., the metal hydroxide sludges from lime 

neutralization of acids) which require responsible disposal . 

Disposal of AMD sludge often presents an environmental problem of 

magnitude nearly equal to that of the original AMD. Successful segregation 

of this sludge in sludge ponds and lagoons, or in abandoned underground 

mine workings, is possible, but the sludge volumes can be enormous. 

Although a substantial amount of research has done on improvement of 

AMD sludge thickening, (Kostenbader and Haines, 1970), conventional 

AMD neutralization plants will typically produce sludges of 0.5 to 4.0 

percent solids (Bosman, 1974) whose volume is equal, on the average, to 

approximately 10 percent of the AMD flow (Bosman, 1983). Volumes as 

high as 33 and 50 percent have been reported in the United States (Holland 

et al., 1968) and South Africa (Bosman, 1983), respectively. 

Hydrated lime is the most common alkaline material employed 

(Bosman, 1983; Hill, 1969), although other process variations use quicklime, 

sodium hydroxide, sodium carbonate, limestone, dolomite, phosphate rock, 

magnesium oxide and other alkaline materials (Heunisch, 1987; Hill and 

Wilmoth, 1971; Browning, 1970; Schiller and Khalafalla, 1984; Smith, 

1977). In addition to being the least expensive choices, lime and limestone 

also are superior at yielding relatively denser sludges than most of the other 

chemical choices. This is because of the co-precipitation of calcium 

carbonate with the otherwise poorly settling metal hydroxides and oxides. 
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For example, lime neutralization of acidic iron sulfate AMD yields: 

2Ca(OH)2 + Fc3+ + H+ + 2S042- => Fe(OH)3 + H20 + 2Ca2+ + 2S042-. 

Calcium sulfate, or gypsum, also can precipitate from some AMD 

waters whose sulfate levels arc many magnitudes greater than their 

carbonate levels, but otherwise the significantly smaller solubility product of 

CaC03 relative to CaS04 (i.e., approx. 10-9 vs. 10-5) generally favors 

CaC03 as the principal precipitated calcium salt. This chemical process of 

gypsum formation is likely occurring immediately below the Buena Vista 

Mine waste discharge stream below the buried tailings piles located near the 

intersection of Klau Mine and Cypress Mountain Roads (Photo 6-20). 

The ponds, lagoons, and mine workings that are used for sludge 

disposal oftentimes are permeable to water and can result in sludge AMD 

leachate escape to the surrounding environment (Figures 6-8 and 6-9). 

Dissolved metals and sulfate in the leachate can adversely impact nearby 

ground and surface water quality. Precipitation of metals by sulfates appears 

to be occurring at Klau and Buena Vista Mines (Photo 6-21). 

6.3.2.2 Bactericides 

The most popular bactericides used to reduce AMD have been anionic 

detergents (Mining Waste Study Team, 1988). These detergents have been 

applied in dilute solutions and in slow-release formulations to coal waste 

piles and to the underground workings of abandoned coal mines. In these 

coal mine applications, AMD was substantially reduced following these 

treatments. As of 1988, the effectiveness of bactericides for treating AMD 

in California had yet to be demonstrated. However, experiments using the 

bactericides are straightforward and relatively inexpensive. Thus, a recent 
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Photo 6-20: Salt precipitation, likely sulfates, in the drainage stream of the 
Buena Vista Mine (6115/92). 

:,." 

Photo 6-21: Salt precipitation, likely some metal sulfates, in the drainage 
stream of the Buena Vista Mine (6/15/92). 
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study recommends that work in this area be initiated as soon as possible to 

determine whether this technology can be employed to alleviate some of the 

severe AMD problems in California (Mining Waste Study Team, 1988). 

6.3.2.3 Oxidation Processes 

Oxidation of certain transition metal species, such as Fe and Mn, will 

promote their precipitation from solution as insoluble oxides or hydroxides. 

This is because the more highly charged cations are more readily hydrolyzed 

than the less highly charged cations, and hence precipitate at relatively low 

pH (Mining Waste Study Team, 1988). The oxidation of Fe downstream of 

the waste runoff waters from Klau and Buena Vista mines normally appears 

as orange to red colored sediments and staining of rock and mineral surfaces 

in the Las Tablas Creek floodplain channel (Photos 6-22 and 6-23). 

Chlorine, peroxide, permanganate, ozone and sulfur dioxide-activated 

oxygen are all effective oxidants for Fe (II) and Mn(ID in acidic solutions 

(Crabtree and Schaefer, 1966; Beller et al., 1970; Streeter, 1970; Cole et al., 

1977; Sato et al., 1984), and hence could be used to treat AMD with 

minimum need for neutralization. Chlorine is already being used as an 

alternative to neutralization for removing iron from AMD at some 

Appalachian coal mines (Crabtree and Schaefer, 1966). 

Additions of Mn-oxides and -oxyhydroxides would tightly bind and 

immobilize available Hg. At Lake San Antonio, north of Lake Nacimiento, total 

Hg levels in transplanted freshwater clams were low (0.023 to 0.016 mg·kg-1) 

when levels of Mn were high, with levels recorded at 14.81 and 2.14 mg·kg-1 

(Stevens, 1988). The presence of MnOOH in oxidizing environments has been 

shown to inhibit the Hg uptake by benthic invertebrates by strongly binding the 

available Hg (Jackson, 1988). 



Photo 6-22: Orange, Fe-rich sediments in the Klau Branch, Las Tablas Creek 
below Klau Mine (1125/92). 

Photo 6-23: Orange, Fe-rich sediments in the North Fork, Las Tablas Creek 
below Buena Vista Mine (6/15/92). 
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Selenium (Se) has also been suggested as a Hg ameliorating agent. The rate 

of accumulation of Hg by fish and other aquatic biota in an enclosed water 

system was reduced by a factor of two when Seat 100 J.Ig·L-1 was added (Rudd 

and Turner, 1983). However, careful studies of the potential toxicities of all 

selenium species should be studied before its use as an ameliorating agent. 

6.3.2.4 Reduction Processes 

In principle, AMD could be treated by chemical, electrochemical, or 

biological reduction processes, which would reverse the oxidation reactions that 

form AMD, and result in precipitation of metals as relatively insoluble sulfide 

minerals. Although sulfate is unstable under reducing conditions, very high 

overpotentials generally are required to reduce sulfate to sulfide-containing 

species. Thus chemical and electrochemical reduction is technically infeasible 

under field conditions. Bacterial reduction of sulfate to sulfide with concurrent 

precipitation of heavy metals has been investigated. Contaminated sediments 

should be protected from weathering and buried in an anoxic S-rich environment 

(Berman and Bartha, 1986). 

The bacteria require organic carbon substrates, but inexpensive 

sources such as sewage or sewage sludge may be adequate (Sissler et al., 

1977; Tuttle et al., 1969a, 1969b). The technical and economic feasibility of 

this approach is uncertain at present, particularly for abandoned Hg mines. 

This method may be a potential research topic for the "Mine Study" 

presently underway by the RWQCB staff in San Luis Obispo. One 

advantage of this method may be the potential beneficial disposal of sludge 

from sewage treatment facilities in local municipalities like Atascadero and 

Paso Robles. 
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The addition of sulfides to lake and reservoir waters has been suggested as 

one way to complex and immobilize Hg. However, sulfides probably would not 

be effective since they would only immobilize Hg in deep anoxic sediments 

which do not pose a problem (Mining Waste Study Team, 1988). Also, sulfides 

may be biochemically oxidized when reservoir levels drop resulting in 

acidification which would then tend to stimulate Hg methylation (Rudd et al., 

1983) and may have potential detrimental effects on aquatic organisms due to the 

production of AMD. 

An important concept relative to remediation of mining wastes relates 

to "attenuation." Simply, the concept assumes that initial toxicity levels of a 

substance will decrease to relatively lower, nontoxic levels as a result of 

successful implementation of some remediation or pollution abatement 

measure(s) or as a function of dilution during natural transport away from a 

contaminated site (Figure 6-10; Hutchison and Ellison, 1992; Mining Waste 

Study Team, 1988). 

6.3 .2.5 Ion Exchange Methods 

Ions in mine waters, such as Fe2+, Cd2+, and S042-, can be removed 

by exchange with cationic or anionic functional groups immobilized on 

porous polystyrene resin beads. The resin is generally used as packed 

columns or fluidized beds. Exhausted resin is regenerated by elution with 

concentrated acid or alkali, which reverses the exchange reaction. The 

resulting brine can pose a disposal problem. Columns are susceptible to 

plugging by fines and other solids in the effluent. 

At present, ion exchange may be too expensive for treatment of mine 

waste waters, although past studies suggest that this technology may be 

feasible now (Pollio and Kunin, 1967; Rose, 1970; Zabban et al., 1972). 
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Hutchison and Ellison, 1992). 
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Activated carbon systems, which are very effective at adsorption and 

removal of organics from solutions, are in the developmental stage for 

hazardous waste stream metal removal after metal chelation with organic 

supplements (Bhattacharyya and Cheng, 1987). The technology may also 

prove feasible for removal of metals from AMD and may be another 

research topic to be explored by the RWQCB staff involved in the "mine 

study". 

6.3.3 Biological Remediation Methods 

When biological methods are used, remediation methods should 

address CH3Hg+ production in the whole system and not just in the bottom 

sediments. This points out the importance of CH 3Hg+ production in the 

suspended particulates. Aquatic plants like Azolla have been used to 

accumulate and volatilize Hg. Use of plants presents a disposal problem for 

fast growing water plants that concentrate with Hg. 

6.3.3.1 Biological Oxidation 

Acidophilic bacteria can catalyze the otherwise slow oxidation of 

Fe(II) at low pH, although natural or supplemental aeration is still required. 

Various processes and reactors, including rotating biological contactors, 

sequenced batch reactors, and biofilters, have been proposed for the 

treatment of mine wastewater (Lacey and Lawson, 1970; Lazaroff et al., 

1982; Mandl, 1984; Myerson, 1981; Nordstrom, 1982; Olem and Unz, 1977, 

1980; Theis et al., 1982). The economic feasibility of biological oxidation 

processes is presently uncertain. 
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6.4 Summary 

Table 6-6 summarizes the individual physical remediation measures 

that have been discussed, their objectives, and their unit costs. The 

effectiveness of the various measures will be compared in the next section 

where combinations of measures are discussed. 

6.4.1 Source Control Remediation Measure Combinations 

Some of the measures discussed above would be effective in isolation. 

For example, solidification and vitrification, and the excavation, 

transportation, and disposal alternatives would not require the 

implementation of other operations for them to significantly reduce the Hg 

loading in the Las Tab las Arm of Lake Nacimiento from the Hg mines, 

especially Buena Vista and Klau. All of the other measures would need to 

be implemented in conjunction with others to be fully effective. 

Some requirements and limitations on combining source control 

remediation measures include: 

1.) Riprapping the streambanks and large drainage gullies on the 

mine sites would be necessary components of all measures in 

order to protect against erosion. In the absence of such 

protection, streambanks would gradually fail and active gullies 

would continue to enlarge. 

2.) Cutting back the steepest slopes from their current conditions to 

20° (about 36%) would be a necessary preparatory step prior to 

revegetation, grouting, or capping with a soil-cement, a flexible 

geotextile with revetment, or a webbed geotextile with soil cover. 

The manufacturer of concrete blankets claims that the blanket 
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Table 6-6: Cost Estimates for Individual Physical Remediation Measures 

A Eliminate surficial failures & 
reduce erosion. 

B. Revegetation $1 ;100/A: h ydroseeding 
slopes. 
Reduce erosion & stabilize 

$1 ,000/A: surface prep. 
Reduce fluvial transport. $2,850/A: plant matter 

c. Riprap str~bank.s and $2/yd 2: filter blanket 
gullies. 

Prevent undercutting and 
$48/yd2: revetment fluvial erosion. 

D. Mine Seals Not determined. Reduce erosion and AMD. 

E. Grouting $1.50tft2 
slopes. 
Reduce fluvial transport. 

Reduce erosion & stabilize 

F. Capping with $725,000/A 
Soil-Cement 

Reduce erosion & stabilize 
slopes. 

Reduce fluvial transport. 


G. 	 Capping with Flexible 
Geotextile $2/yd 2: flex. geotextile 

slopes. 
Reduce erosion & stabilize 

$48/yd2: revetment 
Reduce fluvial transport. 

H. 	 Capping with concrete 
blanket. $050/ft2: fabric forms 

slopes. 
Reduce erosion & stabilize 

$60/yd3: concrete 
Reduce fluvial transport. $17/yd3: laoor 

L 	 Capping with Webbed $0. 79/yd2: geotextile 
Geotextile $0.60/yd2: laoor 

slopes. 
Reduce erosion & stabilize 

$14.70/yd3: topsoil 
Reduce fluvial transport. $1 ;100/A: hydroseeding 

J. Solidify all wastes $50/yd3Eliminate erosion. 

K. 	 Vitrify all wastes $100-250/yd3Eliminate erosion. 

L 	 Excavate, Transport, and $3/yd 3: excavation 
Dispose of All Wastes Remove contaminated material. $12-25/yd3: transport 

$120/yd3: di~-posal 

M. Sediment Traps Capture fluvial sediment. Not determined; 
(site specific). 

N. 	 Wetlands Capture sediment and reduce Not determined; 
AMD. (site specific). 
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would perform on slopes of 45° (i.e., 100%) or steeper so that no 

slope reduction may be necessary for this measure to be effective 

(Nicolon Corp., Norcross, GA). 

3.) Solidification, vitrification, or excavation and disposal of the 

wastes would additionally only require maintenance of a 

spillway channels at the Klau Branch reservoir and at the 

Harcourt Reservoir or drainage gullies that flow at the base of 

Buena Vista, Klau, Bonanza Group, and Ocean View Hg mines. 

The major difference in the effectiveness of the various combinations 

of measures is simply the site variations among the specific areas involved. 

Assuming that the streambanks and drainage gullies are riprapped and the 

steep slopes are modified as required to inhibit accelerated erosion, the 

anticipated reduction in Hg loading is approximately equal among the 

measures whether achieved by revegetation, grouting, or capping with a soil

cement, a flexible geotextile with revetment, a concrete blanket, or a webbed 

geotextile with soil cover. 

IfHg loading contributions from any mine site are approximately 90% 

from eroding gullies and 10% from collapsing stream banks, then applying 

revegetation, grouting, or capping with a soil-cement, a flexible geotextile 

with revetment, a concrete blanket, or a webbed geotextile with soil cover 

would produce approximately a 88% (i.e., 90% [0.96 to 0.99] =88%) 

reduction. Applying the same techniques to the eroding gullies and also to 

the non-vegetated sections of collapsing streambanks would produce a Hg 

loading reduction of about 98%. 

The combinations of source control remediation measures discussed 

above do not consider heavy metal pollution and AMD generated below the 

soil surface. Further characterization of the groundwater conditions and 
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subsurface physical and chemical conditions at the Buena Vista and Klau 

Mines and at other abandoned mines needs to be completed and analyzed 

before effective remediation measures can be developed that solve the 

subsurface pollution problems. 

For each combination of source control remediation measures, the 

revegetation practices applied in conjunction with slope reduction to 20° 

(about 36% ), riprapping of stream banks and/or active gullies, and 

maintenance of the spillways at the Klau Branch reservoir and at Harcourt 

Reservoir will likely provide the lowest cost alternative. Variation in the 

total costs will reflect the range of cost estimates for riprapping and cutting 

back the steepest, most erodible slopes. Revegetation costs are considered 

relatively low in comparison to all other measures except for the spillway 

maintenance (Chamberlin et al., 1990). Given the proper selection of 

vegetation and engineered soil surface preparation, vegetation becomes self

maintaining after an initial establishment period, assuming that the plant 

species selected are self-propagating, drought tolerant species with low 

nutrient requirements. 
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7.0 	POLLUTION ABATEI\1ENT MEASURES 

7.1 	 Overview 

The Hg loading in the Las Tablas Arm (see Section 5) assumes that 

the upper lake bottom sediments store essentially all of the Hg in that portion 

of the lake, although the storage in the water column makes up the mobile 

fraction. The data show approximately 2.8 x 10-4 to 5.3 x 10-4 kg of Hglm3 

sediment are stored in the upper lake sediments, while the water column 

stores about 1.0 x 10-7 to 7.0 x 10-7 kg of Hg/m3 water. Under present 

conditions, annual Hg inputs from the Las Tablas Creek watershed range 

from near zero during extreme drought years to a range of about 4.2 x 103 to 

7.95 x 103 kg ofHg/yr, depending on precipitation and erosion losses. A 

substantial amount of resuspension and redeposition of Hg-contaminated 

sediments likely occurs in Lake Nacimiento as well, due primarily to the 

seasonal inflows to the lake and water level fluctuations. 

Control of Hg-laden sediment loads from the Hg mines to the lake 

was examined as a direct means for improving water quality. However, the 

Hg already stored in the upper sediments of the lake may continue to cause 

bioaccumulation by fish and wildlife species for many decades, or even 

centuries. Therefore, in-lake pollution abatement measures have also been 

developed and evaluated. 

A wide range of control options have been considered: 

A. 	 Do nothing; 

B. 	 Implement a source control program on the mine sites but do 

nothing in the lake (see Section 6 for full discussion); 

C. 	 Dredge and treat or remove contaminated Lake Nacimiento 

and/or Harcourt Reservoir sediments; 
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D. 	 Cover Hg-laden lake sediments in situ.; and 

E. 	 Establish a bounty system to reduce human consumption of the 

most Hg-contaminated fish. 

The relationship between Hg levels in the lake sediments and in the 

fish populations was discussed in Sections 2 and 4 of this report. Each of the 

pollution control options and potential combinations are examined and 

evaluated with respect to our present state of knowledge relative to Hg 

pollution and toxicity and the effectiveness of each option in reducing the 

detrimental environmental effects of Hg pollution of the lake and its 

watershed. Since the Harcourt Reservoir is the most effective sediment trap 

for Hg-laden sediments in the Las Tablas watershed, we have considered 

abatement measures for it as well. 

7.2 	Abatement Options 

7.2.1 Do Nothing 

The primary question to ask is "What would happen to Hg levels in 

the Lake Nacimiento surface sediments and fish populations if no action 

were taken?" 

In Swedish lakes contaminated primarily from industrial discharges of 

Hg as the mercuric ion (Hg2+), Jernelov et al. (1975) estimated that: 

*approximately 10-15 years are required for systems to return to 

equilibrium following sudden changes in inputs; 

*approximately 7 years (1 fish generation turnover time) would be 

required for a system to recover if all Hg were suddenly removed; 

and 
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*approximately 10-100 years would be required for recovery if no 

new Hg inputs entered the system if an internal source from 

sediment deposits was present. 

The English-Wabigoon river system in Canada became contaminated 

with Hg as the result of the discharge of 9,000 to 11,000 kg of Hg from 1962 

to 1969. Since 1970, the discharge has been controlled and reduced to 1% of 

earlier uncontrolled levels. Following the significant decrease of these 

discharges, sediment profiles showed that Hg concentrations peak several 

centimeters below the sediment water interface. Surface sediment Hg 

concentrations decreased due to later deposition of cleaner sediments (Rudd 

et al. 1980). Armstrong and Scott (1979) had reported that Hg 

concentrations in fish continued to decline despite continued high Hg 

concentrations in deeper sediments. Despite these reductions, Hg 

concentrations in fish remain about 10 times the legal limit for human 

consumption (Allan, 1986). 

In the English-Wabigoon river system following the removal of the 

industrial point source discharge, the immediate decline in Hg levels in 

short-lived organisms like crayfish was quite rapid (i.e., over a 80% decrease 

in 10 years). But the subsequent decline (after 10 years) was much slower, 

implying that a mass balance equilibrium was being reached in the lake 

system (Allan, 1986). 

Allan (1986) and Jemelov et al. (1975) both argued that recovery rates 

would be expected to be higher in systems with high productivities (i.e., 

nutrient-rich waters), low hydraulic residence times, high sedimentation 

rates of alluvium low in Hg, a neutral to alkaline pH, and anoxic (i.e., 

anaerobic, low Eh) sediments. 
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The highest Hg levels in the entire Lake Nacimiento watershed are 

found in the alluvial sediments of Las Tablas Creek and in lake sediments in 

the Las Tablas Arm of Lake Nacimiento (Hubbert, 1991; Table 4-9 this 

report). Total Hg levels in the Las Tablas Creek watershed range from over 

4,000 mg ·kg-1 in sediments next to the Buena Vista Mine condenser to about 

5.0 mg·kg-1 in Harcourt Reservoir sediments, and then decrease to about 1.5 

to 2.0 mg· kg-1 in Las Tablas Arm sediments (Tables 4-2 and 4-3; Figure 4

1). 

If all of the Hg stored in the lake was suspended in the water column and 

well-mixed, it would become available for removal by hydraulic transport into 

other areas of the lake. Under these conditions (i.e., from the perspective of 

removing the Hg from Harcourt Reservoir and from the Las Tablas Arm of the 

lake), the nominal hydraulic residence time (HRT) could be used to estimate the 

half-life (or t112) of Hg in the Las Tablas Arm of the lake (Chamberlin et al., 

1990), where: 

t112 =ln(2) · HRT (Eq. 1) 

For an HRT range from 5 to 19 yrs, t 1/2 would extend from 3.5 to 13.2 

yrs. Since it would require 3.32 half-lives for the Hg level to decrease by 

90%, from 12 to 44 years would be required for levels to decline by that 

amount. This provides an extreme lower limit on the recovery time. The 

true half-life is certainly much larger (Chamberlin et al., 1990). 
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The best estimate of the rate of recovery of the Las Tablas Arm if no 

action were taken is based on the observed Hg levels in the lake sediment 

(Hubbert, 1991; Table 4-9 this report). Using least squares linear regression 

on ln(C) vs. Z, each curve has been described by an exponential function of 

depth: 
(Eq. 2) 

where: Cz = Hg level at sediment depth, Z (mg·kg-1 ); 

Co = Hg level at Z = O.Ocm (mg·kg-1 ); 

k - exponential coefficient (1/cm); and 

z depth (em). 

All of these estimated parameters were shown to be statistically 

significantly different from 0.0 at a 5% significance level using data from 

the Oaks Arm of Clear Lake, Lake County, California which is contaminated 

by Hg-laden sediments originating from the Sulphur Bank Hg mine 

(Chamberlin et al., 1990). The same interpretation can be reached using data 

reported in this report for the Las Tablas Arm of Lake Nacimiento. Using 

the sedimentation rate (V s) of 0.6 crnlyr, the t112 for the surface sediment Hg 

level in the Las Tablas Arm of Lake Nacimiento can be estimated: 

t112 = ln (2) IVs · k (Eq. 3). 

In other words, the Hg levels at the Lake Nacimiento sediment surface 

would decrease by 50% in the period t 112· These half-life estimates range 

from 34 to 61 years which correspond to estimates of 113 to 219 years for 

surface sediment Hg levels to decrease by 90%. We do not have the data 

from Lake Nacimiento sediment cores like those collected in the Sulphur 

Bank Hg mine study (Chamberlin et al., 1990). However, the general 

theoretical model developed by Chamberlin et al., 1990 can be applied in a 
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general way to Hubbert's (1991) and our bottom sediment data collected in 

Lake Nacimiento. 

When the same analysis was carried out using data for the top 10 em 

of Clear Lake sediment, the surface concentration estimates are higher and 

the t112 estimates for core No. 8.0 is almost 300% greater than the 

comparable values for the data as a whole (Chamberlin et al., 1990). The 

estimated time for surface sediment Hg levels to decrease by 90% would 

range from 190 to more than 300 years in the Oaks Arm of Clear Lake 

(Chamberlin et al., 1990). We may expect comparable natural Hg level 

attenuations in the sediments of Las Tab las Arm of Lake Nacimiento. 

7.2.2 Source Control Only 

To assess the impact of implementing source controls in the absence 

of in-lake abatement projects on lake recovery time, assume that the average 

annual Hg loadings from the Buena Vista and Klau mine sites will be 

reduced by about 95% (e.g., reducing all Hg tailings slopes to 20° (about 

36% ), revegetating the non-vegetated mine sites, and by riprapping the most 

severely eroding banks along Las Tablas Creek). This could reduce the 

loading by about 85 to 95%. 

The impact of this substantial reduction of loadings on the Hg levels 

in the water column and surface lake sediments would depend strongly on 

the extent of the recycling of Hg-rich sediments within the Las Tab las Creek 

Arm. Since the surface sediments throughout the entire Las Tablas Creek 

Arm are highly susceptible to erosion and transport, such recycling is 

probable (Hakanson, 1982)~ 
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The recycling rate can be estimated from the following: 

Lsb - LSBM + (Qt · Ct)- (Qo · Cw)- La (Eq. 4) 


~s - 81 · Vs · AoA · B.D. · (l - Pw) · Cs (Eq. 5) 

aSs - at (+ Ls + Ln) (Eq. 6) 

where: 

aSs = change in storage during time interval in sediments (kg) 

81 = duration of time interval (yr) 


LSBM = Hg input from Buena Vista (or Klau) Mine site (kg/yr) 


Q = Las Tablas Creek streamflow into the lake arm (m3/yr) 

Q = Hg concentration in Las Tab las Creek as it enters lake (kg/m 3) 

Lsb = flux from water column to sediment blanket (kg/yr) 

La = flux from water column to air (kg/yr) 

Q0 = flow due to currents from the Las Tablas Arm into the main 


Lake Nacimiento. channel (m3/yr) 

Cw = Hg concentration in Las Tablas Arm water column (kg/m3) 

Ls = net flux from sediment blanket into sediments (kg/yr) 
LTI = recycling flux from sediments back to sediments (kg/yr) 

V s = sedimentation rate = 0.6 ( cm/yr) 


AoA = area of Las Tablas Arm= 2.4 x 106 (m2) =600 A. 

B.D. = bulk density of surface sediment= 1.07 g/m3 (wet wt.) 

Pw = water content of surface sediment= 0.84 = 84% 

Cs = Hg content of surface lake sediment (upper 0-10 em) 

Cs = 1.0 to 2.0 mg Hg ·kg-1 sediment (dry wt). 


The foregoing estimate of the current magnitude of Hg recycling is 

obtained using the three equations which compare the net losses to the upper 

sediments to the Hg accumulation rate estimated from the sedimentation rate 

(Chamberlin et al., 1990). 
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Our estimates are very gross and more Jake sediment depth sampling 

would be necessary to confirm these values (Chamberlin et al., 1990) . .6.Ss 

can be determined from Eq. 5 (i.e., 0.49 to 0.99 kg/yr). Since the net loss to 

the upper sediments (Lsb) as determined by equation Eq. 4 is -8.23 to -118.6 

kg/yr, then the recycling contribution (Ln) can be estimated from equation 

Eq. 6 to be about -355.05 to -357.6 kg/yr. These negative values indicate a 

net gain of Hg to the water column each year, as well as net movement of 

Hg from the surface lake bottom sediments to the water column and 

sediment transport downstream toward the main channel of Lake 

Nacimiento. Indeed, the Hg concentration data indicate movement of some 
¥ 

Hg-rich sediments out of the Las Tab las Arm to the north and then east 

along the main channel of Lake Nacimiento (Hubbert, 1991; Table 4-9 this 

report). 

Reducing the Hg levels in the surface lake sediment, by whatever 

method(s), would have additional effects on the Hg levels in the water 

column and on the recycling rate itself. The magnitude of the effects is 

uncertain but, qualitatively, an accelerated rate of lake recovery should be 

produced; as compared to the "No Action" alternative. 

The same Hg recycling procedure described above for the Las Tablas 

Arm could be applied to the Harcourt Reservoir if more intensive, 

undisturbed sediment core sampling is accomplished. 

7 .2.3 Dredging 

Unless major obstructions exist, dredging can remove accumulated 

sediments, increase lake depth, and simultaneously remove contaminants 

incorporated in the sediments. In Lake Nacimiento, dredging might be used 

to remove the surface sediments (ca. 1 m deep) from the entire lake, the 
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Harcourt Reservoir, or from only the most contaminated area of the lake, i.e. 

the Las Tab las Arm. The Las Tab las Arm includes most of the lake 

sediment with Hg levels in excess of 1.0 mg·kg-1 (Hubbert, 1991; Table 4

9). 

The sediment removal could be carried out by mechanical, hydraulic, 

or special purpose dredges. Mechanical dredges remove the dredged 

materials by means of buckets of various design. Hydraulic dredges lift 

dredged materials by means of pumps. The type of dredging that could be 

accomplished at Lake Nacimiento or at Harcourt Reservoir would depend on 

the size limitations of the dredging equipment (some areas of the lake that 

might require dredging may be too small to accommodate some types of 

dredges) and the ability to transport machinery overland to the site. 

Since the Las Tablas Arm is at all points less than 100ft deep (at 

maximum lake water levels), no extreme mechanical difficulties should be 

experienced. However, access by transportation equipment may be difficult 

at low lake water level due to a lack of paved roads. Access to the Harcourt 

Reservoir is good and the water levels rarely exceed 25-30 ft. 

A clamshell dredge can place lake sediments onto small barges which 

can then be transported to a disposal site or decanting basin. A hydraulic 

dredge can be disassembled for transport and then reassembled at the lake. 

The equipment available for hydraulic dredging includes centrifugal 

pumping systems and portable hydraulic pipeline dredges. Hydraulic 

dredging serves the same purpose as mechanical dredging, but requires a 

nearby location to use as a dump site for the dredged materials. Sediments 

can be pumped large distances using floating or submerged pipelines with 

booster pumps every few miles. Cook et al. (1986) describe a class of 
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special purpose dredges specifically designed for removing fine-grained, 

contaminated sediment. 

The process of finding a disposal site for dredged sediments may be 

difficult. The easiest solution would be to use a disposal site close to the 

lake, but this choice cannot be considered if the sediment is Hg

contaminated. If the sediment is deemed hazardous, transportation to an 

approved site (like Chemical Waste Mgt., Inc. Kettleman Hills, CA facility) 

may be required. 

Dredged sediments from Harcourt Reservoir and, at least, a portion of 

Lake Nacimiento may be deposited back at the mine sites, especially Buena 

Vista and Klau. Assuming that the ultimate sediment bulk density in the 

Klau Mine pit is the same as the value in Harcourt Reservoir, the volume of 

the Klau Mine pit and the Buena Vista Mine adits and tunnels would likely 

provide sufficient storage for the sediment that would be generated by 

dredging the Harcourt Reservoir, but may not provide enough storage for the 

sediment that would be generated from dredging the Las Tab las Arm or the 

entire lake. A detailed engineering evaluation of the total available storage 

volume at the mines and potential groundwater contamination caused by 

wastes should be undertaken before implementation of a dredging effort. 

The dredged effluent produced during the dewatering process may 

require treatment. Regulations regarding the disposal of hazardous material 

may also make it necessary to either build a hazardous waste landfill at the 

site or to transport the filtered sediments to an approved disposal site. Costs 

for dewatering treatment and construction of a hazardous waste handling 

disposal site have not been evaluated. Our sediment data, and Hg 

concentration data collected from an earlier study (Hubbert, 1991) suggest 
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that even the most contaminated sediments in the Las Tablas Arm and in the 

Harcourt Reservoir are not considered as "hazardous waste" (Table 4-3). 

Activities associated with dredging can produce serious environmental 

problems. Dredging causes disturbance and increased turbidity during 

dredge operation. This can have grave consequences if sediments are 

hazardous and if toxic materials embedded in the silts and sediments are 

released into the overlying water column. To some extent these problems 

can be reduced by the use of silt curtains as shown in Figure 7-1 which 

would contain the resuspended material within the immediate area of the 

disturbance. Silt curtains are essentially a skirt constructed of a continuous 

sheet of plastic buoyed at the surface and weighted at the bottom so that it 

hangs perpendicular to the water surface. Based on laboratory studies, Feick 

et al. (1972) estimate that about 10% of the Hg removed by dredging ends 

up suspended in the water column and that total recoverable Hg levels in the 

water column might approach 100 to 1,000 J..lg· L-1. 

A variety of tests should be performed to assess the potential hazards of 

dredging. These consist of a combination of elutriate tests and dredged 

sediment bioassays. If a disposal area nearby is being considered, a 

knowledge of the physical, chemical, and biological characteristics of the 

site will be necessary. The costs of the tests or studies would have to be 

added to the dredging cost. 

Several mitigation alternatives may be proposed at Lake Nacimiento 

which utilize dredging processes to reduce contamination of fish and wildlife 

due to Hg-polluted sediments. One assumption inherent in the use of this 

technology is that dredging the sediments may reduce the levels of Hg in the 

sediments to background levels. The cost of these projects has been 
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6 ·:. 

Figure 7-1: (A) Silt-Curtain Encirclement of an Open Water Grab Dredge 
Operation; (B) Silt-Curtain Isolation of an Open Water Bucket Dredge 
Operation (Source: Hutchison and Ellison, 1992, after Cook et al., 1986). 
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estimated on the basis of mobilization and demobilization cost for the dredge 

of $35,000 per job and a unit dredging cost of $2.00 to $5.00 per yd3 

removed (Chamberlin et al., 1990; California Dredging Company, Martinez, 

CA, 1988; U.S. Army Corps of Engineers, 1988; Building Construction Cost 

Data, 1988). 

If dredging were chosen as a viable abatement option, the resulting 

project costs could be estimated by determining the total sediment volume to 

be removed, the dredged sediment disposal costs, and the initial set-up costs 

of the dredging equipment. 

The reduction in Hg levels in the fish population would strongly 

depend on the extent and duration of the contamination of the water column 

by the resuspended sediments. Following the period of resuspension which 

might last about 30 days (Snodgrass, 1986), the Hg levels in the upper 

sediments should be about equal to the low background in the sediments 

below 1 m depth, assuming dredging of the entire lake is implemented. 

If only the most heavily contaminated part of the lake, the Las Tab las 

Arm, were dredged the Hg in the surface sediments of the remainder of the 

lake east of the Las Tablas Ann would still be susceptible to resuspension 

and deposition so that the Hg level in lake sediments east of the Las Tab las 

Ann will still be a potential Hg source for addition to the water and fish. 

7.2.4 Covering Lake Sediments 

The Hg levels in the water column could be reduced without removing 

the Hg-contaminated sediments by overlaying the sediments with sand and 

gravel (Bongers and Khattak, 1972), locally available clean sediments (Rudd 

et al., 1980; Rudd and Turner, 1983), or clays such as bentonite. These 
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measures are somewhat attractive in that they control Hg levels in both the 

water column and at the sediment-water interface (Chamberlin et al., 1990). 

In the water column and surface sediments, resuspended sediments 

would bind Hg and reduce its bioavailabillty. At the sediment surface, 

increased deposition of clean, organic-poor material would dilute 

concentrations of both Hg and organic carbon, the latter being a source of 

bacterial food and energy. Both of these factors can control rates of 

microbial Hg methylation (Furtani and Rudd, 1980; Rudd et al., 1983). 

Rudd and Turner (1983) found that immediately after sediment 

additions, the decreased light penetration reduced daily rates of productivity 

by about a factor of 2. These reductions in primary productivity are thought 

to have a small negative effect on rates of Hg bioaccumulation. They also 

found that the addition of organic-poor sediment substantially reduced 

bioaccumulation of Hg by the zooplankton, crayfish, clams, and pearl dace. 

Zooplankton concentrations were reduced to 20%, while Hg concentrations 

of crayfish, clams, and pearl dace were reduced from 10 to 15%. Movement 

of Hg into pearl dace muscle was reduced even further to 5% of the control 

population. Hg concentrations per gram of periphyton were lowered by 50 

to 75% with the addition of organic-poor, suspended sediments. Sediments 

were effective at reducing the rate of Hg bioaccumulation by binding the Hg 

to fine particulates, making it less available for methylation or 

bioaccumulation. The addition of sediment had no effect on the rate of loss 

of Hg from the water column. However, there was a significant increase in 

the percentage of Hg on fine particulate material with a corresponding 

decrease in the quantity of Hg in organism tissues. 

Rudd and Turner (1983) also followed the bioaccumulation of Hg and 

Se in the presence and absence of organic-poor sediment, throughout various 
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members of the food chain. In the absence of sediment, it was determined 

that Hg was bioaccumulated 8 to 16 times faster than when it was either 

suspended in the water or present on the bottom. 

Rudd et al. (1983) have concluded that measures such as harrowing of 

lake sediments to dilute sediment Hg concentrations or a single application 

of clean clay on the lake surface would only result in short-term 

improvements. Continued erosion and desorption of Hg from surface 

sediments of upstream stretches of river, followed by deposition onto the 

new clean clay of the surface sediments of the lakes would re-elevate the Hg 

concentration of the surficial sediment. This is one possible scenario if the 

Las Tablas Arm sediments were covered, and no upstream source control 

measures were implemented at or near the Hg mine sites. 

Rudd et al. (1983) also suggest that further reduction in Hg loading to 

the system would improve the situation, as the rates of Hg methylation in 

lake water and surface sediments are very responsive to changes in Hg 

concentrations. Unlike dredging of lake sediments, the removal of 

contaminated upstream river sediments would be desirable as a means of 

reducing continuing Hg input. 

As a cautionary note, Rudd et al. (1983) address several concerns 

which they feel are needed to be resolved before employing this method as 

an amelioration (abatement) procedure. These considerations include the 

need: 1) to determine the acceptable concentrations of resuspended sediment 

required to reduce Hg levels in biota to acceptable levels; 2) to assess the 

relative importance of Hg bioaccumulation in fish from surface sediments 

and the water column; 3) to determine the ameliorating efficiencies of 

various sediments; and 4) to determine the effects of suspended sediment on 

primary productivity and fish growth rates. 



229 

7.2.4.1 Application of Clean Sand to Cover All or Part of the Lake 

Nacimiento Sediments 

The principal cost in covering the Lake Nacimiento in whole or in part 

with sand is the acquisition and transport of the sand itself. A convenient 

and relatively inexpensive measure would be to dredge clean sands from one 

area of the watershed and deposit them onto the lake "Hg hot spots" to a 

specified depth. In short term laboratory studies by Jernelov (1970), 10 em 

of clean sands placed over Hg contaminated sediments was sufficient to 

reduce Hg levels in the fish to background levels. 

A conseiVative (upper bound) estimate for the required depth of 

coverage can be obtained using a numerical model of the vertical transport 

of Hg from the contaminated sediments into the water column (Chamberlin 

et al., 1990). The model is a one-dimensional multi-phase contaminant 

transport model which can be used to simulate the movement of Hg from 

lake sediments into the water column. Detailed development of the model is 

presented in Chamberlin et al., 1990, Appendix D. Previous studies indicate 

that after 5 years a sand cover depth of 30 em (about 1 ft) would be 

sufficient to reduce water column Hg levels by 90% (Chamberlin et al., 

1990). More study at Lake Nacimiento would be necessary to determine the 

optimum depth of coverage. 

Possible source areas for the sand cover materials are bed material 

sediments upstream of the lake near the Nacimiento River headwaters on 

Los Padres National Forest land and on the Hunter Liggett Military 

ReseiVation. These materials may be desirable since they ultimately would 

naturally enter the lake. 

The most effective and simplest application procedure would be to 

discharge the sand material at the water surface of the Las Tab las Arm so 

that it would spread out and settle onto the existing Hg-contaminated 
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sediments at the terminal settling velocity of very fine to medium sands (0.3 

to 10.0 em/sec). At a water column depth of 50 ft (about 1,525 em), the total 

fall time through the water column would be 2.5 minutes to 1.4 hours. If this 

operation were contained within a silt curtain as shown in Figure 7-1, the 

depth of coverage could be regulated and the region of disturbance limited. 

The cost of these projects has been estimated on the basis of 

mobilization and demobilization cost for the dredge of $35,000 per job and a 

unit cost of $4 to $7 per yd3 for dredging the clean sands, transporting the 

sands to the Las Tablas Arm, and spreading them (Chamberlin et al., 1990; 

Calilornia Dredging Co., Martinez, CA, 1988; U.S. Army Corps of 

Engineers, 1988; Building Construction Cost Data, 1988). 

If covering Hg-contaminated lake sediments with clean sands was 

chosen as a viable abatement option, the resulting total project costs could be 

estimated by determining the total sediment area to be covered, the costs of 

obtaining the sand, the transportation costs of the sand, and the initial set-up 

costs of the necessary equipment. 

Even given the measures described above, it is not possible to apply 

the clean sands such that a continuous layer of uniform depth would be 

produced. Some areas might be covered by 50 em of sand while other areas 

might not be covered at all. Given sufficient attention to heavy coverage of 

the area of highest contamination, i.e. the most heavily contaminated part of 

the Las Tablas Arm, it should be possible to obtain a 80 to 90% reduction in 

the average surface sediment Hg level (Chamberlin et al., 1990). 
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7 .2.4.2 Application of Bentonite Clay to Cover All or Part of Lake 

Nacimiento Sediments 

Instead of sand, clay material could also be used to cover lake 

sediments. Wyoming-type bentonite clay is used extensively to impede the 

movement of water through earthen structures, and to retard or stop similar 

movement through cracks and fissures in rock or concrete structures 

(Chamberlin et al., 1990). In studies done by Robins and Nelson (1977), 

bentonite clay was effective in sealing phosphorous-laden sediments from 

pond waters. It has been used successfully at hazardous waste sites to form 

slurry walls and compacted clay liners for containing wastes. 

The explanation of its water impedance property lies in two 

characteristics of bentonite. One is that the clay tends to disperse into 

extremely small particles which fill the interstices of sediment or soil wi$ a 

very dense soil mass. Secondly, because of the charge distribution on the 

clay particles the bentonite tends to absorb water up to a point where a 

gelatinous mass forms. Without vigorous agitation the gelatinous mass takes 

up no more water and becomes an impervious layer. 

The bentonite clay may be placed to form an unbroken blanket 

between the sediments and the water (Chamberlin et al., 1990; American 

Colloid Company, Arlington Heights, IL., 1988). This blanket is formed by 

dispersing the clay into water, thus forming a gel or slurry which is then 

pumped into the lake bottom. The slurry is made by mixing one half pound 

of clay per gallon of lake water in a mechanical mixer which can be mounted 

on a boat or barge. This type of application of clay requires at least one 

pound of clay per square foot of lake bottom. A continuous layer of 

bentonite is difficult to assure with this method of application, and the 

gelatinous clay layer may be easily disturbed by currents. 
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Possible negative environmental impacts from the use of bentonite 

clay to cover lake sediments are potential fish kills caused by increased 

turbidity during the application of the clay slurry. 

The cost of these projects has been estimated on the basis of $49/ton 

for the bentonite clay, $60/ton for shipping the clay, and a unit cost of 

$17.54/yd3 for mixing and application (Chamberlin et al., 1990; American 

Colloid Company, Arlington Heights, IL., 1988; Building Construction Cost 

Data, 1988). 

If covering Hg-contaminated lake sediments with bentonite clay was 

chosen as a viable abatement option, the resulting total project costs could be 

estimated by determining the total sediment area to be covered, the purchase 

costs of the clay, the transportation costs of the clay, and the initial set-up 

costs of the necessary equipment. 

Even given careful application of the clay layer, it is not possible to 

produce a continuous, uniform layer. But given sufficient attention to heavy 

coverage of the area of highest contamination, i.e. the most heavily 

contaminated part of Las Tab las Arm, it should be possible to obtain a 80 to 

90% reductionin the average surface sediment Hg level (Chamberlin et al., 

1990). 

7 .2.5 Bounty System for Fish 

Since the oldest and largest fish in most lakes like Lake Nacimiento 

are the most heavily contaminated with Hg, mechanisms that would reduce 

or eliminate the taking and eating of these fish would substantially reduce 

the health risk to consumers of these fish (Chamberlin et al., 1990; D'Itri, 

1990). The current mechanism is a health advisory issued by the California 

Department of Health that recommends limiting the consumption of fish 
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taken. Based on several visits to Lake Nacimiento, it does not appear that 

this advisory is well publicized or well known. Other possible mechanisms 

would include establishing an upper size limit in addition to the current 

lower size limit for taking fish from the lake or possibly offering a bounty on 

fish larger than a specified size. 

The second option would not only reduce the consumption of the 

most contaminated fish but would actually remove them from the lake. 

These fish might also provide a source of samples for a continuing 

monitoring program on fish Hg levels. The cost of such measures depends 

on the number of such fish taken each year from the lake. For example, a 

bounty for largemouth bass >12 in. and white bass >12 in. may effectively 

eliminate the consumption of fish from Lake Nacimiento exceeding.the 1.0 

ppm FDA action limit if the bounty were sufficient to attract all such fish. 

Based on estimated proportions of largemouth bass and white bass 

reported by size class to exceed the 12 in. limit proposed above and on the 

total take of largemouth and white bass, bounties would be required on about 

47% of the catch for these species. Assuming about 340,000 anglers/yr, 4 

angler-hr/angler-day, and a average catch of 1.23 fish/hr, then the total 

annual catch from the lake is about 1,700,000 fish/yr. Largemouth and 

white bass make up less than 2% of the typical catch so that about 33,000 

fish/yr might be taken of which about 63% would exceed the proposed size 

limits. Therefore, bounties would be paid on a gross estimate of 21,000 

fish/yr. 

How large would the bounty need to be to attract almost all such 

fish? In the absence of a defined economic indifference curve, assume that a 

bounty of $20.00/fish would be sufficient. Based on the levels of Hg 

observed in the fish acquired, the size limits could be adjusted as necessary 
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and the amount of the bounty could be similarly adjusted to attract the target 

fish. Given these general assumptions, then the total annual cost for 

bounties on 21,000 fish/yr would be $420,000. To support this payment rate 

indefinitely would require an investment of about $4,000,000 assuming a 

10% rate of return. 

This measure may effectively reduce or eliminate the exposure of 

humans to fish with Hg levels above the FDA limit but may not reduce 

human consumption of fish with Hg levels above the lower 0.5 ppm NAS 

(National Academy of Sciences) limit. 
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8.0 SURVEY OF TOTAL MERCURY ACCUMULATION IN THE 
AQUATIC BIOTA OF THE LAS T ABLAS CREEK WATERSHED 
AND ADJACENT AREAS IN LAKE NACIMIENTO 

8.1. Introduction 

The purpose of this study was to assess possible mercury contamination 

in certain components of the biotic community of the Las Tab las creek 

drainage. This effort was adjunct to a larger investigation on the sources of 

mercury contamination from the soil and sediments in the Lake Nacimiento 

watershed (discussed in earlier sections of this report). The scope of this 

study was restricted to aquatic organisms in the Las Tablas Creek drainage in 

order to insure a more robust data set than that based on a diluted superficial 

survey covering all creek drainages and the lake proper. The survey was 

restricted to aquatic organisms because of practical and legal difficulties 

associated with sampling terrestrial animals such as raccoons, ospreys and 

other water fowl within a restricted time frame. 

It should be emphasized that mercury contamination in biotic 

communities is generally most acute in aquatic and marine ecosystems (NRC, 

1978). While initial efforts were made to also sample invertebrate animals, it 

quickly became apparent that the fauna was depauperate in most sections and 

thus a wide diversity of organisms were not readily available. While some 

samples of crayfish were obtained, these originated outside Las Tablas Creek 

proper. Crayfish were also not observed in Harcourt Reservoir. Nonetheless 

these few individuals were assayed for comparison with fish samples 

sympatric with the crayfish. Thus most of the samples are of fish, historically 

the primary target organisms in mercury contamination assessments because 

of their relatively high trophic position and close connection to the human 
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population as an economically important food resource and an source of 

widespread recreation activity. 

8.2. Materials and Methods 

Fish surveyed in this study were collected through a variety of methods 

including hook and line fishing, baited traps, electrofishing, lift nets and small 

seines. Samples were obtained throughout the warmer months of the year 

when fish are more active and accessible. All fish were identified to species 

then weighed and measured to the nearest gram and 0.1 centimeter. 

Approximate 5 gram samples of muscle tissue was taken from the region 

above the left pectoral fin in all fish. Occasional samples of liver tissues were 

taken for comparative purposes. Tissue samples were frozen in capped glass 

vials for pre-assay storage. Samples were partitioned into two groups each 

destined for mercury assay at two independent biochemical laboratories. 

These were FGL Environmental Chemists (Santa Paula, CA) and the 

California Department of Fish and Game (CDFG) Water Quality Laboratory 

(Rancho Cordova, CA). This split-sample format was instituted to simply 

insure consistency in any observable trends from independent sources rather 

than for purposes of any kind of inter-laboratory protocol critique. The two 

laboratories followed different protocols and methods for mercury assessment 

resulting in the data reported either in mg per kilogram or micrograms per 

gram. These data are presented here in terms of parts per million (ppm) wet 

weight and related to the international and state standard of 0.50 ppm. 

Early analyses of the data revealed within sample skewed distributions 

which resulted in logarithmic transformations and geometric means in 

addition to the commonly used arithmetic means in mercury studies. 

Inspection of CDFG and FGL data indicate generally lower assay values from 
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the CDFG laboratory. This and the fact that the two laboratories utilized 

different protocols and methodologies warranted the independent treatment of 

both data sets even though no significant statistical differences were found (P 

= 0.42 to 0.36) when logarithmically transformed data were compared (Table 

8.1 ). The statistical comparison of the two data sets (arithmetic mean values) 

are summarized in Table 8.2. 

Unless otherwise noted, most of the data displayed in this report are 

based on arithmetic means despite the skewedness of the within sample data. 

This decision was made to facilitate comparisons with other investigations, 

most of which are based on arithmetic means. The results from all samples 

were related to specific locations in a roughly linear transect running from the 

lake area immediately adjacent to the mouth of Las Tablas Creek, on up 

through the creek proper towards its origins near the Klau mining area and 

extending to the Buena Vista mine and Ramage area. The sampling sites 

chosen are listed as Entrance (Mouth), Down River, Harcourt Reservoir, 

Ramage Reservoir, and Buena Vista Reservoir and are indicated (as circled 

areas) on the expanded topographic maps in Appendix 5 and referenced in the 

GIS system database component of this study. Additionally two other 

localities were sampled for the purposes of a general comparison with an off

site area. These are the Nacimiento River Fork and Marina Forks locations. 

The levels of mercury found in the fish communities are also compared by 

location species, trophic level (position in the food web), predominant 

microhabitat (~, benthic, upper water column) and size. 
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Table 8.1. Statistical comparison of overall tissue mercury assays from CGFG 
and FGL laboratories based on logarithmically transformed data. 

ANOVAtest DF ss MS F p 

FGLLab Location 4 21.079 5.27 11.63 0.00 
Error 33 14.958 0.453 
Total 37 36.037 

CDFGLab Location 6 19.31 3.218 19.22 0.00 
Error 74 12.392 0.167 
Total 80 31.702 
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Table 8.2. Comparison of overall mercury levels by sample location and 
laboratory based on logarithmically transformed data. 

LAB 
SAMPLE 
LOCATION N 

MEAN 
(Log n) 

-2.3383 

MEAN 
(ppm) 

0.096 

ST. DEV. 
(Log n) 

0.6581FGLLab Ramage 
Reservoir 

4 

Harcourt 
Reservoir 

11(1) -0.2562 0.774 0.9016 

Down River 11 -0.6177 0.539 0.5242 

Entrance 10 -0.4938 0.61 0.5534 

Buena Vista 
Reservoir 

2 1.355 3.876 0.1626 

CDFG Lab Ramage 
Reservoir 

4 -2.462 0.085 0.3702 

Harcourt 
Reservoir 

10 -0.3817 0.683 0.3228 

Down River 7 -0.7343 0.4798 0.3141 

Entrance 11 -0.4532 0.6356 0.4359 

Buena Vista 
Reservoir 

3 0.4307 1.538 0.2303 

Nacimiento 
River Fork 

27 -0.5398 0.5829 0.3515 

Marina Forks 19 -0.8995 0.4068 0.5391 
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8.3. Biological Study Results 

A total of 120 fish representing 10 species were captured and sampled 

for biochemical assay for total tissue mercury. The total data set is displayed 

by location and laboratory in Figure 8.1. In addition a small sample of 5 

crayfish (Pacificastacus spp.) were assayed. These data are summarized on 

Table 8.3 according to the particular laboratory conducting the assay. For the 

FGL laboratory, ranges of mercury from 35 fish samples were 6.4 to <0.01 

ppm with arithmetic and geometric means of 0.75 and 0.52 ppm, respectively 

(Figure 8.2). The parallel CDFG laboratory data (Figure 8.2) based on 81 

samples show a range of 2.0 to 0.03 ppm and an arithmetic mean of 0.60. 

Using the larger data set (CDFG lab), the higher values are associated 

with top-predators in the aquatic food web, with one exception. These 

predators are the largemouth bass (Micropterus salmoides), smallmouth bass 

(Micropterus dolomieu) and the white bass (Morone chrysops) which had 

geometric mean levels of 0.7559, 0.7258 and 0.7450 ppm, respectively. 

Similar high values were obtained for the threadfin shad (Dorosoma 

petenense). Other species with higher levels (i.e., >0.50 ppm) include the 

common carp (Cyprinus carpio), channel catfish (lctalurus punctatus), and the 

green sunfish (Lepomis cyanellus) with means of 0.6633, 0.5350, 0.6700 ppm, 

respectively. Marginal values were obtained for the blue-gill sunfish 

(Lepomis macrochirus) with 0.4013 ppm while lower values were registered 

for Sacramento suckers (Catostomus occidentalis), brown bullhead (lctalurus 

nebulosus) and crayfish with values of 0.3733, 0.1900 and 0.0733 ppm, 

respectively. 

The FGL results are very similar to the CDFG data set and summarized 

on Table 8.3. These indicate overall high readings for all top predators 

(largemouth bass, smallmouth bass, white bass) with 10 out of 11 
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Figure 8.1. Combined species tissue mercury concentrations by 
location based on arithmetic mean values from the FGL and CDFG 
laboratories. 
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Table 8.3. Total tissue mercury concentrations by species and laboratory 
based on arithmetic mean values. 

Species 

M. cb!:):~ops 

N 

6 
2 
2 
16 
2 

27 
12 
6 
3 
2 
2 

Mean 
(ppm) 

0.745 
0.1900 
0.5350 
0.4013 
0.6700 
0.7559 
0.7258 
0.3733 
0.6633 
0.795 
0.055 

Median 
Standard 
Deviation 

0.296 
0.0707 
0.0919 
0.1732 
0.0141 
0.3762 
0.1771 
0.0784 
0.1007 
0.573 

0.00707 

Minimum Maximum 

0.745 
0.1900 
0.5350 
0.3350 
0.6700 
0.6600 
0.7200 
0.3350 
0.6500 
0.795 

0.05500 

0.280 
0.1400 
0.4700 
0.2000 
0.6600 
0.2600 
0.4000 
0.3000 
0.5700 
0.390 

0.05000 

1.200 
0.2400 
0.6000 
0.7400 
0.6800 
2.0000 
1.1000 
0.5000 
0.7700 
1.200 

0.06000 

I. nebulosus 
I. punctatu§ 
L. macrochirus 
L. c~anellus 
M. salmoides 
M. dolomieui 
C. occidentali§ 
C. carpio 
D. petenense 
Pacifasticus so. 

Species 

M. chrysops 

N 

2 
6 
3 
8 
2 
9 
2 
1 
2 
1 
1 
2 

Mean 
(ppm) 

0.985 
1.2100 
0.6330 
0.465 
0.8500 
1.491 
0.735 
0.6 
0.38 
1.57 
1.21 

0.055 

Median 

0.985 
0.1900 
0.6000 
0.4500 
0.8500 
0.8000 
0.7350 
0.6000 
0.3800 

1.57 
0.19 

0.05500 

Standard 
Deviation Minimum Maximum 

0.1061 
2.55 

0.1528 
0.1295 
0.495 
1.446 

0.0354 
* 

0.0707 
* 
* 

0.00707 

0.910 
0.0000 
0.5000 
0.2600 
0.5000 
0.2000 
0.7100 
0.6000 
0.3300 
1.570 
1.210 

0.05000 

1.060 
6.4000 
0.8000 
0.6000 
1.2000 
4.3600 
0.7600 
0.6000 
0.4300 
1.570 
1.210 . 

0.06000 

I. nebulosys 
I. punctatus 
L. macrochirus 
L. c~anellus 
M. salmoides 
M. dolomieui 
C. occid~ntalis 
C. carpio 
D. petenense 
I. catus 
Pacifasticus so. 
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Figure 8.2. Tissue mercury concentration by species based onarithmetic 
mean values from the CDFG and FGL laboratories. 
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samples with values 0.50 ppm or higher. In this case, the mercury 

concentrations for these major predators are 1.491, 0.735 and 0.985 ppm for 

the same sequence of species. A single threadfin shad specimen yielded a 

level of 1.57 ppm. The highest concentrations in this data set were found for 

an individual brown bullhead with a reading of 6.4 ppm, while 3 other 

specimens had concentrations ranging from 0.17 to 0.20 ppm. The remaining 

white catfish (L catus) and channel catfish and two-thirds of the sunfishes 

(green sunfish, blue gill) displayed values equal to or in excess of the 0.5 ppm 

level. The two carp in this data set had levels below the 0.5 ppm standard. 

Similar to the CDFG laboratory results, the crayfish assayed in this set 

recorded a low of <0.01 ppm total Hg concentration. 

Comparisons between sampling localities and total mean values <1.5h, all 

species combined) of mercury in fish taken from all stations (Table 8.4, Figure 

8.2), show concentration above the 0.50 ppm standard with the exception of 

the Ramage sampling site (0.0900 ppm). The highest values in the CDFG 

data were found in the Buena Vista reservoir and the Harcourt reservoir with 

overall concentrations levels of 1.5670 ppm and 0.7130 ppm, respectively. 

The comparison of FGL data at four locations shows high concentrations in 

Buena Vista reservoir (3.9200), Harcourt reservoir (0.774 ppm), the Entrance 

of Las Tablas station (0.6100ppm) and the Down-River station (0.7740 ppm). 

In contrast, the Ramage Reservoir location had a mean concentration level of 

only 0.096 ppm. 

Comparisons of the transformed CDFG data by microhabitat and 

trophic position (Table 8.5, Figure 8.3) show top predators (largemouth, 

smallmouth and white bass) with the highest mean concentrations (0.689 ppm) 

while the benthic and herbivorous species had mean mercury concentrations 

less than 0.500 ppm standard set by EPA (0.0290, 0.0415 ppm, 
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Table 8.4. Total tissue mercury levels by sample location and laboratory 
based on arithmetic mean values (NOTE: Upper data from CDFG Lab and 
Lower data from FGL Lab). 

Sample Site N 
Mean 
(ppm) Median 

Standard 
Deviation Minimum Maximum 

Entrance 11 0.6918 0.68 0.2985 0.300 1.200 

Down River 7 0.4971 0.5400 0.1198 0.2400 0.6000 

Harcourt 10 0.7130 0.6700 0.2089 0.3400 1.0000 
Reservoir 

Ramage 4 0.09 0.0800 0.0356 0.0600 0.1400 
Reservoir 

Buena Vista 3 1.5670 1.4000 0.379 1.3000 2.0000 
Reservoir 

Nacimiento 27 0.6152 0.6500 0.1906 0.2600 1.0000 
River Fork 

Marina Forks 19 0.35 0.3500 0.2815 0.2000 1.1000 

Sample Site N 
Mean 
(ppm) Median 

Standard 
Deviation Minimum Maximum 

Entrance 10 0.701 0.655 0.4 0.290 1.570 

DownRiver 11 0.6045 0.6000 0.2895 0.2000 1.2300 

Harcourt 12 1.1420 0.6000 1.712 0.0000 6.4000 
Reservoir 

Ramage 4 0.1125 0.1150 0.0665 0.0500 0.1700 
Reservoir 

Buena Vista 2 3.9200 3.9200 0.622 3.4800 4.3600 
Reservoir 
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Table 8.5. Total tissue mercury concentrations by feeding habit and size 
based on arithmetic mean data. 

ANOVA tm 

LAB DF ss MS F p 
FGLLab Feed Habit 2 6.143 3.071 3.6 0.038 

Error 35 29.895 0.854 
Total 37 36.037 

CDFGLab Feed Habit 2 10.00 5.00 17.97 0.00 
Error 78 21.701 0.278 
Total 80 31.702 

Mean Mean St Dev. 
Level N (Log n) (ppm) (Log n) 

FGLLab Benthic 14 -1.0037 0.366 1.229 

Phytovore 11 -0.5897 0.554 0.519 

Predator 13 -0.0504 0.951 0.7928 

CDFGLab Benthic 16 -1.238 0.290 0.8079 

Phytovore 20 -0.8784 0.415 0.4938 

Predator 45 -0.373 0.689 0.4067 
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Figure 8.3. Total tissue mercury concentrations by feeding habits based on 
arithmetic mean values from the CDFG and FGL laboratories. 
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respectively). Analyses of the logarithmically transformed FGL data (Table 

8.5, Figure 8.3) shows a similar pattern with the top predators with geometric 

mean values of0.736 ppm and the benthic associated species with 0.336 ppm. 

The herbivorous species in revealed a concentration of 0.554 ppm, in excess 

of the 0.5000 ppm standard but closes to the 0.4575 ppm concentration for the 

same group in the CDFG data set. 

Analyses of both CDFG and FGL laboratories data show significant 

differences in mercury concentrations relative to size (Table 8.5, Figure 8.4). 

Larger and presumably older fish have higher body burdens of mercury than 

smaller (younger) individuals. The FGL data resulted in a mean concentration 

level for larger fish of 0.7600 ppm and 0.3000 ppm for smaller individuals. 

Statistical analyses indicated the difference to be significant (P=0.0015). The 

results in the CDFG analyses show a parallel trend. 

8.4. Discussion of Biological Study 

The results and analyses clearly show that elevated mercury levels exist 

in the fish communities of the Las Tab las Creek drainage. Mercury has no 

known normal functional physiological role, yet its occurrence in living 

organisms has been widely documented (Johnels et al., 1967,1968; NRC 

1978). Among the forms of mercury generally found in animals such as fish, 

methylmercury is by far the dominant type with percent of total mercury 

values on the order of 80-90% (Thompson, 1990; NRC, 1978). Methyl 

mercury is also regarded as the most toxic form of organic mercury with a 

variety of physiological effects depending on organism and concentration 

level. The other forms of organic mercury compounds found are more easily 

detoxified by conversion to other forms and/or more readily excreted 

(Vemberg et al., 1985; NRC, 1978; Young, 1971). 
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The primary source of methylmercury in aquatic systems are the 

inorganic mercury-rich sediments containing high levels organic materials in 

which populations of microorganisms carry out the transformations of the 

inorganic complexes of mercury into organic forms. The degree to which 

such transformations occur have also been shown to be directly related to 

depth, and therefore amount, of inorganic mercury-rich sediments (Jensen and 

Jemelov,l969, Jemelov,1970). The transformation process (methylation) 

occurs as microorganisms such as bacteria carry out their own necessary 

metabolic activities. Methylation processes may occur simultaneously with 

demethylation processes where the methylmercury is converted to other less 

toxic compounds (detoxification) and, in some instances, mineralized to some 

biochemically inert form. In most instances, the methylation rates are higher 

than other detoxification or mineralization rates. 

The presence of heavy loads of inorganic mercury results in progressive 

increases in organic mercury within the populations of certain bacteria. The 

increase within the bacterial population is enhanced by a unique ability of 

these organisms to progressively elevate the rates of methylation as levels of 

inorganic mercury rise and remain high in the environment. This progressive 

rate elevation occurs as the bacterial population is also acquiring increasing 

resistance to toxic effects of mercury through processes of natural selection 

and genetic modification through changes in gene expression via episomes 

(NRC, 1978) and perhaps transposons (so-called "jumping genes"). The 

mechanism ofthis change is similar, if not identical to, that in which many 

bacteria attain increased resistance to antibiotics. 

In terms of environmental methymercury loads, contaminated bacterial 

populations may continue to grow, cells may die and decompose or be 

consumed by other organisms. Thus organic forms of mercury may be 
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continually be synthesized and redistributed within the immediate physical 

environment and the existing biota. 

Organic mercury has been documented in virtually every major group 

of aquatic organisms in environments where heavy loads of inorganic as well 

as organic mercury exist. Aside from microorganisms, these include 

invertebrates animals such as insects, crustaceans and water fowl(mallard 

ducks, sea gulls, commorants, ospreys) and aquatic plants such duckweed 

(Elodea), filamentous algae (many species), as well as emergent aquatic 

vegetation. (Furness and Rainbow, 1990; NRC, 1978). It is particularly 

noteworthy that mercury levels in fishes have been especially well 

documented (Johnston et al., 1991; Young, 1971; Mcintyre and Miller, 1975; 

NRC, 1978) and are of p~icular concern to scientists. This is related to the 

historically close relationship of man to fish in the context of a major food 

resource and widespread recreational fishing. 

Importantly, fishes are the dominant vertebrates of the aquatic 

environment and are among the major consumer groups in all aquatic systems. 

As predators, they also dominate the apex of the trophic pyramid, the position 

where biomagnification of heavy metals is most apt to attain the highest 

concentrations as heavy metals tend to accumulate in structures and molecules 

(lipids, proteins) which are generally not readily metabolized or immediately 

eliminated from the body. Thus as the biomass of a particular trophic level is 

transformed to biomass at another, there is a net loss of volume (biomass) 

with minimal losses of non-metabolized heavy metal bearing complexes 

resulting greatly increased per unit volume concentrations. 

Historically, the primary pathway of methylmercury has been thought 

to be mainly the through trophic interrelationships which accounts for the 

highest levels to occur in the top predators of a food web (MacCrimmon, 
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1983; Phillips and Buhler, 1988). As noted previously however, 

methylmercury also readily passes through cell membranes of a variety of 

organisms including phytoplankton, macrophytic aquatic plants as well as 

aquatic invertebrates and fishes (NRC, 1978). In fishes, methylmercury 

passes through the gills and probably other exposed epithelial tissues of the 

buccal cavity. In benthic forms, methylmercury passes through the digestive 

tract. Thus there is also a direct pathway into living cells. 

In the case of the Las Tab las watershed, it is not surprising that the 

highest concentrations were found in apex predator fishes, in particular those 

coming from impoundments (the Harcourt and Buena Vista reservoirs) or sites 

where sediments tend to accumulate (the Entrance site). The latter 

encompasses locations of gentle topography with reduced slopes and water 

velocities where sediments tend to collect rather than be transported out of the 

system. It is very likely that the high methylmercury loads in these sampling 

localities are associated with the long standing high levels of inorganic 

mercury-rich sediments occurring in organic carbon rich substrates containing 

dense populations of methylating microorganisms adapted to the chemical 

environment of the slower parts of the Las Tab las creek watershed (see Tables 

4.2 and 4.3). 

While highest values were noted in these low water velocity sites, 

elevated values were also found in the lotic (running water) sections (Down 

River station). This is also related to the documented low pH conditions of 

the upper creek drainage (see Table 4.2) which are consistent with other 

studies which have demonstrated that acid conditions enhance the methylation 

of inorganic mercury and that this relationship in turn is also strongly 

correlated to observed high mercury concentrations in fish tissues (Lathrop, 
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1989; McMurty, et al., 1989). Low pH conditions (<6.0) are known to restrict 

the occurrence of a diverste invertebrate community. 

In the Las Tab las system, it appears that inorganic mercury loads must 

have been consistently high over a relatively long period of time since 

samples in the lotic sections of rapid turnover and transport of materials 

downstream would have revealed significantly lower tissue mercury 

concentrations after several years, given that the half-life of mercury m 

predatory fish tissues approximates 2 years with other estimates for a variety 

of species ranging from 700 to >1200 days (Young, 1971). These biological 

data also suggest a continuing supply of mercury-bearing materials entering 

Las Tablas Creek system; most likely from eroding sediments originating at 

the two inactive Buena Vista and Klau mercury mines (see Tables 4.2 and 4.3 

and Section 4 of this report). (The "half-life" in this instance is the period 

· required for reduction or elimination of 50% of the organic mercury body 

burden.) 

A small number of samples of one to three-plus year old largemouth 

bass (6) and two year old carp (4) taken in 1982 in a State Water Resources 

Control Board point survey in the Las Tablas creek drainage revealed 

arithmetic mean concentrations from 0.71 to 1.70 ppm for bass and 0.65 to 

1.10 ppm for carp. The sampling stations in this study (1993 sample year) 

that are mentioned above consistently revealed high levels in excess of the 

widely accepted international (28+ countries) as well as state acceptable 

standard of0.5000 ppm mercury concentration (NRC,1978). It appears that 

-tittle has changed to reduce mercury loading in the Las Tablas drainage over 

the years as mercury loads in the system and body burdens within the biotic 

community have not abated. 
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Comparisons of the disjunct Ramage sample site to the primary Las 

Tablas sampling sites (Entrance, Down River, Harcourt Reservoir, including 

the Buena Vista reservoir) are instructive in that both CDFG and FGL data 

sets show no evidence of excessive mercury loads on the biota in the former. 

Interestingly, this site is fairly close to the areas of historic cinnabar mining 

activities but is disconnected from Las Tablas Creek proper and is upstream 

from the inactive mines. On the other hand, the Buena Vista reservoir site is 

not directly connected by water to Las Tablas Creek proper during dry periods 

but is in the creek drainage watershed. In this case, connection with the creek 

is likely during periods of high precipitation. During such times fish would be 

able to easily move to and from the Buena Vista reservoir location. Also, the 

dam material has been demonstrated to contain high mercury concentrations 

(Table 4.2). The Buena Vista reservoir dam materials have high levels of 

inorganic mercury substrate and sediments available for methylation and 

bioaccumulation. This water contact with the contaminated dam materials 

could account for the presence of fishes with high body burdens of mercury. 

In contast, Ramage reservoir fish have significantly lower mercury 

concentrations than for fish located in the primary Las Tablas Creek drainage 

stations as well as the Buena Vista reservoir. 

Another comparison of interest was that showing relatively high values 

for two additional sampling sites away from the primary study area (Marina, 

Nacimiento River Fork) which suggest that mercury contamination in Lake 

Nacimiento may be widespread. Undoubtedly, however, the mouth of the Las 

Tab las Creek as it enters the lake proper, serves as a repository of upstream 

mercury bearing sediments and substrate from which methylmercury 

contamination may fan out. This is consistent with the indications from the 

mercury concentrations found in the lake sediments (Table 4-10). The 
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relatively high mercury values in fish from the Marina site may also be a 

reflection of normal fish movements and redistributions over a long period, 

resulting in the widespread dispersal of methylmercury burdened fish. 

The analyses and comparisons in this study show the highest mercury 

concentration among the top-predators such as the basses. This is consistent 

with what is generally accepted as the prevailing model for the relationship 

between mercury biomagnification and feeding habits (Francesconi and 

Lenanton, 1991; Thompson, 1990; Young, 1971; NRC, 1978; D'Itri, 1972). 

Benthic feeding forms such as catfish are also likely to ingest significant 

amounts of incidental particulate matter and sediments in their normal feeding 

behavior and represent another trophic model describing the pathway of 

mercury into fish communities (D'Itri, 1972). Thus it is not surprising to note 

some high levels in these fishes as well as in some carp. The higher 

occurrence in the threadfin shad is probably related to the high intake rate of 

quantities phytoplankton which can individually carry methyhnercury via 

adsorption and absorption. The high levels noted for green sunfish are 

reflective of their role as trophic primary consumer functioning as a predator 

of small invertebrates which can have 1 00-fold increases in organic mercury 

(Johnels et al., 1967; 1968) 

The relationship of mercury concentrations to fishes size (age) are also 

very consistent with known trends of biomagnification in fish populations. 

Historic background levels of mercury in predatory fish tissues from 

uncontaminated systems range between 0.02 and 0.20 ppm. Concentrations as 

high as >24 ppm in contaminated systems have been recorded. However, 

most severely contaminated environments are within the single digit tissue 

concentration range measured in ppm; depending on species, age, locality, 

degree of pollution, etc. Highest levels are generally associated with 
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anthropogenic sources (NRC, 1978). It is noteworthy, however, that historic 

levels from uncontaminated waters are generally measured in terms of part per 

billion (ppb) (D'Itri, 1972). Since exogenous and ingested methylmercury 

easily passes through cell membranes and binds with structural a:r:!_d enzymatic 

proteins (metallothioneins, coenzymes) as well to lipid rich structural 

molecules (George, 1990; NRC, 1978) which are not readily metabolized nor 

readily turned over; therefore, the longer an animal lives, the greater the 

burden of "stored" mercury bound complexes. Thus the larger (older) fishes 

show significantly higher concentrations of mercury. 

Finally, it should be noted that top-predator fishes also happen to be 

among the primary target species of recreational fishers in Lake Nacimiento. 

They represent a potential hazard to the public in that it is very likely that 

much of the catch is also consumed as food. During the course of this study, 

anglers were commonly observed in the vicinity of every sampling site. 

Anglers always target larger specimens and commonly retain them for home 

consumption. The potential dangers of consuming methylmercury 

contaminated fish have been documented in mammals and humans and range 

from nervous system dysfunction, decrease of reproductive potential, 

including observations of enhanced in utero sensitivity of the human fetus 

(NRC, 1978; Furness and Rainbow, 1990; Mcintyre and Miller, 1975). 

Other effects in a variety of other animals which have been 

demonstrated with organic mercury include reduced absorption of amino acids 

and simple sugars, spinal curvatures and inhibited osmotic and ionic 

regulation (Socci and Farmanfarmaian, 1985; Sharp and Neff, 1985). 

Mechanisms for these effects involve fundamental physiological functions 

which are interfered with through the strong competitive binding of mercury 

to both reactive and nonreactive points of certain metal containing molecules, 
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sulfhydryl containing compounds, and nucleic acids (George, 1990; Furness 

and Rainbow, 1990; NRC, 1978). While previous data on mercury 

contamination of fish from Lake Nacimiento has been collected in the past 

and warnings have been issued, the previous data were based on very small 

numbers of animals and lacked continuity of sampling in time and space. 

Further, warnings issued in the most recent public sportfishing regulations 

document by the California Department of Fish and Game (CDFG, 1994

1996) are based on these earlier data and are restricted to only largemouth 

bass. Clearly, other important species targeted by recreational fishers such as 

white bass, smallmouth bass and channel catfish. Our data demonstrate a 

significant bioaccumulation of mercury in these several fish species. The data 

presented here represent the largest survey of mercury contamination in the 

Las Tablas watershed system to date. The results confirm earlier surveys and 

warrant the dissemination of the findings to appropriate organizations with 

broader warnings as deemed appropriate by the responsible government 

agencies. 



258 

9.0 BIBLIOGRAPHY 

Adriano, D.C. 1986. Trace elements in the terrestrial environment. Springer

Verlag, New York. 


Agocs, M.M., R.A. Etzel, R.G. Parrish, D P. Paschal, P.R. Campagna, D.S. 

Cohen, E.M. Kilbourne, and J.L. Hesse. 1990. Mercury exposure from 

indoor latex paint. New England J. Med. 323:1096-1102. 


Allan, R.J. 1986. The role of particulate matter in the fate of contaminants in 
aquatic ecosystems. National Waters Research Institute, Scientific Series 
No. 142, Inland Waters Directorate. Canada Centre for Inland Waters, 
Burlington, Ontario. 

Armstrong, F.A.J., and D.P. Scott. 1979. Decrease in mercury content of fishes 
in Ball Lake, Ontario, since imposition of controls on mercury discharges. J. 
Fish. Res. Board Canada. 36:670-672. 

Bailey, E.H. 1942. Quicksilver deposits of the Western Mayacmas District, 

Sonoma county, California. Calif. J. Mines Geol. 42(3):199-230. 


Bailey, E.H., W.P. Irwin, and D.L. Jones. 1964. Franciscan and 

related rocks, and their significance in the geology of western 

California. Calif. Div. Mines and Geol. Bull. 183. 


Barkay, T., and B. Olson. 1986. Phenotypic and genotypic adaptation of aerobic 
heterotrophic sediment bacterial communities to mercury stress. Appl. 
Environ. Microbiol. 52:403-406. 

Bartlett, P.D., and P.J. Craig. 1981. Total mercury and methyl mercury levels in 
British estuarine sediments. Water Res. 15:37-47. 

Beller, M., C. Waide, and M. Steinberg. 1970. Treatment of acid mine drain 

water by ozone oxidation. Environmental Protection Agency, Water 

Pollution Control Series, Brookhaven National Lab., Report No. 

14010FMH12nO. 


Bergman, L.P. 1993. Precipitation records for Dover Canyon (Station No. 110), 
San Luis Obispo Co., CA.: 1945-1993. Collected for the San Luis Obispo 
Flood Control and Water Conservation District. 

Berman, M., and R. Bartha. 1986. Control of the methylation process in a 

mercury-polluted aquatic sediment. Environ. Poll. Ser. 11 :41-53. 




259 

Bhattacharyya, D., and C.Y.R. Cheng. 1987. Activated charcoal adsorption of 
heavy metal chelates from single and multicomponent systems. Environ. 
Prog. 6(2): 110-118. 

Bialas, W.F., and W.C. Middleton. 1977. Mine drainage costly to neutralize. J. 
Water Poll. Control Fed. 49:2054. 

Bigley, D. 1993. Investigation of two non-point sources of mercury 
contamination in the Las Tab las watershed, San Luis Obispo County, 
California. Unpublished Master of Science Thesis, Cal. Poly. State Univ., 
San Luis Obispo, CA. 

Bisogni, J.J. 1989. Using mercury volatility to measure redox potential in oxic 
aqueous systems. Environ. Sci. Technol. 23:828-831. 

Bjornberg, A., L. Hakanson, and K. Lundbergh. 1988. A theory on the 
mechanisms regulating the bioavailability of mercury in natural waters. 
Environ. Poll. 49:53-61. 

Blodgett, J.C., and C.E. McConaughy. 1986. Rock riprap design for protection 
of stream channels near highway structures. U.S. Geol. Survey, Water Res. 
Invest. Report 86-4128. 

Blum, I.E., and R. Bartha. 1986. Effect of salinity on methylation of mercury. 
Bull. Environ. Contam. Toxicol. 25:404-408. 

Bodaly, R.A., R.E. Hecky, and R.I. Fudge. 1984. Increases in fish mercury 
levels in lakes flooded by the Churchill River diversion, northern Manitoba. 
Can. J. Fish. Aquat. Sci. 41:682-691. 

Bongers, L.H., and M.N. Khattak. 1972. Sand and gravel overlay for control of 
mercury in sediments. U.S.E.P.A. Publ. No. 16080HVA. 

Bosman, D.J. 1974. The improved densification of sludge from neutralized acid 
mine drainage. J. So. African lnst. Min. Met. 74:340-348. 

Bosman, D.J. 1983. Lime treatment of acid mine water and associated 
solids/liquid separation. Water Sci. Techno!. 15:71-84. 

Bradley, W. W. 1918. Quicksilver resources of California. pp. 126-149. 
Calif. State Mining Bureau Bulletin No. 78. 



260 

Browning, J.E. 1970. Freshening acid mine waters. Chern Eng. 77:40-42. 

Bunin, J. 1993. Nacimiento a hot ticket among water users. (page 3). San 
Luis Obispo County Telegram-Tribune. Jan. 20, 1993. 

Building Construction Cost Data. 1988. R.S. Means Co., Inc., Kingston, 
MA. 

Bureau of Mines, U.S. 1965. Mercury potential of the United States. U.S. 
Dept. of Interior. Bureau of Mines Info. Circular 8252. 

Burkstaller, J.E., P.L. MacCarty, and G.A. Parks. 1975. Oxidation of cinnabar 
by Fe(III) in acid mine waters. Environ. Sci. Technol. 9:676-678. 

California Department of Forestry (CD F). 1985. Forest practice rules, Northern 
Forest District, Sacramento, CA. 

California Department of Public Health. 1973. Mercury in California. 
Sacramento, Calif. 

California Department of Water Resources (DWR). 1978. Basic data of 
surface water flow: Diversions, surface water quality, ground water 
measurements, ground water quality. DWR San Joaquin District office. 
Memo. Report, June, 1979 and June, 1981. 

California Department of Water Resources (DWR). 1988. Hydrologic data 
for 1985, Central coastal area, Vol. 3. Bulletin 130-85. 

Chamberlin, C.E., R. Chaney, B. Finney, M. Hood, P. Lehman, M. McKee, and 
R. Willis. 1990. Abatement and control study: Sulphur Bank Mine and Clear 
Lake. Prepared for Reg. Water Quality Control Board. 

Chipping, D. H. 1987. The geology of San Luis Obispo County, California. 
Cal. Poly. State Univ., San Luis Obispo, CA. 

Columbia Geoscience. 1988. A review of the chemical and geologic aspects of 
Hg, As, and acid toxicity along the eastern edge of Clear Lake, Lake County, 
California. Prepared for the Bradley Mining Co., San Francisco, CA, by 
Columbia Geoscience, Hillsboro, OR. 

Compeau, G., and R. Bartha. 1984. Methylation and demethylation of mercury 
under controlled redox, pH, and salinity conditions. Appl. Environ. 
Microbiol. 48:1203-1207. 



261 

Compeau, G., and R. Bartha. 1987. Effect of salinity on mercury methylating 
activity of sulfate-reducing bacteria in estuarine sediments. Appl. Environ. 
Microbiol. 53:261-265. 

Cole, C.A., A.B. Molinski, N. Reig, and F. Backus. 1977. Peroxide oxidation of 
iron in coal mine drainage. J. Water Poll. Control Fed. 49:1616-1620. 

Cook G.D., E.B. Welch, S.A. Petersen, and P.R. Newroth. 1986. Lake and 
reservoir restoration. Ann Arbor Science, Buttersworth, Boston, MA. 

Crabtree, J .H., and W .P. Schaefer. 1966. The oxidation of iron (II) by chlorine. 
J. Inorg. Chern. 5: 1348-1351. 

Crecelius, E. A., M. H. Bothner, and R. Carpenter. 1975. Geochemistries of 
arsenic, antimony, mercury, and related elements in sediments of Puget 
Sound. Environ. Sci. Techno!. 9:325-333. 

Central Valley, Regional Water Quality Control Board (CVRWQCB). 1987. 
Regional mercury assessment. March, 1987. Sacramento, CA. 

Dalrymple, K. 1993. SLO ups its bid for Nacimiento water. (page 1). San Luis 
Obispo (SLO) County Telegram-Tribune. Jan. 20, 1993. 

Dirkx, P. 1988. Board considers polluted water from old mine. (page 1). San 
Luis Obispo (SLO) County Telegram-Tribune. Jan. 20, 1993. 

D'Itri, F. M. 1972. The environmental mercury problem. CRC Press, Cleveland, 
Ohio. · 

D'ltri, F. M. 1990. The biomethylation and cycling of selected metals and 
metalloids in aquatic sediments. pp. 163-214. In R. Baido, J.P. Geisy, and 
H. Muntau (eds.). Sediments: chemistry and toxicity of in-place pollutants. 
Lewis Publishers, Inc., Chelsea, MI. 

Dudas, M. J ., and S. Pawluk. 1976. The nature of mercury in Chemozemic and 
Luvisolic soils in Alberta. Can. J. Soil Sci. 56:413-423. 



262 

Dupuis, R.E. 1991. Summary of water rights held by Monterey County Flood 
Control and Water Conservation District. Presented to the Interagency 
meeting on reservoir management, June 27, 1991. 

Durham, D.L. 1968. Geologic map of the Adelaida quadrangle, San Luis 
Obispo county, California. Dept. of the Interior. U.S. Geol. Surv. Geol. 
Quad. Map GQ-768. 

Earth Systems Environmental, Inc. 1990. Results of quarterly discharge 
monitoring at Buena Vista Mine, San Luis Obispo, California. 
Presented to the Regional Water Quality Control Board. November 28, 
1990. 

Eckel, E.B., and W.B. Myers. 1946. Quicksilver deposits of the New Idria 
District, San Benito and Fresno counties, California. Calif. J. Mines Geol. 
42(2):81-124. 

Eckel, E.B., R.G. Yates, and A.E. Granger. 1941. Quicksilver deposits in 
San Luis county and southwestern Monterey county, California. Dept. 
of Interior. Strategic Minerals Invest. Bulletin 922-R. U.S. Govt. Print. 
Office, Washington, D.C. 

Eicholz, G.C., M.P. Petelka, and R.L. Kury. 1988. Migration of elemental 
mercury through soil from simulated burial sites. Water Res. 22:15-20. 

Eichorn, G.L. 1975. Active sites of biological macromolecules and their 
interaction with heavy metals. In: Ecological toxicology research, 
Mcintyre and Miller, editors. Plenum Press, New York. 

Everhardt, D.L. 1946. Quicksilver deposits at the Sulphur Bank Mine, Lake 
County, California. Calif. J. Mines Geol. 42(2):125-153. 

Envicom Corp. Staff. 1984. Lake Nacimiento resort specific plan: Draft 
environmental impact report. Prepared for San Luis Obispo County. May 18, 
1984. 

Fagerstrom, T., and A. Jernelov. 1972. Some aspects of the quantitative ecology 
of mercury. Water Res. 6:1193-1202. 

Fanning, D.S., and M.C.B. Fanning. 1989. Soil morphology, genesis, and 
classification. J. Wiley and Sons, New York. 



263 

Feick, G., E.E. Johanson, and D.S. Yeaple. 1972. Control of mercury 
contamination in freshwater sediments. USEPA R2-72-077. 

Fleischer, M. 1970. Summary of the literature on the inorganic geochemistry of 
mercury. pp. 6-13. In Mercury in the environment. Dept. of the Interior. 
Geol. Surv. Prof. Paper 713. U.S. Govt. Print. Office, Washington, D.C. 

Follett, R.H., L.S. Murphy, and R.L. Donahue. 1981. Fertilizers and soil 
amendments. Prentice-Hall, Inc., Englewood Cliffs, NJ. 

Franke, H. A. 1935. Mines and mineral resources of San Luis Obispo 
County. California. J. of Mines and Mineralogy. 35:402-461. 

Friedrich, G.H., and H.E. Hawkes. 1966. Mercury dispersion haloes as ore 
guides for massive sulfide deposits, West Shasta district, California. 
Mineralium Deposita. 1:77-88. 

Furness, R. and P. Rainbow .editors. 1990. Heavy metals in the marine 
environment. CRC Press Inc., Boca Raton, FL. 

Furutani, A., and I.M. Rudd. 1980. Measurement of mercury methylation in 
lake water and sediment samples. Appl. Environ. Microbiol. 40:770-776. 

Garrels, R.M., and C.L. Christ. 1965. Solutions, minerals and equilibria. Harper 
and Row, New York. 

Gavis, J ., and J .F. Ferguson. 1972. The cycling of mercury through the 
environment. Water Res. 6:989-1008. 

George, S. 1990. Biochemical and cytological assessments of metal 
toxicity in marine animals. In: Heavy metals in the marine environment. 
Furness and Rainbow, editors. CRC Press Inc. Boca Raton, FL. 

Gill, G.A., and K.W. Bruland. 1990. Mercury speciation in surface freshwater 
systems in California and other areas. Environ. Sci. Techno!. 24:1392-1400. 

Girts M.A., and R.L.P. Kleinmann. 1986. Constructed wetlands for treatment of 
acid mine drainage: a preliminary review. pp. 165-171. In D.H. Graves (ed.) 
Symp. on Surface Mining Hydrology, Sedimentology, and Reclamation. 
University of Kentucky, Lexington. 

Gower, H.D., J.G. Vedder, H.E. Clifton, and E.V. Post. 1966. Mineral resources 
of the San Rafael primitive area, California. U.S. Geol. Survey Bull. 1230-A. 



264 

Greene, J. 1992. Mercury mines tainting lake. (page 1 ). San Luis Obispo (SLO) 
County Telegram-Tribune. October 31, 1992. 

Hahne, H.C., and W. Kroontje. 1973. The simultaneous effect of pH and 
chloride concentrations upon mercury (II) as a pollutant. Soil Sci. Soc. 
Amer. Proc. 37:838-843. 

Hakanson, L. 1982. The quantitative impact of pH, bioreproduction, and Hg
contamination the Hg-content of fish (Pike). Environ. Poll. (Series B), 
1:285-304. 

Hannan, P.I., and N.P. Thompson. 1977. Uptake and release ofHg(203) by 
selected soil and sediment samples. J. Water Poll. Control Fed. 49:842-847. 

Harrington, J. 1988. An evaluation of slope stability at the Sulphur Bank Mine, 
Clear Lake, California. B.S. thesis, Dept. Environ. Resources Engineering, 
Humboldt State Univ ., Arcata, CA 

Harsh, I.B., and H.E. Doner. 1981. Characterization of mercury in a riverwash 
soil. J. Environ. Qual. 10:333-337. 

Hawley, N.L., and Jones, B.L. 1969. Sediment yields of coastal basins in 
Northern California, 1958-1964. U.S. Geol. Surv. Water Res. Div. 
Open File Report 2015-02. 

Hecky, R.E. no date. Churchhill-Nelson River system investigation. Freshwater 
Institute, Winnipeg, Manitoba, Canada. (as cited in Rudd et al., 1988). 

Helgeson, H.C. 1969. Thermodynamics of hydrothermal systems at 
elevated temperatures and pressure. Amer. J. Sci. 267:729-804. 

Helper, L.G., and G. Olofsson. 1975. Mercury: Thermodynamic properties, 
chemical equilibria, and standard potentials. Chern. Reviews. 75:585
602. 

Hem, J.D. 1970. Chemical behavior of mercury in aqueous media. pp. 19
24. In Mercury in the environment. Dept. of the Interior. Geol. Surv. 

Prof. Paper 713. U.S. Govt. Print. Office, Washington, D.C. 


Hill, B.R., and C.E. McConaughy. 1988. Sediment loads in the Ventura 
River Basin, Ventura County, California, 1969-1981. Dept. of the 
Interior. U.S. Geol. Surv. Water Res. Invest. Report 88-4149. 



265 

Hill, D.W. 1969. Neutralization of acid mine drainage. J. Water Poll. 
Control Fed. 41:1702-1715. 

Hill, R.D., and R.C. Wilmoth. 1971. Limestone treatment of acid mine 
drainage. Trans. Soc. Min. Eng. AIME. 250:162-166. 

Hines, W .G. 1971. Preliminary investigation of mercury-hazard potential: 
Warm Springs dam and Lake Sonoma project, Dry Creek basin, Sonoma 
county, California. Dept. of the Interior. Geol. Surv. Open File Report. 
U.S. Govt. Print. Office, Washington, D.C. 

Hogg, T.J., W.B. Stewart, and J.R. Bettany. 1978. Influence of the chemical 
form of mercury on its adsorption and ability to leach through soils. J. 
Environ. Qual. 7:440-445. 

Holland, C.T., J.L. Corsaro, and D.J. Ladish. 1968. Factors in the design of an 
acid mine drainage treatment plant. pp. 274-290. In 2nd Symp. on Coal Mine 
Drainage Res. Mellon Institute, Pittsburgh, P A. 

Hoover, T.B. 1978. Inorganic species in water: ecological significance and 
analytical needs. USEP A, Athens, Ga. 

Homestake Mining Company. 1983. Proposed gold mine and mineral extraction 
facility reclamation plan, McLaughlin project, Lower Lake, California. 

Hubbert, K.H. 1991. The location, source, and concentration of mercury in 
Lake Nacimiento in relation to the particle size, pH, and organic matter 
content of the sediment. Unpublished Master of Science thesis. Cal. Poly. 
State Univ., San Luis Obispo, CA. 

H uenisch, G. W. 1987. Lime substitutes for the treatment of acid mine 
drainage. Min. Eng. 39:33-36. 

Hutchinson, G.E. 1957. A treatise on limnology, Vol. 1, Part 1, Geography 
and physics of lakes. J. Wiley and Sons, Inc., New York. 

Hutchison, I.P.G. and R.D. Ellison (eds.). 1992. Mine waste management; 
A resource for mining industry professionals, regulators, and consulting 
engineers. Sponsored by the Calif. Mining Assoc. Lewis Publishers, 
Boca Raton, FL. 



266 

Jackson, T.A. 1986. Methyl mercury levels in a polluted prairie river-lake 
system: Seasonal and site-specific variations, and the dominant influence of 
trophic conditions. Can. J. Fish. Aquat. Sci. 43:1873-1887. 

Jackson, T. A. 1988. Accumulation of mercury by plankton and benthic 
invertebrates in riverine lakes of northern Manitoba (Canada): Importance of 
regionally and seasonally varying environmental factors. Can. J. Fish. Aquat. 
Sci. 45:1744-1757. 

Jenne, E. A. 1970. Atmospheric and fluvial transport of mercury. pp. 40-45. In 
Mercury in the environment. Dept. of the Interior. Geol. Surv. Prof. Paper 
713. U.S. Govt. Print. Office, Washington, D.C. 

Jensen S. and A. Jemelov. 1969. Biological methylation of mercury in 
aquatic organisms. Nature 223:753-754. 

Jemelov A. 1970. Release of methyl mercury from sediments with layers 
containing inorganic mercury at different depths. Limnology and 
Oceanography 15(6):958-969. 

Jemelov A., and B. Asell. 1974. The feasibility of restoring mercury
contaminated waters. Proc. International Conf. on Heavy Metals in the 
Aquatic Environ., Vanderbilt Univ ., Nashville, TN. 

Jemelov A., L. Landner, and T. Larsson. 1975. Swedish perspectives on 
mercury pollution. J. Water Poll. Control Fed. 47(4):810-822. 

Kinnibergh, D.G., and M.C. Jackson. 1978. Adsorption of mercury (II) by iron 
hydrous oxide gel. Soil Sci. Soc. Am. J. 42:45-47. 

Kirubagaran, R., and K.P. Joy. 1988. Toxic effects of mercuric chloride, methyl 
mercuric chloride, and Emisan 6 (an organic mercurial fungicide) on ovarian 
recredescence in the catfish, Clarius batrochus. Bull. Environ. Contam. 
Toxicol. 41 -902-909. 

Kleinmann, R.L.P. 1985. Treatment of acid mine water by wetlands. pp. 48-52. 
In Proc. of a Tech. Transfer Seminar. U.S. Bureau of Mines Info. Circular 
No. 9027. 

Kleinmann, R.L.P. 1987. A biological alternative to conventional AMD 

treatment. Green Lands, Spring Issue, pp 30-33. 




267 

Kleinmann, R.L.P. 1988. Personal communication. U.S. Bureau of Mines 
Environ. Control Technology Group, Pittsburgh Research Center. 

Kleinmann, R.L.P., and P.M. Erickson. 1986. Control of acid mine drainage; an 
overview of recent developments. pp. 283-305. In C.L. Carleton and J.H. 
Swisher (eds.) Proc. of Mined Land Reclamation Conf., Innovative 
Approaches to Mined Land Reclamation. So. Illinois Press, Carbondale, IL. 

Knott, J.M. 1976. Sediment discharge in the Upper Arroyo Grande and 
Santa Rita Creek Basins, San Luis Obispo County, California. U.S. 
Geol. Surv. Water Res. Invest. Report 76-64. 

Kostenbader, P.O., and G.F. Haines. High density sludge treats acid mine 
drainage. Coal Age 75:90-97. 

Kudo, A., and I.S. Hart. 1974. Uptake of inorganic mercury by bed sediments. 
J. Environ. Qual. 3:273-279. 

Lacey, D.T., and F. Lawson, 1970. Kinetics of the liquid-phase oxidation of 
ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotech. Bio. 
12:29-50. 

Langbein, W .F., and Schumm, S.A. 1958. Yield of sediment in relation to 
mean annual precipitation. Am. Geophys. Union Trans. 39:1076-1084. 

Lindberg, S.L., and R.C. Harriss. 1977. Release of mercury and organics from 
resuspended near-shore sediments. Water. Poll. Control Fed. Bull. 49:2479
2487. 

Lazaroff, N., W. Sigel, and A. Wasserman. 1982. Iron oxidation and 
precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans 
cells. Appl. Environ. Microbiol. 43:924-938. 

Lindberg, S.E., D.R. Jackson, I.W. Huckabee, S.A. Janzen, M.I. Levin, and I.R. 
Lund. 1979. Atmospheric emission and plant uptake of mercury from 
agricultural soils near the Almaden mercury mine. J. Environ. Qual. 8:572
578. 

Lindsay, W.L. 1979. Chemical equilibria in soils. J. Wiley and Sons, New 
York. 

Linsley, R.K., and J.B. Franzini. 1964. Water resources engineering. McGraw
Hill, New York. 



268 

Lockwood, R. A., and K.Y. Chen. 1973. Adsorption of Hg(II) b_y hydrous 
manganese oxides. Environ. Sci. Technol. 7:1028-1034. 

Loden ius, M., A. Seppanen, S. Autio. 1987. Sorption of mercury in soils with 
different humus content. Bull. Environ. Contam. Toxicol. 39:534-538. 

Mandl, M. 1984. Growth and respiration kinetics of Thiobacillus ferrooxidans 
limited by C02 and 02. Biologia (Bratisl.). 39(4):429-434. 

Mcintyre, A.D. and C.F. Miller. 1975. Ecological Toxicology Research. 
Effects of heavy metals and organohalogen compounds. Proc. National 
Sci. Committee Conf. Plenum Press., New York. 

Mikac, N., M. Picer, P. Stegnar, and M. Tusek-Zuidavik. 1985. Mercury 
distribution in a polluted marine area: Ratio of total mercury, methyl 
mercury and selenium in sediments, mussels and fish. Water Res. 19:1387
1392. 

Mining Waste Study Team, of the University of California at Berkeley. 1988. 
Mining waste study: Final report. Commissioned by the Cal. State 
Legislature and jointly funded by the State Water Res. Control Board, the 
Dept. of Health Services, and the Dept. of Conserv. 

Mishra, B.B., D.R. Nanda, and B.N. Misra. 1987. Accumulation of mercury by 
Azolla and its effect on growth. Bull. Environ. Contam. Toxicol. 39:701
707. 

Miskimmin, B.S. 1991. Effect of natural levels of dissolved organic 
carbons (DOC) on methyl mercury formation and sediment-water 
partitioning. Bull. Environ. Contam. Toxicol. 47:743-750. 

Mo, S.C., D. S. Choi, and J.W. Robinson. 1989. Uptake of mercury from 
aqueous solution by duckweed: The effects of pH, copper and humic acid. J. 
Environ. Sci. Health. 24:135-146. 

Myerson, A.S. 1981. Oxygen mass transfer requirements during the growth of 
Thiobacillus ferrooxidans on iron pyrite. Biotech. Bio. 23:1413-1416. 

Nakamura, K., T. Sakato, and H. Nakahara. 1988. Volatilization of mercury 
compounds by methyl mercury-volatilizing bacteria in Minamata Bay 
sediment. Bull. Environ. Contam. Toxicol. 41:651-656. 



269 

National Academy of Sciences. 1978. An assessment of mercury in the 
environment. National Research Council, Environ. Studies Board. 
Commission on Natural Resources. Washington, D.C. 

National Research Council (NRC). 1978. An assessment of mercury in the 
environment. National Academy of Sciences, Washington, D.C. 

National Research Council (NRC). 1977. Drinking water and health. National 
Academy of Sciences, Washington, D.C. 

Newton, D.W., R. Ellis, and G.M. Paulsen. 1976. Effect of pH and complex 
formation on mercury (II) adsorption by bentonite. J. Environ. Qual. 5:351
254. 

Nordstrom, D.K. 1982. The effect of sulfate on aluminum concentrations in 
natural waters: some stability relations in the system Al203-S03-H20 at 
2980K. Geochim. Cosmochim. Acta. 46:681-692. 

Olem H., and R.F. Unz. 1977. Acid mine drainage treatment with rotating 
biological contactors. Biotech. Bio. 19:1475-1491. 

Olem H., and R.F. Unz. 1980. Rotating-disc biological treatment of acid mine 
drainage. J. Water Poll. Control Fed. 52:257-269. 

Olsen, B.H., J .N. Lester, S.M. Cayless, and S. Ford. 1989. Distribution of 
mercury resistance determinants in bacterial communities of river sediments. 
Water Res. 23:1209-1217. 

Oremland, R.S., C.W. Culbertson, and M. R. Winfrey. 1991. Methyl 
mercury decomposition in sediments and bacterial cultures: 
Involvement of methanogens and sulfate reducers in oxidative 
demethylation. Appl. Microbial. 57:130-137. 

Organization for Economic Cooperation and Development. 1974. Mercury 
and the environment: Studies of mercury use, emission, biological 
impact, and control. Organization for Economic Cooperation and 
Development, Paris. 

Parks, G.A. 1987. Private communication. In Mining Waste Study Team, 
of the University of California at Berkeley. 1988. Mining waste study: 
Final report. Commissioned by the Cal. State Legislature and jointly 
funded by the State Water Res. Control Board, the Dept. of Health 
Services, and the Dept. of Conserv. 



27C 


Pearson, R.C., P.T. Hayes, and P.V. Fillo. 1967. Mineral resources of the 
Ventana primitive area, Monterey County, California. U.S. Geol. 
Survey Bull. 1261-B. 

Phillips, G.R., P.A., D.R. Skaar, and D.E. Knight. 1987. Factors affecting the 
mobilization, transport, and bioavailability of mercury in reservoirs of the 
Upper Missouri River basin. U.S. Dept. Interior. Fish and Wildlife Service 
Tech. Report 10. U.S. Govt. Print. Office, Washington, D.C. 

Pierce, A.P., J.M. Botbol, and R.E. Learned. 1970. Mercury content of rocks, 
soil, and stream sediments. pp. 14-18. In Mercury in the environment. 
Dept. of the Interior. Geol. Surv. Prof. Paper 713. U.S. Govt. Print. Office, 
Washington, D.C. 

Pollio, F., and R. Kunin. 1967. Ion exchange processes for the treatment of acid 
mine drainage waters. Environ. Sci. Tech. 1(3):235-241. 

Potter, L., D. Kidd, and D. Standiford. 1975. Mercury levels in Lake Powell: 
Bioamplification of mercury in man-made desert reservoir. Environ. Sci. 
Technol. 9:41-46. 

Rasmussen, D., and G. Starrett. 1987. Toxic Substances Monitoring 
Program. Water Quality Monitoring Report No. 89-1. Prepared 
for the Cal. State Water Resources Control Board. Field and 
Lab operations conducted by the Water Pollution Control Lab., 
Cal. Dept. of Fish and Game. 

Read, J.A. 1992. Lake mercury could impact pipeline plans. (page 1). The 
Cambrian. Nov. 12, 1992. Vol. 62 (No. 11). 

Reid, G .K. 1976. Ecology of inland waters and estuaries. Van Nostrand, New 
York. 

Reimers, R.S., and P.A. Itrenkel. 1974. Kinetics of mercury adsorption and 
desorption in sediments. Jour. Water Poll. Control Fed. 46:352-365. 

Ritchie, I. C. 1989. Carbon content of sediments of small reservoirs. Water Res. 
Bull. 25-301-308. 

Ritter, J.R., and W.M. Brown, III. 1972. Sedimentation of Williams 
Reservoir, Santa Clara County, California. U.S. Geol. Surv. Water Res. 
Div. Open File Report 3013-14. 



271 

Rogers, R.D., and J.C. McFarlane. 1979. Factors influencing the volatilization 
of mercury from soil. J. Environ. Qual. 8:255-260. 

Rose, J.L. 1970. Treatment of acid mine drainage by ion exchange process. In 
3rd Symp. on Coal Mine Drainage Res. Mellon Institute, Pittsburgh, PA. 

Rudd, J.W.M. and M.A. Turner. 1983. The English-Wabigoon River system: V. 
Mercury and selenium bioaccumulation as a function of aquatic primary 
productivity. Can. J. Fish. Aquat. Sci. 40:2251-2259. 

Rudd, J.W.M., M.A. Turner, A. Furitani, A.L. Swick, and B.E. Townsend. 
1983. The English-Wabigoon River system: I. A synthesis of recent research 
with a view towards mercury amelioration. Can. J. Fish. Aquat. Sci. 
40:2206-2217. 

Rudd, J.W.M., M.A. Turner, B.E. Townsend, A.L. Swick, and A. Furitani. 
1980. Mechanisms of movement of mercury into aquata: preliminary 
examination of some amelioration procedures. In R.J. Allan and T. Brydges 
(eds.). Mercury pollution in the Wabigoon/English River system of 
northwestern Ontario, and some possible remedial measures. Available from 
J.W.M. Rudd, Freshwater Institute, Winnepeg, Manitoba, Canada (as cited 
in Rudd et al., 1983). 

San Luis Obispo Co. Flood and Water Conservation District. 1965. Report on 
feasibility of utilization of water from Nacimiento River in San Luis Obispo 
County. Vol. 1. April, 1965. 

Sato, T., T. Goto, T. Okabe, and F. Lawson. 1984. The oxidation of 
iron(II)sulfate with sulfur dioxide and oxygen mixtures. Bull. Chern. Soc. 
Japan. 57:2082-2086. 

Schellhammer, A.M. 1988. Chronic dietary toxicity of methyl mercury in the 
zebra finch, Poephila guttata. Bull. Environ. Contam. Toxicol. 40:123-130. 

Schiller, J.E., and S.E. Khalafalla. 1984. Magnesium oxide for improved heavy 
metals removal. Min. Eng. 36:171-173. 

Scott, K.H., and R.P. Williams. 1914. Erosion and sediment yields in the 
Transverse Ranges, Ventura and Los Angeles Counties, California: 
Analyses of rates and processes. Dept. of the Interior. U.S. Geol. Surv. 
Water Res. Invest. Report 47-73. 



272 

Scott, K.H., and R.P. Williams. 1978. Erosion and sediment yields in the 
Transverse Ranges, southern California. U.S. Geol. Surv. Prof. Paper 
1030. 

Schwab, G.O., R.K. Frevent, W.E. Talcott, and K.K. Barnes. 1981. Soil and 
water conservation. J. Wiley and Sons, New York. 

Seiders, V.M. 1982. Geologic map of the Burnett Peak quadrangle, Monterey 
and San Luis Obispo counties, California. Dept. of the Interior. U.S. Geol. 
Surv. Geol. Quad. Map GQ-1658. 

Seiders, V. M. 1989. Geologic map of an area near York Mountain, San Luis 
county, California. Dept. of the Interior. U.S. Geol. Surv. Misc. Invest. 
Series Map I-1369. 

Sharp, J.R. and J.M. Neff. 1985. Age dependent response differences of 
Fundulus heteroclitus embryos following chronic exposure to mercury. 
In: Marine pollution and physiology: recent advances, J. Verberg, F. 
Thone berg, A. Calabrese and W. Verberg. editors. Bella W. Baruch 
Instit. for Mar. Bioi. and Coastal Res., University of So. Carolina Press, 
Columbus, SC. 

Sims, J.D. and D.E. White. 1981. Mercury in the sediments of Clear Lake. pp. 
237-241. In R.J. McLaughlin and J.M Donnelly-Nolan (eds.) Research in the 
Geysers-Clear Lake geothermal area, northern California. Dept. of the 
Interior. U.S. Geol. Surv Prof. Paper 1141. U.S. Govt. Print. Office, 
Washington, D.C. 

Sissler, F.D., F.E. Senftle, and J. Skinner. 1977. Electrobiochemical 
neutralization of acid mine water. J. Water Poll. Control Fed. 49:369-374. 

Skerfving, S. 1988. :Mercury in women exposed to methyl mercury through fish 
consumption, and in their newborn babies and breast milk. Bull. Environ. 
Contam. Toxicol. 41:475-482. 

Smith, J.N. and D.H. Loring. 1981. Geochronology for mercury pollution in the 
sediments of the Saguenay Fjord, Quebec. Environ. Sci. Technol. 15: 944- · 
951. 

Smith, M.A. 1985. Contaminated land reclamation and treatment. Plenum 
Press, New York. 



273 

Smith, M.J. 1977. Phosphate process treats acid mine drainage. Chern. Eng. 
News No. 4/4n7:27-28. 

Socci, R. and A. Farrnanfarrnaian. 1985. Effect of heavy metals on the 
intestinal absorbtion of toad fish (Opsansus tau). In: Marine pollution 
and physiology: recent advances, J. Verberg, F. Thoneberg, A. 
Calabrese and W. Verberg. editors. Bella W. Baruch Instit. for Mar. 
Bioi. and Coastal Res., University of So. Carolina Press, Columbus, SC. 

Soil Conservation Service (SCS). 1976. Universal Soil Loss Equation. USDA
SCS technical note based on Agronomy Technical Note No. 32, developed 
by the Western Technical Service Center, SCS, Portland, OR. 

Soil Science Dept. Faculty. 1990 edition. Fertilizers in improving soil fertility. 
El Corral, Cal. Poly. State Univ., San Luis Obispo, CA. 

Spangler, W.J., J.L. Spigarelli, J.M. Rose, R.S. Flippen, and H.H. Miller. 1973a. 
Degradation of methyl mercury by bacteria isolated from environmental 
samples. Appl. Microbiol. 25:488-493. 

Spangler, W.J., J.L. Spigarelli, J.M. Rose, and H.H. Miller. 1973b. Methyl 
mercury: Bacterial degradation in lake sediments. Science 180:192-193. 

State Water Resources Control Board (SWRCB). 1979. Primary 
lake surveys network of the State Water Resources Control 
Board. 

State Water Resources Control Board (SWRCB). 1991. Water and 
sediment data available for lake tributaries (heavy metals): 205 
(j) Grant in Progress; Abandoned and Inactive Mines in the 

Northwestern Quarter of San Luis Obispo County. David 

Schwartzbart, RWQCB staff contact in 1993. 


Steffan, R.I., E.T. Korthals, and M.R. Winfrey. 1988. Effects of acidification on 
mercury methylation, demethylation, and volatilization in sediments from an 
acid-susceptible lake. Appl. Environ. Microbiol. 54:931-937. 

Stevens, T. P. 1988. California State Mussel Watch, 1986-87. Water Quality 
Monitoring Report No. 88-3. State Water Resources Control Board, 
Sacramento, CA. 

Streeter, R.C. 1970. Sulfide treatment of coal mine drainage. pp. 152-167. In 
3rd Symp. on Coal Mine Drainage Res. Mellon Institute, Pittsburgh, P A. 



274 

Stickel, W .H. 1975. Some effects of pollutants in terrestrial ecosystems. 
Ecolo~ical toxicology research, Mcintyre and Miller, editors. Plenum 
Press., New York. 

Swain, E.B., D.R. Engstrom, M.E. Brigham, T.A. Henning, and P.L. Brezonik. 
1992. Increasing rates of atmospheric mercury deposition in midcontinental 
North America. Science 257:784-787. 

Tezuka, T. andY. Takasaki. 1988. Biodegradation of phenyl mercuric acetate 
by organomercury-resistant Penicillium sp. MR-2. Agric. Bioi. Chern. 
52:3183-3185. 

Theis, T.L., L.H. Ketchum, Jr., and W.H. Engelman. 1982. Biological catalysis 
of the oxidation of iron(II) in acid mine waters in a sequencing batch 
suspended film reactor. pp. 425-432. In D.H. Graves (ed.) Symp. on 
Hydrology, Sedimentology, and Reclamation. University of Kentucky, 
Lexington. 

Thompson, F.R. 1990. Metal levels in marine vertebrates. In: Heavy metals 
in the marine environment. Mcintyre and Miller. editors. CRC Press 
Inc., Boca Raton. FL. 

Thomas, R.L. 1972. The distribution of Hg in the sediments of Lake Ontario. 
Can. J. Earth Sci. 9:636-651. 

Thomas, R.L. 1973. The distribution of Hg in the surficial sediments of Lake 
Huron. Can. J. Earth Sci. 10:194-204. 

Trevors, J. 1986. Mercury resistant bacteria isolated from sediment. Bull. 
Environ. Contam. Toxicol. 36:405-411. 

Tuttle, J.H., P.R. Dugan, and C.L Randles. 1969b. Microbial sulfate reduction 
and its potential utility as an acid mine water pollution abatement procedure. 
Appl. Microbiol. 17:297-302. 

Tuttle, J.H., P.R. Dugan, C.B. MacMillan, and C.L Randles. 1969a. Microbial 
dissimilatory sulfur cycle in acid mine water. J. Bacteriology. 97:594-602. 

U.S. Geological Survey (USGS). 1970. Mercury in the environment. Dept. of 

the Interior. Geol. SUIV. Prof. Paper 713. U.S. Govt. Print. Office, 

Washington, D.C. 




275 

U.S. Geological Survey (USGS). 1972. Selected physical and 
chemical characteristics of 20 California Lakes. Dept. of the 
Interior. Geol. Surv. Open File Report. U.S. Govt. Print. 
Office, Washington, D.C. 

U.S. Geological Survey (USGS). 1986. A water resources data 
network evaluation for Monterey County, California: Phase I; 
South county area. Dept. of the Interior. Geol. Surv. Water 
Res. Invest. Report 85:4045. 

Varekamp, J.C., and A.F. Waibel. 1987. Natural cause for mercury 
pollution at Clear Lake, California, and paleotectonic influences. 
Geology 15:1018-1021. ' 

V eder, C. 1979. Landslides and their stabilization. Springer-V erlag!W ein, 
New York. 

Vaughn, W.W. 1967. A simple mercury vapor detector for geochemical 
prospecting. U.S. Geol. Survey Circular 540. 

Waller, M. 1979. Cost analysis for alternate methods of reducing acid mine 
drainage at Buena Vista mine, Adelaide, California. Unpublished Senior 
Project. CaL Poly. State Univ., San Luis Obispo, CA. 

Walker. S.D. 1987. Bradley mining Company Report-Clear Lake Mercury. 
Memorandum to Jerry Bruns, Chief, Standards, Policies and Special Studies 
Section, California Regional Quality Control Board, Central Valley Region. 
February 11, 1987. 

Wang, Y., I. Mahler, H. Levinson, and H. Halverson. 1987. Cloning and 
expression in Escherich, a coli of chromosomal mercury resistance genes 
from a Bacillus spp. J. Bacteriol. 169:4848-4851. 

Warren, H.V., R.E. Delavault, and J. Barakso. 1966. Some observations on the 
geochemistry as applied to prospecting. Econ. Geol. 61: 1010-1028. 

Water Resources Administration. 1984. Shore erosion control. U.S. Army 
Corps of Engineers, Baltimore, MD. 

Weaver, W.E., M.M. Hektner, D.K. Hagens, L.J. Reed, R.A. Sonnevil, and G.J. 
Bundros. 1987. An evaluation of experimental rehabilitation work, Redwood 
National Froest, National Park Service, Arcata, CA. 



276 

Williston, S.H. 1968. Mercury in the atmosphere. J. Geophys. Research. 
73:7051-7055. 

Wollast, R., G. Billen, and F.T. Mackenzie. 1975. Behavior of mercury in 
natural systems and its global cycle. p. 145-166. In A.D. Mcintyre and 
C.F. Mills (eds.) Ecological Toxicology Research, Proceeding of a 

NATO Science Committee Conference, Plenum, NY. 


Woodward-Clyde Consultants. 1987. Evaluation of potential health and 
environmental hazards from application of mercury mine waste materials to 
Cambria Ranch's North Ranch access road. Submitted to the Calif. Dept. of 
Health Services, Toxic Substances Control Div., Fresno District Office. 

Wren, C.D., and H.R. MacCrimmon. 1986. Comparative bioaccumulation of 
mercury in two adjacent freshwater ecosystems. Water Res. 20:763-769. 

Wren, C.D., and P.M. Stokes. 1988. Depressed mercury levels in biota from 
acid and metal stressed lakes near Sudbury, Ontario. Ambio. 17:28-30. 

Wright, D.R., and R.D. Hamilton. 1982. Release of methyl mercury from 
sediments: Effects of mercury concentration, low temperature, and nutrient 
addition. Can. J. Fish. Aquat. Sci. 39:1459-1466. 

Xun, L., N.R. Campbell, and I.M. Rudd. 1987. Measurements of specific rates 
of net methyl mercury production in the water column and surface sediments 
of acidified and circumneutrallakes. Can. J. Fish. Aquat. Sci. 44:750-757. 

Yates, R.G., and L.S. Hilpert. 1942. Quicksilver deposits of the Eastern 
Mayacmas District, Lake and Napa counties, California. Calif. J. Mines 
Geol. 42(3):231-286. 

Young, D. 1971. Mercury in the environment: A summary of information 
pertinent to the distribution of mercury in the Southern California 
Bight. So. Cal. Coastal Water Res. Proj. 

Zabban, W., T. Fithian, and D.R. Maneval. 1972. Conversion of coal-mine 
drainage to potable water by ion exchange. J. Amer. Water. 64(11):775-780. 



APPENDIX 1 


National Pollutant Discharge Elimination System (NPDES) Permits and 


Cease and Desist Orders issued on May 19, 1993 to Buena Vista Mines, Inc. 




STATE OF CALIFORNIA PETE WILSON. Governor 

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 
CENTRAL COAST REGION 
81 HIGUERA STREET, SUITE 200 
SAN LUIS OBISPO, CA 93401·5414 
(805) 549·3147 

May 19, 1993 

Mr. Harold Biaggini, President 

Buena Vista Mines, Inc. 

1148 Market Street 

Morro Bay, CA 93442 


Dear Mr. Biaggini: 

BUENA VISTA AND KLAU MINE - RPDES PERMITS AND CEASE AND DESIST 
ORDERS 

Enclosed are your copies of Order Nos. 93-47, NPDES Permit for 
Buena Vista Mine; 93-56, Cease and Desist Order for Buena Vista 
Mine; 93-48, NPDES Permit for Xlau Mine; and, 93-57, Cease and 
Desist Order for the Xlau Mine. These Orders were adopted by this 
Regional Board on May 14, 1993. 

In response to your request, the Board agreed to accept your· April 
1993 monitoring results as equivalent to May for this year only. 
Accordingly, your next monitoring report should cover sampling done 
in August 1993 and is due September 30, 1993. In addition, the 
Board agreed that you could defer running the acute and chronic 
toxicity tests until the surface water treatment systems are 
installed. The Board's granting of this latter request is based 
upon your stipulation that the surface runoff from the mines is 
toxic. 

Questions about these Orders can be directed to David Schwartzbart 
at 542-4643. 

Sincerely, 

CALIFORNIA REGIONAL WATER QUALITY 
CONTROL BOARD, CENTRAL COAST REGION 

Byv~~
WILLIAM R. LEONARD 

Executive Officer 


WRL/sm51:Mines.ltr 

Enclosures 

see next page for list of cc's 



CAUFORNIA REGIONAL WATER QUAUTV CONTROL BOARD 

CENTRAL COAST REGION 


81 Higuera Street, Suite 200 

San Luis Obispo, California 93401-5427 


ORDER NO. 93-47 

NPDES No. CA 0049352 


WASTE DISCHARGE REQUIREMENTS 

FOR 


BUENA VISTA MINES, INC. 

BUENA VISTA MINE CLOSURE, POST-CLOSURE AND SURFACE WATER DISCHARGE 


SAN WIS OBISPO COUNTY, CAUFORNIA 


The California Regional Water Quality Control 
Board, Central Coast Region (hereafter Board), 
fmds: 

1. 	 Buena Vista Mines, Inc. (BVMI), 1148 Market 
Street, Morro Bay, California 93442 (hereafter 
Discharger), owns an inactive mercury mine, 
the Buena Vista Mine (BVM). Mr. Harold J. 
Biaggini is the president of BVMI. 

2. 	 The BVM is located approximately 12 miles 
west of Paso Robles, California, on property 
owned by the Discharger as shown on Figures 
1 and 2, included as part of this order. The 
Discharger's property which includes the BVM 
is located in Sections 3 and 4, T27S, R10E, and 
Sections 33 and 34, T26S, R10E, MDBM, 
Adelaida 15 minute quadrangle. 

3. 	 An application for authorization to discharge 
wastes under the National Pollutant Discharge 
Elimination System (NPDES) was submitted on 
July 10, 1987, by Harold Biaggini. Waste 
Discharge Requirements, Order No. 88-90, 
NPDES No. CA 0049352 was issued by the 
Board on June 10, 1988 and expires June 1, 
1993. Surface water discharged offsite from the 
BVM is regulated by Order No. 88-90. 

4. 	 On July 13, 1990, the Board adopted Cease and 
Desist Order (COO) No. 90-104, because 
discharge from the mine did not meet 
conditions of the NPDES permit. CDO No. 
90-104 orders full compliance with NPDES 

permit No. CA00049352 by May 15, 1991, and 
references compliance with CCR Title 23, 
Division 3, Chapter 15, Article 7. 

5. 	 BVM surface waste water is discharged from 
the site at only one known point. BVM surface 
waste water is discharged to a culvert under the 
intersection of Klau Mine Road and Cypress 
Mountain Road (Figure 3). The discharge then 
flows in a drainage course on property owned 
by Raymond E. Dodd, et al., approximately 0.2 
miles to the North Fork of Las Tablas Creek. 
The drainage course intersects the North Fork 
approximately 85 miles upstream of 
Nacimiento Reservoir as shown on Figure 4 
included as part of this Order. 

6. 	 Nacimiento Reservoir is a drinking water 
aquifer recharge source. It has been posted in 
the past with warnings that fish are mercury 
contaminated. 

7. 	 The Regional Board Glean Water Strategy 
(CWS) ranks Nacimiento Reservoir A-7, one of 
the region's highest priority water bodies. 
Nacimiento Reservoir recharges the Paso 
Robles Ground Water Basin, also wiLh a very 
high CWS rank of A-12. 

8. 	 The BVM is m structurally deformed, 
mineralized and chemically altered rocks near 
the common intersection of several faults. The 
rocks include silica carbonates, serpentine and 
the highly deformed sediments of the 
Franciscan Formation. 
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9. 	 Ground water surfaces as springs and seeps on 
the BVM site. However, onsite data regarding 
depth to ground water, ground water flow 
directions and rates, chemical and physical 
ground water properties, etc. have not been 
generated. 

10. 	 Topography of the BVM and surrounding 
region is steep; 45 degree slopes are not 
uncommon (Figure 2). 

11. 	 The "California Inland Surface Waters Plan", 
adopted by the State Water Resources Control 
Board on Aprilll, 1991, specifies water quality 
objectives for inland surface waters which 
became effective April 1, 1992. 

12. 	 The Water Quality Control Plan, Central 
Coastal Basin (Basin Plan), was adopted by the 
Board on November 17, 1989 and approved by 
the State Water Resources Control Board on 
August 16, 1990. The Basin Plan incorporates 
statewide plans and policies by reference and 
contains a strategy for protecting beneficial 
uses of waters of the State. 

13. 	 The Basin Plan specifies existing and 
anticipated beneficial uses of Las Tablas Creek 
as: 

a. municipal and domestic supply; 
b. agricultural supply; 
c. ground water recharge; 
d. water contact recreation; 
e. non-contact water recreation; 
f. wildlife habitat; 
g. warm fresh water habitat; and 
h. fish spawning. 

-2 May 14, 1993 

14. The Basin Plan specifies existing and 
anticipated beneficial uses of Nacimiento 
Reservoir as: 

a. municipal and domestic supply; 
b. agricultural supply; 
c. ground water recharge; 
d. water contact recreation; 
e. non-contact water recreation; 
f. wildlife habitat; 
g. cold fresh water habitat; 
h. warm fresh water habitat; and 
1. fish spawning. 

15. Specific beneficial uses of the drainage course 
between BVMI property and Las Tablas Creek, 
North Fork are not listed in the Basin Plan. 
Based on the character of the drainage course, 
presumed beneficial uses are: 

a. domestic supply 
b. agricultural supply 
c. ground water recharged 
d. water contact recreation 
e. wildlife habitat 
f. warm fresh water habitat, and 
g. fish spawning. 

16. California Code of Regulations ( CCR) Title 23, 
Division 3, Chapter 15, Article 7, commencing 
with Section 2570 (Article 7) regulates Mining 
Waste Management and contains Sections 
regarding: 

Applicability; 
Groups of Mining Waste; 
Unit Siting and Construction Standards; 
Water Quality Monitoring (requiring 
Article 5 ground water, surface water and 
vadose zone monitoring); and 
Closure and Post-Closure Maintenance. 
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The Section on Closure and Post Closure 
Maintenance addresses, in part: 

Water quality threat; 

Closure and Post-Closure Plans; 

Surface Mining and Reclamation Act 

(SMARA) approved 

mining and reclamation plans; 

Appropriate registered professionals; 

Surveyed monuments; 

Containment structures; 

Financial assurance; 

Post closure period; 

Vegetative layers and irrigation for same; 

Erosion and sedimentation; 

Final cover requirements; 

Grading requirements; 

Containment and cover maintenance; 

Leachate, collection and removal systems; 

Ground water, surface water and vadose 

zone monitoring; 

Drainage control; 

Surveyed monuments; 

Waste management unit free liquid; and 

Waste management unit contaminated 

materials. 
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17. 	 BVM is not in compliance with Article 7. 

18. 	 The BVM contains overburden, waste rock, 
and/or solid residues, sludges and liquids from 
the processing of ore as shown on Figures 3 
and 5, included as part of this order. 

19. 	 The BVM overburden, waste rock, and solid 
residues, sludges and liquids from the 
processing of ore are Group A and/or Group 
B Mining Waste, defmed by Article 7, Section 
2571. 

20. 	 Based on inspections, self monitoring reports 
and academic studies, the BVM, including 
BVM Group A and Group B Mining Wastes, 
has caused, and continues to cause, water 
quality degradation in Las Tablas Creek and in 
Nacimiento Reservoir. 

21. 	 Based on inspections, self monitoring reports 
and academic studies, the BVM, including 
BVM Group A and Group B Mining Wastes, 
has caused, and continues to cause, discharge 
violations of NPDES Permit No. CA 0049352 
Order No. 88-90 and CDO No. 90-104. 

22. 	 The most recent report intended as a 
comprehensive assessment of the BVM physical 
status is "Preliminary Geologic and Hydrologic 
Investigations. Buena Vista Mine and Carson 
Drift" by Marvin R. Niccum, California 
Registered Geologist, dated September 30, 
1988 (Report). 
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23. 	 BVM Mining Waste is subject to Article 7. Based on the Report, individual BVM units potentially 
regulated by Article 7 include, but are not limited to the following as shown on Figure 5, included as part 
of tbis order: 

Potential Type of Unit; 

Figure 5-number and/or name Article 7 nomenclature 


a. 	 Retort Dump - waste Pile 
b. 	 Pit Floor - surface impoundment 
c. 	 13. Terrace, Cut and Fill- waste pile and/or surface impoundment and/or 

tailings pond 
d. 	 14. Old Dumps & Portals- waste piles 
e. 	 4. Waste Dump - waste pile 
f. 	 5. & 6. Upper Catchment and 


Upper Catchment Dam - tailings pond 

g. 	 2. Surge Pile shed (and 


surrounding soil) - waste pile 

b. 	 7. Lower Parking Area - waste pile 
1. 	 8. & 9. Lower Catchment and 


Breached Catchment Dam - waste pile or tailings por:d 

J. 	 10. Evaporation Ponds - surface impoundment or tailings pond 
k. 	 12. Work Yard and Parking- waste pile 
1. 	 1. Mine Shop - waste pile 
m. 	 3. Retort - waste pile 
n. 	 BVM, Portal of BVM - waste pile 

24. 	 No information shows ground water has ever been investigated for BVM impacts. 

25. 	 Comprehensive mitigation options were proposed by the Report in September, 1988, but have not been 
implemented. 

26. 	 The Discharger was notified of impending Article 7 regulation in correspondence dated March 18, 1991, 
July 10, 1991 and July 24, 1992. The March 18, 1991 letter listed specific requirements and included a 
complete copy of the regulations. 

27. 	 Waste discharge requirements for this discharge are exempt from the proVtstons of the California 
Environmental Quality Act (Public Resources Code, Section 21100, et seq.) in accordance with section 13389 
of the California Water Code. 

28. 	 A permit and the privilege to discharge waste into waters of the State is conditional upon the discharge 
complying with provisions of Division 7 of the California Water Code and of the Clean Water Act (as 
amended or as supplemented by implementing guidelines and regulations) and with any more stringent 
effluent limitations necessary to implement water quality control plans, to protect beneficial uses, and to 
prevent nuisance. This Order, in part, shall serve as a National Pollutant Discharge Elimination System 
Permit pursuant to Section 402 of the Clean Water Act. Compliance with this Order should assure 
conditions are met and mitigate any potential changes in water quality due to the project. 

29. 	 On March 26, 1993, the Board notified the Discharger and interested parties of its intent to adopt Waste 
Discharge Requirements for the discharge. The Discharger and interested parties had the opportunity to 
submit v.Titten comments on this proposed Order. 
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IT IS HEREBY ORDERED, pursuant to authority in Sections 13263 and 13360 of the California Porter-Cologne 
Water Quality Control Act, that Buena Vista Mines, Inc., its agents, successors and assigns (BVMI) shall comply 
with the following: 

A. Prohibitions 

1. 	 Discharge of material to surface waters at a point other than into the South end of the culvert under the 
intersection of Klau Mine Road and Cypress Mountain Road is prohibited. 

2. 	 Discharge of material not contained within the liquid phase (e.g., sediment) into the culvert specified in 
A.1. above is prohibited. 

B. Effluent Limitations 

Discharge of the liquid phase to the culvert specified in A.1. above shall not contain total concentrations in 
excess of the following limits: 

Constituent 

Aluminum 

Antimony 

Arsenic 

Barium 

Beryllium 

Boron 

Cadmium 

Chromium 

Cobalt 

Copper 

Iron 

Lead 

Lithium 

Manganese 

Mercury 

Molybdenum 

Nickel 

Selenium 

Silver 

Sodium 

Thallium 

Vanadium 

Zinc 


pH 

Turbidity 

Total Dissolved 


Solids 
Specific Conductance 
Settleable Solids 

Units 

mg!L 
mg/L 
mg!L 
mg!L 
mg!L 
mg/L 
mg!L 
mg/L 
mg/L 
mg/L 
mg!L 
mgiL 
mg!L 
mg!L 
mg!L 
mg/L 
mg!L 
mg/L 
mg/L 
mg/L 
mg/L 
mg!L 
mg!L 

pH units 
NTU 

mg!L 
umhos 
mVL 

Limit 

1.0 
0.006 
0.005 
1.0 
0.004 
0.75 
0.0086 
0.05 
0.05 
0.03 
0.3 
0.03 
2.50 
0.05 
0.000012 
0.01 
0.1 
0.01 
0.013 

69.0 
0.002 
0.1 
0.2 

between 7.0 and 8.3 
5 

1500 
2200 
0.5 
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Constituent 

Acute Toxicity 
Chronic Toxicity 

There shall be no acute toxicity• 
rue•• 1.0 

Cyanide mg!L 0.2 
Fluoride mg!L 1.5 
Chloride mg!L 600 
Sulfate mg!L 600 

" Dissolved Oxygen mg!L 2:_5 

Color color units 15 
Odor-Threshold units 3 

• 	 Acute toxicity is less than 90% survival, 50% of the time,. and less than 70% survival, 10% of the time, of 
standard test organisms in undiluted effluent in a 96-hour static or continuous-flow test. 

•• 	TUc equals 100/NOEL. NOEL (No Observed Effect Level) is the maximum percent test water that causes 
no observed effect on a test organism, as described in a critical life stage toxicity test listed below: 

Critical Life Stage Toxicity Tests 

Species Effect Test 
duration 
(days) 

Reference 

fathead minnow 
(PimeQhales 
Qromelas) 

larval survival 
and growth rate 

7 Horning & 
Weber, 1989 

water flea 
(Ceria
daphnia 
dubia) 

survival; number 
of young 

7 Horning & 
Weber, 1989 

alga 
(Selanastrum 
caQricornutum) 

growth rate 4 Horning & 
Weber, 1989 

Toxicity Test Reference: Horning, W.B. and C.I. Weber (eds.). 1989. Short-term methods for estimating the 
chronic toxicity of effluents and receiving waters to freshwater organisms. Second edition. U.S. EPA 
Environmental Monitoring Systems Laboratory, Cincinnati, Ohio. EPN600!4-89!001. 
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C. Receiving Water Limitations 10. Waters of the U.S. shall not contain 
settleable material in concentrations that 

Receiving waters include all waters of the U.S. result in deposition of material that causes 
downstream of the Buena Vista Mine property. nuisance or adverselfaffects beneficial uses. 
Discharge of the liquid phase to the culvert 
specified in A.1. above shall not cause 11. Waters of the U.S. shall not contain oils, 
violation(s) of the following narrative limits. greases, waxes, or other similar materials in 

concentrations that result in a visible fdm or 
1. 	 Surface water communities and populations, coating on the surface of the water or on 

including vertebrate, invertebrate, and plant objects in the water, that cause nuisance, or 
species, shall not be degraded as a result of that otherwise adversely affect beneficial 
the discharge. uses. 

2. 	 The natural taste and odor of fish, shellfish, 12. Waters of the U.S. shall not contain 
or other surface water resources used for biostimulatory substances in concentrations 
human consumption shall not be impaired. that promote aquatic growths to the extent 

that such growths cause nuisance or 
3. 	 Toxic pollutants shall not be discharged at adversely affect beneficial uses. 

levels that will bioaccumulate in aquatic 
resources. 13. The suspended sediment load of surface 

waters of the U.S. shall not be altered in 
4. 	 The concentration of contaminants in such a manner as to cause nuisance or 

waters of the U.S. shall not occur at levels adversely affect beneficial uses. 
which are harmful to human health. 

14. Waters of the U.S. shall be free of changes 
5. 	 The concentrations of toxic pollutants in the in turbidity that cause nuisance or adversely 

water column, sediments, or biota shall not affect beneficial uses. 
adversely affect beneficial uses. 

15. Water temperature shall not be altered 
6. 	 Waters of the U.S. shall be free of unless it can be demonstrated to the 

coloration that causes nuisance or adversely satisfaction of the Regional Board that: such 
affects beneficial uses. alteration in temperature does not adversely 

affect beneficial uses. 
7. 	 Waters of the U.S. shall not contain taste or 

odor-producing substances tn 16. There shall be no acute toxicity in waters of 
concentrations that cause nuisance, or that the U.S. 
adversely affect beneficial uses. 

17. There shall be no chronic toxicity in waters 
8. 	 Waters of the U.S. shall not contain floating of the U.S. 

material, including solids, liquids, foams, 
and scum, in concentrations that cause 18. Waters of the U.S. shall not contain 
nuisance or adversely affect beneficial uses. concentrations of chemical constituents in 

amounts which adversely affect the 
9. 	 Waters of the U.S. shall not contain agricultural beneficial use. 


suspended material in concentrations that 

cause nuisance or adversely affect beneficial 

uses. 
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D. 	 Provisions: 

The Discharger shall eliminate all actual and 
potential water quality impacts from the BVM 
by bringing the BVM into compliance with 
Article 7 in accordance with Provisions 1. 
through 7 below. 

1. 	 The Discharger shall submit a plan by 
August 14, 1993 describing in detail how 
BVM will be brought into compliance with 
Article 7 (Compliance Plan). The 
Compliance Plan shall describe how the 
Discharger intends eliminating all actual 
and potential water quality impacts from 
the entire BVM. The Compliance Plan 
shall address, but not necessarily be limited 
to, all Sections, issues and units contained 
in Finding Nos. 16 and 23 of this Order. 

The Compliance Plan shall give detailed 
descriptions of the entire BVM and of each 
BVM unit subject to specific Article 7 
requirements. The Compliance Plan shall 
also describe, in detail and with specific 
citations, which Article 7 Sections apply to 
which individual units and which Article 7 
Sections apply to the complete BVM. The 
Compliance Plan shall describe the methods 
of achieving compliance in sufficient detail 
and with sufficient support and 
documentation to ensure feasibility, 
implementation and success. The 
Compliance Plan shall include a time 
schedule of events. The Compliance Plan 
shall be certified by the appropriate 
registered professionals. 

2. 	 Revisions to the Compliance Plan may be 
required by the Board or Board staff, and 
shall be submitted within 35 calendar days 
of written notice that they are required. All 
revisions shall be certified by appropriate 
registered professionals and shall render the 
Compliance Plan acceptable. 

3. 	 Implementation of the Compliance Plan 
shall commence within one calendar month 
of Executive Officer approval of the 
Compliance Plan. 

May 14, 1993 

4. 	 Full BVM compliance with Article 7 shall 
be achieved within 24 calendar months of 
Executive Officer approval of the 
Compliance Plan. 

5. 	 A report certifying how the BVM was 
brought into compliance with Article 7 
(Compliance Certification Report) shall be 
submitted within two calendar months of 
completion of Article 7 compliance 
activities, not to exceed 26 calendar months 
after Executive Officer approval of the 
Compliance Plan. The Compliance 
Certification Report must certify that all 
terms of the approved Compliance Plan 
were accomplished and describe in detail 
how they were accomplished. The 
Compliance Certification Report shall 
describe in detail all activities conducted 
pursuant to this Order and shall be certified 
by appropriate registered professionals. 

6. 	 Written status reports shall be submitted by 
BVMI every three calendar months during 
implementation of the Compliance Plan. 
The first status report shall be due three 
calendar months after the Compliance Plan 
is implemented (Provision D.3. above). 
Status report submittals shall continue until 
submittal of the Compliance Certification 
Report (Provision D.5. above). Status 
reports shall be certified by appropriate 
registered professionals. 

7. 	 All Compliance Plan implementation 
activities shall be conducted under the 
direct supervision of appropriate registered 
professionals. 

8, 	 Unpredictable events may necessitate 
revisions to plans, schedules, or activities. 
The Executive Officer shall have the 
authority to approve such revisions. 
However, the Discharger shall not 
implement any such revision, or discontinue 
previously approved or ordered terms, 
plans, schedules or activities prior to 
receiving Executive Officer approval. 
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9. 	 Board staff shall be notified at least 96 
hours prior to commencement of any 
physical activity to allow staff presence 
during such activity. 

10. Order No. 88-90 adopted by the Board on 
June 10, 1988, is hereby rescinded. This 
recision is not a waiver of the right of the 
Regional Board to seek administrative civil 
liability or take other enforcement action 
for violations of Order No. 88-90 whlch 
have occurred prior to the date of this 
recision. 

11. Discharger shall comply with "Monitoring 
and Reporting Program No. 93-47," as 
specified by the Executive Officer. 

May 14. 1993 

12. The Discharger shall comply with all items 
of the attached "Standard Provisions and 
Reporting Requirements for National 
Pollutant Discharge Elimination System 
Permits," dated January, 1985, (also referred 
to as "Standard Provisions"), except Item 
Nos. A.6,7,13; C3,9; and D.l. 

13. The Discharger shall inform his employees 
of the terms of this Order whlch pertain to 
their duties and a copy of this Order shall 
be available for their reference. 

14. This Order expires May 14, 1998. H BVMI 
wishes to continue the discharge to surface 
water of the United States after May 14, 
1998, it must file a Report of Waste 
Discharge (ROWD) in accordance with 
Title 23, of the California Code of 
Regulations by November 14, 1997. 

I, WILLIAM R. LEONARD, Executive Officer, do hereby certify the foregoing is a full, true, and correct copy 
of an Order adopted by the California Regional Water Quality Control Board, Central Coast Region, on May 

14,1993. 	 ~~-

Executive Officer 

DS:sg 

sg!ds3-93-47.wdr 
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CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 

CENTRAL COAST REGION 


81 Higuera Street, Suite 200 

San Luis Obispo, California 93401-5427 


MONITORING AND REPORTING PROGRAM NO. 93-47 

FOR 


BUENA VISTA MINES, INC. 

BUENA VISTA MINE 


SAN LUIS OBISPO COUNTY, CALIFORNLA 


1. 	 The liquid phase discharged from the Buena Vista Mine (BVM) 
into the south end of the culvert under the intersection of 
Klau Mine Road and Cypress Mountain Road (Discharge Point) 
shall be grab sampled and analyzed as follows: 

Sampling and Analysis 
Constituent Units Freguency 

pH pH Weekly 

Turbidity NTU Weekly 

Specific 


Conductance umhos Weekly 
Aluminum mg/L Quarterly, during - November, 

February, May and August 
Antimony " 
Arsenic " 
Barium " 
Beryllium " 
Boron 
Cadmium 
Chromium 
Cobalt 
Copper 
Iron " 
Lead " 
Lithium " 
Manganese " 
Mercury " 
Molybdenum " 
Nickel " 
Selenium " 
Silver " 
Sodium "" 
Thallium " 

Vanadium "
" 

Zinc " " 
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Sampling and Analysis 
Constituent Units Freguency 

Total Dissolved 
Solids mg/L Quarterly during November, 

February, May, and August 

Settleable Solids ml/L Quarterly during NFMA 
Acute Toxicity .. 

IIChronic Toxicity TUc 
IICyanide 	 mg/L 

II 	 IIFluoride 
IIChloride 	 " 

II 	 IISulfate 
II 	 IIDissolved Oxygen 

IIColor 	 color units 
IIOdor-Threshold units 

2. 	 This Monitoring and Reporting Program becomes effective May 
14, 1993. 

3. 	 Monitoring results shall be submitted to the Board by the 30th 
day of the month following the month of sampling; i.e., 
November results by December 30, February results by March 30, 
May results by June 30, and August results by September 30. 

4. 	 Monitoring reports shall include observations of receiving 
waters with regard to compliance with Order No. 93-47, C. 
Receiving Water Limitations. 

ORDERED BY:W~ 
EXECUTIVE OFFICER 

T£ATE 


sg/ds3-93-47.mrp 



CAUFORNIA REGIONAL WATER QUALITY CONTROL BOARD 

CENTRAL COAST REGION 


81 Higuera Street, Suite 200 

San Luis Obispo, caiHomia 93401--5427 


CEASE AND DESIST ORDER NO. 93-56 

Order Requiring Buena Vista Mines, Inc. 

San Luis Obispo County, 


to Cease and Desist from Discharging and 

Threatening to Discharge Surface Wa1er, From Buena Vista Mine 


in Violation of Requirements Contained in 

Waste Discharge Requirements, Order No. 88-90 and 93-47 


The California Regional Water Quality Control Board, Central Coast Region, (hereafter Board), fmds: 

1. 	 Buena Vista Mines, Inc. owns the Buena Vista Mine (BVM), an inactive mercury mine. 

2. 	 Surface water is discharged from the BVM to the south end of a culvert under the intersection of Klau 
Mine Road and Cypress Mountain Road approximately 8 1/2 miles upstream of Nacimiento Reservoir 
(Section 33, T26S, R10E, MD B&M; Adelaida 15 minute quadrangle). 

3. 	 The surface water discharge has been subject to Waste Discharge Requirements (WDR) Order No. 88-90, 
NPDES Permit No. CA0049352, adopted June 10, 1988. Order No. 88·90 specifies in part: 

A 	 Discharge Prohibitions 

1. 	 Discharge to the north fork of Las Tablas Creek of other than uncontaminated stormwater or 
uncontaminated seepage and at a location other than Discharge Point A orB, 35"37'32" N. Latitude, 
120°53'42" W. Longitude, is prohibited. 

B. 	 Effluent Limitations 

1. 	 Water discharged to the north fork of Las Tahlas Creek shall not exceed the following limits: 

Unit of 30-Day Daily 

Constituent Measurement Average Maximum 


Nickel mg/1 0.1 0.2 

pH Within range 


of 7.0 to 

8.3 


Toxicity 

Concentration tu 0.59* 


*No more than one of three consecutive flow-through bioassays shall result in less than 100% survival 
in undiluted effluent. No single test shall ever result in less than 90% survival in undiluted effluent. 
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C. 	 Receiving Water Limitations 

1. 	 The discharge shall not cause the following limits to be exceeded in the North Fork of Las Tablas 
Creek or Nacimiento Lake: 

Maximum mgll 

Constituent (Unless otherwise noted) 


Beryllium 0.15 
Cadmium 0.004 
Cobalt 0.075 
Iron 1.0 
Manganese 0.3 
Selenium 0.01 
pH Within limit of 7.0 to 8.3 at all times, and not changed more than 0.5 

units. 

Turbidity Not to exceed the Maximum 

(NTU) following: Increase 


Natural Turbidity* NTU 


< 50 20% 
50 <NT< 100 10NTU 
>100 10% 

"Natural Turbidity" shall be determined from receiving water samples taken upstream of the discharge 
point. 

Discharge shall not: 

2. 	 Cause surface waters to be greater than 15 units or 10 percent above natural background color, 
whichever is greater. 

3. 	 Contain taste or odor-producing substances in concentrations imparting undesirable tastes or odors 
to fish flesh or other edible products of aquatic origin, causing nuisance, or adversely affecting 
beneficial uses of surface waters. 

4. 	 Contain oils, greases, waxes, or other similar materials in concentrations resulting in a visible film 
or coating on the surface of the water or on objects in the water, causing nuisance, or otherwise 
adversely affecting beneficial uses of surface waters. 

5. 	 Contain settleable or soluble material in concentrations resulting in the deposition of material 
causing nuisance or adversely affecting beneficial uses of surface waters. 

6. 	 Contain floating material, including solids, liquids, foams, and sewn, on concentrations causing 
nuisance or adversely affecting beneficial uses of surface waters. 

7. 	 Contain suspended material in concentrations causing nuisance or adversely affecting beneficial uses 
of surface waters. 
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8. 	 Cause a violation of any applicable water quality standard for receiving waters adopted by the 
Regional Board or the State Water Resources Control Board as required by the Federal Water 
Pollution Control Act and regulations adopted thereunder. 

4. 	 Cease and Desist Order (CDO) No. 88-91, adopted June 10, 1988, and CDO No. 90-104, adopted July 13, 
1990, require full compliance with WDR No. 88-90 by October 1, 1989 and May 15, 1991, respectively. 

5. 	 Buena Vista Mines, Inc. has not complied with WDR Order No. 88-90, CDO No. 88-91 or CDO No. 90-104 
in that, based on the Discharger's self monitoring reports, BVM surface water discharge continues to 
exceed limits ordered by WDR Order No. 88-90, which are partially listed in Fmding No.3, above. 

6. 	 The surface water discharge is subject to WDR Order No. 93-47, adopted May 14, 1993. WDR No. 93-47 
contains, in part, Prohibitions, Effluent Limitations, Receiving Water Limitations, and Provisions. 

7. 	 WDR Order No. 93-47 contains more constituents with effluent limitations and in some cases, more 
stringent limits than contained in WDR Order No. 88-90. 

8. 	 Based on the discharger's sample analysis data, the discharge does not meet all or some of the following 
WDR Order No. 93-47 effluent limitations: 

"B. Effluent Limitations 

Discharge shall not contain total concentrations in excess of the following limits: 

Constituent 	 Units Limit 

Aluminum mg!L 1.0 

Antimony mg!L 0.006 

Arsenic mg!L 0.005 

Barium mg!L 1.0 

Beryllium mg!L 0.004 

Boron mg!L 0.75 

Cadmium mg!L 0.0086 

Chromium mg!L 0.05 

Cobalt mg!L 0.05 

Copper mg!L 0.03 

Iron mg!L 03 

Lead mg!L 0.03 

Lithium mg!L 2.50 

Manganese mg!L 0.05 

Mercury mg!L 0.000012 

Molybdenum mg!L 0.01 

Nickel mg!L 0.1 

Selenium mg!L 0.01. 

Silver mg!L 0.013 

Sodium mg!L 69.0 

Thallium mg!L 0.002 

Vanadium mg!L 0.1 

Zinc mg!L 0.2 
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Constituent 

pH pH units between 7.0 and 8.3 

Turbidity NTU 5 

Total Dissolved 


Solids mgiL 1500 

Specific Conductance umbos 2200 

Settleable Solids ml/L 0.5 


Acute Toxicity 	 There shall be no acute toxicity• 
Chronic Toxicity 	 TUc•• 1.0 

Cyanide mgiL 0.2 

Fluoride mg!L 1.5 

Chloride mg!L 600 

Sulfate mg!L 600 


Dissolved Oxygen mg!L >5.0 

Color color units 15 

Odor-Threshold units 3" 


• 	 Acute toxicity is less than 90% survival, 50% of the time, and less than 70% survival, 10% of the time, 
of standard test organisms in undiluted effluent in a 96-hour static or continuous-flow test. 

"'* 	TUc equals 100/NOEL. NOEL (No Observed Effect Level) is the maximum percent test water that 
causes no observed effect on a test organism, as described in a critical life stage toxicity test listed 
below: 

Critical Life Stage Toxicity Tests 

Species Effect 	 Test 
duration 
(days) 

fathead minnow 
(Pimephales 
promelas) 

water flea 
(Ceria
daphnia 
dubia) 

alga 
(Selanastrum 
capricornutum) 

larval survival 
and growth rate 

survival; number 
of young 

growth rate 

7 

7 

4 

Reference 

Horning & 
Weber, 1989 

Horning & 
Weber, 1989 

Horning & 
Weber, 1989 

Toxicity Test Reference: Horning, W.B. and C.I. Weber (eds.). 1989. Short-term methods for estimating the 
chronic toxicity of effluents and receiving waters to freshwater organisms. Second edition. U.S. EPA 
Environmental Monitoring Systems Laboratory, Cincinnati, Ohio. EPN600/4-89/001. 
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9. 	 This enforcement action is taken for the :::otection of the environment and as such is exempt from the 
provisions of the California Environment::~ Quality Act (Public Resources Code, Section 21100, et seq.) 
in accordance with Section 15321, Chapt::: 3, Title 14, California Regulatory Code. 

IT IS HEREBY ORDERED pursuant to Sectio:1 13301 of the Porter-Cologne Water Quality Control Act: 

Buena Vista Mines Inc. shall cease and desist f:om discharging wastes as specified below. 

1. 	 Buena Vista Mines, Inc. shall comptt immediately with all Provisions of Order No. 93-47, NPDES 
Permit No. CA0049352. 

2. 	 Until November 14, 1993, Buena Vista Mines, Inc. shall comply with the following in lieu of discharge 
Prohibitions, Effluent Limitations and Receiving Water Limitations of Order No. 93-47: 

A. 	 Discharge Prohibitions 

1. 	 Discharge to the north fork of Las Tablas Creek of other than uncontaminated stormwater or 
uncontaminated seepage and c.t a location ·other than Discharge Point A or B, 35o:37'32" N. 
Latitude, 120°53'42" W. Longitude, is prohibited. 

B. 	 Effluent Limitations 

1. 	 Water discharged to the north fork of Las Tablas Creek shall not exceed the following limits: 

Unit of 30-Day Daily 

Constituent Measurement Average Maximum 


Settleable Solids m1!l 0.5 
Mercury mgll 0.001 0.002 
Nickel mgll 0.1 0.2 
pH Within range 

of 7.0 to 
8.3 


Toxicity 

Concentration tu 0.59* 


*No more than one of three consecutive flow-through bioassays shall result in less than 100% survival 
in undiluted effluent. No single test shall ever result in less than 90% survival in undiluted effluent. 
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C. Receiving Water Limitations 

1. 	 The discharge shall not cause the following limits to be exceeded in the North Fork of Las 
Tablas Creek or Nacimiento Lake: 

Maximum mg/1 
Constituent (Unless otherwise noted) 

Aluminum 7.5 
Antimony 9.0 
Arsenic 0.05 
Barium 1.0 
Beryllium 0.15 
Boron 1.25 
Cadmium 0.004 
Chromium 0.05 
Cobalt 0.075 
Copper 0.018 
Cyanide 0.022 
Fluoride 1.5 
Iron 1.0 
Lead 0.05 
Lithium 3.75 
Manganese 03 
Mercury 0.0003 
Molybdenum 0.015 
Nickel 0.28 
Selenium 0.01 
Silver 0.004 
Hydrogen Sulfide 0.0032 
Vanadium 0.15 
Zinc 0.12 
pH Within limit of 7.0 to 8.3 at all times, and not changed more than 0.5 units. 

Temperature Maximum increase of 5°F above natural receiving water temperature. 

Turbidity 
(NTU) 

Not to exceed the 
following: 

Natural Turbidity* NTU 

Maximum 
Increase 

< 50 
50 <NT <100 
>100 

20% 
lONTU 
10% 

"Natural Turbidity" shall be determined from receiving water samples taken upstream of the discharge 
point. 
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Discharge shall not: 

2. 	 Cause the dissolved oxygen concentration of surface waters to be depressed below 5.0 mg!l. 

3. 	 Cause surface waters to be greater than 15 units or 10 percent above natural background color, 
whichever is greater. 

4. 	 Contain biostimulatory substances in concentrations promoting aquatic growths that cause 
nuisance or adversely affect beneficial uses of surface waters. 

5. 	 Contain taste or odor-producing substances in concentrations imparting undesirable tastes or 
odors to fish flesh or other edible products of aquatic origin, causing nuisance, or adversely 
affecting beneficial uses of surface waters. 

6. 	 Contain oils, greases, waxes, or other similar materials in concentrations resulting in a visible ftl.m 
or coating on the surface of the water or on objects in the water, causing nuisance, or otherwise 
adversely affecting beneficial uses of surface waters. 

7. 	 Contain settleable or soluble material in concentrations resulting in the deposition of material 
causing nuisance or adversely affecting beneficial uses of surface waters. 

8. 	 Contain floating material, including solids, liquids, foams, and scum, in concentrations causing 
nuisance or adversely affecting beneficial uses of surface waters. 

9. 	 Contain suspended material in concentrations causing nuisance or adversely affecting beneficial 
uses of surface waters. 

10. 	 Cause a violation of any applicable water quality standard for receiving waters adopted by the 
Regional Board or the State Water Resources Control Board as required by the Federal Water 
Pollution Control Act and regulations adopted thereunder." 

3. 	 By July 30, 1993, BVMI shall submit a report, certified by a qualified consultant, specifying how surface 
water discharge from the Buena Vista Mine will be brought into compliance with Order No. 93-47. 

4. 	 Effective November 14, 1993, the BVM, Inc. shall comply fullywith Order No. 93-47, NPDES Permit No. 
CA0049352. 

5. 	 BVMI shall do anything and everything feasible to minimize and prevent violations of Order No. 93-47, 
NPDES Permit No. CA0049352. 

Failure to comply with provisions of this Order may subject Buena Vista Mines, Inc. to further enforcement 
action including assessment of civil liability under Sections 13268, 13350, and/or 13385 of the California Water 
Code and to referral to the Attorney General for injunctive relief and civil or criminal liability. 

I, WILLIAM R. LEONARD, Executive Officer of the California Regional Water Quality Control Board, Central 
Coast Region, do hereby certify the foregoing is a full, true, and correct copy of an Order adopted by the 
California Regional Water Quality Control Board, Central Coast Region, on May 14, 1993. 

~-~ 

Executive Officer 
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CAUFORNIA REGIONAL WATER QUALITY CONTROL BOARD 

CENTRAL COAST REGION 


81 Higuera Street, Suite 200 

San Luis Obispo, California 93401-5427 


ORDER NO. 93-48 
NPDES NO. CA 0049361 

WASTE DISCHARGE REQUIREMENTS 

FOR 


BUENA VISTA MINES, INC. AND/OR KLAU MINE INC. 

C/0 BUENA VISTA MINES, INC. 


KLAU MINE CLOSURE AND POST-CLOSURE AND SURFACE WATER DISCHARGE 

SAN WIS OBISPO COUNlY, CALIFORNIA 


The California Regional Water Quality Control 
Board, Central Coast Region (hereafter Board), 
ftnds: 

1. 	 Buena Vista Mines, Inc. or Klau Mine Inc., c/o 
Buena Vista Mines, Inc. (BVMI), 1148 Market 
Street, Morro Bay, California 93442 (hereafter 
Discharger), owns an inactive mercury mine, 
the Klau Mine. Mr. Harold J. Biaggini is the 
president of BVMI. 

The Klau Mine is located approximately U 
miles west of Paso Robles, California, on 
property owned by the Discharger as shown 
on Figures 1 and 2 included as part of this 
order. The Discharger's property which 
includes the Klau Mine is located in Section 
33, T26S, R10E, MDBM, Adelaida 15 minute 
quadrangle. 

3. 	 Surface water discharged to the Las Tablas 
Creek, South Fork, Klau Br. from the Carson 
Drift (a small portion of the Klau Mine) is 
regulated by Waste Discharge Requirements 
Order No. 88-92, NPDES No. CA 0049361, 
adopted by the Board on June 10, 1988. 

4. 	 On June 10, 1988, the Board adopted Cease 
and Desist Order No. 88-93, because discharge 
from the Carson Drift did not meet conditions 
of the NPDES permit. CDO No. 88-93 orders 
full compliance with NPDES permit 
#CA0049361 by October 1, 1989. 

5. 	 Based on inspections and samples, Carson 
Drift discharge often violates Order No. 88-92 
and Order No. 88-93 requirements. 

6. 	 Some discharge to surface water from the Klau 
Mine is not currently regulated by permit. 

7. 	 Surface water discharges discontinuously from 
multiple uncontrolled Klau Mine locations to 
the Las Tablas Creek, South Fork, Klau Branch 
approximately 9 miles upstream of Nacimiento 
Reservoir as shown on Figures 3 and 4, 
included as part of this order. 

8. 	 Nacimiento Reservoir is a drinking water 
aquifer recharge source. It has been posted in 
the past with warnings that fish are mercury 
contaminated. 

9. 	 The Regional Board Clean Water Strategy 
(CWS) ranks Nacimiento Reservoir A-7, one of 
the region's highest priority water 
bodies. Nacimiento Reservoir recharges 
the Paso Robles Ground Water Basin, also with 
a very high CWS rank of A-12. 

10. 	The Klau Mine is in structurally deformed, 
mineralized and chemically altered rocks near 
the common intersection of several faults. The 
rocks include silica carbonates, serpentine and 
the highly deformed sediments of the 
Franciscan Formation. 

11. 	Information at Klau Mine has not been 
generated regarding depth to ground water, 
ground water flow directions and rates, 
chemical and physical ground water properties, 
etc. 

12. 	Topography of the Klau Mine and surrounding 
region is steep; 45 degree slopes are not 
uncommon (Figure 2). 
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13. 	 The Water Quality Control Plan, Central 17. California Code of Regulations (CCR) Title 
Coastal Basin (Basin Plan), was adopted by 23, Division 3, Chapter 15, Article 7, 
the Board on November 17, 1989.. and commencing with Sec;tion 2570 (Article 7) 
approved by the State Water Resources regulates Mining Waste Management and 
Control Board on August 16, 1990. The Basin contains Sections regarding: 
Plan incorporates statewide plans and policies 
by reference and contains a strategy for - Applicability; 
protecting beneficial uses of waters of the -Groups of Mining Waste; 
State. - Unit Siting and Construction Standards; 

-Water Quality Monitoring (requiring Article 
14. 	 The "California Inland Surface Waters Plan", 5 ground water, surface water and vadose 

adopted by the SWRCB April 11, 1991 zone monitoring); and 
specifies water quality objectives for inland - Closure and Post-Closure Maintenance. 
surface waters which became effective April1, 
1992. The Section on Closure and Post Closure 

Maintenance addresses, in part: 
15. The Basin Plan specifies existing and 

anticipated beneficial uses of Las Tablas - Water quality threat; 
Creek as: 	 - Closure and Post-Closure Plans; 

- Surface Mining and Reclamation Act 
a. municipal and domestic supply; 	 (SMARA) approved mining and reclamation 
b. agricultural supply; · 	 plans; 
c. ground water recharge; 	 - Appropriate registered professionals; 
d. water contact recreation; 	 - Surveyed monuments; 
e. non-contact water recreation; 	 - Containment structures; 
f. wildlife habitat; 	 - Financial assurance; 
g. warm fresh water habitat; and 	 - Post closure period; 
h. 	fish spawning. - Vegetative layers and irrigation for same; 

- Erosion and sedimentation; 
16. 	 The Basin Plan specifies existing and - Final cover requirements; 

anticipated beneficial uses of Nacimiento - Grading requirements; 
Reservoir as: - Containment and cover maintenance; 

- Leachate, collection and removal systems; 
a. municipal and domestic supply; 	 - Ground water, surface water and vadose zone 
b. agricultural supply; 	 monitoring; 
c. ground water recharge; 	 - Drainage control; 
d. water contact recreation; 	 - Surveyed monuments; 
e. non-contact water recreation; 	 -Waste management unit free liquid; and 
f. wildlife habitat; 	 - Waste management unit contaminated 
g. cold fresh water habitat; 	 materials. 
h. 	warm fresh water habitat; 

and 18. The Klau Mine is not m compliance with 
i. fish spawning. 	 Article 7. 
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19. 	 The Klau Mine contains overburden, waste 
rock, and/or solid residues, sludges and 
liquids from the processing of ore. 

20. 	 The Klau Mine overburden, waste rock, and 
solid residues, sludges and liquids from the 
processing of ore are Group A and/or Group 
B Mining Waste, defined by Article 7, Section 
2571. 

21. 	 Based on inspections and academic studies, 
the Klau Mine, including Klau Mine Group A 
and Group B Mining Wastes, has caused, and 
continues to cause, water quality degradation 
in Las Tablas Creek and likely in Nacimiento 
Reservoir. 

22. 	 Ground water has never been investigated for 
Klau Mine impacts. 

23. 	 The Klau Mine property has never been 
comprehensively assessed for water quality 
threat. 

24. 	 The Discharger was notified of impending 
Article 7 regulation in correspondence dated 
November 19, 1992. 

May 14, 1993 

25. 	 Waste discharge requirements for this 
discharge are exempt from the provisions of 
the California Environmental Quality Act 
(Public Resources Code, Section 21100, et 
seq.) in accordance with section 13389 of the 
California Water Code. 

26. 	 A permit and the privilege to discharge waste 
into waters of the State is conditional upon 
the discharge complying with provisions of 
Division 7 of the California Water Code and 
of the Clean Water Act (as amended or as 
supplemented by implementing guidelines and 
regulations) and with any more stringent 
effluent limitations necessary to implement 
water quality control plans, to protect 
beneficial uses, and to prevent nuisance. This 
Order shall serve as a National Pollutant 
Discharge Elimination System Permit pursuant 
to Section 402 of the Clean Water Act. 
Compliance with this Order should assure 
conditions are met and mitigate any potential 
changes in water quality due to the project. 

27. 	 On March 26, 1993, the Board notified the 
Discharger and interested parties of its intent 
to adopt Waste Discharge Requirements for 
the discharge. The Discharger and interested 
parties had the opportunity to submit written 
comments on this proposed Order. 
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IT IS HEREBY ORDERED, pursuant to authority in Sections 13263 and 13360 of the California Porter-Cologne 
Water Quality Control Act, that Buena Vista Mines, Inc. and/or Klau Mine Inc., c/o Buena Vista Mines Inc., 
its agents, successors and assigns (BVMI) shall comply with the following: 

A 	 Prohibitions 

1. 	 Discharge of material to surface waters at points other than the approximate discharge locations shown 
on F'JgUre 4 is prohibited. Exact discharge locations shall be defmed by the submittal required in 
Provision 1 below. That submittal is subject to Executive Officer approval 

2. 	 Discharge of material not contained within the liquid phase (e.g., sediment) at the locations specified 
in A.1. above is prohibited. 

B. 	 Effluent Limitations 

Discharge of the liquid phase at locations specified in A.l. above shall not contain total concentrations in 
excess of the following limits: 

Constituent 

Aluminum 

Antimony 

Arsenic 

Barium 

Beryllium 

Boron 

Cadmium 

Chromium 

Cobalt 

Copper 

Iron 

Lead 

Lithium 

Manganese 

Mercury 

Molybdenum 

Nickel 

Selenium 

Silver 

Sodium 

Thallium 

Vanadium 

Zinc 


Units 	 Limit 

mg!L 1.0 
mg!L 0.006 
mg!L 0.005 
mg!L 1.0 
mg!L 0.004 
mg!L 0.75 
mg!L 0.0086 
mg!L 0.05 
mg!L 0.05 
mg!L 0.03 
mg!L 0.3 
mg!L 0.03 
mg!L 2.50 
mg!L 0.05 
mg!L 0.000012 
mg!L 0.01 
mg!L 0.1 
mg!L 0.01 
mg!L 0.013 
mg!L 69.0 
mg!L 0.002 
mg!L 0.1 
mg!L 0.2 
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Constituent 

pH 
Turbidity 
Total Dissolved 

Solids 
Specific Conductance 
Settleable Solids 
Acute Toxicity 
Chronic Toxicity 
Cyanide 
Fluoride 
Chloride 
Sulfate 

Dissolved Oxygen 
Color 
Odor-Threshold 

-5

pH units 
NTU 

mg!L 
umbos 
mliL 

May 14, 1993 

between 7.0 and 8.3 
5 

1500 
2200 

0.5 
There shall be no acute toxicity• 

rue•• 1.0 
mg!L 0.2 
mg!L 1.5 
mg!L 600 
mg!L 600 

mg!L 2:._5 
color units 15 
units 3 

• 	 Acute toxicity is less than 90% survival, 50% of the time, and less than 70% survival, 10% of the time, of 
standard test organisms in undiluted effluent in a 96-hour static or continuous-flow test. 

** 	TUc equals 100/NOEL. NOEL (No Observed Effect Level) is the maximum percent test water that causes 
no observed effect on a test organism, as described in a critical life stage toxicity test listed on the next page: 

Species 

Critical Life Stage Toxicity Tests 

Effect 	 Test Reference 
duration 
(days) 

fathead minnow 
(Pimephales 
promelas) 

water flea 
(Ceria
daphnia 
dubia) 

alga 
(Selanastrum 
capricornuturn) 

larval survival 
and growth rate 

7 Horning & 
Weber, 1989 

survival; number 
of young 

7 Horning & 
Weber, 1989 

growth rate 4 Horning & 
Weber, 1989 

Toxicity Test Reference: Horning, W.B. and C.I. Weber (eds.). 1989. Short-term methods for estimating the 
chronic toxicity of effluents and receiving waters to freshwater organisms. Second edition. U.S. EPA 
Environmental Monitoring Systems Laboratory, Cincinnati, Ohio. EPN600/4-89/001. 
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C. 	 Receiving Water Limitations 9. Waters of the U.S. shall not contain 
suspended material in concentrations that 

Receiving waters include all waters of the U.S. cause nuisance -or adversely affect 
downstream of the Klau Mine property. beneficial uses. 
Discharge of the liquid phase to the locations 
specified in A.l. above shall not cause 10. Waters of the U.S. shall not contain 
violation(s) of the following narrative limits. settleable material in concentrations that 

result in deposition of material that causes 
1. 	 Surface water communities and nuisance or adversely affects beneficial 

populations, including vertebrate, uses. 
invertebrate, and plant species, shall not be 
degraded as a result of the discharge. 11. Waters of the U.S. shall not contain oils, 

greases, waxes, or other similar materials in 
2. 	 The natural taste and odor of fssh, concentrations that result in a visible filin 

shellfish, or other surface water resources or coating on the surface of the water or 
used for human consumption shall not be on objects in the water, that cause 
impaired. nuisance, or that otherwise adversely affect 

beneficial uses. 
3. 	 Toxic pollutants shall not be discharged at 

levels that will bioaccumulate in aquatic 12. Waters of the U.S. shall not contain 
resources. biostimulatory substances in concentrations 

that promote aquatic growths to the extent 
4. 	 The concentration of contaminants in that such growths cause nuisance or 

waters of the U.S. shall not occur at levels adversely affect beneficial uses. 
which are harmful to human health. 

13. 	 The suspended sediment load of surface 
5. 	 The concentrations of toxic pollutants in waters of the U.S. shall not be altered in 

the water column, sediments, or biota shall such a manner as to cause nuisance or 
not adversely affect beneficial uses. adversely affect beneficial uses. 

6. 	 Waters of the U.S. shall be free of 14. Waters of the U.S. shall be free of change 
coloration that causes nuisance or in turbidity that cause nuisance or 
adversely affects beneficial uses. adversely affect beneficial uses. 

7. 	 Waters of the U.S. shall not contain taste 15. Water temperature shall not be altered 
or odor-producing substances in unless it can be demonstrated to the 
concentrations that cause nuisance, or that satisfaction of the Regional Board that 
adversely affect beneficial uses. such alteration in temperature does not 

adversely affect beneficial uses. 
8. 	 Waters of the U.S. shall not contain 

floating material, including solids, liquids, 16. There shall be no acute toxicity in waters 
foams, and scum, in concentrations that of the U.S. 
cause nuisance or adversely affect 
beneficial uses. 17. There shall be no chronic toxicity in waters 

of the U.S. 
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18. 	 Waters of the U.S. shall not contain 
concentrations of chemical constituent in 
amounts which adversely affect the 
agricultural beneficial use. 

D. 	 Provisions 

1. 	 The Discharger shall submit a report by 
August 14, 1993 proposing exact Klau Mine 
surface water discharge locations. This 
report shall be certified by appropriate 
registered professionals and is subject to 
Executive Officer approval. 

The Discharger shall eliminate all actual and 
potential water quality impacts from the Klau 
Mine by bringing the Klau Mine into 
compliance with Article 7 in accordance with 
Provisions 2. through 9. below. 

2. 	 The Discharger shall submit a plan August 
14, 1993, describing in detail how the Klau 
Mine will be brought into compliance with 
Article 7. The Compliance Plan shall 
describe how the Discharger intends 
eliminating all actual and potential water 
quality impacts from the entire Klau Mine. 

The Compliance Plan shall give detailed 
descriptions of the entire Klau Mine and of 
each Klau Mine unit subject to specific 
Article 7 requirements. The Compliance Plan 
shall also describe, in detail and with specific 
citations, which Article 7 sections apply to 
individual units and which sections apply to 
the complete Klau Mine. The Compliance 
Plan shall describe the methods of achieving 
compliance in sufficient detail and with 
sufficient support and documentation to 
ensure feasibility, implementation and success. 
The Compliance Plan shall be certified by the 
appropriate registered professionals. 

3. 	 Revisions to the Compliance Plan may be 
required by the Board or Board staff, and 
shall be submitted within 35 calendar days 
of written notice that they are required. 
All revisions shall be certified by 
appropriate registered professionals and 
shall render the Compliance Plan 
acceptable. 

May 14, 1993 

4. 	 Implementation of the Compliance Plan 
shall commence within one calendar month 
of Executive Officer approval of the 
Compliance Plan. 

5. 	 Full Klau Mine compliance with Article 7 
shall be achieved within 36 calendar 
months of Executive Officer approval of 
the Compliance Plan. 

6. 	 A report certifying how the Klau Mine was 
brought into compliance with Article 7 
(Compliance Certification Report) shall be 
submitted within two calendar months of 
completion of Article 7 compliance 
activities, not to exceed 38 calendar months 
after Executive Officer approval of the 
Compliance Plan. The Compliance 
Certification Report must certify that all 
terms of the approved Compliance Plan 
were accomplished and describe in detail 
how they were accomplished. The 
Compliance Certification Report shall 
describe in detail all activities conducted 
pursuant to this Order and shall be 
certified by appropriate registered 
professionals. 

7. 	 Written status reports shall be submitted 
by BVMI every three calendar months 
during implementation of the Compliance 
Plan. The first status report shall be due 
three calendar months after the 
Compliance Plan is implemented (Provision 
D.4. above). Subsequent status reports 
shall be due every three calendar months 
thereafter. Status report submittals shall 
continue until submittal of the Compliance 
Certification Report (Provision D.6. 
above). Status reports shall be certified by 
appropriate registered professionals. 

8. 	 All terms of the Executive Officer 
approved Compliance Plan shall be 
implemented as specified by the approved 
Compliance Plan. 

9. 	 All Compliance Plan implementation 
activities shall be conducted under the 
direct supervision of appropriate registered 
professionals. 
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10. 	 Unpredictable events may necessitate 13. The Discharger shall comply with 
revisions to plans, schedules, or activities. "Monitoring and Reporting Program No. 
The Executive Officer shall have the 93-48, • as specified by the Executive 
authority to approve such revisions. Officer. 
However, the Discharger shall not 
implement any such reVIston, or 14. The Discharger shall comply with all items 
discontinue previously approved or ordered of the attached "Standard Provisions and 
terms, plans, schedules or activities prior to Reporting Requirements for National 
receiving Executive Officer approval. · Pollutant Discharge Elimination System 

Permits," dated January, 1985, (also 
11. 	 Board staff shall be notified at least 96 referred to as "Standard Provisions"), 

hours prior to commencement of any except Item Nos. A.6,7,13; C.3,9; and D.l. 
physical activity to allow staff presence 
during such activity. 15. The Discharger shall inform his employees 

of the terms of this Order which pertain to 
12. 	 Order No. 88-92 adopted by the Board on their duties and a copy of this Order shall 

June 10, 1988, is hereby rescinded. This be available for their reference. 
recision is not a waiver of the right of the 
Regional Board to seek administrative civil 16. This Order expires May 14, 1998. IfBVMI 
liability or take other enforcement action wishes to continue the discharge to surface 
for violations of Order No. 88-92 which water of the United States after May 14, 
have occurred prior to the date of this 1998, it must file a Report of Waste 
recision. Discharge (ROWD) in accordance with 

Title 23, of the California Code of 
Regulations by November 14, 1997. 

I, WILLIAM R. LEONARD, Executive Officer, do hereby certify the foregoing is a full, true, and correct copy 
of an Order adopted by the California Regional Water Quality Control Board, Central Coast Region, on May 
14, 1993. 

DS:sg 

sglds4-93-48.wdr 
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CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 

CENTRAL COAST REGION 


81 Higuera Street, Suite 200 

San Luis Obispo, California 93401-542~ 


MONITORING AND REPORTING PROGRAM NO. 93-48 

FOR 


BUENA VISTA MINES, INC. AND/OR KLAU MINE INC. 

C/O BUENA VISTA MINES INC. 


KLAU MINE 

SAN LUIS OBISPO COUNTY, CALIFORNIA 


1. 	 The liquid phase discharged from the Klau Mine to surface 
waters of the United States from all locations specified in 
Order No. 93-48 shall be grab sampled and analyzed as follows: 

Sampling and Analysis 
Constituent Units Frequency 

pH Weekly 

Turbidity NTU Weekly 

Specific 


Conductance umhos Weekly 
Aluminum mg/L Quarterly during November, 

February, May, and August 
Antimony " " 

II 	 IIArsenic 

Barium " " 

Beryllium " " 
...Boron 	 " ..Cadmium " 

Chromium " " 


IICobalt " 

Copper ,, 


" 
II 	 IIIron 
II 	 IILead 
II 	 IILithium 
II 	 IIManganese 
II 	 IIMercury 


Molybdenum " " 

Nickel " II 


IISelenium 	 " 
IISilver 	 " 
IISodium 	 " 
II 	 IIThallium 

IIVanadium 	 " 
IIZinc 	 " 
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Sampling and Analysis 
Constituent Units Frequency 

Total Dissolved 
Solids mg/L Quarterly during November, 

February, May and August 
IISettleable Solids ml/L 


Acute Toxicity " 

IIChronic Toxicity TUc 
IICyanide 	 mg/L 

" 	 IIFluoride 
II 	 IIChloride 
IISulfate 
IIDissolved Oxygen 	 " 

IIColor 	 color units 
IIOdor-threshold units 

2. 	 This Monitoring and Reporting Program becomes effective May 
14, 1993. 

3. 	 Monitoring results shall be submitted to the Board by the 30th 
day of the month following the month of sampling; i.e., 
November results by December 30, February results by March 30, 
May results by June 30, and August results by September 30. 

4 . 	 Monitoring reports will include observations of receiving 
waters with regard to compliance with Order No . 93-48, c. 
Receiving Water Limitations. 

ORDERED BY:~~ 
EXE IVE OFFICER 

I ATE 

sg/ds4-93-48.mrp 



CAUFORNIA REGIONAL WATER QUAUTY CONTROL BOARD 

CENTRAL COAST REGION 


81 Higuera Street, Suite 200 

San Luis Obispo, California 93401-5427 


CEASE AND DESIST ORDER NO. 93-57 

Order Requiring Buena Vasta Mines, Inc., &lor Klau Mine Inc. 

c/o Buena Vista Mines, Inc., 


San Luis Obispo County, 

to Cease and Desist from Discharging and 


Threatening to Discharge Surface Water, From the Klau Mine 

in Violation of Requirements Contained in 


Waste Discharge Requirements, Order No. 93-48 


The California Regional Water Quality Control Board, Central Coast Region, (hereafter Board), finds: 

1. 	 Buena Vista Mines, Inc., &/or Klau Mine Inc., c/o Buena Vista Mines, Inc. (BVMI) owns the Klau Mine, 
an inactive mercwy mine. 

2. 	 Surface water is discharged from the Klau Mine to the Klau Branch of the South Fork of Las Tablas Creek 
approximately 9 miles upstream of Nacimiento Reservoir (Section 33, T26S, R10E, :MD B&M; Adelaida 15 
minute quadrangle). 

3. 	 Surface water is discharged discontinuously from multiple Klau Mine locations, including the Carson Drift. 

4. 	 Surface water discharge from the Carson Drift has been regulated by WDR No. 88-92, adopted June 10, 
1988. WDR Order No. 88-92 contains discharge prohibitions, effluent limitations and receiving water 
limitations, which state, in part: 

A 	 Discharge Prohibitions 

1. 	 Discharge to the south fork of Las Tablas Creek of other than uncontaminated stormwater or 
uncontaminated seepage and at a location other than 3S'37'19" N. Latitude,l20°54'0" W. Longitude, 
is prohibited. 

B. 	 Effluent Limitations 

1. 	 Water discharged to the south fork of Las Tablas Creek from the Carson Drift shall not exceed the 
foUowing lim.iLs: 

Unit of 30-Day Daily 

Constituent Measurement Average Maximum 


Mercury mg!l 0.001 0.002 

Nickel mg!l 0.1 0.2 

pH Within range 


of 7.0 to 8.3 
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C. 	 Receiving Water Limitations 

1. 	 Water discharged from the Carson Drift shall not cause the following limits to be exceeded in the 
North Fork of Las Tablas Creek; 

Maximum mg/1 

Constituent (Unless otherwise noted) 


Aluminum 7.5 
Chromium 0.05 
Cobal£ 0.075 
Copper 0.018 
Iron 1.0 
Manganese 0.3 
Mercury 0.0003 
Nickel 0.28 
Zinc 0.12 
pH Within limit of 7.0 to 8.3 at all times, and not changed more than 0.5 units. 

Discharge shall not: 

2. 	 Cause surface waters to be greater than 15 units or 10 percent above natural background color, 
whichever is greater. 

3. 	 Contain taste or odor-producing substances in concentrations imparting undesirable tastes or odors 
to fish flesh or other edible products of aquatic origin, causing nuisance, or adversely affecting 
beneficial uses of surface waters. 

4. 	 Contain oils, greases, waxes, or other similar materials in concentrations resulting in a visible fLim 
or coating on the surface of the water or on objects in the water, causing nuisance, or otherwise 
adversely affecting beneficial uses of surface waters. 

5. 	 Contain settleable or soluble material in concentrations resulting in the deposition of material 
causing nuisance or adversely affecting beneficial uses of surface waters. 

6. 	 Contain floating material, including solids, liquids, foams, and scum, on concentrations causing 
nuisance or adversely affecting beneficial uses of surface waters. 

7. 	 Contain suspended material in concentrations causing nuisance or adversely affecting beneficial uses 
of surface waters. 

8. 	 Cause a violation of any applicable water quality standard for receiving waters adopted by the 
Regional Board or the State Water Resources Control Board as required by the Federal Water 
Pollution Control Act and regulations adopted thereunder.n 

5. 	 Cease and Desist Order (CDO) No. 88-93, adopted June 10, 1988 requires full compliance with WDR Order 
No. 88-92 by October 1, 1989. 

6. 	 Buena Vista Mines, Inc. has not complied with WDR Order No. 88-92 and CDO No. 88-93 in that Carson 
Drift surface water discharge continues to exceed limits ordered by WDR No. 88-92 and COO No. 88-93 
which are listed in part in Finding No. 4. above. 
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7. 	 Surface water discharge from the entire Klau Mine, including the Carson Drift, is regulated by Waste 
Discharge Requirements Order No. (WDR) 93-48, adopted May 14, 1993. WDR No. 93·48 contains, in part, 
prohibitions and effluent limitations, as follows: 

"A. 	 Prohibitions 

1. Discharge at a point other than the discharge locations shown on Figure 6 is prohibited. 

B. 	 Effluent Limitations 

Discharge shall not contain total concentrations in excess of the following limits: 

Constituent 

Aluminum 
Antimony 
Arsenic 
Barium 
Beryllium 
Boron 
Cadmium 
Chromium 
Cobalt 
Copper 
Iron 
Lead 
Lithium 
Manganese 
Mercury 
Molybdenum 
Nickel 
Selenium 
Silver 
Sodium 
Thallium 
Vanadium 
Zinc 

pH 
Turbidity 
Total Dissolved 

Solids 
Specific Conductance 
Settleable Solids 

Acute Toxicity 
Chronic Toxicity 

Units 

mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mgiL 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 
mg!L 

pH units 
NTU 

mg!L 
umbos 
ml!L 

Limit 

1.0 
0.006 
0.005 
1.0 
0.004 
0.75 
0.0086 
0.05 
0.05 
0.03 
0.3 
0.03 
2.50 
0.05 
0.000012 
0.01 
0.1 
0.01 
0.013 

69.0 
0.002 
0.1 
0.2 

between 7.0 and 8.3 
5 

1500 
2200 
0.5 

There shall be no acute toxicity* 
TUc** 1.0 
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Constituent Units Limit 

Cyanide mg'L 0.2 
Fluoride mg'L 1.5 
Chloride mg'L 600 
Sulfate mg'L 600 

Dissolved Oxygen mg'L >5.0 
Color color units 15 
Odor-Threshold units 3 

• 	 Acute toxicity is less than 90% survival, 50% of the time, and less than 70& survival, 10% of the time, 
of standard test organisms in undiluted effluent in a 96-hour static or continuous-flow test. 

• • 	 TUc equals 100/NOEL. NOEL (No Observed Effect Level) is the maximum percent test water that 
causes no observed effect on a test organism, as described in a critical life stage toxicity test listed 
below: 

Critical Life Stage Toxicity Tests 

Species Effect 	 Test Reference 
duration 
(days) 

fathead minnow 
(Pime:Qhales 
:Qromelas) 

larval survival 
and growth rate 

7 Horning & 
Weber, 1989 

water flea 
(Ceria
daphnia 
dubia) 

survival; number 
of young 

7 Horning & 
Weber, 1989 

alga 
(Selanastrum 
capricornutum) 

growth rate 4 Horning & 
Weber, 1989 

Toxicity Test Reference: Horning, W.B. and C.I. Weber (eds.). 1989. Short-term methods for estimating the 
chronic toxicity of effluents and receiving waters to freshwater organisms. Second edition. U.S. EPA 
Environmental Monitoring Systems Laboratory, Cincinnati, Ohio. EPN600/4-89/001. 
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8. 	 Based on inspection data, the Klau Mine surface water discharge does not meet all or some of the 
prohibitions and effluent limitations listing in Finding No. 7, above. 

9.. This enforcement action is taken for the protection of the environment and as such is exempt from the 
provisions of the California Environmental Quality Act (Public Resources Code, Section 21100, et seq.) in 
accordance with Section 15321, Chapter 3, Title 14, California Regulatory Code. 

IT IS HEREBY ORDERED pursuant to Section 13301 of the Porter-Cologne Water Quality Control Act: 

1. 	 Buena Vista Mines, Inc., and Klau Mines, Inc., shall immediately comply with all Provisions of Order No. 
93-48. 

2. 	 Until September 15, 1994, Buena Vista Mines, Inc. and Klau Mine, Inc., shall comply with the following in 
lieu of Discharge Prohibitions, Effluent Limitations, and Receiving Water Limitations of Order No. 93-48: 

A. 	 Discharge Prohibitions 

1. 	 Discharge to the south fork of Las Tablas Creek of other than uncontaminated stormwater or 
uncontaminated seepage and at a location other than 35"37'19" N. Latitude, 120°54'0" W. Longitude, 
is prohibited. 

B. 	 Effluent Limitations 

1. 	 Water discharged to the south fork of Las Tablas Creek from the Carson Drift shall not exceed the 
following limits: 

Unit of 30-Day Daily 

Constituent Measurement Average Maximum 


Settleable Solids 0.5 

Total Suspended 


Solids mgll 20 30 

Mercury mg/1 0.001 0.002 

Nickel mg/1 0.1 02 

pH Within range 


of 7.0 to 
8.3 

Toxicity 

Concentration tu 0.59* 


*No more than one of three consecutive flow-through bioassays shall result in less than 100% survival 
in undiluted effluent. No single test shall ever result in less than 90% survival in undiluted effluent. 
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C. 	 Receiving Water Limitations 

1. 	 Water discharged from the Klau Mine and Carson Drift shall not cause the following limits to be 
exceeded in the North Fork of Las Tablas Creek: 

Constituent 

Aluminum 
Antimony 
Arsenic 
Barium 
Beryllium 
Boron 
Cadmium 
Chromium 
Cobalt 
Copper 
Cyanide 
Fluoride 
Iron 
Lead 
Lithium 
Manganese 
Mercury 
Molybdenum 
Nickel 
Selenium 
Silver 
Sulfide Hydrogen Sulfide 
Vanadium 
Zinc I 

pH 

Temperature 

Turbidity 
(NTU) 

Maximum mg!l 
{Unless otherwise noted) 

7.5 
9.0 
0.05 
1.0 
0.15 
1.25 
0.004 
0.05 
0.075 
0.018 
0.022 
1.5 
1.0 
0.05 
3.75 
0.3 
0.0003 
0.015 
0.28 
0.01 
0.004 
0.0032 
0.15 
0.12 

Within limit of 7.0 to 8.3 at all times, and not changed more than 0.5 
units. 

Maximum increase of 5°F above natural receiving water temperature 

Not to exceed the 
following: Maximum 
Natural Turbidity"' NTU Increase 

<50 20% 
50 <NT < 100 10NTU 

>100 10% 

"Natural Turbidity" shall be determined from receiving water samples taken upstream of the 
discharge point. 
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Discharge shall not: 

2. 	 Cause the dissolved oxygen concentration of surface waters to be depresse_9 below 5.0 mg/1. 

3. 	 Cause surface waters to be greater than 15 units or 10 percent above natural background color, 
whichever is greater. 

4. 	 Contain biostimulatory substances in concentrations which promote aquatic growths causing 
nuisance or adversely affecting beneficial uses of surface waters. 

5. 	 Contain taste or odor-producing substances in concentrations imparting undesirable tastes or odors 
to fiSh flesh or other edible products of aquatic origin, causing nuisance, or adversely affecting 
beneficial uses of surface waters. 

6. 	 Contain oils, greases, waxes, or other similar materials in concentrations resulting in a visible fll.m. 
or coating on the surface of the water or on objects in the water, causing nuisance, or otherwise 
adversely affecting beneficial uses of surface waters. 

7. 	 Contain settleable or soluble material in concentrations resulting in the deposition of material 
causing nuisance or adversely affecting beneficial uses of surface waters. 

8. 	 Contain floating material, including solids, liquids, foams, and scum, on concentrations causing 
nuisance or adversely affecting beneficial uses of surface waters. 

9. 	 Contain suspended material in concentrations causing nuisance or adversely affecting beneficial uses 
of surface waters. 

10. 	Cause a violation of any applicable water quality standard for receiving waters adopted by the 
Regional Board or the State Water Resources Control Board as required by the Federal Water 
Pollution Control Act and regulations adopted thereunder. 

3. 	 Effective September 15, 1994, Buena Vista Mines, Inc., and Klau Mine, Inc., shall comply fully with Order 
No. 93-48, NPDES Permit No. CA0049361. 

4. 	 Buena VISta Mines, Inc. and/or Klau Mine, Inc. c/o BVMI shall do anything and everything feasible to 
minimize and prevent violations of Order No. 93-48, NPDES Permit No. CA0049361. 
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5. 	 By November 8, 1993, BVMI and/or Klau Mine, Inc., c/o BVMI shall prevent erosion of sediment from the 
Klau Mine to surface water. 

6. 	 By November 8, 1993, BVMI and/or Klau Mine, Inc., c/o BVMI shall submit a report;-certified by a qualified 
consultant, specifying how surface water discharge from the Klau Mine will be brought into compliance with 
Order No. 93-48. 

Failure to comply with provisions of this Order may subject the Discharger to further enforcement action 
including assessment of civil liability under Sections 13268, 13350, and/or 13385 of the California Water Code 
and/or referral to the Attorney General for injunctive relief and civil or criminal liability. 

I, WILLIAM R. LEONARD, Executive Officer of the California Regional Water Quality Control Board, Central 
Coast Region, do hereby certify the foregoing is a full, true, and correct copy of an Order adopted by the 
California Regional Water Quality Control Board, Central Coast Region, on May 14, 1993. 

sue • • /cdo.klm 
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Local Newspaper Articles from 1966 through 1988 regarding Mercury 


Mines in the Lake Nacimiento Watershed 
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Planners· recommend . 

Klan Mine operation 
Continued operatiofl of _ the then! wu no ·pollution problem 

historic Klau )I(me In the ACJe.. with· the Klaa mine since little 
la.lda area was recommended processing b be.tng conducted 
Wednesday by the County Plan- there. Tbe l1rm i3 working with 
nlng Com.m..UJsJon. the board on 10lutkm to UM! pol· 

The comml.ssion recommend- lut.k>n problem, be added. 
ed, howeve!", that only llml~ Attorney Charles Ogle noted 
processing be permitted. The thllt ttHt Buena Vls'ta mine has 
recommendation must be ap- been operated since 1~ and 
proved by tbe Board or Super- the KlaLt mine slnce about the 
visors. same time on land originally 

A conditional we permit to patented for m.tn.lng. 
continue the operaUoo was re- The Jqau. mi.De wu a<;qui.r'OO 
quested by· Buena Vlrla 'Mines, by Buena Vista Wt year. 
Inc., which is mining quicksil- Ogle requested approval of 
ver from the main Buena VIsta the perm.jt, subject to compJ_l. 
Mine adjacent to the Klan ance with state and federal 
cia ims. agendes which cmtrol various 

Although 8'djacent property aspects of mining. 
owners protested the operatkm Company president Harok! 
of tbe Buena VIsta Mi.M, the Btaggtnl saJd the only process
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Plmn.lng director Ned Rogo- The conunlssiOn recommend· 
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has issued a cease and desist Atlas, Empire, Santa Cruz, Ade
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lution in the La! Tablu C:r!ek. Ray Dodd, owner of property 
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operation had done extensive 
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M~rcury" Mines 
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: years, San Luis Obispo county 
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· been · opened in the known 
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· over several years, he hit the 
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j·· . ,· epending on the day to 1 
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U~P.~~~ret~a.~!:·:~~so,ooo. Most ~ . 

use ,In· such !I 
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medicine 
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~~~~~ i 

· from Spain. 1 1. 
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Bu~tia~Mistiti:mer..cm;r:,~mine 
C·l 

'( Th~ -J?illti-million:- doll<G"·~.B,uenli Vlst~ 
mer~un'~tr!ip~ !l~ar...P,¥O_Ro:b.l~ !s putt~ng ·~ 
up to. 25. times legal )imits of waste · 
men;uiy into Las Tablas Creek and state 
wate.r pollution· experts will ask that the 
mine's anti-pollution ·construction 
time-table be advanced to stop the 
pollution. f1 

There is no immediate threat to. e i 
public from the mercury ~tes, a sta 
spokesman said, but the cre • .feeds into 
Lake Nacimiento, which in turn 
replenishes underground rivers that 
supply drinking water to cities north of 
Camp RoberU. No one in San Luis I 
Obispo County drinks Nacimiento water.' 
Large quantities of mercury taken over -a-:
long period of time damages the body's · 
central nervous system and can cause i 
madness, a state spokesman said. · i 

The matter will be on the agenda of1 
the California Regional Water Quality1 

Control Board Central Coast Region! 
when it ineets in Santa Cruz City Halt,' 
Feb. 11, at 10 a.m. · ' 

The board's executive officer, Kenneth 
R. Jones, said he will ask the board to 
give Buena Vista only until March 1 to 
complete new construction that will 
reduce the current high levels of mercury 
discharged into Las Tablas Creek. Buena 
Vista had been granted until June 1 to 
complete the construction. 

Jones said that the earlier date had 
been granted without the results of more 
recent tests in recent days that showed 
125 parts of mercury per million in the 
exhaust water from the mercury mining 
operation. State regulations allow 
mercury disc1l"arges _up to ~ @rts ~r' 
million. In addition, recent tests show 4 
partsj;)er miUion or mercury in waste 
water from the mine's mill operation and 
770 parts per million in the water in a 
holding pond at the mine. The holding 
pond water, though highest in mercury~· 
concentration, poses the least danger 
unless a big rainstorm washes it intothe 
Creek.· 

1 

Mine operator Harold J. Biaggini has 
grossed $25 million worth of mercury, 
bu~ lan"" year, ran into underground, 
spnngs on the main shaft. _ 

Surrounding land-owners complaine·a: · 
of the red muck that the mercury refining. 
proceSS' produces and· that was washed! 
out by the underground springs. : 

Biaggini was forced to close the main; 
shaft, laying off many .. or his 58 
employees and costing him an estimated 
$1.5 million gross revenue.. New shafts' 
~ driUed. by Boyles Brother$·, Salt! 
'Lake City, to find a new tunne1Jocation 1 

f>n the proj:)erty, at an ex:tz:1l $225,ooo·;· 
and he. plans' ro 'sink another main sluifti 
f-or ·anothf"_r.::$yQP,OO~:'\rT~.-~.·_,~~tl~~! 
~ :Sluftmg tor~ cleaner =burrun~ 
.propane. !Pr' light, will. amoun~·;to_-r.
lri"iH'i"d'it . ~ ""··.:· 

Biaggini's .pollution problem stems 
from -the high -sutfurous 'a"cid content 1Jf
his water. 'Me~cury by itself does not 
dissolve in water, but settles out. Witl)... 
such acid water, however, the mercurytfs 
dissolved in it and is carried wherever the 
v.-ater goes. Just treating the waste water 
is costly, and includes adding fertilizer 
grade ammonia to the acidic wastes. Thf" 
liMMonla tteatra'llzes the sulfuric acid and; 
converts c~e ,jron sulfa~., ipt_o,....r,usJ.•. Th~ i 
solids settle in a sludge to the bottom and J 
the,water on top is usable for irrigation. 1 
It is construction on this waste process 
that the Water Quality Control Board will 
be asked to speed up. 
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·Mer~ury min~:.:.restric~ed 
The Regi01W Water Quality· her, Buena :Vista was given UD· centratlons of mercury fn the 

Control Board. yestercfaJ pat a t11 June 1 to change its method of plant's discharge. 
new ttxne restndJOD oa the Ba~ _db~eharg~Dg wutes Into Lu Tab- Jones Mid today tbe pl&Dt aet· 
ena V1Jta IDfli'CmJ mfDe 'ftlt las Cr8M. ·uatly had been tn eootormal')('{> 
tA Puo RobJeJ. . . . . . .The. board'a -~ otneer, with tbe order bfCJUM It bar 

The board. ~Ill ·si.J2U Ken .Jones, ~~ed the been abut ~'" for about .t.J1<;
Cntt. told the, Open.ton of the · speedup ·in ·sehecfule for the new past two months. 
mine that theY must ~·a discharge system ·beca~ _of .'nle De\Y system plan~ .bY 
new system of c1isposlng or waste sample results Utat were recelv· . : the company wiD ·~ dfspo9e rtf 
water by March ·1. Orlginally, · ecr· trom·washlngton last.week, waste by 8praying ·~ on. dry 
following ~ dedsion last Novem- · showing. lnord~nately. htg~ con- land owned by Buena .Ylsta. 



Huge load of 
mercury ·leaves 

Paso uDder guard 
• 

A SU million ~pmetll of 
mercury from the Buena Vl.sta 
mine lett the Paso Robles rail
road yards this morning under 
heavy guard, beaded for Sparks. 
Nev. 

Tony llcLean, director of re
sean:h for the mine, said it was 
beJ.leolred to be tbe largest single 
shipment of precious metal e\.e£ 

made from a Caii!omia mine. 

The mercury represented ta 
months of production from the 
Buena Vista rniDe In the Ade
laida area, 17 mites west of 
Paso Robles. T!le .mine is not 
operating at present aDd lhe 
mercury had been stored ror 
seVffal months at a bu1ld1ng 011 
the mine property. 

Harold 81aggint, owt»t>r of the 
mine, decided recently that safe
ty precautiOM d1ctated a mo\ e 
to a more 5e'CUI'e location. At 
Sparb, near Reno, the quick-. 
sil\·er- •iD be stored lD a bond· 
ed warehouse, where It •iH also 
ba\'e the advautage of ternpf'f"a· 
ture control. 

The mercury Is contained l.n 
311 nasts, ~gbing about !-18,· 
000 pounds. The movemem from 
mine to railroad begaJI early 
ye~erday morning oa bt-avy 
trucks, escorted by deputy sher· 
iffs. The job was completed 
about midnight last nigbt '"•hen 
the two box cars of precious 
metal were Jtealed.. Southern Pa
cific Ra1lroad security guards 

witJ accompany Ute shipment to 
.Sparh. · • 

llcLeao said tbe Amt-rkan 
Quicksilver Institute bad re
cently reported t.ttre<e cases of 
highjacking of qulck.sth·er shlp
mt-nts, another reason tor lak· 
lng extra pre<.-autions witb the 
Buena Vista cargo. 

Biaggi.ni Is oot S<.-11 in~ the 
mercury at this hme, but w111 
k~ it in storage at Sparks It 
ls reported to be the largt>~t 
stockpile ot mt•rcun· nwnt"'l hv 
anyone ext:ept the l:nJt<'d States 
gO\·ernmenl. 

The Buena Vista mine 1:; dus
ed while problt'ms of nwn·ury 
coD(aminated water from the 
mine are being resol\ed. 
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:l\lercury found in NaCimiento~ tributary 

.\ hi:!h ronc<-otration or ("('ntr:llllln~ or 4.7.i and fif)j rnr mJIII' Yt':lr~. J'lrnn~n ~.1HL . "In OIY opm!on." Dran~lln 

nwn:ury 1n !h<' ~ilL~ and mud l'liiM$ (l<.'r million of nH•rrury I"'('~Ultm::" i.n m~rtury Ill'!"''"" ~:lt(l. "th!' mrrrury rnn· 
01 :'\Jcimicnto R~r-.olr anri it:; Wa!('r S.1nlfllmc.~ from hoth down" 1r r a Ill lr11m ~u,·l! ~··nlr:JIIon i" !'P;.tnrtN'I to l-~~ 
tnbut.lry L:t$ Tabl.1s C!"CE'k W:JS ~Ur<'!'~ ~nr mercury ron- oprr:~\Jon.,_ TJhlll.\ C~k :~n<l prohnl.ll>· I~ 
<'<mfinned today by the Central CE'Tltr:t).l<in wr~c J.n.o;!.;:;nifl-c:Jnt. Th~ old Klnu :\lmr 10 thr not of slt:niflc;~nrc to the whole 
C-135t Rt>gional. Water Quallly Brallc<on salt!. Adt'laid:t east o! J>aso Jtobll-s of NaC'Iml!'nto Rt>Sf.'l"l'oir. 
l'·>ntrol Boal'l:l. ·,tom Ba.I!E-y, ~tenior englnl'er · w:~s a big produce-r yt-an: :H,''O, ''llowr1·cr. "<' ha1•e :~.~1!<1 tho, 

The examination was ol'l:lt'N'd/ for the regional. water board. but hal! long ~n clo.llCd down. Ot>p:Jrtm('Tit (If Fi.~h Md Gamr 
lr til(' t,;.s. Environmental ..ald the st:llewldc examlnatJon Th(' Ruf'na V.l.<rta Mine n<':~rby 111 Jnvt'Sti~-:Jl<' furttK>r tJI 

Protection Agency and the lt:ltc or streams and ~seTVOirs in the i~ one of ~ prtme produr<-~ dc!~rmint' if .the problem ts~ 
1\att'i R c :~~ 0 u r ce 5 Bo.mi, Vlcfnlty of ~('Ut'y mln.in.c '" 1hc S1.a!t' and Is loc'att'd on eX1!'n.'\J1·r. Thr Doord . "ill 
<~erording ro Willard Bratmn. operaOon.'J has been unde-r w:w a tributary to Las T:lblas ~k. d<'doo H :~ct.ton Ill ~ull't'd 1o 
<"'hJ!rin.an of the regional "A'ate-r for a year L:lst ~ar, llarold ·Bia~ni. au~te a pmblt>m." 
quallty board. · oper-ator of . the Buena Vi~a. Br:~nson ~:Ud ~ Ill nn 

The NacimJE'!lto Rl\-er tlO!Ied ~ the operatlon ..to. _cau.se f~ v.'ldeRprca,hl;i~ 
The ~ilt and bottom mud dra.!Mgt-~:at~yana~ all d.l.scha~ dn'lo th(- that Ole matter- 1:~ of ronrern 

&ampiJtO~ t:rom both !:be ~ San Luis Obl:!po ~ties bu ~ ~the p~~!: aTK! will be tm'Cstlgate-d tully 
and rt!ervellr fl~ con- been a mereury ·mlnlng tru operaU6lt:' ) by 1t!t bo3..n.:l. 

http:hJ!rin.an
http:prohnl.ll
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tr C I.a.\e..~r~--ry.·, (,;, ... .,_e.;?a v-.rce...: ?. L · · 

I_>anel to probe iron in ·mine: water 
1 s A.N T A C R U Z.- The nbandoi'!E'd ~ ml~ wc!it [I he time It ~tl'\ tht'~' It hasjls cau!lln~ Ole ·prnhlffl'l. . 

I 
, ltl'r;on.1\ W11trr Quam~ Con!rol of Paso Roble'!!. no harmfUl e!feot. Tilt- panel • nppolntffi by 
Hn:m1 Friday created a ~IaI 'nle pant'l ~1ll meet Oct. 2sj__ TIH! dra~le eff('("t'4 or the Chalrmnn Nom1:m Caldwell to 
rnllf'l to t~d~' I!Will en- m-'P~-Robk-!--to-·--ht'-:lr'toX!e--w:~stes-are-fl:rrtm:rr tqr· rnnsldcr tl'u:~ probl~m Jni.:ludc-s 

. fni"C't'~ action to Stop "very testimony about a .high eon· Is:ream. where the..fron tum!; the board members Dr. Harold Cot a 
\. wid wa!tl.'water" from an 	eentratlon ot Iron In water wMer and surrounding creekbed of San Luis Oblspo, Floyd M. 

running Into Las Tnblas ti"N!k ll sevel't' ru!;t color "that looks Grlgory M Snn Ardo nnd Mr!!. 
from the- Roon:l Yl!rt11 Mt'rt'\lry Ute hell," J~s ~nld~ . ~·r:~nk Thnmp~on of San1n 
Mine about 1! mile« ~t of The mine, owned by H:~rold nnrbllrn. 
Paso Roble!: m~-ur-cayu('Oll', has 1>«-n The pant'! will t!N'n rorw:~m 

Elt'C\Jtlve Dfre<'tor Kt'nnt':h closed for more than 1hrt'i' Its .r('Commendntkln to thC' tull 
Jones said at Friday's merUnj:: years, Jones !i-1ld, but rnlrrwater board at Its next me<'tlng t\o\·, 
tae.ndhat.... IO!Tle of the pollutt'd running throagh a mercur; 8 ln_Sant:~ Br~rbara for ron· 
water may re-.ac~ ___ the tailings plle_And a pond bac'kl'd s!deratlon ofa ceas~ :~nd dt>slst 
Nacimiento Rese!'\·olr, but by up It th~ tailings plle nre wh..1t ordrr. ~ 

. 	 . 

· 

. 
\ 



Board considers polluted water from old mine 

0003 rmlhgram per lner, ~ s.a!d.BJ Phil Oifb 

Although merctlf)' !1<11 !leeo foundTelegram·Tribii!W! 
lll Lbe Oes.h of fish from ~acuniento 

1\DELAIDA - Nothing :s«II!!l t.o Late. Coni d~~·t blame tl!Jit con-
be .able to lJve in the water tl!Jit dllion on the mtne 
nows from the old Bueu Vistll ..The watershed area naturally 
lilercary Mine at Cypress Mouotam conuuu mercury." he s.trd 
Orin and IU.au Mine Road. The low-pH level uf tile mine 

The mine h.u b<!en sbul don nter IS to1ic, he s.ard, and the ll'OD 
s.iDI:e tm. Ul Lbe water clings to fi.shes' gills. 
-~appears t.o be no life Ul the The iron abo fofllU velvr~-llke 

cr-edr. below LtJe mine," said John depos.~t.s pn the creek bott.om. The 
GOIII, associate engilleer wu.b the reddrsb-brown desposits are wns
$Ute Regional Water Quality Con- lightly and lull small fornu ollire, 
lrOI &&rd.. Goni said. • 

That bo&n:l Ia scheduled to bold 1 The irob ~ et.'! illto the water u it 
pabli.c b~ 00 the mille's water s.eeps through the tailing.'! oo the 
problems al tam. Friday, JllDC 10 llli.De property, he said, and a cbem-
Ill Lbe Se.uidt Cily CoUIICil Cham- iocal reaction also t.a.tes place that 
ber. crutes the low pH condJlion. 

Tbe water from the mine !lo11'1 The t.iilinp may have to be re
!lito Las Tabl.u Creek ll.lld eventul- moved or capped with lD lmper
ty geu~o tnw Naclmlellt<t Late vioua Llyer, or the water mo)' have 
allollt I'll mila downatream. to be diverted away from them, be 
· fnn tbo11&b tile water comu said. 

from aa old mercltrJ miM, the .4.1 the bearing Juoe 11, the boant 
lr'O!Ibie iJn't too macb mm:u:y. It's will consider seltln& puriiJ mnr-
too much- iroll and 1 coodi.tioa Goat d&rds lor mille propc.rt)' runotf. 
referred to as "low pH." whlcb U 1ri11 abo con.'!ider issuiJII ceue 
--tbewaler••MYadd-----aaddCii.ltord.en...________,_____ 

~'l~~~~w~~~:r': P1eue aeellloe, Back Pqe Pollute<~ water leaking from the Buena Vista Mine will be the subjeCt of a stare hearinQ June 10. 

CoiiUnaed from Page 1 said, but hu made atledl!Stl to 
solve the problem. 

Similar acUon will aiM be COnllld· Harold Blagglnl of Cayucos II 
ered for the nearby Carson DrUt, president of Buelll Vista Mints Inc. 
which is under the same ownership. "We have cooperated," he uld. 

It is a tunnel mine Into the sldt! of Blagglnl said bla compan)' tried 
a hill. Water f101n from It Into things suggested by the water 
another branch of Lu Tablaa board's staff, but they haven't 
Creek, Gonl said. worlted. 

The water board hu known of the He est..lmatn about 5 gaUonll of 
problems at Buena VIsta Mine sin~ . water per mlnu~ l.t now flowln& 
1971. from the Buena Vista Mlne'a dump. 

That was when the board first He concedes there is a problem, 
adopted purity .'!tanduds for the and he said his organlution ls now 
water from the Buena VIsta Mine. looking for a way to reprocess the 

Then In 1974 It issued a cease and waste piles to remove the deleter
desist order In the case, Gonl said. ious materials. 

In 1915 the mat~r was referred to He said he hopes to get an answer 
state Attorney General's office, In a month or two on whether that 
which returned the matter to the process wilt work at the Buena 
water board in 1987, to have new Vista Mine. 
purity standards Issued, Gonl said. He estimates his company bas . 

1'he mine's owner, however, . .spent ~.000 trying to.clean up the 
hasn't just Ignored the matter, Gonl problem. 

Warnings about 
fish with high 
mercury levels 

SAL'IMIEY:O !.\!<!': - Pre~n•nl 
•omen anJ nur~"~ :::oC'..,rs mvu.J.J 
not e.at largeo:c_l..!l ~u ~rom :-t•o· 
:n;t'<ll.o Lake 

serther sho..!.l :!I.:JI•!l !Wdtr 111 
or women ,. 00 ex;.Kt 14 ,e~ pna· 
nant soon. arc~:.'!,( l.o Lbe bealth 
• arn~ngs 111 Lbe $1& ~ tu.b..Lo.4 re41ul.a. 
coru wueJ 011 ~u.:b 1. 

The re~ui&LIOIU u1J the Jt.llle 
D<p.artmtnl .J Hult.!l s.er-..~eea ~ 
.letermmeJ t......,l t:.. :.Ue's luge-
mouth~~ ccr.u::~ •!~ut.td wern>· 
I"'! level.! 

The ,.un 1 n~ alu ,...,. n~ ..;ne 
shvo.ll4 ••t mure ~ !CJ<U meal.l ;->cr 
moolh of luie:D<;Jtll ~au from 
Saclllllento We. 

SaclJlltent.> um'l t!:.c oo!J Ide 
mentioned for ~-u:n& faa w1UI I..Qo 
much mercury.lA otb« l)lrta at l..lM 

P1e~M-- Wll"!liD.p, s.d Pa,• 

Warnings~ 

eoaun~ rrom Pip t : 

state, thrff lakes, thrff retervolrs, 
a river, two Crffb and t.be Sen 
Francj,co Bay Delta Region wrn
abo menti41Md. &me wa~n had 
.senral types of flsb that were 
effec~. 

The fi3hing regut.ationll also con
t.ain warnings about other baunis 
In other bodies of wa~r. !ucb u 
elevated DDT and PCB le-feb In 
Santa Monica Bay end elevated 
selenium levels in both the Salton 
Sea and the Grassland aru ·In 
Merced County. 

Paul Jagger of the sta~ Reglo!lll 
Water Quality Cor.ttol Board st.alf 
said that there is probably no one 
source for the mercury found In fish 
in Nacimiento Lake. 

But he edded that mercury Is 
found In the g~loglc tormatJOII.!I of 
the lake's draiJiage ba!lfn. 

http:mercury.lA
http:�!~ut.td
http:tu.b..Lo
http:tbewaler��MYadd-----aaddCii.ltord.en
http:propc.rt


APPENDIX3 


Selected papers related to a "Complaint for Injunction, Breach of 


Contract, and for Damages"; Case No. 31361, filed August 2, 1965 in the 


Superior Court of the State of California, County of San Luis Obispo. 
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loi.ADDI:H a HAHT 
ATTOIINI"nn AT LAW 

eJA • tiN • ......,. 
P.C... I IN 

PAllO l'<lal.lD"' c:Al.II'O'IHU. 

~-·-....... 

; Aiio~e11'lor. . Plaint iff 
."' ,

•• •• •, I 

., 

• • ' ·,:• ':, : •''• a 

IN THE sm:m_tiOR ..COUI\t' OF. T~· STA'I'E OF.' CAtlfORNIA 

IN AND· FOR THE couNTs: ·oF. SAN I.Uts ·oBt~Po 


·12 
Plaintiffs. 31361 

l~ 
vs. No. 

14 
BUENA'. VISTA MINES • a corporat ion; 


15 ~~Bl.AGGINI; JOHN DQE I 

~~h v;·am~ and R.OE, .;a co· 


16 ~Ta~{n~~Ship) ·. r •• 

l7 

16 
·it·.:. 

····:-·". ), 

:' ·... . f . 
Defendants. 

. ' 

. ' j 

t 

I 



l 

2 

3 

4 

14 

15 

16 

17 

18 

19 

20 

21 

22 

\, 23 

.24 
~"~ 

25 

26 

,2.i- Pia'i~~if.f~ !.:~l~id .property in such a manner _so as. to wr~fully -c~u'se, 
~~~::·.~t7;i:;~.iti .. ~:.:;~.:;'":"j~\ ..~.' ~ -·~·._ ~- ' .··:·' - <. • :--·· • • ~ .··~ ·_ .:::::_~~.·:' ·- • :. • /: 

::~·6 	 pe·radt and~allow·noxious fumes, &ases, and;aulfer deposits topollute 
.·l·~:·..~.:~,:~~·-:.-;;_..;~~·;/~-,·~--·~·;:·_· ~- ·.. ·' .:-_ -.· > ' . : .·,,. ...~ ··_ --~· ~.:_.- . 

.. , ..... :·29· tpe :'air- ~4nd··ae'ttl8. ·1n and upcio ·the-· said tends of· the· ·Plairitiffs. end 

.-.~-· ~ '\ ·, • .~~ ..... ~c-- .• -.·~-. :,_ :"':'~ ,· j ' • •••• 

\.. ...- ' '.. 	 ~- __ , ... ' . • ' l'-~- ' . 

1,mpr~ ·~menta thereon belOnging to Plaintiffs; that the said mining op· 30 

South 89.• 58' West, along the North line of said 
Lot l 634.92 feet more or less to a half inch 
iron pipe· thence South 5' 17' East 230.64 feet 
to a 1-1/2 inch iron pipe; thence North 71° '10' 
3011 East 648.39 feet, more or less to the section 
line common to said Sections 33 and 34; thence 
North 0° 02' West along sAid •ection line 50 feet, 
more or lass to the point of beginning. 

II 

', ; ~ 

III 

The Defendant, BUENA VISTA MINES, a Cal~fornia corporation, 

is now and has been for some time last past the owner and operator 

of·,qui.ck.silver, mercury and other mineral mines engaging in mining 

operations upon lands immediately adjacent to th~ said real property 

of the Plaintiffs 

IV 

That the Defendants, HA&.QLD BIAGCINI, 40HN DOE I through V 

and ROE and ROE, a co-partnership, were and at all .times herein 
. . 

mentioned pgentt!J 1 servants and emt•loyees ·of the def.mcl.:mt corporation 
,. . 

and acting within the scope of suid agency. 

v 
. l'hat .for more than three (3) years continuously last past 

the Defendants and·each c..f them have engaged in mining procedures, 

b~th:_~p~o- ·~ut :~oa ·;undergroun9 operatio1:1s, ~~btely adjacent to 
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~ ·-.:.. o.~:' -_.':~~·~9'; ~~~-~!\S~~~);·';i~~if;·~{~:;cracks and separations of the structures· anq. · .. ·· 
•'J ',.n :;_~\:;~ ...~~--.;~'"~:l<:~-:::r,':~.' ,' -~· •
\' .. :·:;:0, f~unc!ations of .ii:ilp'r'ovementa on Plaintiffs. I lands have occurre4: by 

1~· · ::31 ~:~:~~-~~, oit~~ ~efendants blasting operations on adjac~nt prop~;~ies. 
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.~~'.\.25' . . 

~- . ·.. '2Q 

..:r2a 

of them in connection with said mining operations have caused and 

permitted mining ~Aste materials to be deposited upon portions of 

~lafntiffi' said lands. 

VI 

That as a direct and approximate result of said wrongfull 

~onduct on the part 'of the Defendants and each of them and the 

.conditions wrongfully created thereby, the Plaintiffs' property has 

:i~e~---~au.s·ed as' 'follows: . . 

:·~·t,;<;~~ <·::·ar·Approxi~~~ty f~rty ·(40) -acres of Plaintiffs' g_ra~ing 
':~5(';;::.'.:·:,-~.. ·/<.- ,""; .:;•< .:~··~ ~·- ,•' v.- :. > • ••',•_.' j ,•, ' ' 

i~ild.~-toci.ited•on 'said g~eri.,.men~hlots'.l and 2 have: become and now 
., ' ·- . 

'. '.· 

:~,~ ":. .._. .:~,.: b) Approxi.a:U.tely c:me (1) acre of alfalfa has been 
:~· ·.._.. ~. ' ·• ~ . . ~ " . 

c;o~l~tely damaged and d'eatr~yed.
," ·- ~ - . ' 

c) · ~pproximately two (2) miles· of barbed wire fence has 
... 

beeu·•completely destroyed by rust, 

d) That de~r netting metal fence around the alfalfa field 

has been completely destroyed and rus~ed, 

e) That the screendoors, window screens, metal locks and 

latches of doors and windows have rusted and become de~t::oyed; · 

f) That numerous trees and shrubbery on Plaintiffs' pro

perty ~ve been destroyed and killed, 

g) .. That the_ :metal and ·ti~·.,roofs of the houses and out 
' - . ' .. ~ ~ ~- . - . . 

buildings on Pla~tiffs 1
. -land have ;\ls.ted :and ·.d-eteriorated to the 

• ', : ••• ~ • \ - ~ _..~,;.' -' ••• ' ' j • .. • ' .,. ' • • 

extedt that they no longer serve their iD.tended purposes. 

.. :~·)::·· :·..·· :·.-~;_li).'.L.Thi!t:. C:erta.ln items·~£ farm ~qui~~~nt; consisting of 
. :.·>·~~;-y: -~.;"~-::: ..:.,, -.. -:~-_/ .. \··~~.<.:' ',, ·.·' ' ' . . ' ~ ._- . : ··_. 
John'·D~ere hay chopper, Oliver grctin drill, Teco squeeze chute»' · 

~f~~)ip~·inSfo~than~ diSk have rusted .fo the ~xt·~~~~':.thai t~e; 
,.. . .·~ .•-: 

~a~;·:t1~--lori.ger .~8 ..used. 
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l 

2 

4 

5 

6 

. . . . .

':36' sboy"e·· entimerated will continue; that the repairing and replacing 'of 

:31 t:'h~ items subject to repair and replaceme~t will likewise'be damaged 

~2 in the future and will require constant repair and/or replacement, 

the said covernment lot 4 have caved in and slid into the open 

pits of Defendants' mining property. 

k) That miscellaneous hand tools and building materials 

have been rusted and damaged beyond use, 

1) That three head of cattle belonging to Plaintiffs 

have been lossed and destroyed by reason of the above said cave-ins 

an'd .land slides. 

;:/\ m) That waste materials consisting of mud and silt have 

:b~en ~-~po~ited'· by Defendants upon Plaintiffs I property and certain 
~~;·' ..V·;·7..;;''j' .. ~-- ., · ··: ..· ' ,':• ·. ' .. 


;:~h'·~~ads c.dsi~ said ·fands to be useless and the· roa'ds impassable. 

:~~} . : ,;..:, :: .., VI 

.;; ' •. 

:;'-;t~-~·>·;;::.·:.> That the Plaintiffs are· informed and believe and therefore 

alle.ge ·,that the pollution of the air by~ the Defendan~s as aforesaid 

Pbilitiffs 1 property as well as adj oitiing properties, 

VII 

That the full nature and extent ;-of monit~ry damages suffer 

and Qustained by the Plaintiffs as aforesaid, by reason of the fore

going acts and conduct on the part· of the Defendants, is una~certain-

able at this time, and Plaintiffs ask leave o.f court to·-a~~d this 

coatplaint when the same is ascertainea .or ::upon proof thereof; that 

further additional damage will be suffered by Plaintiffs each day 
.. 

said mining operations are continued and carried on as in the past. 

Vlot:I 

That the Plaintiffs have no adequate remedy at law for·said 
J:, ·. 

~j~i~.• ~-and unless the :Defendants and each of them are enJoined 
. .... •.. l ..... "' ' • . 

and res' trained. by order of court ,g~,eat ind:t:rreparable, continuing 

irij.ci;:y ~ttl be ~uffered and sustained by the Plaintiffs in that the 
. :. ~ ~ .. . ' 

activ.iti•s :of :t:he Defendants and resulting damage thereof as herein;. 

:: ~~. ·...:~· ,· :-~-~.;~··.-. ··-·' .· . 
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and that the grasslands and alfalfa fields will continue to suffer .. 
and sustain damage and said damage and will increase in intensity 

.and in area; that the ~alue and extent and amount of iuture addi
~ 

\i.grial dAmages is not ascertainable at this time and Plaintiffs ask 
< -"-'.. :.....~: ....:·:,:- .-! ~, ~· ., -. 

·:leave of court to amend this complaint when the same is ascertainabl , 
-~~::;.~-; .... ·;~-··.---- . ' . 

l 
(·or· ·up'oil p-roof thereo'f. · 

~ 
I 

1 

l 
~ 

I 

l 
! 

II 

'!hat on or about July 30, 1963, the Plaintiff, B.AY'K)ND E. 

DODD, entered into an oral contract with the Defendants, BUENA VISTA 

MINES, a corporation, and ~ BIAGGINI, wherein the said Plalntif 

agreed to J>ermit the said Defendants to use wnter from a sp#,ing 

located on said government lot l in co4nection with the Defendants' 

mining operations and the said Dafendants agreed to install a per

manent w~ter system to supply water to said mining operations and to 

two resi~nces located upon Plaintiff~s property and the said Defen

·ciants fw;ther.;agreed to·repla.ce the water from said Plaintiff's 
.:..i.' . . . . ; ' ' : ' . ' . ' ·' .. ;. • • ' . . . ".. . .• .: . ' ' . 
·water aupply. which ·was··'t:o be used and was ·used by said Defendants 
,'" . . - ' 

in co_nn~~~iori.~with• their said ·mining oper,.~tions; that the said 
','-- ~ -),~-~~·_·""".. ··.· --~.: ·.--.· '... •: . (~ .. 
Plaili~iff_ has. fully performed under said contract and the same is an 
... 
~~ec~ted contract insofar as the said Plaintiff is con~ernedj 

III 

·That the said Defendants, BUENA VISTA MINES and HA!V1LD 
BIAGGINI, have failed and refused to install said permanent water 

system; that the said Defendants use of said water has caused the 

said water supply to be dissipated and the spring to dry up~·-snd 
•
l 
j-5

i 
I 

http:to�repla.ce


. l sa~~ Defendants and each of them have failed, refused and neglected.·.·.; 
• .,: ;~ ;JS._< ~· ''. -· . 

a ~0 replace said water supply. 

IV 

'' ' 

2. Fo·r damages under the first cause of action in such 

amOunt -or amounts as is fotind by the evidence. 

3;' For damages under the second cause of action for 

·.20 breach of cont~act in such amount as is-determined by the evidence. 
' .2i 4. For co•te:· of suit incurred herein. 


22 5, For such other an:i further retief as to the Court 


23 ~I!'!!!B just and proper in the premises. 


·MADDEt~&T, 

B~:·~;;~ 
. ·. . UL • 

~, ,,Y 

·.,. !ha.t he is one of the Plaintiffs in the above entiti.P.d
.-' 

foregoing COMPLAINT FOR INJUNCTIO~, 
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,.a~(,..J') .• -.* rc·.··.!.;~ ..,~.-' ..... ·::..•~.t·r ..-.l·( ....J.- ...:..~~~~ ~J·,., ... 
{iii~!i.oi-.~ c~~~·~~!;~·;. ailcfkn·ciWa' 'th~~··c~~n~e~£~ :thereof; 
iJ~).f,. 
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,"thAt ··the urne is .. true .'of .his :ow 'knowledge·, except as :to the matters 
·if~·.;r.. ~~-·~:~~,~:"r '· .. f <~:-::..; ·,.....:. ..•~ .·;~ ,·;._~ ..-," • · · . ·-;: 
-'! ~hich are there'iii stated. up'on~his information or belief and as to 
::~~)...·..~·::. ·.~ .. ·:.~· . .·~·..,'' ·::. : ' ' ' ' 

.~~hose,'.matters that he beiievea it to be true. 

:~~~;.~~~1/t);;_:i.O:ae:·i~r~\~der·, p~~aity .of pe~jury- that ;the fdregoing
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S4pt..C.r 26, 1967 

.Jwd&• T1ao:>t.b7 I. O'hUlt 
Jud&• of t.b. ~ior Court 
C0UDC.7 ~ .&,c:m.u 
SaD Lu.:ia Of:ILI'po, C.lUora.J..a 93401 

lA : Dodd v• . ll:Ac.l Vl.l ta lt1Du. 
ILO llo.lll61 

De&r ~· O'lalll7: 

IDel.ONtd buewlth '10'1.1 will fiad the ori&i.D.Il liadfQP 
of ract a.cl Caaclulloa..' of Lw ln the .~...r:ter 
t.oc•t.bu wl.th .- orii!Lal 8M copf of pl'OpOiod Judpellt
.-.cl od&l.ul co.~t bLll. 

& CCIPJ of th.1l Lattar tosath.n wU.h • copJ of the 
1'1DdlQ1• of lKt aDd COaclu.d.ou of l.Av, _propo.~od
ja4J tt aDd. CDpJ' of COlt blll U be..!.l:c ~ to 
tbe tira of Cb..lMlloi Cl:I.1Mllo • ltldd7 ad to Cb&rlu
Olla, the atto&"Da,. or the de f.....,u. 

J'll.;q 

.cto.uru-4 

cc: c::bnlu I. O&la 
.&.tt.at"U' At Ltv 
7711 Horro .., ~t..Yud 
lbcTo 147, CaliforniA 93442 
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lH THZ SUPD.UII. COt:a.r OF tHE surE OF CALI.rOIUil.A 

lH AXD rca THE COUMTY or !Wf WIS OIISPO 

U.'DIDKD E. DOOO .md IVEI.nl C. DODD'I
fl.a1Dt1ff1. 

·v•
.,... YI.S'TA HDIESt a Corporatioai; 
UIOLD II.AGCW; .JODI DCX l tbroup
V; 101 .mel 101, A co•putaerabip, S 

R!feadafttl I ~ 

llo. l~l 

t1w above uatUl.ad Mttar c... oa replerl7 for: tri.d 

1D Depart.eat 1 of tblt above entitl.cS court OD IPrcb 21, 196 7 eod 

.,.. burcl ad trW OD that day Md oa Mucb 22, 23, bel 24, 1967 

bet«a tbe boaonbl.a %1Aiotb7 1. 0 1bill7 Judp pred.dJ.t~~, Utti.Qa 

wldlout • JurJ, both dd., b.lvi.a& wlvtd • jur1 trill aD4 the 

plll.at.Ufa ~ 1D peraoo aacl b7 ..s.,throuab tblt1r couoaal: 
..._ • 81% bJ rMJL :r. ua:r eod tbe deftadaca--.& n.lf.A 
a COI.'pocatioo ad JIAiliCU) IUGCUl .,._.. lD pu1011. ad b7 ad 

tbrqb their COIIIUel, CIIM'.P I. oatl ad fJIDI11D6 CIIWI.JD 6 

...-r, ad ftU.C:e, botb or:al lad doct..tarJ Y.Ytail ~ . -,·.. 
., . · . 

f.a.tl:oduce4 ad tbe trial of the Mtter bft1z,i 'buD ecactudu Cl~a~·; 
.. ~""'-'·•' ,; '"'• """'1 , -· .... ,.~ '~ • -·,:'.1~· ... ;,V,':''!'..!;,;:.\J.:<;"'
:~.III.RJi.'J4,·1H7..., t.h -.ccer .._~A~.•-."!".,... ·tied""eo· tii:~ -~··"'1i 
:.~?Lw.·.~f;;, ~~.~·..;:-t of~:~~~~~ .W... '~~~:
:.(~. -. r ' . ' ' • ~l "· · • ' ·. ''!" J> 2 ;.;~>.~'tf.p
·;tu~.'U67'.a'tt..-cauzt't.iaa· Ml,_.~,~ .._..., 4:trib~t~· 
~r.t- ,.- -:' .# _..._. ( , ~ • , ~ • • : ~~ •• - :. \~ t./· ,~: ~~..}~. -:. 
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- ' I ':, . (""'. 

.., 

I 

Ttutt the .tLesat:iooa coot:aiaed in parqrapb I of tb• 

II 

!'hit thAt dle&atiOIUI contained in parqreph I.Uof tha ~~ 

COGI!plaint are found to be true. 

UI 

!'bat it u found to be tnae that the defeadaat, IWtOl.D 

IIACCIJll at all ti::lu eantiooed in thAt COGI!plalnc v.u and uov u 
&D qcmt, aervao.t and ~loyu of the defiiOdllnt cor:poratioo cd 

actin& vitbin tbe scope of add qancy. 

IV 

D' !'bat the dleaattoa. eoota!M~ la p.u~apb v of tha 

COGI!p!Aint are found to be tru.a. 

v 
!bat the alLe&atioa.t coataiDecl iD p.ft'&JI'aph VI of the 

c0111p!Ai.Dt are fOUDd to ba true. 

Vl 

Zblt v1th refuece to tb.CI alleiatiou ccataluct iD 

• 2 

.:. 
~ ' . ' 

' 
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fenc.. were daatroyed end d.IMa•d in tM 

4) Deu aettiDg fencirlg w.. daa~~~&ed ad U...aoyed in 

tbe ..ount of $2.54.52. 

5) Vir&dov .tlod door ac:reeoa and loc:ka vue duqed in 

the •mount of $90.90. 

6) rua illpl-ntl inc:ludin& uy chopper, &reiD clr111, 

aDd aqueue cb.Ll.bl were ._.ed in the ~t of $227.25. 

7) Het.d buildiD&• vue cluqed lD tt. •OUDt of 

Ui tt4s.oa. 
u!: 8) o..q,.. for cleaning eouala end. r..,.,al of dabd• 

I 
in tba ~t of Jl8\l.OO,13· 

i 
9) Loao of Cbl:ea bud of cattle lD ttw MDUDt of $275.141: 

16. 10) Loaa of uttle f ..d b the 4I8CIUDt of fl,401,2J. 

15 ·vu 
1'1 t'bet 1f1tb zdereaca to parapapb U of tiM ·lacODd cauaa 

of Act.Joa tbe cowt fi.Dda that the pl.liatiff,di.A.,;. 1. DODD ,u 
~ ~· .. i • ..,; . 

.cued lrlto eo O&'al coatraot vitb tba dd~ ... VIm1t 
• • j, ~ ' 

JIIDI, a COC'fO&'atlao awl IIAIOLD I~III oa 0&' about Jul7 30, 

11 

10 

IJU tlbmtlrl t.M ..u plalrltlff qraad to puait t.M dafeadallu 

·, ~ '...,.,,.. ... 
.~~~I. 

J..• 

,·._/ ,." 
·• ...... 

" ~ ~.~ ...,.. 
~ ~ 

'~::...i_ 

.. 
f 
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13 

14 

11 

a) f1nd.a that oa or about Jlov...t:Har 1. 1959 a writteo 

le.ut.q ap-e-.nt waa eotered into bet.veea cbe plaintiffs tiD4 

tba IWI:IIA VI.SU Kl!IU vbare in the plaintif& l ...ed el'1'ta1n 

pr:opert1 to tra aaid defendaa.t for the pur:po.. of norqe of 

period DDt to exceed fift1 J&UI h011 date of qr~et~eDt. 

b) lbat on or about ~llalber 7, 1961 a wittc leuifts 

&&rM811DC ... entered Into ~~t;bl-1 ~l.aintif& azul 't.u dafen

Cf.a.t IUD& VU1.l 'MD!S tfberaia tbe ~l.a1Dt;t.f& l.auad. adcliU.oaal 

1a4a tO '• uu da&odaa.t forth. JIUI'PO.• of noruc •taa ~ 
..,ta •ter:ul.a whf ch ·~eeilllmt 1IIU to H for • tera of .ff.n 

.. 7..-ce with aa ope~ to ~ f• • aclclitioaal five 7Mr pulod. 

c) tb&t oa or about *' 11, 1961 • writtaa. ll&'fe•~t 

..u eat.ere4 lAto ktiiNt\ tile pt..a·.fJltUfa ad tM defcndaot, -.JDA 

• 'V1IU ._. W.eln tbl •aid ct.tadarlc.,.. to cOG.Itrw:t • cucatn 

•: eanbiD ... u4. •iLll•l1 OCI pbiatU& I Pl'opeft1· 

~S>;·~ .. ~.:·.. ~> ~-~ fiadl ~t ••~"- ........,ub., ...~~ 
~· coai~ted aa_plaintilf•'. PJ:op.u't1 with pl.a~fa' cciueDt aDd, 
·~:~w,e~ ' '' ';·, 

~.,, ~ 1w j .. 

'tJi!W·"...,~..:,.~~;;.~~-~, :~i~0.;~;Z1J:. ·. 

I 
I 

I .'j;c:·.1~:, 



--

1 

---·· ------------------- -----------....... .._,__,_____,...____ 

,(1"' •• 4' , ••• .., . 

' ..... . r..~ • ,.l 

'• 

l· 

10• . 
ll,, 

' u· 
' l;}. 

14' 

16 

16 

17 

u 
1t 

ao 
11 

u 

,. . 

><(... 

. .. 
a 

-. ,:, 

:_. .. 
., 

•.. 18 

It 

!bat with zoefereoc• to the ddeadllnu' S.Caad AfflnlltiYe 
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'!'bat with reference to the Third AffirMtive Defeue 


contaho..-d in defadanta 1 anaver, the Court finu all of aaid 


alleaat1~, to b.t untrue. 

nu 
'!'bat vitb reference to c:ba Fourth Afftrs.tive Defaa.e 


ccmta1Decl 1a defeaanta • anawer the Court flau dl of the 


allqatiooa therela coatalnad to be untrue. 


nv 
'!'bat vitb re!ereaco to tbe r ...inins allqati008 coata 


1a the plat.atltt.' cG~~Plalat and/or thAt afea.S.Ota' .aver IDCI 


atflnlltin clafea.~.. therein D4t apecifi.call7 fOUDd to be au. 

or .en. are found to be UlltRe. 


.. 
AI coaclualou of law fr.,. U:• for:11o1D1 ftn4il:ta.I.Of ' 


fact, the Gour:t 16Dcl.udd: ! .. . '• 

• . . • ' . j, .: .• 

1) !bat tile plal.Dti.U• ar.d Go~~.:~& of·t* •• ....utUid to 
. • . • I . 

• Jud&Nat ill tblu favor ..s ...tu1 tbt ..,..,._.,, .... ~ 
' . . ... ' ,. 


~- Nlal ..s IUICILD auacma, cull' qecu, aenau.8DII.-p1o,;e.., 

... . - . ' '< ' -) ... 
~..-**' iD.1'fiiCth I'~ tbl d.tf-sia.ca ... f.Mtail .• ;, .. 

:,. :.._\~ ~; :J: .., .~~·· ·, ~·' ,' ... - ~ •- , '·_ .1 I'~ 'ti/ii• t:_ <· ~'-,\~'o' • t 't· 

\~~~----·····~ e+• 11¥1 ~ arr~totf''7::tY'·~
5 
ill 

' -tM ~ u a .._tic ecrubber" cm the ,_.. sUck oi t1ili •' .,_..-· - ·=e.·-- IU&i4 ... 

•. 4 


l ••• ,. _. 


http:d.tf-sia.ca
http:ftn4il:ta.I.Of


-----------

·'' 

·. .. ''·' 
. ; .... .: ,. 

. } 

~'· / :; '-~~ :: 
\...: t

·i ~ 

.·. 
·-_, ,..._. 

..-..! .. ·; ~ t 

:· 

!. 
~ 
~ , ~. 
' .. '' .
;_,:;j. \' yI ...v:· 

"II ..... , 

f 'jj_··~-.,I . :·~;\. ·, 
·;, ? • 

• 

.. ; 

,, 
1: 

9j: 

1ol! 
r 

11!, 

uf: 
13 

u 
115 

16 

17 

18 

19 
JO 

11.. 

" 18 

It 

•,' 
?t.i•.•4i !; ;;.J 

,, ,;~,f . f ol /_':I 

' . - ~ .., . 

-

b) 1D tbe •'-- of $454.50 for &..a• to fire wood; 
,. .. • ::-.. ~ 4 ; • 

1D the._ of $472.6,~f~ ~~· to b.UI!e4 tr1n 
.. ; ·~ ;..... :. )" ;. 

. ' i--~;;;;,~t.. ,,~J..· 
1D tbl awl cf $254.52 ·for ik-a• to deer r ... ttf.q 

door a..:::<MD.S &ad loCka. 
f) lb tbe ._ of $227,25 fcrc cta.qa to f.tna 

illpllli.nts; 

&) Io t.he a ~.a llf $145.08 f.crc dNa&• to met..t 

builclil:c•i 

b) 1a the au. of $180.00 fcrc ct..CU. corrall aDd 

r.avat of •t.rt.a; 

f.) 1D tbe •• of $275.00 for lo•• of tbr.. bud of 

cattle; 

j) lA t1w aua of fl,40l,ZS m lou of cattle_ faad; 

.All of the =-i~s.aa -..u coca'Ua. t4;ou.t5 plul 
. ' 

:.~ut tt.enea at the rate o~ 11 pu  f:roil .....,t 2, 1965 .. ... 
jatil p.WI. ·· · 

S) '!bat c:M ple1Dt.Uf.t aDd .-cb of c.ble ue ctit1ad. to 

Juclpeat 111 &ba1.f favor ad qduc the cla.fe41G.t.t, IUia 'VU'U 

Mila aad JIMIOti sucai.Il for COIU of IUit ·iocuaecl becdD; 
·~ . 

t.lr JliXawr IE lftii!D AC«<IDIII:U 
• • ••-...Cb1t /!.! 417 . . . ' :. . . . ~ 

.~.~ 

~ .. ~~...-z. '" . 
. .. -~ 

' ~'"r. ..... _., ..., ~ 
• ¥• 

·' 1: .• • 

1 



5 

IN THB sur·ARICR CamT CF 

. j 

2 


3 


4 


, I 9 


10 


" 
12 


13 


14 


15 


16 II 

l/ II 


13 
 I 

i? 'I 

-· II 


23 


24 


25 J' 


26 


27 


29 


29 


30 


31 


32 


L.AW 01'1'\C'le 01' 

CHINELLO, CHINELLO 6 MADDY 
til l'tMT WUftMI ....... MIH•..OUttJ 

I'IIUNO, CALII'OIIINIA •a111 

Tti.U"O"& AIIIU c- I~ lla•lll.t 

I~ ANO FOR THB. COUNTY OF SAN LUIS OBISPO 

RAYM..JIID B. DCDD and BVSLYN ) ) No, 31361 

Ce t'CDD 1 


Pla.intitte, ! 
l PARTIAL SATISFACTION OF 
J~ 

BUBNA VISTA MINBS, a corporation; ()

HARCLD BIAOOIN.t; JQi:N D<E I 

tb.rougb V; RCD and ~CB, a 
p~xtnerabip, 

Defendant•• 

Rl>ceipt of Four Th..:>u:sand Biphty-two Dollars and 94/100 

($4 1082,94) 1 plua costs ot Cne Hundred t·~nety-nine Dollar• and 

r..o/100 ($199,60) and interea·t in the aum ot Seventy-tout Dollaru 

,nd 9~100 ($74,94), ~or the total aum ot Four thousand Three 

i JO~red Fitty-eeven Dollars and 48/100 ($4;357 ,48) ~rom BtJENA VI 

VISTA MINBS 1 a corporation, and HAROLD BIAGGI~I, i• ackn~ledg•d 

t:y RAYMOOD B. DCDD M..ild BVB'LYN C, DCDD, judgment cuditors i11 ~ull 

aatisfaction ot U.s money judg.ment entered inUlia Rotion on 

January 2 1 19681 .in;Judgment Book, Volume No. ~~. Page ~· 

DATBD this //.'7\da..y of Ap.dlt 1968. 
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APPENDIX4 


Private and Public Letters regarding two Mercury Pollution Sources, 


Mines and Roads in the Lake Nacimiento Watershed 
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STATE OF CALIFORNIA- RESOURCES AGENCY EDMUND G. IIROWN JR., Conmor 

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
f!ENTRAL COAST REGION 

l22·A lAUREL LANE 

SAN LUIS OIIISPO, CALIFORNIA 93401 
(805) 549·3147 August 27, 1979 

Mrs. Donna M. Harcourt 
Las Tablas Creek Ranch 
Adelaida Rd. 
Paso Robles, CA 93446 

Re: Buena Vista Mines 

Dear Mrs. Harcourt: 

Your letter dated July 16, 1979, raises some interesting questions 
about correcting the pollution problems caused by Buena Vista Hine 
drainage. Unfortunately, any solution is inherently complex. As a 
result the matter is unresolved not only at Buena Vista Mine, but 
throughout the state. 

As you are probably aHare, this Regional Board imposed require
ments on the mine's operators when the operation was still active 
during the early seventies. After recurring violations of the dis
charge permit and several varied, but futile, attempts by the dis
charger to remedy problems, this Board took inforcement action. First, 
a cleanup and abatement order was issued, then a cease and desist 
order. Eventually continued unsatisfactory performance resulted in 
re'ferral to the State Attorney Gene!'al. After several ineffective 
remedial actions by mine owners and an assessment of the mine by the 
California Division of Mines and Geology, the Deputy Attorney General 
assigned to this case advised us that little could be done. The copy 
of his December 14, 1976, letter is attached. 

For the past two years, this agency has been reviewing the sit
uation of inactive and abandoned mines, including assessment of mine 
impacts and current legal recourses available to this agency and others. 
The program has been concentrated within the Central Valley Regional 
Board with assistance from the State Water Resources Control Board. 
The results from these efforts ranked the relative severity of mine 
problems in the Central Valley. As resources become available, the 
problems are to be handled according to their severity. Copies of the 
Central Valley's proposed basin pla~ amendment and summary report con
cerning this issue are attached. The program is proposed to be expand
ed statewide. This is explained in the attached 11 Not ice of Public 
Hearing" You can support funding this item by writing the State 
Water Resources Control Board. 

Monies for problem correction, if and when available, have gener
ally been advanced from State and federal sources, not mine otmers. 
Naturally, they are allocated by need on a statewide basis. For ex
ample, this agency has approved ex;enditure of over a million dollars 
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August 27, 1979 

to correct one major mine drainage problem in the Sierra Nevada t~ount
ains. Other funds have been allocc..ted to better define technology 
of mine drainage solutions for appJication. 

An institutional and legal analysis of means presently available 
to control >.rater pollution from inactive mineral mines problem was 
recently completed by State Board s~aff. A copy of the report is avail
able at this office if you wish to ~eview it. 

Last month, staff members from this office and the Department of 
Fish and Game collected fish specimen from various points in Las Tablas 
Creek for bioassays. Once the results were available, we, as well as 
Fish and Game, will determine our next course of action. 

If you wish to discuss this further, or, if you wish to review 
our office files on this discharge, please contact Bert Van Voris, 
our staff enforcement officer. 

Ver; truly yours, 

KENNETH R. JONES 
Executive Officer 

KRJ :BVV :kg 

Attachments: 4 
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February 24, 1982 

Mr. E.L. Decker 
5199 E. Pacific Coast Highway, #310 
Long Beach, California 90804 

Dear 	Mr. Decker: 

This is in response to your letter regarding the 
Buena Vista Mine. 

As of January 21st, we sent a letter to the mine 
owner to confirm the steps the owner had agreed to 
take to end this problem. 

Prior to this letter the Regional Water Quality
Control Board met with the mine owner to try and 
work out a solution. The agreement stipulates that 
the mine owner will empty the pond near his slag heap; 
take steps to divert as much water from the pond as 
possible in the interim; and, in the summer, hire a 
soil engineer to put a clay cap on the pond. This 
should alleviate any pollutants from entering the 
stream, since water will no longer be able to percolate
through_the mercury deposits below the pond. 

According to the deputies in my office looking 
into the case, the agreement was amicable and the mine 
owner. seems willing to carry out this plan of action. 

I hope this clears up the situation to you and 
your daughter's satisfaction. 

Most 	cordially, 

~yL-· __. 
George Deu~mejian 

cc: 	 Mr. Bill Dalessi 
Attorney at Law 
444 W. Ocean Blvd. 
The Fourth Floor 
Long Beach, California 90802 

en 
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c.L.Deck_er 
March 3, 1982 

Kenneth R. Jones, 
Executive Officer 
California Regional Water Quality 
Control· Board, 
Central Coast Region 
1102 A Laurel Lane 
San Luis Obispo, Ca. 93401 

Dear Mr. Jones: 

In a letter written by you to Attorney 
General George Deukmejian on October 5, 
1981, you set out four possibilities for 
the elimination of the existing polution 
problem at the Buena Vista mine in San Luis 
Obispo County. 

In a letter from Attorney General George 
Deukmejian dated February 24, 1982, the 
Attorney General advises that according 
to the deputies in his office looking into 
the case, an agreement was amicably reached 
between the mine owner and the deputies 
whereby the owner seems willing to carry 
out a plan of action. 

The interest of the writer in this matter 
is that his daughter, Donna Harcourt, owns 
a ranch known as the Las Tablas Creek Ranch 
through which the poluted water of Las 
Tablas Creek runs. 

The writer would be very much obliged to you 
if you would elaborate on your Item No. 2 
in your letter of October 5, 1981 relative 
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Mr. Kenneth R. Jones 
-2
March 3, 1982 

the clay cover to be used over the slag 
pile. Are there native clays or adobe soils 
in the area which would serve the purpose 
enumerated in Item No. 2, or would something 
like bentonite be required to accomplish 
the purpose. 

Any information in this connection would be 
very much appreciated, Bnd the writer sincerely 
thanks you in advance for any effort you may 
expend. 

\ ELD-f 

.. . .... .. 
,........,,............... .........._ ...·· ..... ......... _ · 
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:E. L. Deck_er 

March 26, 1982 

Kenneth R. Jones, Exec. Officer 
California Regional Water Quality 
Control Board, 
Central Coast Region 
1102 A Laurel Lane 
San Luis Obi~po, Ca. 93401 

Dear Mr. Jones: 

Further to my letter of March 3, I just 
learned last evening that the white bass 
being taken from Lake Nacimiento have 
been found to contain mercury in sufficient 
quantities to possibly have bad effects on 
humans who might eat them in some quarlity. 

( 	 Could this possibly be the result of leeching 
from the Buena Vista mine? 

\ 	 I would greatly appreciate your comments 
on this as well as hearing from you 
relative my letter of March 3. 

Thank you. 

Sin_cerely,~,--). - ., ' 	 . - /
/ ):' . "·. . v-v-'(. ' 

·"' ..
' .· 

E. L. Decker 

ELD-f 

r 
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STAT{I Of CAliFORNIA- RESOURCES AGENCY EDMUND G. BROWN JR., Co..rnor 

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
r.ENTRAL COAST REGION 

)2 A lAUREl LANE 

SAN lUIS OBISPO, CAlifORNIA 93.401 

(805) 549-31.47 

April 12, 1982 

E. L. Decker 

5199 E. Pacific Coast Highway, #310 

Long Beach, CA 90804 


Dear Mr. Decker: 

SUBJECT: BUENA VISTA MINE 

Thank you for your letters of March 3 and March 26, 1982, expressing con
cern over the water quality impacts from Buena Vista Mine. 

Referring to your March 3, 1982, letter, we did recommend placement of 
an impermeable clay cover over the slag pile. Clay was not specifically 
mentioned because of known natural deposits in close proximity to the 
mine, but rather because of its low permeability. We have not investi 
gated, nor do we know, whether there is adequate clay available in the 
area. If local deposits of clay can be found which meet the permeability 
requirement when placed, and which are not likely to be degraded by the 
slag, then they may certainly be used. The intent of the permeable cap 
is to minimize water contacting slag and subsequent generation of leachate. 

Concerning your March 26, 1982, letter, it is not probable mercury con
centrations found in white bass at Nacimiento Lake can be the result of 
activities at Buena Vista Mine. Mercury is naturally present in other 
areas of the Nacimiento Lake watershed, perhaps throughout the watershed. 
Erosion and transport of the natural deposits may be the underlying 
cause of the mercuty appearing in the Hhite bass. Information available 
at this time is not complete enough to pinpoint the origin of the mercury. 

Again, thank you for your concern about water quality-impacts of the 
Buena Vista Mine. 

Very truly yours, 

KENNETH R. JONES 

Executive Officer 
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ROGERS & SHEFFIELD 
HOMER G. SHEFFIELD. JR. WIUJAM K. ROGERS 

ATIORNEYS AND COUNSELORS AT LAW 
DENNIS W. LESK! 	 MICHAEL S.LONOON, P.C. 

427 E. CARRILLO STREET 
P.O. BOX 22257 R. BRUCE MacKENZIE ANniONY C. FISCHER, P.C. 

SANTA BARBARA, CALIFORNIA 93121·2257 
B. KEITH MARTIN 	 GLENP.BURN 

TELEPHONE (805) 963·9721 
BERT G. WETHERBY 

I'!ETIREO 

May 25, 1988 

California Regional Water Quality control Board 
Central coast Region 
1102 	Laurel Lane, suite A 
San Luis Obispo, California 93401 

Attention: Mr. John Goni and Mr. Jay cano 

Re: 	 Application for Waste Discharge Requirements 
for Buena Vista Mines, Inc., and Carson Drift, 
Buena Vista Mines, Inc. 
MPDES No.: CA0049352/CA0049361 

Dear 	Mr. Goni and Mr. Cano: 

I represent Donna Harcourt, who, together with Security 
Pacific National Bank as Trustee of the Alma Decker Trust, is the 
owner or beneficial owner of Las Tablas creek Ranch, a 1,000 acre 
holding located 12 miles outside of Paso Robles, California. 

We are in receipt of your Notice of Public Hearing in 
connection with the application for waste discharge requirements
for Buena Vista Mines, Inc., and Carson Drift, Buena Vista Mines, 
Inc •• 

Under separate cover, Ms. Harcourt is writing a letter 
detailing and outlining her sad and sorry past experiences with 
the mine in question and the effect it has had on Las Tablas 

8 11 	 10 11Creek. I enclose an x color print which dramatically 
depicts what happens to the creek when the waste from the closed 
mine is discharged. 

It appears abundantly clear from the history of the mine 
operation and the State of california's attempts to get the mine 
owner to respect the environment that we are dealing with an 
owner who can best be described as a scofflaw who has thus far 
successfully escaped both regulation of his operation and 
punishment for his disrespect for the law. It appears that one 
state agency or another has been attempting for nearly two 
decades to remedy the deplorable situation which exists because 

'\ of the mine's pollution of Las Tablas creek. 

\ 
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California Regional Water Quality Control Board 

May 25, 1988 

Page 2 


I have retained the services of an expert, Mike Hoover, to 
assist me and my client in our support of your efforts. Mr. 
Hoover informs me that the time horizon requiring compliance by
October 1, 1989 is reasonable under the circumstances. However, 
Ms. Harcourt suggests that, in the interim year's period, the 
mine owner be required to pump out and haul away the discharge
rather than permit it to go into Las Tablas creek. This interim 
requirement would be short-lived and would bring about an 
immediate temporary cure to the problem. 

Mr. Hoover also informs me that the standards set forth by 
your office are fair, just and reasonable. We support those 
standards, and we oppose any attempt on the part of the mine 
operator to weaken the standards. 

The one area which I do not feel was adequately addressed by 
you is the area of sanctions. Since we are obviously dealing ·.: . 
with a despoiler of the environment and a scofflaw who has evaded 

' 

even the state Attorney General, I believe that sanctions should 
be set forth clearly in advance so as to give the mine owner 
notice of the cost of continuing to dally. 

I suggest that you provide a fine of Five Hundred Dollars 
($500.00) a day for each day beyond October 1, 1988 that the 
engineering report and implementation schedule for achieving full 
compliance is not completed. Further, I suggest that you provide 
that the mine operator be fined Two Thousand Five Hundred Dollars 
($2,500.00) a day for each day after october 1, 1989 that full 
compliance is not achieved. 

My client and I and Mr. Hoover look forward to appearing
before the board on June lOth, 1988. 

cc: Ms. Donna Harcourt 
Mr. Mike Hoover 


RBMjde 
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ROGERS & SHEFFIELD 
HOMER G. SHEFFIELD, JA. W!LUAM K. AOGEFIS 

ATTORNEYS AND COUNSELORS AT LAW 
427 E. CARRILLO STREET 

DENNIS W. LESKI MICHAELS. LONDON, P.C. 

P.O. BOX 22257 A. BRUCE MacKENZIE ANTHONY C. FlSCI'iEA, P. C. 

SANTA BARBARA, CALIFORNIA 93121·2257 
B. KEITH MARTIN JAMES E. HERMAN 

TELEPHONE (805) 963-9721 
BEAT G. WE'THEASY 

RETIRED 

October 14, 1988 

Mr. John Goni 
California R~gional Water Qu~lity Con~rol Board 
,..,.....,., .......... _., ·.... ..:..-.... ... - ... .I
~..:0•• ..,..,. Q.,.. """"'-'Q.O \,; AC':J..&..Vll 

1102-A Laurel Latte 
San Luis Obispo, California 93401 

Re: 	 Buena Vista Mine, Buena Vista Mines, Inc. 
San Luis Obispo County (Permit No. CA0049352) 

Carson Drift, Buena Vista Mines, Inc. 

San Luis Obispo county (Permit No. CA0049361) 


Dear 	Mr. Goni: 

( On June 10, 1988, I attended and spoke before the Regional
Board Meeting held at the Seaside City counsel chambers in 
Seaside, California, in connection with the above referenced 
mines. I appeared on behalf of Donna Harcourt, the owner of the 
Las Tablas Creek Ranch. 

As I 	 understand the results of that me~ting, the Board gave
Buena Vista Mines, Inc. until October 1, 1988 to produce an 
engineering report and plan which, in turn, will enable it to 
achieve full compliance with all conditions of the permit by
October 1, 1S89. 

I assume that the report was submitted in a timely fashion. 
On behalf of my client, I ask that you supply me with a copy of 
said report. 

cc: Ms. Oonna Decker Harcourt 

RBM/de 
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ROGERS & SHEFFIELD HOMER G. SHEFFIELD. JR. WILLIAM K. ROGERS 

ATTORNEYS AND COUNSELORS AT LAW 
427 E. CARRILLO STREET 

DENNIS W. LESKI MICHAELS. LONOON, P.C. 

P.O. BOX 22257 A. BRUCE MacKENZIE ANTHONY C. ASCHER, P. C. 

SANTA BARBARA. CALIFORNIA 93121-2257 
B. KEITH MARTIN JAMES E. HERMAN 

FAX (805) 966-3715 

BEAT G. WETHERBY 
TELEPHONE (805) 963-9721 RETIRED 

January 19, 1989 

Mr. John Goni 
California Regional Water Quality Control Board 
Central Coast Region 
1102-A Lau~el Lane 
San Luis Obispo, California 93401 

Re: Buena Vista Mine, Buena Vista Mines, Inc. 
san Luis Obispo county (Permit No. CA0049352) 

Carson Drift, Buena Vista Mines, Inc. 
san Luis Obispo county (Permit No. CA0049361) 

Dear Mr. Goni: 

When Mr. Biaggini's report was filed in a relatively timely 
fashion last fall, we were encouraged in thinking that he would 
commence remedial work in rapid order. 

My client, Donna Harcourt, informs me that she has recently
visited the mine site and that nothing whatsoever has occurred. 
Once again this year we have experienced relatively little rain, 
so the problem has not been as bad this year as in the past.
This is a fortunate situation in the sense that it is an ideal 
time for the remedial work to be commenced. 

Please inform me what steps, if any, you 
-. 

have taken to 
obtain assurances from Mr. Biaggini that he is diligently
pursuing the recommendations of his experts. 

co: Ms. Donna Decker Harcourt 

RBM/de 
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ROGERS & SHEFFIELD HOMER G. SHEFFIELD. JR. WILLIAM K. ROGERS 

ATTORNEYS AND COUNSELORS AT LAW 
DENNIS W. LESKI MICHAELS. LONOON. P.C. 

427 E. CARRILLO STREET 
R. BRUCE MacKENZIE ANTHONY C. FISCHER. P.C. P.O. BOX 22257 

SANTA BARBARA. CALIFORNIA 93121·2257 
B. KEITH MARTIN JAMES E. HERMAN 

FAX (805) 966·3715 

BERT G WETHERBY 
TELEPHONE (805) 963·9721 RETIReD7 

c::;~, 1989 
~· 

Mr. John Goni 

California Regional Water Quality Control Board 

Ct:ncral Coast Region 

1102-A Laurel Lane 

San Luis Obispo, California 93401 


Re: 	 Buena Vista Mine, Buena Vista Mines, Inc. 
San Luis Obispo County (Permit No. CA0049352) 

Carson Drift, Buena Vista Mines, Inc. 

San Luis Obispo County (Permit No. CA0049361) 


Dear 	Mr. Goni: 

It has been three weeks now since inquired as to the status 
of affairs in connection with the above referenced matter. 

I will appreciate a response to my inquiry at your earliest 
convenience. 

cc: Ms. Donna Decker Harcourt 

RBM/de 
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' . S:T: OF CALIFORNIA ( 	 ( 
GEORG£ DEUICMEJIAN. Go...,rno, 

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 

CENTRAL COAST REGION 


102 A LAUREL LANE 

SAN LUIS OBISPO, CALIFORNIA 93401 

(80.5) .549·3147 

March 2, 1989 

Mr. Harold J. Biaggini, President 

Buena Vista Mine, Inc. 

1164 Market Street 

Morro Bay, CA 93442 


Dear Mr. Biaggini: 

' SUBJECT: BUENA VISTA MINE, SAN LUIS OBISPO COUNTY 

This letter is in response to your September 30, 1988, report 
entitled, "Preliminary Geologic and Hydrologic Investigation Buena 
Vista Mine and Carson Drift", prepared by Mr. Marvin R. Niccum, 
geologist. This report does not satisfy all of the requirements 
of Waste Discharge Requirement Order No. 88-90 and Cease and Desist 
Order No. 88-91. 

The report was submitted in response to this Board's Order No. 88
90 and Cease and Desist Order No. 88-91. Provision D.S. of Order 
No. 88-90 requires: 

"In order to insure compliance with this Order, the Discharger 
shall submit an engineering report with the implementation 
schedule by October 1, 1988, addressing compliance with all 
terms of this Order and with the standards for Mining Waste 
Management as specified in the California Regulatory Code, 
Title 23, Chapter 3, Subchapter 15, "Discharge of Wastes to 
Land", and Finding No. 6 of this Order. The implementation 
schedule must bring Buena Vista into full compliance by 
October 1, 1989." 

Provisions of Order No. 88-91 require: 

"2. 	 Buena Vista Mines, Inc., shall cease and desist from 
discharging waste in violation of Order No. 88-90, and 
shall achieve full compliance with standards for Mining 
Waste Management Units, according to the following 
compliance schedule: · 

Due Date 

Submit Engineering Report with October 1, 1988 
implementation schedule describing 
the method for achieving full 
compliance with Order No. 88-90 
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Mr. Harold J. Biaggini -2- March 2, 1989 
Buena Vista Mine, Inc. 

"4. 	 All engineering reports required in conjunction with this 
Order shall include a statement by the Discharger or an 
authorized representative of the Discharger certifying 
under pena~ty of perjury under the laws of the State of 
California that the report is true,, complete, and 
accurate. Technical reports and plans shall be prepared 
and signed by a registered geologist, registered 
engineer, or certified engineering geologist.". 

Specifically, the following deficiencies are noted: 

1. 	 Pages 7-10, 32-34, 39-43 and Appendix B discuss alternatives 
(options), but in insufficient detail to determine if the 
alternatives will bring the discharge into compliance with 
Order No. 88-90. In particular, all terms of Order No. 88-90 

. must be addressed, as we11· as sections of the California 
Regulatory Code listed in Finding No. 6, as follows: 

Sections 2572(c), (d), (e), (f), (g), (h), Mining 
Waste Management Unit Siting and Construction 
Standards; Section 2573(a), Water Quality 
Monitoring for Mining Waste Management Units; 
and Sections 2574(a),(b),(d),(e),(f),(g), 
Closure and Post Closure Maintenance of Mining 
Waste Management Units. 

2. 	 An implementation schedule describing the method for achieving 
full compliance with Order No. 88-90, needs to be included in 
the report. 

Keep in mind that Waste Discharge Requirements still require full 
compliance by October 1, 1989. Therefore, please submit an 
appropriate response satisfying conditions of Order Nos. 88-90 and 
88-91 by April 3, 1989. We are sorry these comments could not be 
sent more promptly, but you are still required to adhere to your 
compliance schedule. 

Please direct questions to John Goni or Jay Cane at this office. 

~~ 	truly yours, 

ri~~ 
Executive Officer 

FJD/se 	 biaggini.ltr/19 

c: Bruce MacKenzie, P. o. Box 22257, Santa Barbara 93121-2257 
\ Marvin Niccum, 3152 Sun Ridge Court, LaFayette 94549 
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ROGERS & SHEFFIELD 
HOMER G. SHEFFIELD. JR. WILLIAM K. ROGERS 

ATIORNEYS AND COUNSELORS AT LAW 
427 E. CARRILLO STREET DENNIS W. LESKI M:::HAEL S. LONDON 

P.O. BOX 22257 R. BRUCE MacKENZIE B. KEITH MAR11N 
SANTA BARBARA. CALIFORNIA 93121·2257 

FAX (805) 966·3715 
JAMES E. HERMAN SAYRE MACNEIL 

TELEPHONE (805) 963-9721 
BERT G. WETHERBY 

RETJRfD 

October 9, 1989 

Mr. John Goni 
California Regional Water Quality control Board 
Central Coast Region 
1102-A Laurel Lane 
San Luis Obispo, California 93401 

Re: 	 Buena Vista Mine, Buena Vista Mines, Inc. 
San Luis Obispo County (Permit No. CA0049352), ~-

Carson Drift, Buena Vista Mines, Inc. 

San Luis Obispo County (Permit No. CA0049361) 
 ,. 

\.... 

Dear 	Mr. Goni: 

On June 10, 1988, I attended and spoke before the Regional 
Board Meeting held at the seaside City counsel chambers in 
Seaside, California. I appeared on behalf of Donna Harcourt, the 
owner of the Las Tablas Creek Ranch. 

During the meeting, the Board gave Buena Vista Mines, Inc. 
until October 1, 1988 to produce an engineering report and plan
which, in turn, would enable it to achieve full compliance with 
all conditions of the permit by October 1, 1989. 

Please update me in connection with this matter. 

cc: Ms. Donna Decker Harcourt 

RBM/de 

• • j • • 

·f . 

/ 
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ROGERS & SHEFFIELD 

HOMER G. SHEFFIELD. JR. WILI.JAM K. ROGERS 
ATTORNEYS AND cOUNSELORS AT LAW 

DeNNIS W. LESKI 	 MICHAELS. LONDON 427 E. CARRILLO STREET 
P.O. BOX 22257 R. BRUCE MacKENZlE 
SANTA BARBARA, CALIFORNIA 93121-2257 

JAMES E. HERMAN 
FAX (805) 966-3715 

SCOTT 8. CAMPSELL 

TELEPHONE (805) 963-9721 

December l, .1989 

:! ;:'~- ··,· 
Mr. John Goni- ,· 1 '.· . ~:-<''H~.-7 r·•' 	 \ 
caiifornia Regional Water Quality Control Board 

Central Coast Region 

1102-A Laurel Lane : . . , , '··· .. 

San Luis Obispo, California 93401 


~·:· ·.~· ... :;· ...... r: ~--· r~l-·'~- ~·~.:-. ~· ;-} ..:r· _;j-~ 


Re: . Buena Vista Mine, , Buena Vista .Mines, 

San Luis Obispo County (Permit No. 


·I, ,) . 

.carson Drift, Buena Vista Mines, Inc. ,• · 

·· : San ·Luis Obispo County (Permit No. CA004936l) 


.~:a~,:~:e:::~:nt Donn~ ~arcourt, an owner of proper~~ '~;~~~:·i;![l~~1~i~~

~~-i~~ ~s 'Tab7~s CJ;eek runs. . .· · ·· . •~ .· _ r:?~tt:::~~1f~:':~'~:;,_;t~ 

. Ms. Harcourt and other property owners in the Las Tablas · .'•·c:·::~!-~:J;,:ji1 
creek area grow increasingly concerned about the Board's apparent .).;.1 :·,:·;·; 

lack of action agair,tst Buena Vista Mines, Inc. in connection with .\;·::.:;;::,}( 
.the creekbed pollut~on problem. Even though the Board qave Buena .. :,:;,l;1lif' 
Vista Mines, Inc. until October l, 1989 to complete the remedial ~:-~y~~~~·;;';;:: 

, 	 work required, a trip to the creek evidences the fact that little ;•:·:·'•.~/:'' 
progress has been made. · .. 1 . : •.:!; .·. .,, .-:·-;·:; 

.,'': 	 ' ·~. :~ "'li··. ·> j.:{.: ·. ! • ·.;'-'.;.__ ~ 

.·, .. OVer the past year or so I have written several letters to 
you-inquiring about the status of affairs in connection with the·, 
above referenced matter. .To date, I have received no reply. 

: :"' t ' :. ' ' • • • ' ' 	 i 

· ···I would greatly appreciate an update of the situation at 

hand. Please respond to this letter. 


cc: Ms. Donna Decker Harcourt 	

I 
I., 

RBM/de 

----~~-

;.;·.~ 

Inc. · .. 
CA0049352) 

·~"··'\·':·.;.;'[:."!i~.~.·.::c;t;''''' ~~, · 
'}l;::·,t<;:·:::\ ~;~:':: 
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GEORGE OEUKMEJIAN. Governor&fATE OF CALIFORNIA 

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 
CENTRAL COAST REGION 
1102 A LAUREL LANE 
SAN LUIS OBISPO. CALl FORNI A 93401 
1805) 549·3147 

January 30, 1990 

R. Bruce MacKenzie 

Rogers & Sheffield 

P.O. Box 22257 

Santa Barbara, CA 9)121-2257 


Dear Mr. MacKenzie: 

Subject: Buena Vista Mines, Inc. 

Thank you for your letter asking about the status of the Buena 
Vista Mines, Inc., facilities. This Board and its staff are very
concerned with these discharges. Enclosed is a letter to the mine 
owner, dated January 29 1 1990, describing the progress at the 
facilities up to January 16, 1989. 

While the owner has made many improvements, the facilities are 
not in compliance with the permit standards. This Board's staff 
anticipates presenting further enforcement action to the Board to 
force a completion of the work started. The mine owner has stated 
his intent to treat the water before it leaves the Buena Vista Mine 
property. We are presently working with the mine owner to establish 
a reasonable time schedule for full compliance with the standards. 
You will be advised of any proposed action by this Board. 

Please direct questions to John Goni or Jay Cano at this office. 

· Very truly yours 1 

It/~.~~
WILLIAM R. LEONARD 

Executive Officer 


JG:js 

JG/1/jsj3:harcrt1.ltr 

Attach: letter to (Harold Biagginni, Buena Vista Mines1
, (1/29/90) 
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STATE OF CALIFORNIA GEORGE OEUKMEJIAN, Go!lffrnor 

CAliFORNIA REGIONAL WATER QUALITY CONTROL BOARD
. CENTRAL COAST REGtON 

1102 A LAUREL LANE 
SAN LUIS OBISPO, CALl FORNI A 9:3401 
(805) 549-3147 

January 29, 1990 

Mr. Harold Biaggini 
Buena Vista Mines, Inc. 
1164 Market Street 
Morro Bay, CA 93442 

Dear Mr. Biaggini: 

SUBJECT: COMPLIANCE STATUS, CARSON DRIFT & BUENA VISTA MINE 

This Board's staff inspected the Carson Drift and Buena Vista Mine 
on November 1, 1989, and January 16, 1990. As you are aware, these 
discharges were required to be in full compliance with permit 
conditions by October 1, 1989. The observations made during the 
inspections, compliance status, and actions required by you are as 
described below: · 

Carson Drift 

The drift was found to be in compliance with 1;-he Regional 
Board NPDES Permit and Cease and Desist Order (Order Nos. 88
92 and 88-93, respectively), on November 1, 1989, as the drift 
has been plugged with concrete and the discharge eliminated. 
The plug is approximately seventy-five feet from the opening, 
but of a flow too small to measure or sample. It appeared 
this seepage was residual moisture draining from the sediment 
on the drift flow, and was of too little volume be of 
significance. No effects of the seepage were visible upon the 
adjacent south fork of Las Tablas Creek. 

The inspection on January 16, 1990, revealed the creek to be 
flowing from the recent rains. The creek was observed to be 
discolored, presumably by residual deposits from the old 
discharge, or the discharge had started once· again. · An 
inspection of the drift was not possible during this 
inspection. 

Although the discharge may have been stopped, Monitaring and 
Reporting Program No. 88-92 shall remain in effect. Therefore, you 
are still required to monitor and inspect the drift and the creek. 
Effluent monitoring for settleable solids, pH, and suspended solids 
will not be needed as long as there is no discharge from the drift. 
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Mr. Harold Biaggini -2- January 29, 1990 
Buena Vista Mines, Inc. 

. 
A statement to that effect may be submitted in Iieu of the above 
effluent monitoring. Toxicity Concentration shall continue to be 
monitored upstream and downstream of the discharge point. 

Receiving Water Monitoring shall also be continued. However, as 
you requested, analyses for beryllium, cadmium, molybdenum, and 
selenium are no longer necessary. The monitaring report also shall 
include a summary of observations of the plug and whether liquid 
is escaping from the drift. A revised Monitoring and Reporting 
Program No. 88-92, incorporating the above requirements, is 
enclosed. Once we are assured the plug in the drift is not leaking 
and effects of the drift on the creek no longer exist, the 
monitoring may be reduced to periodic inspections of the drift to 
confirm there is no discharge. You will be notified when 
monitoring is no longer needed. 

Buena Vista Mine 

The November 1, 1989, inspection revealed the mine was npt.in 
compliance with the Regional Board NPDES Permit or Cease a'ria 
Desist Order (Order Nos. 88-90 and 88-91, respectively), as 
the continued discharge was not meeting the permit standards. 
Some improvements were done and other improvements are in the 
process of being made to achieve compliance. The improvements 
included construction of a ground water cutoff trench at the 
upper end of the waste pile, regrading of the waste pile area, 
construction of diversion ditches to carry uncontaminated 
storm run-off around the waste pile, installation of a clay 
cap on the waste pile, and spreading of hay on the waste pile 
for erosion control purposes. 

The January 16, 1990, inspection revealed the clay cap was 
intact and the erosion control vegetation had sprouted on the 
regraded waste pile. However, Buena Vista Mine again was 
found not ~in compliance with permit standards, as the 
discharge was still occurring. The inspection also revealed 
water from the retort area had a reddish color. 

Since the discharge from Buena Vista Mine does not meet the permit 
conditions, you are considered to be in violation at this facility. 
We appreciate the effort you made to achieve compliance, but the 
Cease and Desist Order required full compliance by October 1, 1989. 
The reports submitted to date do not give a final compliance date. 
This Board has no choice, but to take further enforcement action 
to set a final compliance date. Therefore, you are directed to: 
implement the enclosed monitoring program (revised as above to 
eliminate monitoring of beryllium, cadmium, molybdenum, and 
selenium); submit a current summary of conditions and compliance 
status at the Buena Vista Mine and Carson Drift; and submit a 
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Mr. Harold Biaggini -3- January 29, 1990 
Buena Vista Mines, Inc. 

schedule for achieving full compliance. -The summary, compliance 
status and time schedule is due to this Board's staff by 
February 20, 1990., When we receive this schedule, we will 
recommend the Board adopt an enforcement order requiring compliance 
within a reasonable time. 

Please 	direct questions to John Goni or Jay Cano at this office. 

Very truly yours, 

W4h--R~ 
WILLIAM R. LEONARD 
Executive Officer 

JG/se 

c: 	 Steve Little, Earth Systems Environmental, Inc., 170-A
Granada Drive, San Luis Obispo, CA 93401 



California Regional Water Quality Control Board 

central coast Region

1102-A Laurel Lane 

San Luis Obispo, California 93401 


Re: Buena Vista Mine, Buena Vista Mines, 
San Luis Obispo County (Permit No. 

· · ·· · 	 Carson Drift, Buena ~ista Mines, Inc. 

San Luis Obispo County {Permit No. 


' : 	 ' ' ' n : • • ~ •

Dear Mr. Goni and Mr. Cano: ·· 

~

Inc. 
CA0049352), 

·· 
CA004936ll 
. ,• 

Leonard dated 
copy of his letter to Harold 

. :! ,: ' , 

I am in receipt of a letter from William R. 
./ ., January 30, 1990, together with a 


Biaggini dated January 29, 1990. • 


It appears that, while Mr. Biaggini has made some efforts, 
the work has not been completed and the efforts have not yet 

····:··produced compliance. .: '•· ··: , , ,. 

cc: Ms. Donna Decker Harcourt 

RBM/de 

(' 

\ 
ROGERS & SHEFFIELD 
ATTORNEYS AND COUNSELORS AT LAW 
427 E. CARRILLO STREET 
P.O. BOX 22257 
SANTA BARBARA, CALIFORNIA 93121·2257 

FAX (805) 966-3715 

TELEPHONE (805) 963-9721 

Mr. John Goni 

-.Mr. Jay Cano 


!; I am most interested, 
what the time table is now 
by the Board. ·:1 

;,.. 
; ; .-,' . -r-~ 

I' 

HOt.AER G. SHEFFIELD, JR. 

DENNIS W. LESKI 

R. BRUCE MacKENZIE 

JAMES E. HERMAN 

February s, 1990 

on behalf of my client, in learning
for compliance and any proposed action 

., 

;! :-i; 

., 

cord~k~ 

R~M~cKenzfe 


WILL.IAM K. ROGERS 

MICHAELS. LONDON 

B. KEITH MARTlN 

SAYRE MACNEIL 
,' 
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ROGERS & SHEFFIELD 
HOMER G. SHEFFIELD. JR. WILUAM K. ROGERS 

ATTORNEYS AND COUNSELORS AT LAWif: R. BRUCC MacKENZIE 	 e. KEITH MAA11N 
427 E. CARRILLO STREET 

j P.O. BOX 22257 JAMES E. HERMAN PHIUP I. MONCHARSH 
SANTA BARBARA. CALIFORNIA 93121·2257 

SCOTT e. CAMPBELL SAYRE MACNEIL 
FAX (805) 966-3715 

F!ETI'lfiD 
TELEPHONE (805) 963·9721 BERT 0. WETHERBY 

MICHAEL S. LONDON 

May 7, 1991 

California Regional Water Quality Control Board 

Central Coast Region 

1102 Laurel Lane, Suite A 

San Luis Obispo, California 93401 


Attention: Mr. John Goni and Mr. Jay cano 

Re: 	 Buena Vista Mines, Inc. 

Compl~ance Status Request 

Order Nos. 88-90 and 88-91 


Dear 	Mr. Goni and Mr. Cano: 

As you may recall, I represent Donna Harcourt, who, together 
with Security Pacific National Bank as Trustee of the Alma Decker 
Trust, is the owner or beneficial owner of Las Tablas Creek Ranch, 
a 1, ooo acre holding located 12 miles outside of Paso Robles, 
California. . ' i• 

Back in June of 1988, the California Regional Water Quality 
· Control Board initiated a monitoring program and issued the above 

numbered Cease and Desist.. Ord.l?.rs e.ga:i..nst B1..1E'na Vista Mines I Inc :~·,_a I 

ordering it to clean up the waste discharge seeping from its 
inactive mercury mine located approximately 12 miles west of Paso 
Robles at the intersection of Klau Mine Road and Cypress Mountain 
Drive, not far from and upstream of my client's ranch. The Board 
gave Mr. Biaggini, the owner of the mine, until October 1, 1989 to 
clean up the pollution. 

Subsequently, on November 1, 1989 and again on January 16, 
1990, the Board inspected the mine site and found that compliance
with the Regional Board NPDES Permit or Cease and Desist Orders had 
not been achieved, as discharge from the mine was still occurring. 
At that time, the Board indicated that it would pursue further 
enforcement action. 

' 


http:Ord.l?.rs
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.~ 
~ California Regional Water Quality Control Board 
~·I May 7, 1991 

Page 2 

on July 13, 1990, the Board held a hearing in the San Luis 

Obispo City Council Ch~mbers. Item 10 on the agenda was the Buena 

Vista. Mine issue. Evidently, the Board had again inspected the 

mine and found that the pollution had not been cleaned up in 

compliance with its Orders. At that meeting, Chairman James M. 

stubacher indicated that Mr. Biaggini had been g,iven .his last . 

~hanc.: to coiUplete tha .::1-:ar.up ar.d tta.t the next ::;tep • ..:c~ld :l:a to · 

either involve the Attorney General or impose Administrative C.ivil 

Liabilities. To my knowledge no such steps were ever taken. ,. · 


Although nearly two years have passed since the Board 1 s · 
original October 1, 1989 clean up deadline date, it appears to 
the untrained eye that the pollution in the creek still remains. 
Ms. Harcourt informs me that she recently visited the mine site and 
found that the level of contamination appears to be the same as it 
was when the original Cease and Desist Orders were issued back in .. 
1988. Of cour~e, the recent rains may have caused more of the 
pollution to surface, making the creek's contaminated condition 
even more evident. \ 

As I am sure you will agree, Mr. Biaggini has been given more 

than ample time and opportunity to clean up the mess caused by

Buena Vista Mines. It is now time for the Board to use a strong

hand in forcing the clean up. 


Please investigate this matter and then bring it to the 

Board's immediate attention. Although Ms. Harcourt and the other 


· property owners in the Las Tablas Creek area sincerely appreciate ·J:· 
the steps taken by the Board to date, they grow increasingly
concerned over Mr. Biaggini 's non-compliance with the Board 1 s 
Orders. Over ~three yeare have pas.sed. since the ~oard was first 
notified of the Buena Vista Mine pollution problem. Surely the 
Board must at some time take strong affirmative measures demanding
that Mr. Biaggini comply with the clean up Orders. That time is 
now. 

The Board's prompt attention to the concerns discussed herein 

will be greatly appreciated. 


cc: Ms. Donna Harcourt 
RBM/de 
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HAROLD J. BIAGGINI. President 
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Xr. ~illiam L~o~a~d. Executi~e Officar 
·-~ali.fo:::ni::: Eeuicnal :·jater Quality Corrt.:t.~ol Board 
C~n~r3l Cc~st R~qion 

31 Hi~uera ~t. ~200 
San Luis Obispo, CA 93401-5427 

5U3JECT: ECnRD L~TTE~ D~TED 3/25/92 

~ear ~- Leonard: 

:::-om -':he resl)onse we received :::.~gardir.r::: o~1r r3cues't. tc rescind 
the ;.;?DES permit No. 00•19361 for the Carson Drift. it seems as i£ 

(~cu ca~~iately ignorad the i~£or~aticn incl~ded in our letter of 
?ebruary 13, 1992. 

'· 

~s w~ exolained to you in that letter. there waz a very sim~l~ 
reascn ~hy the Carson Drift was discharging on Acril 19th. 1991. 
We !1.1.d ~1 break in a -;:;~, pe. I-!: ~-~as quickly t"f.!vaired and there ii.as 
1·,~-: b9en a problem ;;iace. i·ie have doc'.!.::1~ntaa ·that event in othar 
writings to the boarj. Why won't you acknowledge that fact? 

Accidents like the one mentioned above can hal)pen no matter what 
steps are taken to comply. This one small event is meaninglsss in 
the ovarall scheme of things. It is our responsibility to monitor 
the Carson Drift. not the R11QC9. :it is our responsibility tc 
request a NPDES permit, not the RWQCB. 

The renawal fee for the permit is a r!di~'.!lous Sl.23l.CO. This i3 
6l 27J?o increase f~om j~tnt 10 r.1or""tl:s <.lgo. ~!e C!l~nc ..: -:tffc::d ""t~J ~3.Y 

-:.h::. s fr::s and '..tnd.er tha c il-c"~mst.3.n.ce:z 1.-,re ·.:ill !"lo-:. 1>~Y it.. ! f "~/·:J\.t 
fee! that it is absolutely nacessar7 tc make us kaeo ~his perxit. 
~aybe you should consiasr waiving ~h3 f~es u~til renewal ti~e. 

We have s~ent t~n~ ~£ thousands of dollars to b~!ncr th~ Carson 
Drift into ccmoliance with the bQard's orders. Don't ycu ~h~n~ !~ 
i::: time that the ~~~:n.f:f ()£ th::; -r.;.;;qc3 ;~~1tnct..1lf.:dqe c\.tr ·?rr..,~r"':s ?..nc 
~o the ri~ht thing? 

t~ . -~_a-
Ed ?.i~ lr:r 

~uena Visca ~in~s. Inc. 

l 

http:Sl.23l.CO
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OFFICE OF THE 

COUNTY COUNSEL 
CHIEF DEPUTY 

COUNTY OF SAN LUIS OBISPO R. WYATT CASH 
COUNTY GOVERNMENT CENTER, ROOM 386 

SAN LUIS OBISPO, CA 93408 OEPI.JTlES 
BRUCE M. 0001( 

JOHN PAUL DALY 
FAX 549-4221 THOMAS f'. OONFICY 

(AREA CODE 805) JON M. JENKINSJAMES B. LINDHOLM, JR. 
JAMES B. ORTON 

COUNTY COUNSEL WAFIAEN R. JENSEN 
MARY A TOEPKEMay 28, 1992 

RAYMOND A BIEAING 
A. EOW1N OLI'IN 

PATRICIA A STEVENS 
BARBARA G. TOLEIKIS 

KATHY BOUCHARD 

Thomas J. Rice, PhD 
Soil Science Department 
California Polytechnic State University 
San Luis Obispo, CA 93407 

Re: 	 Clean Lakes Assistance Program for Lake Nacimiento 

Dear Dr. Rice: 

Your letter to James Lindholm, dated May 7, 1992, was referred to me for 
review and response. I have referred the matter to the County Engineer and have 
requested a response with regard to the types of documents which may be available 
in County Engineering pertaining to calcine retort slag or mine tailings from mercury 
mines in the Adelaida area between the period of 1957 through 1970. As soon as I 
have received a response from County Engineering, I will be in touch with you. 

If you have any questions or if I can otherwise be of assistance to you, please 
let me know. 

Very truly yours, 

JAMES B. LINDHOLM, JR. 
County Counsel 

~·~~g
Deputy County Counsel 

RAB:kt 

cc: 	 Clinton Milne, County Engineering 

Supervisor Laurence L. Laurent 

Supervisor Harry Ovitt 


1313.kt 

PENG 

920846 



ENGINEERINGSAn LUIS OBISPO COUnTY DEPARTMENT 
COUNTY GOVERNMENT CENTER • ROOM 207 • SAN lUIS OBISPO, CAliFORNIA 93408 

ROADS 
TRANSIT 

flOOD CONTROl 

WATER CONSERVATION 

COUNTY SURVEYOR 

SPECIAl DISTRICTS 

CLINTON MILNE PHONE (805) 549·5252 • FAX (805) 546.1229 
County Engineer 

GlEN l. PRIDDY 
DEPUTY COUNTY ENGINEER 
ENGINEERING SERVICES 

NOEl KING 
DEPUTY COUNTY ENGINEER 
AOMINISTfi!ATION 

june 8, 1992 

::r: 
Thomas Y Rice 

Cal Poly State University 

Soil Science Department 

San Luis Obispo, CA 93401 


Subject: 	 Cypress Mountain Drive and Klan Mine, Adelaida, Chimney Rock Roads, 
County Road No. 5265 

Dear Mr. Rice: 

The County Engineering Department does not have any records that would show use of 
mercury mine tailings for road base on the above mentioned roads. 

In my position of Road Maintenance Superintendent beginning in 1979, I can say the County 
has not used any mercury mine tailings for this purpose. My predecessor, Loren Ballaugh, may 
have some knowledge of this situation. He lives in Arroyo Grande at 1740 Newport (489
2893). 

Please excuse this late response. I was sure I had sent this to you the day after your telephone 
call on April 27 and thus no answer to your following letter. If I can be of further help, please 
feel free to call me. 

Sincerely, 

DAN BECK 
Road Maintenance Superintendent 

dpb\rice.ltr.cmc 



APPENDIX5 


Maps and Location Information for the Biological, Sediment, Soil, and 


Water Sample Sites in the Lake Nacimiento Watershed 




Locations of sample sites in Las Tablas watershed 

Sample site Latitude/1 ongitude Legal description 

Las Tablas Creek: Klau Branch & South Fork Sediment 
CM18S1 

CM20S1 

CM10S1 

CM21S1 

CM11 S1 

CM16S1 

CM17S1 

CM15S1 

CM7S1 

CM8S1 

CM2S1 

LM9S1 

LM9S2 

Las Tablas 
A2S1 

CM5S1 

CM4S1 

CM3S1 

LM1S1 

LM3S1 

LM4S1 

LM5S1 

Creek: 

35035'00"N/120054'35"W 

35036'37"N/120055'15"W 

35036'58"N/120053'02"W 

35036'12"N/120o53'43"W 

35037'06"N/120053'38"W 

35o35'48"N/120054'37"W 

35036'47"N/120o55'05"W 

35037'12"N/120054'18"W 

35037'12"N/120054'03"W 

35037' 15"N/120o54'08"W 

35037'17"N/120054'16"W 

35037'52"N/120054'23"W 

35o37'52"N/120054 '23"W 

North Fork Sediment 
35038'27"N/120052'37"W 

35o37'22"N/120053'15"W 

35o37'25"N/120053'42"W 

35037'27"N/120053'43"W 

35037'34"N/120053'44"W 

35o37'37"N/120053'47"W 

35037'38"N/120053'47"W 

35037'42"N/120053'55"W 

SW1/4,NE 1/4,SE 1/4, 

Sec. 17,T.27S.,R.10E. 

SW1/4,SE 1/4,SW1/4, 

Sec. 5,T.27S.,R.10E. 

NE 1/4,NW1/4,NW1/4, 

Sec. 3,T.27S.,R.10E. 

NE 1/4,SW1/4,SE 1/4, 

Sec. 33,T.26S.,R.10E. 

SW1/4,SE 1/4,SE 1/4, 

Sec. 33,T.26S.,R.10E. 

NE 1/4,SW 1/4,SE 114, 

Sec. 8, T.27 S. R 10 E. 

NE 1/4,SW 1/4,NW 1/4, 

Sec. 5, T.27 S. R 10 E. 

NE 1/4,SW 1/4,SW 1/4, 

Sec. 33, T.26 S. R 10 E. 

NE1/4,SE 1/4,SW1/4, 

Sec. 33,T.26S.,R.10E. 

NW1/4,SE 114,SW1/4, 

Sec. 33,T.26S.,R.10E. 

SE 1/4,NW1/4,SW1/4, 

Sec. 33,T.26S.,R.10E. 

NW 1/4,NW1/4,NW1/4, 

Sec. 33,T.26S.,R.10E. 

NW1/4,NW 1/4,NW1/4, 

Sec. 33,T.26S.,R.10E. 


SE 1/4,NE 1/4,NE 1/4, 
Sec. 27, T.26 S. R 10 E. 
SE 1/4,NW1/4,SE 1/4, 
Sec.33,T.26S.,R.10E. 
NE1/4,NW1/4,SE 1/4, 
Sec. 33,T.26S.,R.10E. 
NE1/4,NW1/4,SE1/4, 
Sec. 33,T.26S.,R.10E. 
SE1/4,SW1/4,NE 1/4, 
Sec. 33,T.26S.,R.10E. 
NE 1/4,SW1/4,NE 1/4, 
Sec. 33,T.26S.,R.10E. 
NE 1/4,SW1/4,NE1/4, 
Sec. 33,T.26S.,R.10E. 
NW1/4,SW1/4,NE1/4, 
Sec. 33,T.26S.,R.10E. 
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Sample site Latitude/longitude Legal description 

Las Tablas Creek: Upstream from Harcourt Dam 
LM14S1 35038'1 O"N/120055'09"W SW1/4,NE 1/4,SW1/4, 

Sec. 29,T.26S.,R.10E. 
LM8S1 35038'59"N/120055'21"W SE1/4,NW1/4,SW1/4, 

Sec. 20,T.26S.,R.10E. 
LM20S1 35039'35"N/120o55'42"W NW1/4,NE1/4,NE 1/4, 

Sec. 19,T.26S.,R.10E. 
LM6S1 35039'42"N/120055'47"W SW1/4,SW1/4,SE114, 

Sec. 18,T.26S.,R.10E. 
LM31S1 SW.1/4,NE 1/4,SW 1/4, 

Sec. 7, T.26 S. R 10 E. 
LM12S1 35041 '07"N/120056'16"W NW1/4,SE 1/4,N W1/4, 

Sec. 7,T.26S.,R.10E. 

Las Tablas Creek: Downstream from Harcourt Dam 
LM1 OS1 35041'12"N/120056'21 "W SE 1/4,NW 1/4,NW1/4, 

Sec.1,T.26S.,R.9E. 
LM30S1 35041'14"N/120056'28"W SE 1/4,NW 1/4,NW 114, 

Sec. 7, T.26 S. R 10 E. 
LM11 S1 35041'21 "N/120056'50"W NW1/4,NE1/4,NE 1/4, 

Sec. 12,T.26S.,R.9E. 
LM19S1 35041'40"N/120056'43"W SE1/4,NE1/4,SE 1/4, 

Sec. 1,T.26S.,R.9E. 
LM17S1 35o41'55"N/120o56'59"W SE 1/4,SW1/4,NE 114, 

Sec. 1,T.26S.,R.9E. 
LM13S1 35040'52"N/120056'55"W NW1/4,NE 1/4,SE 1/4, 

Sec. 12,T.26S.,R.9E. 

Soils in the Las Tablas Creek Watershed 
CM14S1 35037'30"N/120053'20"W NW 1/4,NW 1/4,SW 114, 

Sec. 34, T.26 S. R 10 E. 
CM6S1 35037'21 "N/120053'21"W SE 1/4,NW114,SE1/4, 

Sec. 33,T.26S.,R.10E. 
LM2S1 35037'33"N/120053'46"W SE1/4,SW1/4,NE1/4, 

Sec. 33,T.26S.,R.10E. 
LM7S1 35037'35"N/120053'37"W NW1/4,SE1/4,NE 114, 

Sec. 33,T.26S.,R.10E. 
LM33S1 35037'58"N/120054'28"W SW 114,SW 114,SW 1/4, 

Sec. 28, T.26 S. R 10 E. 
CM9S1 35037'12"N/120054'07"W NW1/4,SE 1/4,SW1/4, 

·Sec. 33,T.26S.,R.10E. 
LM15S1 35038'09"N/120055'14"W SW1/4,NE 1/4,SW1/4, 

Sec. 29,T.26S.,R.10E. 
LM16S1 35038'1 O"N/120055'11 "W SW1/4,NE114,SW1/4, 

Sec. 29,T.26S.,R.10E. 
LM23S1 35039'29"N/120055'06"W SE1/4,NE 1/4,NW1/4, 

Sec. 20,T.26S.,R.10E. 
LM22S1 35039'24"N/120056'06"W NE114,SE1/4,NW1/4, 

Sec. 19,T.26S.,R.10E. 

http:12,T.26S.,R.9E
http:1,T.26S.,R.9E
http:1,T.26S.,R.9E
http:12,T.26S.,R.9E
http:Sec.1,T.26S.,R.9E
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Sample site Latitude/longitude Legal description 

Soils in the Las Tablas Creek Watershed (continued) 
LM24S1 35040'19"N/120055'53"W SE 1/4,NW1/4,NE 1/4 I 

Sec. 18,T.26S.,R.10E. 
LM32S1 35o40'52"N/120o56'06"W NW 1/4,NW 1/4,SE 1/4, 

Sec. 7, T.26 S. R 10 E. 

Las Tablas Creek Watershgd: Soil Profiles 
LM40S1 35037'37"N/120053'43"W NE 1/4,SW1/4,NE 1/4, 

Sec.33,T.26S.,R.10E. 
LM40S2 35037'37"N/120o53'43"W NE 1/4,SW1/4,NE1/4, 

Sec.33,T.26S.,R.10E. 
LM40S3 35037'37"N/120053'43"W NE1/4,SW1/4,NE1/4, 

Sec.33,T.26S., R.1 OE. 
LM41 S1 35037'42"N/120053'34"W SW1/4,NE1/4,NE 1/4, 

Sec.33,T.26S.,R.1 OE. 
LM41S2 35037'42"N/120053'34"W SW1/4,NE1/4,NE1/4, 

Sec.33,T.26S.,R.1 OE. 
LM41S3 35037'42"N/120053'34"W SW1/4,NE1/4,NE 1/4, 

Sec.33,T.26S.,R.1 OE. 
LM41S4 35037'42"N/120053'34"W SW1/4,NE 1/4,NE 1/4, 

Sec.33,T.26S.,R.10E. 
LM42S1 35037'59"N/120o53'29"W SE1/4,SE1/4,SE1/4, 

Sec.28,T.26S.,R.10E. 
LM42S2 35037'59"N/120053'29"W SE1/4,SE1/4,SE114, 

Sec.28,T.26S.,R.1 OE. 
LM42S3 35037'59"N/120053'29"W SE1/4,SE1/4,SE114, 

Sec.28,T.26S.,R.1 OE. 
LM43S1 35037'56"N/120o54'27"W SW 1/4,SW 1/4,SW 1/4, 

Sec.28,T.26S.,R.10E. 

LM44S1 35037'58"N/120054'30"W SE 1/4,SE1/4 ,SE 1/4 I 


Sec.29,T.26S.,R.10E. 

LM45S1 35038'11 "N/120055'13"W SW1/4,N E1/4,SW 1/4, 

Sec.29,T.26S.,R.10E. 
LM45S2 35038'11"N/120055'13"W SW1/4,NE1/4,SW 1/4, 

Sec.29,T.26S.,R.10E. 
LM45S3 35o38'11"N/120055'13"W SW114,NE1/4,SW114, 

Sec.29,T.26S.,R.10E. 
LM46S1 35038'13"N/120055'16"W SW1/4,NE 114,SW1/4, 

Sec.29,T.26S.,R.10E. 



4 

Sample site Latitude/longitude 

Las Tablas Creek watershed: Road Samples 
RD1S1 35037'53"N/120054'2"W 

RD2S1 35038'0 1"N/120054'28"W 

RD3S1 35038'17"N/120055'12"W 

RD4S1 35038'32"N/120055'09"W 

RD5S1 35038'44"N/120055'1 O"W 

RD6S1 35039'14"N/120055'14"W 

RD7S1 35039'20"N/120055'02"W 

RD8S1 35035'04"N/120054'36"W 

Locations of sample sites in Lake 

Sample site Latitude/longitude 

Naci. River sites: upstream from lake from 
CP1S1 36000'47"N/121 025'11"W 

CP2S1 36000'47"N/121 025'14"W 

CP3S1 36000'42"N/121 025'08"W 

AP4S1 35o55'40"N/121 016'38"W 

J1S1 35053'20"N/121 013'56"W 

BP4S1 35052'24"N/121 013'00"W 

BP5S1 35°50'52"N/121 011'43"W 

BP7S1 35049'48"N/121 008'49"W 

82S1 35047'55"N/121 006'28"W 

B7S1 35047'13"N/121 005'28"W 

B8S1 35045'53"N/121 004'50"W 

Legal description 

NE 1/4,NW1/4,NW 1/4, 
Sec.33,T.26S.,R.10E. 
SW1/4,SW1/4,SW1/4, 
Sec.28,T.26S.,R.10E. 
SW1/4,NE1/4,SW1/4, 
Sec.29,T.26S.,R.10E. 
NW1/4,SE 1/4,NW1/4, 
Sec.29,T.26S.,R.10E. 
SW1/4,NE 1/4,NW1/4, 
Sec.29,T.26S.,R.1 OE. 
NE 1/4,NW1/4,SW1/4, 
Sec.20,T.26S.,R.10E. 
SE1/4,SE1/4,NW1/4, 
Sec.20,T.26S.,R.10E. 
SW1/4,NE 1/4,SE 1/4, 
Sec.17,T.27S.,R.10E. 

Nacimiento Watershed 

Legal description 

north to south 
Los Padres Nat. For. 
Fort H-L # 42.3, 86.4 
LOS PADRES NAT. FOR. 
F.H.L. 42.3,86.6 

LOS PADRES NAT. FOR. 

F.H.L. 42.4,86.4 

San Miguelito Grant 
Fort H-L # 55.4,77.2 
San Miguelito Grant 
Fort H-L # 59.5,72.8 
El Piojo Grant 
Fort H-L # 61.0,71.2 
NE 1/4,SW 1/4,NE 114, 
Sec. 15, T.24 S. R 7 E. 
NW 1/4,NE 1/4,SW 1/4, 

Sec. 19, T.24 S. R 8 E. 

NE 1/4,NW 1/4,SE 1/4, 

Sec. 33, T.24 S. R 8 E. 

SE 1/4,SW 1/4,NE 1/4, 

Sec. 3, T.25 S. R 8 E. 

SE 1/4,NE 1/4,SW 1/4, 

Sec. 11, T.25 S. R 8 E. 

Tributaries to Naci. River from north to south 
AP2S1 35058'40"N/121 o21'03W San Miguelito Grant 

Fort H-L #48.5,83.5 
AP3S1 35056'53"N/121 018'16"W San Miguelito Grant 

Fort H-L # 52.7,79.5 
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Sample site Latitude/longitude 

Tributaries to Naci. River from north to south 
AP1 S1 35o57'28"N/121 o57'38"W 

AP5S1 35°55'56"N/121 o16'37"W 

AP6S1 35053'27"N/121 o15'39"W 

J2S1 35053'34"N/121 013'17"W 

8P1S1 35o51'11"N/121008'17"W 

8P2S1 35051 '11 "N/121 008'28"W 

8P3S1 35051 '08"N/121 008'36"W 

8P6S1 35050'06"N/121 009' 1 O"W 

81S1 35047'37"N/121 005'27"W 

83S1 35047'5 7"N/121 006'15"W 

84S1 35045'58"N/121 002'26"W 

85S1 35045'40"N/121 000'42"W 

86S1 35046'20"N/121 000'08"W 

PS1S1 35044'37"N/121 005'48"W 

PS3S1 35042'1 O"N/121 004'09"W 

PS4S1 35042'08"N/121 004'05"W 

PS5S1 35043'34"N/121 004'08"W 

PS2S1 35044'33"N/121 005'48"W 

PS6S1 35043'30"N/121 003'07"W 

Tributaries to Naci. Lake from north to south 
LM34S1 35041 '52"N/120058'52"W 

TRM1S1 35o45'05"N/120059'07"W 

A1S1 35043'08"N/120052'22"W 

A2S1 35038'27"N/120052'37"W 

Legal description 

(continued) 
San Miguelito Grant 

Fort H-L # 55.3,80.4 

San Miguelito Grant 

Fort H-L # 55.4,77.6 
San Miguelito Grant 

Fort H-L # 57.2,73.5 

El Piojo Grant 

Fort H-L # 59.5,73.3 
SW 114,SE 114,SE 114, 

Sec. 7, T.24 S. R 8 E. 

SE 114,SW 1/4,SE 114, 

Sec. 7, T.24 S. R 8 E. 

SW 1/4,SW114,SE 114, 

Sec. 7, T.24 S. R 8 E. 

NW 114,NW 1/4,NW 1/4, 

Sec. 19, T.24 S. R 8 E. 

SE 1/4,SE 1/4,SW 114, 

Sec. 34, T.24 S. R 8 E. 

NE 114,SW 114,SE 114, 

Sec. 33, T.24 S. R 8 E. 

NE 1/4,NW 114,SE 114, 

Sec. 7, T.25 S. R 9 E. 

NE 1/4,NW 1/4,NW 1/4, 

Sec. 16, T.25 S. R 9 E. 

NW 1/4,SE 1/4,NE 114, 

Sec. 9, T.25S. R 9 E. 

SE 1/4,NE 1/4,NW 1/4, 

Sec.22, T.25 S. R 8 E. 

NW 1/4,NW 1/4,NW 1/4, 

Sec. 1, T.26 S. R 8 E. 

SE 114,NW 1/4,NW 1/4, 

Sec. 1, T.26 S. R 8 E. 

NW 1/4,NW 1/4,NW 1/4, 

Sec. 1, T.26 S. R 8 E. 

NE 1/4,SE 114,NW 1/4, 

Sec. 22, T.25 S. R 8 E. 

NW 114,NW 1/4,SE 1/4, 

Sec. 25, T.25 S. R 8 E. 


NE 114,NE 1/4,SE 1/4, 

Sec. 3, T.26 S. R 9 E. 

NE 1/4,SW 1/4,SE 1/4, 

Sec. 15, T.25 S. R 9 E. 

NE 1/4,NE 1/4,NE 1/4, 

Sec. 34, T.25 S. R 10 E. 

SE 1/4,NE 1/4,NE 1/4, 

Sec. 27, T.26 S. R 10 E. 
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Locations of sample sites in Lake Nacimiento 

Sample site latitude/longitude 

lake Nacimiento Sediment and Water Samples 
LK1 81 35044'26"N/121 OQ2'37"W 

LK1W1 35044'29"N/121 OQ2'34"W 

LK1W2 35044'29"N/121 OQ2'34"W 

LK2S1 35044'37"N/120059'55"W 

LK2W1 35044'37"N/120059'55"W 

LK2W2 35044'37"N/120o59'55"W 

LK3S1 35042'48"N/120056'5 7"W 

LK3W1 35042'48"N/120056'57"W 

LK3W2 

LK4S1 35043'51"N/120o57'33"W 

LK4W1 35043'51"N/120057'33"W 

LK4W2 35043'51"N/120057'33"W 

LK5S1 35044'36"N/120o57'27"W 

LK5W1 35044'36"N/120057'27"W 

LK5W2 35044'36"N/120057'27"W 

LK6S1 35043'45"N/120o55'45"W 

LK6W1 35043'45"N/120055'45"W 

LK6W2 35043'45"N/120055'45"W 

LK7S1 35o44'51"N/120o55'48"W 

LK7W1 35044'51"N/120055'48"W 

LK7W2 35044'51 "N/120055'48"W 

LK8S1 35o43'54"N/120o52'56"W 

legal description 

N E 1/4, N E 1/4, SW 1/4 
Sec.19,T.25S.,R.9E. 
NE 1/4,NE 114,SW1/4 
Sec.19,T.25S.,R.9E. 
NE 1/4,NE1/4,SW1/4 
Sec.19,T.25S.,R.9E. 
NE 1/4,SE1/4,NE1/4, 
Sec.21,T.25S.,R.9E. 
NE 1/4,SE1/4,NE 1/4, 
Sec.21,T.25S.,R.9E. 
NE 1/4,SE 1/4,NE 1/4, 
Sec.21,T.25S.,R.9E. 

SW1/4,SE1/4, NE1/4 
Sec.36,T.25S.,R.9E. 

SW1/4,SE1/4, NE114 
Sec.36,T.25S.,R.9E. 

SW114,SE1/4, NE1/4 
Sec.36,T.25S.,R.9E. 

SE 1/4,NW1/4,NW1/4, 

Sec.25,T.25S.,R.9E. 

SE 1/4,NW1/4,NW1/4, 

Sec.25,T.25S.,R.9E. 

SE 1/4,NW1/4,NW1/4, 

Sec.25,T.25S.,R.9E. 

NW1/4,SE 1/4,NW1/4, 

Sec.24,T.25S.,R.9E. 

NW 1/4,SE 1/4,NW1/4, 

Sec.24,T.25S.,R.9E. 

NW1/4,SE 1/4,NW1/4, 

Sec.24,T.25S.,R.9E. 

NW1/4,SE 1/4,NE1/4, 

Sec.30,T.25S.,R.10E. 

NW1/4,SE 1/4,NE1/4, 

Sec.30,T.25S.,R.10E. 

NW1/4,SE 1/4,NE 1/4, 

Sec.30,T.25S.,R.10E. 

NE 1/4,NW1/4,NE1/4, 

Sec.19T.25S.,R.10E. 

NE 1/4,NW1/4,NE 1/4, 

Sec.19,T.25S.,R.10E. 

NE 1/4,NW1/4,NE 1/4, 

Sec.19,T.25S.,R.10E. 

SE 1/4,NE1/4,NE1/4, 

Sec.29,T.25S.,R.10E. 


http:Sec.24,T.25S.,R.9E
http:Sec.24,T.25S.,R.9E
http:Sec.24,T.25S.,R.9E
http:Sec.25,T.25S.,R.9E
http:Sec.25,T.25S.,R.9E
http:Sec.25,T.25S.,R.9E
http:Sec.36,T.25S.,R.9E
http:Sec.36,T.25S.,R.9E
http:Sec.36,T.25S.,R.9E
http:Sec.21,T.25S.,R.9E
http:Sec.21,T.25S.,R.9E
http:Sec.21,T.25S.,R.9E
http:Sec.19,T.25S.,R.9E
http:Sec.19,T.25S.,R.9E
http:Sec.19,T.25S.,R.9E
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Sample site Latitude/longitude Legal description 

Lake Nacimiento Sediment and Water Samples (continued) 
LK8W 1 35043'54"N/12Q052'56"W SE 1/4,NE 1/4,NE 1/4, 

Sec.29,T.25S.,R.10E. 
LK8W2 35043'54"N/12Q052'56"W SE 1/4,NE 1/4,NE 1/4, 

Sec.29,T.25S.,R.10E. 
LK9W1 35044'34"N/12Q054'07"W SW1/4,SE1/4,NW1/4, 

Sec.21 ,T.25S.,R.10E. 
LK9W2 35o44'34"N/120o54'07"W SW1/4,SE 1/4,NW1/4, 

Sec.21 ,T.25S.,R.10E. 
LK10W1 35o45'28"N/120o53'42"W NE 1/4,SW1/4,NW1/4, 

Sec.15,T.25S.,R.11 E. 
LK10W2 35045'28"N/12Q053'42"W NE 1/4,SW 1/4,N W1/4, 

Sec.15,T.25S.,R.11 E. 
LK11 W1 35043'47"N/12Q055'42"W NW1/4,SE 1/4,NE1/4, 

Sec.30,T.25S.,R.1 OE. 
LK12W1 35o44'17"N/120o54'27"W SE1/4,NE114,SE114, 

Sec.20,T.25S.,R.10E. 
LK13W1 35o45'24"N/120o54'22"W NW1/4,SW114,NW1/4, 

Sec.16,T.25S.,R.11 E. 

Locations of water sample sites in Las Tablas watershed 

Sample site Latitude/longitude Legal description 

Las Tablas Creek: Klau Branch & South Fork Sediment 
CM10W1 35036'58"N/12Q053'02"W NE 1/4,NW1/4,NW114, 

Sec. 3,T.27S.,R.10E. 
C11W1 35037'06"N/12Q053'38"W SW1/4,SE1/4,SE1/4, 

Sec. 33,T.26S.,R.10E. 
CM12W1 35o37'23"N/12Q053'58"W NE 1/4,NE 1/4,SW1/4, 

Sec. 33,T.26S.,R.10E. 
CM7W1 35o37'12"N/12Q054'03"W NE 1/4,SE114,SW1/4, 

Sec. 33,T.26S.,R.10E. 
CM8W1 35037'15"N/12Q054'08"W NW1/4,SE1/4,SW1/4, 

Sec. 33,T.26S.,R.10E. 
CM2W1 35o37'17"N/12Q054'16"W SE1/4,NW1/4,SW1/4, 

Sec. 33,T.26S.,R.10E. 
LM9W1 35o37'52"N/12Q054'23"W NW114,NW1/4,NW1/4, 

Sec. 33,T.26S.,R.10E. 
Las Tablas Creek North Fork 
CM13W1 35o37'28"N/12Q053'23"W. NW1/4,NW1/4,SW1/4, 

Sec. 34,T.26S.,R.10E. 
LM4W1 35o37'38"N/12Q053'47"W NE1/4,SW1/4,NE 1/4, 

Sec. 33,T.26S.,R.10E. 
CM1W1 35o37'26"N/12Q053'45"W NE114,NW1/4,SE114, 

Sec. 33,T.26S.,R.10E. 
LM29W1 35037'32"N/12Q053'44"W SE1/4,SW1/4,NE1/4, 

Sec. 33,T.26S.,R.10E. 
LM29W2 35o37'32"N/12Q053'44"W SE114,SW1/4,NE 1/4, 

Sec. 33,T.26S.,R.10E. 

http:Sec.16,T.25S.,R.11
http:Sec.15,T.25S.,R.11
http:Sec.15,T.25S.,R.11
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Sample site Latitude/longitude Legal description 

Las Tablas Creek: Klau Branch & South Fork Sediment (continued) 
LM1 W1 35037'34"N/120o53'44"W SE 1/4,SW1/4,NE 1/4, 

Sec. 33,T.26S.,R.10E. 
LM3S1 NE 1/4, SW1/4,NE 1/4, 

Sec. 33,T.26S.,R.10E. 
LM5W1 35037'42"N/120053'55"W NW 1/4,SW1/4,NE 1/4, 

Sec. 33,T.26S.,R.10E. 
Las Tablas Creek: Upstream from Harcourt Dam 
LM28W1 35o38'27"N/120055'28"W 

LM8S1 35038'59"N/120o55'21 "W 

LM21 W1 35039'12"N/12Q055'23"W 

LM23W1 35o39'29"N/120o55'06"W 

LM20S1 35039'35"N/12Q055'42"W 

LM6S1 35039'42"N/120055'47"W 

LM25W1 3504Q'33"N/120056'0 1"W 

LM12S1 35°41'07"N/12Q056'16"W 

Las Tablas Creek: Downstream from Harcourt 
LM10S1 35041 '12"N/120056'21 "W 

LM26W1 35041'15"N/12Q056'27"W 

LM27W1 35o41'17"N/120o56'37"W 

LM11 Sl 35041 '21"N/12Q056'50"W 

LM18W1 35o41'40"N/120o56'55"W 

LM19S1 35o41'40"N/12Q056'43"W 

LM13S1 3504Q'52"N/12Q056'55"W 

NW1/4,SW1/4, NW1/4, 
Sec. 29,T.26S.,R.10E. 
SE 1/4,NW1/4,SW1/4, 
Sec. 20,T.26S.,R.10E. 
NE 1/4,NW1/4,SW1/4, 
Sec. 20,T.26S.,R.10E. 
SE 1/4,NE114,NW114, 
Sec. 20,T.26S.,R.10E. 
NW1/4,NE 1/4,NE1/4, 
Sec. 19,T.26S.,R.10E. 
SW1/4,SW1/4,SE 1/4, 
Sec. 18,T.26S.,R.10E. 
SW1/4,SW1/4,SE 1/4, 
Sec. 7,T.26S.,R.10E. 
NW1/4,SE 1/4,NW1/4, 
Sec. 7,T.26S.,R.10E. 

Dam 
SE 1/4,NW1/4,N Wl/4, 
Sec.l ,T.26S.,R.9E. 
NW114,NW1/4,NW1/4, 
Sec. 7,T.26S.,R.10E. 
NW1/4,NW1/4,NW1/4, 
Sec. 7,T.26S.,R.10E. 
NW 1/4,NE 1/4,NE114, 
Sec. 12,T.26S.,R.9E. 
SW1/4,NE 114,SE1/4, 
Sec. 1 ,T.26S.,R.9E. 
SE1/4,NE1/4,SE 1/4, 
Sec. 1,T.26S.,R.9E. 
NW1/4,NE1/4,SE114, 
Sec. 12,T.26S.,R.9E. 

http:12,T.26S.,R.9E
http:1,T.26S.,R.9E
http:T.26S.,R.9E
http:12,T.26S.,R.9E
http:T.26S.,R.9E


NOTE: The general locations for the biological samples are indicated as 


circles on Figures 2, 11, 15, 20, 21, 22, and 24. The specific sediment, soil 


and water sample sites are indicated by sample numbers and arrows. 
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APPENDIX6 


Discussion of Pollution Abatement and Remediation Measure Options for 


Buena Vista Mine; Adelaida Region, San Luis Obispo County, California 




DISCUSSION OF POLLUTION ABATEMENT AND 

REMEDIATION MEASURE OPTIONS FOR BUENA VISTA 

MINE 

by David H. Chipping, Ph.D., based on a December, 1992 

inspection visit. 

A6-1.0 Description of Dumps and Mine Structures 

The Buena Vista Mine consists of a number of distinct parts as of 

January 1, 1993. At the highest elevations is the open pit mine used in the 

final phase of operation. The pit is in the form of a deeply incised, but 

narrow, valley cut into the hills lope near the hill summit. Much of the 

overburden from that operation is stored in piles flanking the pit opening to 

the natural side of the hill. Large storage piles are located on the south flank 

of the pit, on the west side of the pit in the old sawmill area, and north of the 

pit above the corrugated metal assay sheds. Overburden was dumped over 

the original hillside in the area above the old mine tunnel entrance, where the 

overburden veneer may be locally as much as 30 feet (ft.) thick. 

The underground mine and ore processing facilities are below the 

open pit and associated overburden piles. The mine itself has a blocked 

tunnel. A rail spur runs from the mine to a wooden viaduct tipple from 

which ore could be dumped to a crusher, and from which waste rock could be 

dumped into a holding area. The waste rock was then removed by truck, and 

may have been routed to a mine dump to the south (the "head of valley dump" 

discussed below), just northeast of the high point on Cypress Mountain Road 

on the divide to the Klau Branch of Las Tablas Creek. Some of the waste 

appears to have been utilized in the construction of the dam on the Klau 

Branch of Las Tab las Creek, or was placed in stockpiles between the dam and 
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the topographic divide with the Buena Vista operations. The ore was crushed 

at the tipple, and conveyed to a stockpile in the large shed that is presently 

used for heavy equipment storage. From the shed stockpile, ore was carried 

to the head of the smelter and condenser unit. It is presumed that the smelter 

waste was collected from the bottom of the unit, and carried to the main 

waste dump that is north of the buildings and adjacent to Cypress Mountain 

Road. A large shed, immediately above the smelter, was possibly used as a 

stockpile area, but it is presently empty. 

It is likely that the routing of mine spoils and processing wastes was 

substantially altered after 1959, when strip mine operations began (Waller, 

1979). Ore was removed from the top of the hill, and possibly from a 

smaller strip operation just south of the smelter. The viaduct tipple was 

linked by rail to the mine adit, so that waste materials were probably not 

dumped at the tipple after the upper strip mine became the principle source 

of ore. However, the crusher on the tipple was linked to the haul road by a 

bridge, and crushing of ore from the pit would have continued along the 

processing flow path as before. Thus all of the smelted ore waste from both 

underground and open pit operations would have ended up at the base of the 

hill, and in the main waste dump. 

The waste dumps on the floor of the original valley consist of a very 

large dump south of the intersection of Cypress Mountain Road and Klau 

Mine Road. This will hereafter be called the "main dump". The surface of 

this dump has been extensively reworked and graded in the last decade, 

mainly in an attempt to stabilize the dump and to contain leachate and runoff. 

Waste ore from the smelter is presumed to have been taken to this dump. 

Waller (1979) states, from an interview with the mine owner, that the dump 

received mine overburden at this stage, although it is unlikely that substantial 
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volumes of overburden from the upper pit would have been carried so far, 

except as a stabilizing cover over the dusty smelter waste. Overburden from 

the pit south of the smelter could have gone to this dump. 

The large dump at the head of the valley, (the "head of valley dump"), 

located south of the smelter contains a large amount of gray clayey sediment 

and, on the surface, minor amounts of the sandstone of the Vaqueros 

Formation from the pit at the top of the hill. Since much of the wall in the 

open pit mine is a decomposed clayey material typical of the hydrothermal 

zones containing mercury (Hg), it is likely that substantial portions of this 

pile could have come from the overburden from the upper pit. However, the 

gray clays are also found under the viaduct tipple, so that some mine waste 

could have been carried up from the old mine to this dump. 

The dump is also closely associated with a debris dam and associated 

slimes pond, built to contain materials washing from the steep face of the 

dump pile. The pond is presently filled to brimming with slimes, and some 

are starting to flow over to the drainage that passes below the smelter. There 

was no discussion of this dump by Waller (1979). The dam does not have the 

appearance or odor of smelter-derived waste, nor was acid leachate detected. 

The last element of the mine is a dam that was apparently constructed 

of mine waste on adjoining property to the south managed by the Bureau of 

Land Management. Samples from the dam have a relatively high total Hg 

content (30.00 mg·kg-1) is present in the fine off-white dusts that cover the 

surface (Table 4-2). The dusts may be derived from kaolinized clays from 

the ore body, removed as overburden, or they could be partly derived from 

fly ash and smelter wastes brought uphill from the smelter. There is a 

significant amount of Vaqueros Formation debris in the dam, and no 

indication of a nearby borrow pit was seen except for the open pit on the 
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mine itself, to which the dam is directly connected by road. There is a 

possibility that a limited borrow pit could have been excavated upstream of 

the dam, and that the pit is concealed beneath the waters of the reservoir. 

Thus it is reasonable to presume that the dam is constructed largely of 

overburden from the mine operations, and probably includes some highly 

mineralized gangue overburden from the ore zone. The latter may possibly 

have appealed to the dam builders as it is fine grained and may have seemed 

to be an appropriate seal for the dam. The site was visited in late December, 

1992, when the surface of the dam was water saturated. The dam surface was 

covered by slimy muds, and these were being washed from both sides of the 

structure into the reservoir and downstream into the Klau Branch of Las 

Tablas Creek. Although this is a very subjective indicator of smelter waste, 

the rocks on the dam had an sulfurous odor typical of wetted smelter waste. 

Just north of the dam is a long stockpile or dump of materials similar 

to those found in the dam. The top of the long, curved pile is composed of the 

same gray, clayey sediments found in the dam, in the open pit mine, and 

below the viaduct tipple. These are deposited above a pile of obvious 

overburden from the open pit mine, containing both blocks of Vaqueros 

Formation and some of the iron oxide gossan associated with mineralization 

in the basal Vaqueros Formation. The stockpile likely has elevated Hg levels, 

similar to those in the face of the dam, and should be analyzed. The gray 

clays, like those of the dam, had the sulfurous smell of smelter waste. 

A6-2.0 Computations On Mine Waste Production 

Waller (1979) obtained production information for Buena Vista Mine. 

Additional information on early production is also available (Eckel et al., 

1941). The mine was in operation between 1874 and 1970, when production 
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shut down. The cumulative production was 4,178 flasks of Hg by 1948, 

produced from ore that averaged 10 lbs. Hg per ton of ore. Waller (1979) 

calculated that 31,750 tons of ore would have been processed through the 

smelter, and that this was placed in the main dump. Waller (1979) gives no 

indication of the amount of mine waste of lower Hg content that was not 

smelted, but which was transported to the dump directly from the tipple. A 

conservative estimate would be a doubling of the processed ore volume, so 

that perhaps 100,000 tons of rock could come out of the mine and reached the 

dump. 

Waller (1979) quotes Mr. Harold Biaginni, the mine owner, as 

indicating that the average grade of Hg ore increased to 25 lbs. Hg/ton from 

the operations between 1959 and 1970. This was when strip mine operations 

began, and presumably ore would be taken mainly from the hill summit. 

Waste ore from the smelter was calculated by Waller (1979) at 142,350 tons, 

with no calculation of overburden volumes or locations. Waller (1979) states 

"the overburden and the waste ore during this period formed the main 

tailings pile", although it is clear that very substantial amounts of overburden 

remain at the top of the hill or were dumped down the natural slope of the 

hill. 

Thus at least 174,100 tons of smelter waste and waste ore is in the main 

dump, according to information provided by Biaginni to Waller (1979). 

This would be a volume of approximately 46,500 cubic yards (yd3). 

A6-3.0 Waste Volumes Survey (as of December. 1992) 

A cursory survey of mine waste was made as part of this Clean Lakes 

Assistance Program for Lake Nacimiento in December, 1992. The broad 

dimensions of each feature, and its calculated volume are given. The 
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volumes were calculated from rough-measured cross sections obtained by 

tape and level. These figures are very approximate, as no accurate survey 

was made, and the shape of the bottoms of the waste piles could only be 

approximated. We would recommend an accurate resurvey of the mine if 

volume calculations are needed for contractual treatment or earth moving 

contracts. A description of each portion of Buena Vista Mine follows. 

A6-3.1 Main Dump 

The main dump north of the processing buildings has been the site of 

most recent attempts to control leachate and runoff. It is essentially a 

rectangular structure with rounded ends, varying in depth from a few feet at 

the southern end to about 60 ft. near the northern end. In the section of 

greatest width and cross section volume, where the northernmost piezometer 

has been installed, the vertical drop from the crest of the dump to the eastern 

flank is about 15ft., but the western flank (at the drainage ditch along 

Cypress Mountain Road) it is about 30 ft.. It is presumed that the natural 

drainage channel ran approximately under the current long axis of the dump, 

and this is where the greatest thickness of dump material is thought to exist. 

The length of the dump is about 400 ft. Divided into eight 50-foot segments, 

nine cross sections were calculated to have areas of 120, 1,000, 2,500, 4,000, 

5130, 5130, 5,000, 3,000 and 0 square feet. From these measurements, the 

volume of the dump material was calculated to be about 47,800 yd3. 

Waller (1979) noted that 46,500 yd3 of processed ore must have 

entered the dump. This is a little too close to our measured volume of 47,800 

yd3, as it leaves little room to accommodate unprocessed mine waste and 

overburden. Some of the "missing" volume may be found as fill in the now 

covered drainage pond and evaporation ponds mapped by Waller (Fig. 5.1, 
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1979), or as a thin veneer of waste that occurs between the southern end of 

the dump and the ore storage barn, where the heavy earth moving equipment 

is currently stored. Some waste has been spread thinly in the area southwest 

of the small pond adjoining Klau Mine Road. It is possible to account for 

several thousand cubic yards of waste in this manner. 

Material has been spread in an irregular manner across the land 

surface as far as the southernmost gate access, although much of it resembles 

the overburden material from the open pit mine at the top of the hill, and 

there are clear indications of recent excavation of those materials in the area 

around the sawmill. 

A6-3.2 Head ofVa11ey Dump and Slimes Pond 

The volume of this dump can only be very approximately calculated, 

as the detailed form of the landscape under the dump is not known. The 

volume was calculated to be approximately 20,000 yd3 at an elevation higher 

than the present top of the slimes pond. The slimes in the pond, and the 

extension of the dump below the slimes pond surface would essentially 

double the volume, so that the dump and pond complex would contain about 

40,000 yd3 of material of unknown Hg content. There are no indications of 

smelter waste in this dump, and runoff from the dump does not show iron 

staining typical of acid mine drainage. 

A6-3.3 Dam on Klau Branch, Las Tablas Creek 

Using cross sections from water surface on the pond to the 

downstream toe of the dam, the 325ft. length of the dam was divided into 

segments 50 ft. apart, measured from the spillway northward, with a final25 

ft segment. Cross sectional areas were measured at 0, 400, 1340, 2660, 4040, 
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2660, 1340, and 0 ft.2, resulting in a calculated dam volume of about 23,600 

yd3. The upstream dimensions could not be measured, but the dam volume 

would be approximately 25,000 yd3, which is probably too low an estimate. 

A recent (March 22, 1993) inspection and calculations by David Mraz of the 

California Department of Water Resources, Division of Safety of Dams, 

estimates the total volume of the dam to be about 61,000 yd3. 

A6-3.4 Dump on North Side of Dam on Klau Branch. Las Tablas Creek 

This dump consists of about 8,000 yd3 of gray colored material that is 

either mineralized overburden or smelter waste. These gray clayey 

sediments are mounded in a long curved dump about 420ft. long, 50 ft. wide 

and 10ft. deep. These gray clayey sediments are dumped above material that 

resembles the Vaqueros Formation-derived overburden produced from the 

open pit mine at the top of the hill, but only a lower cross section of this 

material is exposed along the cut of the track leading to the dam. Assuming 

an areal extent similar to the overlying gray clay, a volume of about 7,000 

yd3 would be present. Thus the dump contains about 15,000 yd3 of material. 

If it is determined that the gray clay has the same total Hg levels as those in 

the dam, all of this dump will have to be considered in any remediation 

effort, since there is some interbedding and mixing between the gray clayey 

sediments and the Vaqueros Formation-derived overburden. 

A6-3.5 Overburden in the Vicinity of the Open Pit Mine 

No detailed survey was made of the volumes of mine overburden piled 

on either side of the open pit mine, or on the slopes above the mine buildings. 

The veneer of material pushed down the slope below the sawmill is thin, 

generally being less than 10ft. However, there is possibly a varied 
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topography on the buried surface of the natural hillside, and the thickness 

could locally exceed 20 ft. The overburden around the sawmill is dominated 

by materials derived from the Vaqueros Formation and a zone of iron-oxide 

bearing gossans associated with the hydrothermal mineralization of the 

Vaqueros Formation. A very cursory examination of the area indicates that 

about 500,000 yd3 of material may have been displaced around the open pit 

mine. Many of these piles are partially revegetated, and only one area 

appears to be highly unstable. The unstable area is located on either side of 

the drainage channel from the open pit mine, where it empties down the face 

of the hill. Debris flows have developed in this section of fill, apparently 

since it contains more Franciscan Formation shale debris than other portions 

of the fill. In general the dump piles above the mine buildings are at, or are 

close to, the angle of repose. It is likely that some of these slopes will have to 

be regraded to prevent both further debris flows and rock falls. The Hg 

content is likely to highly variable in this material, and small amounts of iron 

oxide-rich leachate emerges in scattered locations on the surface indicating 

that sulfur-bearing materials, likely associated with Hg, are locally present. 

A6-4.0 Evidence of Acid Mine Draina~e from Buena Vista Mine 

In the December, 1992 survey of the mine, which was conducted after 

the. ground had become saturated from rains, there was an attempt to locate 

points at which potentially polluting waters were being discharged. In the 

last decade, there has been an almost continual discharge from pipes 

emerging from the site of the old drainage pond below the main dump. 

These pipes were flowing at about 1 gallon per minute and the water appears 

polluted. Several old seeps in the side of the main dump adjacent to the 

channel along Cypress Mountain Road have been buried under a veneer of 
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recently placed cover soil and straw. No active seeps could be seen, but some 

blackening (acid-induced?) of the straw had taken place at one location. 

There were active seeps near the top of the main dump, west of the crest, and 

along the track on the east side, which were seeping water which had killed 

grass at one location. Apparently the cap of overburden above the dump is 

porous, and larger volume seeps can be expected with an increase in 

cumulative rainfall. There were some seeps over the graded surface between 

the main dump and the mine buildings. A highly polluted, low volume 

stream of acid waste water was flowing eastward from the vicinity of the old 

mine shaft toward the assay sheds, but the source could have been either 

leachate from the mine or runoff through the mine overburden dumped 

down the hillside above the mine shaft. Another stream of water flows 

northward from the west side of the mine portal area, passing under the 

viaduct tipple, then around the crushed ore storage, down the road in an 

eroded gully, and then into a channel cut to bedrock on the east side of the 

main dump, and finally into the North Fork of Las Tablas Creek just above 

the old drainage pond. This channel is iron oxide stained, and can be 

expected to contain relatively high total Hg contents as it drains close to areas 

where Hg ore was handled (Table 4-2). 

On the south side of the hill, there are some seeps from the dump above 

the dam on the Klau Branch of Las Tablas Creek that are iron oxide stained 

and are discharging into the creek. Small seeps also occur over much of the 

overburden-covered area around the open pit mine, including a point just 

above the location where the drainage from the pit drops over the top of the 

main hillslope. Seeps from the "head of the valley" dump are generally not 

iron stained, and may not be enriched in Hg. 
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This leachate and runoff survey was made at a time (December, 1992) 

when surface layers of the dumps and facilities were saturated, but 

cumulative rainfall for the year was still low and the deeper layers in fills 

would still be relatively dry. Much higher seepage volumes, and new seep 

locations would be expected at the end of a long, heavy rainy season. A 

thorough investigation of the surface and subsurface hydrologic conditions at 

Buena Vista Mine should be undertaken as part of any engineered 

remediation and restoration effort. 

A6-5.0 Contaminated Materials around Buena Vista Mine 

The mine buildings associated with the smelter complex and condenser 

unit are highly contaminated with both metallic Hg and with smelter-derived 

waste (Table 4-2). Beads of elemental Hg contaminate the buildings and 

adjacent sediments, including redwood tubs at ground level outside the 

condenser unit. It is likely that all the sediments and soils around the smelter 

are highly Hg-contaminated. In addition, the buildings themselves have been 

bathed in Hg vapors, and are therefore also Hg-contaminated. All roads used 

to haul ore to the smelter are Hg-contaminated with spilled ore, and the ore 

stockpile building has a floor of sulfurous, oxidized crushed ore. Therefore~ 

complete remediation and restoration of the mine site may require all 

buildings that were part of the ore processing system to be dismantled.and 

treated as toxic waste, and will require a couple of feet of contaminated 

sediment and soil to be removed from throughout the processing area. One 

problem of grading the area is that the mine processing facilities sit directly 

on portions of the ore body, so that grading will expose more cinnabar-rich 

materials. 
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A6-6.0 Suggestions for the Reduction of Waste Discharge 

A6-6.1 The "Arlo Guthrie Principle" 

Arlo Guthrie, in his famous song in the movie "Alice's Restaurant," 

noted that one pile of garbage is better than two piles. This principle applies 

to Buena Vista Mine, as the area exposed to erosion will determine the rate of 

release of Hg waste towards Lake Nacimiento. At this time there is a poorly 

stabilized, seep-prone, poorly sealed "Main Dump" situated below highly Hg

contaminated mine buildings and mineral processing equipment, which is 

situated below an erosion prone "head of the valley" dump and sediment

filled slime pond. On the south side of the divide, there is a dam which is 

composed of materials classified as hazardous waste and an associated dump 

that is probably similarly Hg-contaminated. If all of these areas are to be 

isolated from the environment, they must either be buried in place, or 

carried off to another location and buried. The large volume of waste belies 

any idea of moving the waste off-site, where the existing large surface area 

will require very large areas of land to be capped with impermeable landfill. 

Remediation and restoration of the site may be accomplished by 

dismantling the mine buildings and dumping the debris uphill at the slime 

pond area. The mine operations area could then be graded to a depth of a 

couple of feet, pushing contaminated material into a valley fill around the 

slime pond. Deep excavation of the old pond sites below the "Main Dump", 

and excavation of the main dump would remove Hg-contaminated materials 

from that area and the material could be pushed to the head of the valley. 

Thus all waste would be pushed into the head of the valley between the 

smelter site and the slime pond, the surface of the pile being graded to a 3:1 

slope. To this, material from the dam site and associated dump could be 
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removed, trucked up the old haul road, and deposited in the valley. The 

unstable materials around the open pit site would then, as they have been 

already, used as a cover. Standard landfill procedures including liners could 

be used to seal the dump. 

Waller (1979) has discussed other methods to stabilize the acid leachate 

coming from the existing dumps. Limestone tends to self-seal and fails to 

neutralize acid waste after a brief period, and requires both large volumes of 

limestone and periodic earthwork to dispose of old stock and replace it with 

fresh rock. An anhydrous ammonia treatment of the waste stream is 

effective, removing a Hg-iron floc from solution but requires supervision 

and periodic disposal of the toxic effluent from the process. As Waller 

(1979) notes, treatment systems should only be considered for active mines, 

where they can be serviced. Waller (1979) suggests that the best way of 

limiting leachate is to exclude waters from the dumps by sealing their 

surfaces and be diverting surface waters. By taking the waste dump up to the 

extreme headwaters of the creek, diversion is achieved by reducing the 

drainage area above the waste. Percolating waters would be minimized by 

increasing the volume of the fill relative to its surface area, and by using 

geotextile liners and sealants in the subsurface of the fill. 

The open pit mine at the top of the hill is generally in a stable state, 

although the State Mining and Reclamation Act (SMARA) should be 

reviewed to see if the open pit meets SMARA standards, as several small 

slides have taken place on the sides of the pit, which are not fully stabilized. 

However, the pit has a low gradient floor which is revegetated with willows 

and tules, forming an excellent filter for fines derived from within the 

quarry. I would not recommend that the pit remain in its present form, but 

the pit may have to serve as the repository for some of the unstable 
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overburden that has been stored around the pit. Slopes on the north side of 

the pit, where the drainage channel from the floor of the pit drops down the 

steep hill, are unstable and have produced debris flows. If overburden was to 

be regraded on this slope, some may have to be moved into the valley, to the 

detriment of the biological filter on the existing floor of the pit. SMARA 

prefers landscape restoration to take place, and thus filling some of the pit 

should be expected. There was considerable runoff from the pit, apparently 

relatively clean of acid waste, but this could deteriorate if the pit is refilled 

with permeable overburden. 

If the benches and limited cuts around the sawmill are regraded, care 

should be taken to keep new cinnabar-rich outcrops from being exposed on 

the steep slopes. 



APPENDIX 7 


Individuals Contacted and their Affiliations; as part of the Clean Lakes 


Assistance Program for Lake Nacimiento 




Individuals Contacted and their Affiliations (alphabetical order): 
Clean Lakes Assistance Pro2ram for Lake Nacimiento 

Individual (Address. Phone) 
(phone numbers not listed 
for private landowners) 

Donald W. Alley 
P. 0. Box 200 
Brookdale, CA 95007 
(408) 338-7971 

Daniel Beck 
S.L.O. County Engineering Dept. 

County Government Center 

1035 Palm St. 

San Luis Obispo, CA 93406 

(805) 781-5274 


Louis and Phyllis Bergman 
9070 Dover Canyon Road 
Paso Robles, CA 93446 

Ed Biaggini, III 
1148 Market St. 
Morro Bay, CA 93442 
(805) 772-2158 (Offices) 
(805) 238-1981 (Mine) 

Harold J. Biaggini 
1148 Market St. 
Morro Bay, CA 93442 
(805) 772-2158 (Offices) 
(805) 238-1981 (Mine) 

Bill Blake 
River Road 
Templeton, CA 93465 

Donn Bonnheim 
12820 Chimney Rock Road 
Paso Robles, CA 93446 

Title; Affiliation 

D. W. Alley and Associates 

Road Maintenance Superintendent; 
S.L.O. County Engineering Dept. 

Landowners; Dover Canyon 

Vice President; Buena Vista Mines, Inc. 

President; Buena Vista Mines, Inc. 

Landowner and Ranch Manager; 
Las Tablas Creek Watershed 

Landowner; Las Tab las Creek Watershed 
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Patricia Hamer Breckenridge 

Cal. Poly. State University 

Ornamental Horticulture Dept. 

San Luis Obispo, CA 93407 

(805) 756-2958 


Walter D. Bremer 

Cal. Poly. State University 

Landscape Architecture Dept. 

San Luis Obispo, CA 93407 

(805) 756-1319 


William H. Brooks 

545 Main Street, Suite B-1 

Morro Bay, CA 93442 

(805) 772-5623 


Melissa Brown 

Hearst Ranch 

San Simeon, CA 93452 


David H. Chipping, Ph.D. 

Cal. Poly. State University 

Physics Dept. 

San Luis Obispo, CA 93407 

(805) 7 56-1695 


Lee Cisneros 

Star Route Box 2610 

Bradley, CA 93426 

(805) 239-7319 


Gordon Claassen 

Adelaida Route 

Paso Robles, CA 93446 


Jack Cooke 

Hearst Corporation 

5 Third St., Suite 200 

San Francisco, CA 94103 

(805) 777-0600 


Professor of Ornamental Horticulture 
Cal. Poly. State University 

Professor of Landscape Architecture; 

Project Team Member; 

GIS Augmentation Grant 


Area Coordinator; Central Coast RC&D; 

USDA Soil Conservation Service; 

Tech. Advisory Committee (T AC) Member 


Ranch Manager; Hearst Ranch 


Professor of Geology; 

Project Team Member 


Monterey County Parks Dept.; 

TAC Member 


Ranch Manager; Irving Ranch; 

Las Tablas Creek Watershed 


Vice President; Hearst Corporation 
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Kit Custis 

Division of Mining and Geology 

660 Bercut Drive 

Sacramento, CA 95814-0131 

(916) 323-9976 


Bruce Cutting 

3485 Sacramento Drive, Suite A 

San Luis Obispo, CA 93401 

(805) 546-0455 


Marion F. Davis 

750 Forest Avenue 

Templeton, CA 93465 


Boyd Desonia 

610 Tenth Street 

Paso Robles, CA 93446 

(805) 238-0934 


Phil Dirkx 

1321 Johnson St. 

P.O.Box112 

San Luis Obispo, CA 93406-0112 

(805) 595-2210 


Raymond and Evelyn Dodd, Sr. 

775 Klau Mine Road 

Paso Robles, CA 93446 


Raymond and Nancy Dodd, Jr. 

958 Klau Mine Road 

Paso Robles, CA 93446 


Norman L. Eatough, Ph.D 

Cal. Poly. State University 

Chemistry Dept. 

San Luis Obispo, CA 93407 

(805) 756-1655 


Dr. David A. and Joyce Gean 

342 Empire Landing 

Long Beach, CA 90803 


Geologist; 

Calif. Div. of Mining and Geology; 

TAC Member 


Staff Scientist; 

SEACOR Environmental Engineering 


Landowner; Las Tab las Creek Watershed 


District Conservationist; 

USDA Soil Conservation Service 


San Luis Obispo Telegram-Tribune 


Landowners; Las Tablas Creek Watershed 


Landowners; Las Tablas Creek Watershed 


Professor of Chemistry; 

Project Team Member 


Landowners; Las Tablas Creek Watershed; 

Cypress Mountain Road 

Paso Robles, CA 93446 
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Patricia Gradek 

Federal Building 

800 Truxtun Ave. 

Bakersfield, CA 93308-4 782 

(805) 861-4289 


Jan Greene 
1321 Johnson St. 
P. 0. Box 112 

San Luis Obispo, CA 93406-0112 

(805) 595-1216 


Donna M. Harcourt 

13630 Chimney Rock Road 

Paso Robles, CA 93446 


Dan Heath 

Lake Nacimiento Resort 

10625 Nacimiento Lake Drive 

Paso Robles, CA 93446 

(805) 238-3256 


P. Scott Hindsley 

Lt. Col., Garrison Commander 

Fort Hunter Liggett 

Jolon, CA 93928-5000 

(408) 385-2602 


Paul Jagger 

RWQCB 

81 Higuera Street, Suite 200 

San Luis Obispo, CA 93401-5414 

(805) 549-3690 


Kenneth R. Jones 
San Luis Obispo, CA 
(805) 543-9154 


District Hazardous Materials Specialist; 
USDI-Bureau of Land Management; 

Staff Writer; 

San Luis Obispo Telegram-Tribune 


Landowner; Las Tablas Creek Watershed 


President; 

Water World Resorts, Inc. 


Garrison Commander; 

Hunter Liggett Military Reservation 


Chief of Planning and Monitoring; Contract 

Manager Supervisor; R W QCB 


Retired Executive Director; RWQCB 
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Keith Julian 

Woodward-Clyde Consultants 

5951 Encina Road 

Goleta, CA 93117 

(805) 964-6010 


Lawrence "Bud" Laurent 

Board of Supervisors 

County Government Center 

1035 Palm St. 

San Luis Obispo, CA 93406 

(805) 781-5450 


William R. Leonard 

RWQCB 

81 Higuera Street, Suite 200 

San Luis Obispo, CA 93401-5414 

(805) 549-3690 


Gary D. Lewis 

Hunter Liggett Military Reservation 

Fort Hunter Liggett, CA 93928-5000 

(408) 3 85-2403 

(408) 385-2503 


James Lindholm 

County Counsel Offices 

County Government Center 

1035 Palm St. 

San Luis Obispo, CA 93406 

(805) 781-5400 


C. F. "Phil" Lopez 

Federal Building, Room 311 

800 Truxtun Ave. 

Bakersfield, CA 93308-4782 

(805) 861-4289 


Glenn Marshall 

1000 Mill Street 

San Luis Obispo, CA 93401 

(805) 544-5445 


Vice President; 
Woodward-Clyde Consultants 

County Supervisor; San Luis Obispo County 

Executive Director; RWQCB 

Range Officer; Fort Hunter Liggett 

County Counsel; San Luis Obispo County 

Conservationist; 

USDI-Bureau of Land Management; 

TAC Member 


Project Engineer; 

Penfield and Smith Engineers & Surveyors 
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Tom Martinus 

Hunter Liggett Military Reservation 

Jolon, CA 93928-5000 

(408) 385-2602 


Jack Massera, C.P.Ag. 

Directorate Engineering and Housing 

U.S. Army 

Ford Ord, CA 93941 

(408) 242-2829 

(408) 242-4505 


Royden Nakamura 

Cal. Poly. State University 

Biological Sciences Dept. 

San Luis Obispo, CA 93407 

(805) 756-2740 


Sarah Newton 

David A. Gean Ranch 

Cypress Mountain Road 

Paso Robles, CA 93446 


Harry Ovitt 

Board of Supervisors 

County Government Center 

1035 Palm St. 

San Luis Obispo, CA 93406 

(805) 781-5450 


Glen Priddy 
S.L.O. Co. Engineering Dept. 

County Government Building 

1035 Palm St. 

San Luis Obispo, CA 93408 

(805) 549-5252 


John Pyle 

Kyoda Air, Inc. 

4990 Air Way 

Paso Robles, CA 93447 

(805) 239-8531 


Natural Resource Manager; 

Fort Hunter Liggett; 

TAC Member 


Management Agronomist; 

Ford Ord and Fort Hunter Liggett 

TAC Member 


Professor of Biology;. 

Project Team Member; 

Biology Augmentation Grant 


Ranch Caretaker (former); 

Las Tablas Creek Watershed 


County Supervisor; San Luis Obispo County 


San Luis Obispo Co. Engineering Dept.; 

TAC Member 


Chief Pilot; Kyoda Air, Inc. 
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Allan Ramage 

9650 Adelaida Road 

Paso Robles, CA 93446 


John A. Read 

2442 Main Street 

Cambria, CA 93428 

(805) 927-8652 


Thomas J. Rice, Ph.D. 

Cal. Poly. State University 

Department of Soil Science 

San Luis Obispo, CA 93407 

(805) 756-2420 (Office) 
(805) 756-2261 (Dept.) 

FAX: (805) 756-5412 


Scott Robbins 

545 Main Street, Suite B-1 

Morro Bay, CA 93442 

(805) 772-5623 


Bruce Roeder 

2425 Cypress Mountain Road 

Templeton, CA 93465 


David Schwartzbart 

RWQCB 

81 Higuera Street, Suite 200 

San Luis Obispo, CA 93401-5414 

(805) 542-4643 


Gerald E. Snow 
P.O. Box 930 

Salinas, Ca 93902-0930 

(408) 755-4860 


Michael Thomas 

RWQCB 

81 Higuera Street, Suite 200 

San Luis Obispo, CA 93401-5414 

(805) 542-4623 

FAX: (805) 543-0397 


Landowner; Las Tab las Creek Watershed 

Managing Editor; The Cambrian 

Professor of Soil Science; 

Project Director 


District Conservationist; 

USDA Soil Conservation Service 


Landowner; Las Tablas Creek Watershed 


Associate Engineering Geologist; RWQCB 

TAC Member 


Monterey Co. Water Resources Agency; 

TAC Member 


Contract Manager; RWQCB 
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Kathleen Thomasberg 
P.O. Box 930 

Salinas, Ca 93902-0930 

(408) 755-4860 


Kent Varvel 

4301 Rosedale Highway 

Bakersfield, CA 93308 

(805) 861-4236 


Larry Vredenburgh 

Federal Building 

800 Truxtun Ave. 

Bakersfield, CA 93308-4782 

(805) 861-4289 


Karen Worcester 

81 Higuera Street, Suite 200 

San Luis Obispo, CA 93401-5414 

(805) 549-3333 


Monterey Co. Water Resources Agency; 

TAC Member 


USDI-Bureau of Land Management; 

TAC Member 


Geologist; 

USDI-Bureau of Land Management 


Dept. of Fish and Game (former); 

RWQCB (now); T AC Member 




APPENDIX8 

Analytical Methods and QA/QC Results for Mercury Analyses performed 

by the Chemistry Department, California Polytechnic State University, 

San Luis Obispo 



ANALYTICAL METHODS AND QA/QC RESULTS 


Sample Analysis 

Soil, sediment and water samples were analyzed for total mercury by 

EPA Method 245.1 and 245.5 (Methods for Chemical Analysis of Water and 

Wastes, EP-600/4-82-055, December, 1982). Digestion procedures 

described in SW -846 Methods 7470 and 7471 (Test Methods for Evaluating 

Solid Waste Vol IA: Laboratory Manual PhysicaVChemical Methods EP

SW -846 (Third Edition), November 1986) were used to prepare soil and 

sediment samples for analysis. All samples were analyzed using an 

Instrument Laboratories IL 551 Atomic Absorption Spectrophotometer with 

a Buck Scientific Cold Vapor Mercury Kit. 

A complete set of calibration standards was analyzed at the beginning 

of each day of analysis. Standard stock solutions were prepared from Baker 

Instra Analyzed Reagents certified suitable for mercury analysis from J. T. 

Baker Chemical Co. Secondary dilution standards were prepared from the 

stock standards at least monthly. Analytical blanks were run each day 

analyses were made. Record books, sample logs, instrument maintenance 

and calibration checks were done in accordance with the QA/QC protocol. 

Data validation was accomplished through duplicate split, and spiked 

samples. The limit of detection (LOD) for the analytical method was 0.004 

micrograms of mercury and the limit of quantification was 0.0134 

absorbance units or 0.016 micrograms of mercury. Data used to determine 

the calibration curves are given on the following pages and are summarized 

in Tables 4-1 through 4-11. The relation between absorbance and 

concentration was linear up to 0.25 absorbance units. A second order 

polynomial equation was used for absorbance measurements between 0.25 



and 0.80. A third order polynomial equation was used for absorbance 

readings between 0.80 and 1.25. For soil or sediment samples with high 

mercury concentrations an aliquot of the digestion solution was analyzed to 

keep the absorbance readings within the limits of the calibration data. 

Method blanks were run at the beginning of each day of analysis. If the 

blank results were out of line, analyses were not run until the problem was 

identified and corrected. 

A total of fifty field-collected samples of soil and sediment and fifty 

field-collected water samples were analyzed. Eighteen soil samples were 

run in duplicate and eleven soil samples were run as split samples. An 

additional eleven water samples were run in duplicate and four water 

samples were run as split samples. The duplicate soil samples gave a 

relative mean deviation between duplicates of 0.020 micrograms of Hg per 

gram with a standard deviation of 0.033. The split soil samples gave a mean 

deviation of W 0.017 micrograms of Hg per gram with a standard deviation . 

of 0.021. The duplicate water samples shoed a mean relative deviation 

between duplicates of 0.070 micrograms of Hg per liter with a standard 

deviation of 0.062. The split water samples gave a mean deviation of 0.026 

micrograms of Hg per liter with a standard deviation of 0.017. The results of 

eight spiked soil samples gave an average of 98.8% recovery of mercury 

with a standard deviation of 14.3%. For five spiked water samples the 

percent mercury recovered was 112.1% with a standard deviation of 8.5%. 
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Cal Poly Calibration Data, Mercury by Cold-vapor Atomic Absorption 
For range of 0.0 

ug Hg 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 

0.05 
0.05 
0.05 

0.10 
0.10 
0.10 

0.20 
0.20 
0.20 

0.50 
0.50 
0.50 

1.00 
1.00 
1.00 

2.00 

to 2.0 ug Hg 

Absorption 

0.0080 
0.0040 
0.0050 
0.0070 
0.0050 
0.0080 

mean 0.0062 

0.0200 
0.0130 
0.0220 
0.0140 
0.0140 
0.0170 
0.0330 
0.0130 
0.0210 

mean 0.0186 

0.0280 
0.0300 
0.0300 

mean 0.0293 

0.0510 
0.0540 
0.0530 

mean 0.0527 

0.1040 
0.0980 
0.0970 

mean 0.0997 

0.2460 
0.2520 
0.2510 

mean 0.2497 

0.4680 
0.4670 
0.4740 

mean 0.4697 

0.7940 

x·mean (x·mean)*2 

0.00183 0.0000033 
·0.00217 0.0000046 
·0.00117 0.0000013 
0.00083 0.0000006 

·0.00117 0.0000013 
0.00183 0.0000033 

0.00144 0.0000020 
·0.00556 0.0000308 
0.00344 0.0000118 

·0.00456 0.0000207 
·0.00456 0.0000207 
·0.00156 0.0000024 
0.01444 0.0002086 

·0.00556 0.0000308 
0.00244 0.0000059 

·0.00133 0.0000017 
0.00067 0.0000004 
0.00067 0.0000004 

·0.00167 0.0000027 
0.00133 0.0000017 
0.00033 0.0000001 

0.00433 0.0000187 
·0.00167 0.0000027 
·0.00267 0.0000071 

·0.00367 0.0000134 
0.00233 0.0000054 
0. 00133 0.0000017 

·0.00167 0.0000027 
·0.00267 0.0000071 
0.00433 0.0000187 

·0.00475 0.0000225 
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2.00 0.7780 
2.00 0.8160 
2.00 0.8050 
2.00 0.8140 
2.00 0.7890 
2.00 0.8030 
2.00 0.7910 

mean 0.7988 

-0.02075 0.0004305 
0.01725 0.0002975 
0.00625 0.0000390 
0.01525 0.0002325 

-0.00975 0.0000950 
0.00425 0.0000180 

-0.00775 0.0000600 

sum(x-mean)*2 = 0.0004343 
std dev*2 = 0.0000149 
std dev 0.0038702 

Cal Poly Calibration Data Summary, Mercury by Cold-vapor Atomic Absorption 

ug Hg Abs 
0.00 0.0080 
0.00 0.0040 
0.00 0.0050 
0.00 0.0070 
0.00 0.0050 
0.00 0.0080 
0.03 0.0200 
0.03 0.0130 
0.03 0.0220 
0.03 0.0140 
0.03 0.0140 
0.03 0.0170 
0.03 0.0330 
0.03 0.0130 
0.03 0.0210 
0.05 0.0280 
0.05 0.0300 
0.05 0.0300 
0.10 0.0510 
0.10 0.0540 
a. 10 0.0530 
0.20 0. 1040 
0.20 0.0980 

std dev 0.00387 
mean std dev 0.00072 

95% confidence 0.00147 

ug Hg = 2.500 0.0286(Absorbance)-0.0374 0.0553 

Regression Output: 
Constant 
Std Err of y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

X Coefficient(s) 
Std Err of Coef. 

0.016065 
0.022058 
0.995296 

38 
36 

0.398099 
0.004561 

Regression Output: 
Constant 
Std Err of y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

X Coefficient(s) 
Std Err of Coef. 

-0.03746 
0.055278 
0.995296 

38 
36 

2.500121 
0.028645 
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0.20 0.0970 
0.50 0.2460 
0.50 0.2520 
0.50 0.2510 
1.00 0.4680 
1.00 0.4670 
1.00 0.4740 
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EQUATIONS USED FOR CALCULATION OF ug Hg FROM MEASURED ABSORBANCE 

Linear Range: Absorbance of 0 to 0.25 


ug Hg = 2.0432(Absorbance) • 0.00891 


Second order polynomial, Absorbance of 0.25 to 0.80 

ug Hg = ·0.0012084 + 1.7280(Absorbance) + 0.96707(Absorbance)·2 

Third order polynomial, Absorbance of 0.8 to 1.25 

ug Hg = ·0.020665 + 2.5164(Absorbance) · 1.9448(Absorbance)•2 + 2.4312(Absorbance)•3 



Mercury Calibration Data Ca1 Po1y Oct 30, 1992 

3~----------------------------------~ 
y = - 1.2084e-3 + 1. 7280x + 0.96707x"2 R"2 = 0.999 

0.0 0.2 0.4 0.6 0.8 1.0 

Absorption 

Limit of Detection: 0.004 micrograms of Hg 

Limit of Quantification: 0.0134 absorbance, or 0.016 micrograms of Hg 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16-Feb-93 

Results of Water Analysis for Mercury Cal Poly 

Absorbance Measured Blank Corrected 
Analysis 100mL Mercury Mercury 

Sample No. Date Aliquot Concentration Concentration 
(ug/L) (ug/L) 

-----·-·········-····--·--·--·---------·············-----······-·····--------
CM01U1 
CM01U1(0UP) 
CM02U1 
CH07W1 
CM07W1(0UP 1) 
CH07W1(0UP 1, SPLIT) 
CH07W1(0UP 2) 
CH08U1 
CM10U1 
CM1 1Ul 
CM 12'.11 
CH13U1 
LM01U1 
LH01U1(0UP 1) 

LHO 11J1( OUP 2 ) 
LH02U1 
LH031J1 
LM031J1 (OUP 1) 

LH03W1(0UP 2) 
LM04U1 
LH04W1 (SPLIT) 
LH051Jl 
LH05U1(DUP) 
LM06U1 
LH08U1 
LH09W1 
LM101.'1 
LH11U1 
LH12U1 
LH131J1 
LH181J1 
LH19W1 
LM201J1 
LH211J1 
LH21U1(SPLI T) 

LM231J1 
LH25U1 
LH26U1 
LH27W1 
LH28U1 
LH29W1 

04Feb1992 0.018 0.219 0.204 
20Apr1992 0.013 0.177 0.151 
30Jan1992 0.013 0.177 0.129 
30Jan1992 0.022 0.360 0.313 
21Apr1992 0.016 0.238 0.212 
22Apr1992 0.021 0.340 0.315 
30Apr1992 0.029 0.503 0.478 
30Jan1992 0.002 ·0.048 -0.095 
30Jan1992 0.004 ·0.007 ·0.055 
30Jan1992 0.002 ·0.048 ·0.095 
04Feb1992 0.007 0.054 ·0.020 
04Feb1992 0.007 0.054 ·0.020 
06Feb1992 0.043 0.789 0.715 
20Apr1992 0.049 0.912 0.887 
07May1992 0.046 0.851 0.797 
20Apr1992 0.009 0.095 0.069 
30Jan1992 0.025 0.422 0.375 
20Apr1992 0.039 0.708 0.682 
07May1992 0.016 0.238 0.184 
30Jan1992 0.005 0.013 ·0.034 
30Jan1992 0.004 -0.007 ·0.055 
20Apr1992 0.007 0.054 0.029 
07May1992 0.000 ·0.089 ·0. 143 
30Jan1992 0.005 0.013 ·0.034 
30Jan1992 0.006 0.033 ·0.014 
30Jan1992 0.006 0.033 ·0.014 
30Jan1992 0.005 0.013 ·0.034 
04Feb1992 0.004 ·0.007 ·0.082 
30Jan1992 0.011 o. 136 0.088 
30Jan1992 0.001 ·0.069 ·0. 116 
30Jan1992 0.006 0.033 -0.014 
30Jan1992 0.007 0.054 0.007 
30Jan1992 0.033 0.585 0.538 
04Feb1992 0.004 ·0.007 ·0.082 

04Feb1992 0.002 ·0.048 ·0.123 
04Feb1992 0.003 ·0.028 ·0. 102 

06Feb1992 0.013 0.177 0.102 
06Feb1992 0.001 ·0.069 ·0.143 

04Feb1992 0.004 ·0.007 ·0.082 

04Feb1992 0.006 0.033 -0.041 
06Feb1992 0.006 0.033 ·0.041 

LH29W1(SPLIT) 06Feb1992 0.008 0.074 0.000 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16·Feb-93 

Results of Water Analysis for Mercury (Continued> Cal Poly 

Sa~J1)le No. 

Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 

Ave Blank 
Ave Blank 
Ave Blank 

ug Hg/L = 

Analysis 
Date 

30Jan1992 
30Jan1992 
o4Feb1992 
20Apr1992 
21Apr1992 
22Apr1992 
23Apr1992 
30Apr1992 
07Hay1992 

Jan 
Feb 
Apr 

(2.0432(Absorbance) · 

Absorbance Measured 
100mL Mercury 

Aliquot Concentration 
(ug/L) 

0.007 0.054 
0.005 0.013 
0.008 0.074 
0.008 0.074 
0.007 0.054 
0.004 -0.007 
0.005 0.013 
0.004 -0.007 
0.007 0.054 

0.007 0.047 
o.ooa 0.074 
0.006 0.025 

0.00891)(1000/100) - Ave Blank 

Blank Corrected 

Mercury 


Concentration 

(ug/L) 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16·Feb·93 

Results of Lake Water Analysis for Mercury Cal Poly 

Absorbance Measured Blank Corrected 
Analysis 100mL Mercury Mercury 

Sa~le No. Date Aliquot Concentration Concentration 
(ug/L) (ug/L) 

-----------------------·------------------------···-----···------------
LK1W1 27Jul1992 0.007 0.054 0.057 
LK1W2 04Aug1992 0.000 ·0.089 ·0.086 
LK2\J1 04Aug1992 0.006 0.033 0.037 
LK2W2 04Aug1992 0.008 0.074 0.078 
LK2\12(Dup) 04Aug1992 0.011 0.136 0.139 
LK3lol1 27Jul1992 0.007 0.054 0.057 
LK3lol2 27Jul1992 0.009 0.095 0.098 
LK4W1 27Jul1992 0.042 0.769 o.m 
LK4W2 27Jul1992 0.011 0.136 0.139 
LK5lol1 27Jul1992 0.044 0.810 0.813 
LK5lol2 27Jul1992 0.047 0.871 0.874 
LK5loi2(Dup) 27Jul1992 0.042 0.769 0.772 
LK6W1 27Jul1992 0.007 0.054 0.057 
LK6lol2 04Aug1992 0.009 0.095 0.098 
LK7lol1 04Aug1992 0.007 0.054 0.057 
LK7lol2 04Aug1992 0.008 0.074 0.078 
LK8lol1 04Aug1992 0.007 0.054 0.057 
LK8lol2 04Aug1992 0.012 0.156 0.159 
LK9W1 27Jul 1992 0.005 0.013 0.016 
LK9W2 27Jul1992 0.004 ·0.007 ·0.004 
LK10lol1 25Jul 1992 0.007 0.054 0.057 
LK10\J2 25Jul1992 0.012 0.156 0.159 
LK10lol2(0up) 25Jul1992 0.015 0.217 0.221 

Blank 14Jul1992 0.000 ·0.089 
Blank 14Jul1992 0.004 ·0.007 
Blank 24Jul1992 0.004 ·0.007 
Blank 27Jul1992 0.006 0.033 
Blank 04Aug1992 0.007 0.054 

Ave Blank 0.004 ·0.003 

ug Hg/L =(2.0432(Absorption) • 0.00891)(1000/100) • Ave Blank 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16-Feb-93 

Results of Soil Analysis for Mercury Cal Poly 

Blank Corrected Percent 
Aliquot \let Dry Mercury Moisture 

Analysis Blank Sample Aliquot Sample Sample Concentration Content 
Sample No. Date Absorbance Aliquot Corrected Volume Volume Mass Mass Dry Mass Basis by Mass 

(ug Hg) (ug Hg) (mL) (mL) (grams) (grams) (Ug/g) (Dry Basis) 

LH22S1 11Feb1992 0.529 1.184 1.179 100 100.0 9.99 7.13 0.165 40.04 
LM22S1(SPLIT) 13Feb1992 0.356 0.737 0.732 100 100.0 10.01 7.15 0.102 40.04 
LM22S1(DUP) 11Feb1992 0.021 0.034 0.029 100 100.0 10.01 7.15 0.004 40.04 
LH22S1(DUP,SPLIT) 13Feb1992 0.001 -0.007 -0.011 100 105.0 10.01 7.15 -0.002 40.04 
LM23S1 11Feb1992 0.158 0.314 0.309 100 100.0 10.42 3.92 0.079 165.65 
LM23S 1( SPLIT) 13Feb1992 0.114 0.224 0.219 100 100.0 10.42 3.92 0.056 165.65 
LH23S1(DUP) 11Feb1992 0.010 0.012 0.007 100 100.0 10.35 3.90 0.002 165.65 
LH23S1(DUP,SPLIT) 13Feb1992 0.003 -0.003 -0.007 100 100.0 10.35 3.90 -0.002 165.65 
LM24S1 11Feb1992 0.001 -0.007 -0.011 100 100.0 10.41 8.10 -0.001 28.55 
LM24S1(SPLIT) 13Feb1992 0.001 -0.007 -0.011 100 100.0 10.02 7.79 -0.001 28.55 
LM24S1(DUP) 11Feb1992 0.000 -0.009 -0.013 100 100.0 10.48 8.15 -0.002 28.55 
AP01S1 15Feb1992 0.001 -0.007 -0.011 100 100.0 10.02 4.63 -0.002 116.3 
AP02S1 15Feb1992 0.155 0.308 0.303 100 100.0 10.03 8.59 0.035 16.72 
AP02S1(DUP 1) 27Mar1992 0.206 0.412 0.408 100 100.0 10.00 8.57 0.048 16.72 
AP02S1(DUP 2) 16Apr1992 0.190 0.379 0.376 100 91.0 10.01 8.58 0.048 16.72 
AP02S1(DUP 3) 20Apr1992 0.162 0.322 0.318 100 100.0 10.00 8.57 0.037 16.72 
AP02S1(DUP 4) 21Apr1992 0.165 0.328 0.325 100 100.0 10.02 8.58 0.038 16:72 
AP02S1(DUP 4, SPLIT) 21Apr1992 0.174 0.347 0.343 100 87.0 10.02 8.58 0.046 16.n 
AP02S1(DUP 5) 22Apr1992 0.191 0.381 0.378 100 100.0 9.99 8.56 0.044 16.72 
AP02S1(DUP 5, SPLIT 1) 23Apr1992 0.207 0.414 0.410 100 100.0 10.02 8.58 0.048 16.72 
AP02S1(DUP 5, SPLIT 2) 23Apr1992 0.190 0.379 0.376 100 95.5 10.06 8.62 0.046 16.72 
AP02S1(DUP 6) 30Apr1992 0.172 0.343 0.339 100 93.5 10.08 8.64 0.042 16.72 
AP02S1(DUP 7) 05Aug1992 0.192 0.383 0.380 100 93.5 10.08 8.64 0.047 16.72 
AP03S1 16Apr1992 0.144 0.268 0.264 100 91.5 10.08 6.69 0.043 50.64 
AP03S1(DUP 1) 20Apr1992 0.121 0.222 0.218 100 100.0 10.15 6.74 0.032 50.64 
AP03S1(DUP 2) 21Apr1992 0.110 0.201 0.197 100 100.0 10.05 6.67 0.030 50.64 
AP03S1(DUP 2, SPLIT) 23Apr1992 0.143 0.266 0.262 100 91.0 10.05 6.67 0.043 50.64 
AP03S1(DUP 3) 22Apr1992 0.112 0.204 0.201 100 100.0 9.99 6.63 0.030 50.64 
AP03S1(DUP 4) 30Apr1992 0.116 0.212 0.209 100 97.0 10.03 6.66 0.032 50.64 
AP04S1 13Feb1992 0.001 ·0.007 -0.011 100 100.0 10.07 6.93 ·0.002 45.35 
AP04S1(DUP) 11Aug1992 0.035 0.063 0.060 100 100.0 10.07 6.93 0.009 45.35 



Sarrple No. 

AP05S1 
AP06S1 
B1S1 
B3S1 
B3S1 (SPLIT) 
B3S1 (DUP) 
BP01S1 
BP02S1 
BP03S1 
BP04S1 
BP05S1 
BP06S1 
BP07S1 
BP07S1(DUP) 
CP01S1 
J1S1 
J1S1 (DUP) 
J2S1 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 
Blank 

CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16-Feb-93 

Results of Soil Analysis for Mercury (Continued) Cal Poly 

Blank Corrected 
Mercury 

Concentration 
Dry Mass Basis 

(Ug/g) 

0.005 
0.003 


-0.002 

-0.001 

-0.001 

0.005 
0.000 
0.023 


-0.004 

0.006 


-0.002 

0.020 


-0.001 

-0.001 

0.014 


-0.001 

0.000 


-0.002 


ug Hg 

0.005 
0.004 

Analysis 
Date 

15Feb1992 
15Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
15Feb1992 
15Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
05Aug1992 
13Feb1992 
11Feb1992 
13Feb1992 
13Feb1992 
14Feb1992 
15Feb1992 
27Mar1992 
16Apr1992 
20Apr1992 
21Apr1992 
22Apr1992 
23Apr1992 
30Apr1992 
05Aug1992 
10Aug1992 
10Aug1992 

Absorbance 

0.025 
0.019 
0.001 
0.001 
0.001 
0.029 
0.005 
0.052 
0.001 
0.026 
0.001 
0.080 
0.002 
0.002 
0.051 
0.003 
0.005 
0.000 
0.005 
0.004 
0.004 
0.008 
0.012 
0.006 
0.009 
0.008 
0.007 
0.004 
0.005 
0.004 
0.007 
0.005 
0.006 

Aliquot 
(ug Hg) 

0.042 
0.030 

-0.007 
-0.007 
-0.007 
0.050 
0.001 
0.097 

-0.007 
0.044 

-0.007 
0.155 

-0.005 
-0.005 
0.095 

-0.003 
0.001 

-0.009 
0.001 

-0.001 
-0.001 
0.007 
0.016 
0.003 
0.009 
0.007 
0.005 

-0.001 
0.001 

-0.001 
0.005 
0.001 
0.003 

Aliquot 
Blank 
Corrected 
(ug Hg) 

0.038 
0.025 

-0.011 
-0.011 
-0.011 
0.046 

-0.003 
0.093 

-0.011 
0.040 

-0.011 
0.150 

-0.009 
-0.009 
0.091 

-0.007 
-0.002 
-0.013 

\.let Dry 
Sarrple Aliquot Sarrple Sarrple 
Volune Volune Mass Mass 

(ml) (ml) (grams) (grams) 

100 100.0 10.00 6.94 

100 100.0 10.00 7.27 

100 100.0 10.02 7.51 

100 100.0 10.05 8.05 

100 100.0 10.05 8.05 

100 100.0 10.14 8.95 

100 100.0 10.07 7.58 

100 100.0 10.02 4.01 

100 100.0 9.98 2.80 

100 100.0 9.99 6.90 

100 100.0 10.04 7.33 

100 100.0 10.09 7.54 

100 100.0 10.00 8.22 

100 100.0 10.00 8.22 

100 100.0 10.05 6.46 

100 100.0 10.02 7.50 

100 100.0 10.00 7.48 

100 100.0 10.01 6.30 


Absorbance 

Mean Blank Value Feb 0.007 
Mean Blank Value Mar, Apr 0.006 
Mean Blank Value Aug 0.005 0.003 

ug Hg = 2.0432(Absorbance)-0.00891 for Absorbance < 0.25 
ug Hg = 2.1332(Absorbance)-0.01271 for Absorbance> 0.25 

Percent 
Moisture 
Content 
by Mass 

(Dry Basis) 

44.07 
37.47 
33.51 
24.86 
24.86 
13.25 
32.86 

149.70 
255.93 
44.76 
36.99 
33.87 
21.67 
21.67 
55.56 
33.62 
33.62 
58.92 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 18-Feb-93 

Results of Soil Analysis for Mercury Cal Poly 

Blank Corrected Percent 
Aliquot Wet Dry Mercury Moisture 

Analysis Blank Sa""le Aliquot Sa""le Sa""le Concentration Content 
Sllfltlle No. Date Absorbance Aliquot Corrected Voll.llle Voll.llle Mass Mass Dry Mass Basis by Mass 

(ug Hg) (ug Hg) (mi..) (mi..) (grams) (grams) (Ug/g) (Dry Basis) 

A1S1 27Mar1992 0.068 0.130 0.125 107.0 100.0 10.00 7.39 0.018 35.4 
A1S1(DUP) 29Mar1992 0.063 0.120 0.114 100.0 100.0 9.99 7.38 0.016 35.4 
A2S1 29Mar1992 0.132 0.261 0.255 96.0 10.0 9.98 7.93 0.309 25.9 
B4S1 27Mar1992 0.018 0.028 0.022 92.5 82.3 10.00 7.46 0.003 34.1 
B5S1 27Mar1992 0.096 0.187 0.182 84.0 84.0 10.00 7.64 0.024 30.9 
B6S1 29Mar1992 0.078 0.150 0.145 104.5 94.0 10.09 8.28 0.019 21.8 
B7S1 28Mar1992 0.212 0.424 0.419 91.5 84.1 10.02 8.69 0.052 15.3 
B8S1 29Mar1992 0.042 0.077 0.072 102.3 90.0 10.01 9.00 0.009 11.2 
CM14S1 29Mar1992 0.074 0.142 0.137 109.1 2.0 10.00 7.26 1.029 37.7 
CM15S1 27Mar1992 0.058 0.110 0.104 93.0 15.0 9.96 7.57 0.085 31.6 
CM16S1 27Mar1992 0.541 1.217 1.211 89.0 5.0 10.03 8.29 2.600 20.9 
CM17S1 27Mar1992 0.095 0.185 0.180 94.3 5.0 9.98 9.22 0.368 8.2 
CP2S1 27Mar1992 0.102 0.199 0.194 81.6 74.0 10.04 7.05 0.030 42.5 
CP3S1 2'7Har1992 0.065 0.124 0.119 88.0 80.2 10.03 7.32 0.018 37.1 
LM30S1 28Mar1992 0.892 2.402 2.397 104.2 20.0 9.95 8.07 1.548 23.4 
LM31S1 27Mar1992 0.379 0.793 0.787 108.2 5.0 10.06 5.54 3.073 81.5 
LM32S1 27Mar1992 0.058 0.110 0.104 86.2 82.0 10.00 8.68 0.013 15.2 
LM33S1 27Mar1992 0.704 1.695 1.689 79.5 5.0 10.01 9.87 2.no 1.4 
LM34S1 28Mar1992 0.081 0.157 0.151 104.5 88.5 10.11 9.58 0.019 5.5 
PS11S1 28Mar1992 0.167 0.332 0.327 101.0 84.0 10.02 8.69 0.045 15.4 
PS12S1 28Mar1992 0.185 0.369 0.364 92.0 85.5 10.03 7.47 0.052 34.3 
PS13S1 29Mar1992 0.403 0.852 0.847 95.5 10.0 9.97 9.00 0.898 10.7 
PS14S1 28Mar1992 0.026 0.044 0.039 98.7 10.0 9.97 8.71 0.044 14.5 
PS15S1 28Mar1992 0.056 0.106 0.100 101.0 5.0 9.97 8.97 0.226 11.2 
PS16S1 29Mar1992 0.091 0.177 0.172 105.1 95.0 9.99 7.47 0.025 33.7 
TRM1S1 29Mar1992 0.142 0.281 0.276 106.0 95.0 10.04 7.22 0.043 39.0 
LK01S2 14Jul1992 0.014 0.020 0.025 100.0 100.0 10.02 6.61 0.004 51.5 
LK03S2 14Jul1992 0.009 0.009 0.014 100.0 100.0 10.00 10.00 0.001 
LK04S1 14Jul1992 0.042 0.077 0.082 100.0 100.0 10.00 10.00 0.008 
LK04S2 14Jul1992 0.011 0.014 0.018 100.0 100.0 10.00 10.00 0.002 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16-Feb-93 

Results of Soil Analysis for Mercury (Continued) Cal Poly 

Aliquot \let 

Analysis Blank Sa111>le Aliquot Saq::~le 

Saq:>le No. Date Absorbance Aliquot Corrected Volune Volune Mass 
(ug Hg) (ug Hg) (ml) (ml) (grams) 

LK05S1 14Jul1992 0.049 0.091 0.096 100.0 100.0 10.00 
LK05S2(SPLIT) 14Jul1992 0.042 0.077 0.082 100.0 100.0 10.00 
LIC05S2(DUP) 14Jul1992 0.047 0.087 0.092 100.0 100.0 10.00 

Blank 27Har1992 0.006 0.003 
Blank 27Har1992 0.009 0.009 
Blank 2BMar1992 0.009 0.009 
Blank 29Mar1992 0.004 -0.001 
Blank 14Jul1992 0.004 -0.001 
Blank 14Jul1992 0.000 ·0.009 

Ave Blank March 0.008 0.005 
Ave Blank July 0.002 -0.005 

ug Hg = 2.0432CAbsorbance) - 0.00891 
ug Hg = • 0.0012084 + 1.7280(Absorbance) • 0.96707(Absorbance)A2 
ug Hg = - 0.020665 + 2.5164(Absorbance) - 1.9448(Absorbance)A2 + 2.4312(Absorbance)A3 

Blank Corrected Percent 
Dry Mercury Moisture 
Sa111>le Concentration Content 
Mass Dry Mass Basis by Mass 
(grams) (ug/g) (Dry Basis) 

10.00 0.010 
10.00 0.008 
10.00 0.009 

for Absorbance < 0.25 
for Absorbance > 0.25 < 0.80 
for Absorbance > 0.8 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 18·Feb·93 

Results of Mercury Analysis of Soil Fractions Cal Poly 

Blank 
Volune Mercury Corrected 
of Mercury in Vol Hg in Vol Mercury Ory Mercury 

Sall'ple Analysis S~~~rple Saflllle Aliquot Absorbance in Used for Used for Cone Percent SBIJllle Cone 
No. Date Media Volune Analyzed of Aliquot Aliquot Analysis Analysis Wet Basis Moisture Mass Dry Basis 

(mL) (ml) (ug Hg) (ug Hg) (ug Hg) (ug Hg/l) (grams) (ug Hg/g) 

CM3S1 26Mar1992 sand 50 0.003 0.162 0.322 5368.140 5368.12 107362.4 145.2 20.39 263.252 
CM3S1 26Mar1992 clay 100 0.003 0.058 0.110 3653.187 3653.16 36531.6 75400.0 0.13 27581.389 
CM3S1 02Apr1992 silt 50 100.000 1.684 10.312 5.156 5.13 102.7 795.7 5.58 0.920 
CM6S1 26Mar1992 sand 50 10.500 0.256 0.505 2.403 2.38 47.6 325.2 11.76 0.202 
CM6S1 26Mar1992 clay 100 3.000 0.377 0.788 26.257 26.23 262.3 5800.0 1.69 15.478 
CM6S1 26Mar1992 sit t 50 3.000 0.609 1.410 23.497 23.47 469.5 280.0 13.16 1.784 
CM9S1 26Mar1992 sand 100 5.000 0.175 0.349 6.973 6.95 69.5 66.5 60.08 0.116 
CM9S1 26Mar1992 clay 100 3.000 0.122 0.240 8.012 7.99 79.9 242.8 29.17 0.274 
CM9S1 26Mar1992 clay 100 3.000 0.112 0.220 7.331 7.31 73.1 242.8 29.17 0.251 
CM9S1 26Mar1992 silt 50 3.000 0.232 0.465 7.752 7.73 154.6 282.7 13.07 0.592 
LM5S1 · 25Feb1992 sand 50 5.000 0.590 1.355 13.549 13.53 270.5 253.3 14.15 0.956 
LM5S1 02Apr1992 clay 100 100.000 1.396 6.316 6.316 6.29 62.9 205000.0 0.01 629.387 
LM5S1 26Mar1992 silt 100 50.000 0.355 0.734 1.468 1.45 14.5 474.1 17.42 0.083 
LM9S2 26Mar1992 sand 100 5.000 0.054 0.101 2.028 2.01 20.1 21937.0 0.45 4.421 
LM9S2 25Feb1992 clay 100 100.000 1.436 6.782 6.782 6.76 67.6 29185.0 0.34 19.794 
LM9S2 25Feb1992 clay 100 100.000 1.446 6.902 6.902 6.88 68.8 22500.0 0.44 15.548 
LM9S2 26Mar1992 silt 100 1.000 0.616 1.430 143.020 143.00 1430.0 783.6 11.32 12.635 
LM12S1 26Mar1992 sand 100 3.000 0.266 0.527 17.562 17.54 175.4 381.9 20.75 0.845 
LM12S1 26Mar1992 clay 100 0.500 0.055 0.103 20.693 20.67 206.7 44478.0 0.22 92.146 
LM12S1 26Mar1992 silt 90 0.500 0.540 1.214 218.504 218.48 2427.6 386.4 18.50 11.807 
Blank 26Mar1992 100 100.000 0.008 0.007 0.007 
Blank 25Apr1992 100 100.000 0.023 0.038 0.038 

Mean Blank Value 0.016 0.023 

ug Hg = 2.0432(Absorbance) • 0.00891 for Absorbance < 0.25 
ug Hg = · 0.0012084 + 1.7280(Absorbance) • 0.96707(Absorbance)A2 for Absorbance > 0.25 < 0.80 
ug Hg = · 0.020665 + 2.5164(Absorbance) • 1.9448(Absorbance)A2 + 2.4312(Absorbance)~3 for Absorbance > 0.8 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16·Feb·93 

Results of Mercury Analyses of Duplicate and Split Water Samples 

Blank. Corrected 
Analysis Mercury 

Sample No. Date Absorbance Concentration 
(ug/L) 

~-··-···~---····-······---·-····---·-···-·--------------·------·· 

CMOH/1 

CMOHI1(DUP) 


CM07\J1 

CM07\J1(DUP 1) 

CM07\J1(DUP 1, SPLIT) 

CM07\J1(DUP 2) 


LM01W1 

LM011ol1 (DUP 1) 

LM011oi1(0UP 2) 


LM031o/1 

LM031o/1(DUP 1) 

LM03W1(DUP 2) 


LM04W1 

LM041o11(SPLIT) 


LM051o11 

LM051o11(0UP) 


LM211o/1 

LM211o11(SPLIT) 


LM29W1 

LM29W1( SPLIT) 


LK21o/2 

LK21o/2(0UP) 


LK51o12 

LK51o12(0UP) 


LK10W2 

LK10W2(0UP) 


04Feb1992 
20Apr1992 

30Jan1992 
21Apr1992 
22Apr1992 
30Apr1992 

06Feb1992 
20Apr1992 
07May1992 

30Jan1992 
20Apr1992 
07May1992 

30Jan1992 
30Jan1992 

20Apr1992 
07May1992 

04Feb1992 
04Feb1992 

06Feb1992 
06Feb1992 

04Aug1992 
04Aug1992 

27Jul1992 
27Jut 1992 

25Jul1992 
25Jul1992 

0.018 0.204 
0.013 0.151 

0.022 0.313 
0.016 0.212 
0.021 0.315 
0.029 0.478 

0.043 0.715 
0.049 0.887 
0.046 0. 797 

0.025 0.375 
0.039 0.682 
0.016 0.184 

0.005 -0.034 
0.004 -0.055 

0.007 0.029 
0.000 -0.143 

0.004 -0.082 
0.002 -o. 123 

0.006 -0.041 
0.008 0.000 

0.008 0.078 
0.011 0.139 

0.047 0.874 
0.042 o.n2 

0.012 0.159 
0.015 0.221 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 18-Feb-93 

Statistical Analysis of Results of Mercury Analyses of Duplicate and Split Water Samples 

Duplicate Split Average Deviation Deviation 
Hg Hg Hg Hg Duplicate Split 

Sample No. Cone Cone Cone Cone Analyses Analyses 
(ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 

-----·······················------------------------------------------------
CM01W1 0.204 0.151 0.178 -0.026 

CM07W1 0.313 0.212 0.315 0.334 -0.122 -0.019 
0.478 0.144 

LM01W1 0.715 0.887 0.800 0.087 
0.797 -0.003 

LM03W1 0.375 0.682 0.414 0.268 
0.184 -0.230 

LM04W1 -0.034 -0.055 -0.045 0.045 -0.010 

LM05W1 0.029 -o. 143 -0.057 -0.086 

LM21W1 -0.082 -0.123 -0.068 0.068 -0.055 

LM29W1 -0.041 0.000 -0.021 0.021 0.021 

LK2W2 0.078 0.139 0.109 0.031 

LK5W2 0.874 o.n2 0.823 -0.051 

LK10W2 0.159 . 0.221 0.190 0.031 

Mean Deviation of Duplicate Analyses 0.070 

Standard Deviation of Duplicate Analyses 0.062 

Mean Deviation of Split Analyses 0.026 

Standard Deviation of Split Analyses 0.017 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 16·Feb·93 

Results of Mercury Analyses of Duplicate and Split Soil Samples 

Blank. Corrected 
Mercury 

Analysis Concentration 
Sample No. Date Absorption Dry Mass Basis 

(ug/g) 

-----------------------------·------------------------------------
A1S1 
A1S1(0UP) 
AP02S1 
AP02S1(0UP 1) 
AP02S1(0UP 2) 
AP02S1(0UP 3) 
AP02S1(DUP 4) 
AP02S1(DUP 4, SPLIT) 
AP02S1(DUP 5) 
AP02S1(DUP 5, SPLIT 1) 

AP02S1(0UP 5, SPLIT 2) 
AP02S1(0UP 6) 
AP03S1 
AP03S1(DUP 1) 

AP03S1(0UP 2) 
AP03S1(0UP 2, SPLIT) 
AP03S1(DUP 3) 
AP03S1(DUP 4) 
B3S1 
B3S1(SPL!T) 
B3S1COUP) 
BP07S1 
BP07S 1COUP) 
LK05S2 
LK05S2CSPLTT) 
LK05S2(DUP) 
LM9S2 
LM9S2(DUP) 
LM22S1 
LM22S1(SPL1T) 
LM22S1CDUP> 
LM22S1(DUP, SPLIT) 
LM23S1 
LM23S 1 (SPLIT) 
LM23S1 (OUP) 
LM23S1(0UP I .SPLIT) 
LM24S1 
LM24S1(SPllT> 
LM24S1(DUP) 

27Mar1992 
29Mar1992 
15Feb1992 
27Mar1992 
16Apr1992 
20Apr1992 
21Apr1992 
21Apr1992 
22Apr1992 
23Apr1992 
23Apr1992 
30Apr1992 
16Apr1992 
20Apr1992 
21Apr1992 
23Apr1992 
22Apr1992 
30Apr1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
13Feb1992 
14Jul1992 
14Jul1992 
14Jul1992 
25Feb1992 
25Feb1992 
11Feb1992 
13Feb1992 
11Feb1992 
13Feb1992 
11Feb1992 
13Feb1992 
11Feb1992 
13Eeb1992 
11Feb1992 
13Feb1992 
11Feb1992 

0.068 0.018 
0.063 0.016 
0.155 0.035 
0.206 0.048 
0.190 0.048 
0.162 0.037 
0.165 0.038 
0.174 0.046 
0.191 0.044 
0.207 0.048 
0.190 0.046 
o.1n 0.042 
0.144 0.043 
0.121 0.032 
0.110 0.030 
0.143 0.043 
o.i12 0.030 
0.116 0.032 
0.001 ·0.001 
0.001 ·0.001 
0.029 0.005 
0.002 ·0.001 
0.002 ·0.001 
0.049 0.010 
0.042 0.008 
0.047 0.009 
1.446 15.548 
1.454 15.769 
0.529 0.165 
0.356 0.102 
0.021 0.004 
0.001 ·0.002 
0.158 0.079 
0.114 0.056 
0.010 0.002 

.0.003 ·0.002 
0.001 ·0.001 
0.001 ·0.001 
0.000 ·0.002 



------------------------------------------------------------------------------

CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 18-Feb-93 

Statistical Analysis of Results of Mercury Analyses of Duplicate and Split Soil Samples 

Duplicate Split Average Deviation Deviation 
Hg Hg Hg Hg Duplicate Split 

Sample No. Cone Cone Cone Cone Analyses Analyses 
(ug/g) (ug/g) (ug/g) (ug/g) (ug/g) (ug/g) 

A1S1 0.018 0.016 0.017 -0.001 

AP02S1 0.035 0.048 0.043 0.005 
0.048 0.005 
0.037 -0.006 
0.038 0.046 -0.005 0.003 
0.044 0.048 0.001 0.005 

0.046 0.003 
0.042 -0.001 

AP03S1 0.043 0.032 0.035 -0.003 
0.030 0.043 -0.005 0.008 
0.030 -0.005 
0.032 -0.003 

B3S1 -0.001 -0.001 0.001 -0.001 -0.002 
0.005 0.004 

BP07S1 -0.001 -0.001 -0.001 0.000 

LK05S2 0.010 0.008 0.009 -0.009 -0.001 
0.009 0.000 

LM9S2 15.548 15.769 15.659 0. 111 

LM22S1 0.165 0.102 0.067 -0.067 0.035 
0.004 -0.002 -0.063 -0.069 

LM23S1 0.079 0.056 0.034 -0.034 0.022 
0.002 -0.002 -0.032 -0.036 

LM24S1 -0.001 -0.001 -0.001 0.001 0.000 
-0.002 -0.001 

Mean .. Deviation .of.Duplicate Analyses 0.020 

Standard Deviation of Duplicate Analyses 0.033 

Mean Deviation of Split Analyses 0.017 

Standard Deviation of Split Analyses 0.021 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 18-Feb-93 

Results of Mercury Analyses of Spiked and Unspiked Water Samples 

Blank Corrected Total Aliquot Percent 
Analysis Amount Mercury Sample Vol~.~ne ug Hg Spike Relative 

Sample No. Date of Spike Absorbance Concentration Volune Analyzed Found in Recovery Recovery 
(ug Hg) (ug/L) (mL) (mL) Aliquot (ug Hg) 

····-····--··---···-···--------------·-·----------------------------------------------------------------------·--
LM18W1 30Jan1992 0.006 ·0.014 100 100 -0.001 
LM18W1(SPIKED) 30Jan1992 0.200 0.115 2.213 100 100 0.221 0.223 111.4 

LM25W1 06Feb1992 0.013 0.102 100 100 0.010 
LM25W1( SPIKED) 06Feb1992 0.200 0.108 2.043 100 100 0.204 0.194 97.1 

LK3W1 27Jul1992 0.007 0.057 100 100 0.006 
LK3W1(SPIKED) 27Jul1992 1.000 0.58 11.765 100 100 1.177 1.171 117. 1 

LK8W1 04Aug1992 0.007 0.057 100 100 0.006 
LK8W1(SPIKEO) 22Jul1992 0.100 0.062 1.181 100 100 0.118 0.112 112.4 

LK8W2 04Aug1992 0.012 0.159 100 100 0.016 
LK8W2(SPIKED) 04Aug1992 0.100 0.072 1.385 100 100 0.139 0.123 122.6 

Average Percent Relative Recovery: 1 12.1 

Standard Deviation: 8.5 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 18·Feb·93 

Results of Mercury Analyses of Spiked and Unspiked Soil Samples 

Blank Corrected Total 
Mercury Volune of ug Hg Percent 

Analysis Amount Concentration Digested Aliquot Found in Spike Relative 
Sample No. Date Absorption of Spike Aliquot Sample Analyted Aliquot Recovery Recovery 

(ug Hg) (ug/g) (ml) (mL) (ug Hg) 

··---------------··---------------------------·-·-·····-··---·-·-------~---··-·····------·--------··---------------·· 
AP02S1 15Feb1992 0.155 0.303 100 100 0.303 
AP02S 1(SPIKED) 15Feb1992 0.190 0.100 0.375 100 100 0.375 0.072 72.0 

AP02S1 05Aug1992 0.192 0.38 100 93.5 0.406 
AP02S1(SPIKED) 05Aug1992 0.417 0.500 0.84 100 100 0.840 0.434 86.7 

AP03S1 21Apr1992 0.110 0.197 100 100 0.197 
AP03S1(SPIKED) 21Apr1992 0.163 0.100 0.303 100 100 0.303 0.106 106.0 

B8S1 29Har1992 0.042 0.072 102.3 90 0.082 
B8S1(SPIKED) 29Har1992 0.093 0.100 0.176 102.3 90 0.200 0.118 118.2 

J1S1 10Aug1992 0.020 0.029 100 100 0.029 
J1S1(SPIKED) 10Aug1992 0.268 0.500 0.539 100 100 0.539 0.510 102.0 

LH5S1(Sand) 25Feb1992 0.590 1.355 50 5 13.550 
LM5S1CSPIKED) 25Feb1992 0.594 0.100 1.366 50 5 13.660 0.110 110.0 

LM9S2(Clay) 25Feb1992 1.446 6.88 100 100 6.880 
LM9S2 (SPIKED ) 25Feb1992 1.454 0.100 6.9n 100 100 6.9n 0.097 97.0 

Average X Relative Recovery: 98.8 

Standard Deviation: 14.3 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 14·Aug·92 

Results of Kinetic Studies of Hg Transport 

Between Contaminated Water and Clean Soil 


Volune 
Tal<en Grams 	 Grams Absorbance Mercury Blank Mercury 
From Soil 	 Soil of in Corrected Cone in 

Sarrp!e Sample Shaker After Moisture Dry Reagent Aliquot Hg in Soil 
No. Media Flask Filtering Content Basis Absorbance Blanl< Aliquot Dry Basis 

(ml} (gm} X (gm} (ug Hg} (ug Hg) (Ug Hg/gm} 

24 hr 	 AP1S1 50.0 0.85 10.59 0.77 0.072 0.013 0.138 0.121 0.157 
AP4S1 48.9 2.03 1.97 1.99 0.052 0.013 0.097 0.080 0.040 
BP3S1 50.0 0.42 0.26 0.42 0.279 0.013 0.583 0.565 1.349 
J1S1 50.0 1.97 0.00 1.97 0.062 0.013 0.110 0.092 0.047 
J1S2 50.2 0.30 0.00 0.30 0.042 0.013 0.073 0.055 0.185 

1 week 	 AP1Sl 40.5 2.50 0.13 2.50 0.177 0.008 0.335 0.328 0.131 
AP4S1 22.8 3.60 0.19 3.59 0.159 0.025 0.316 0.274 0.076 
BP3S1 20.0 0.43 0.05 0.43 0.285 0.015 0.573 0.552 1.284 
J1S1 20.0 2.97 0.10 2.97 0.112 0.025 0.220 0.178 0.060 
J1S2 20.0 0.15 0.35 0.15 0.111 0.008 0.179 0.171 1.146 

1 month 	 AP1S1 50.0 2.32 40.50 1.65 0.446 0.003 0.962 0.965 0.584 
AP4S1 50.0 1.77 1.20 1. 75 
BP3S1 50.3 1.10 5.50 1.04 0.309 0.006 0.625 0.622 0.596 
J1S1 46.5 4.30 2.50 4.20 0.035 0.003 0.063 0.065 0.016 
J1S2 51.0 1.68 36.60 L23 
AP1Sl(Oup) 50.0 2.27 54.60 1.47 0.228 0.003 0.443 0.446 0.304 

Blank 0.003 -0.003 

Blank 0.006 0.003 

Blank 0.008 0.007 

Blank 0.013 0.018 

Blank 0.015 0.022 

Blank 0.025 0.042 


Initial 

Initial Volune 

Soil 1 ppm Hg 

Mass Water 

(gm) (ml} 


AP1S1 20.10 200 

AP4S1 20.07 200 

BP3S1 20.00 200 

J1Sl 20.12 200 

J1S2 20.09 200 


ug Hg =2.0432CAbsorption)·0.00891 for Absorbance < 0.25 
ug Hg = ·0.0012084+1.7280(Absorption)·0.96707CAbsorbance>~2 for Absorbance> 0.25 < 0.80 



CLEAN LAKES ASSISTANCE PROGRAM FOR LAKE NACIEMENTO 14·Aug·92 

Results of Kinetic Studies of Hg Transport 
Between Contaminated Soil and Clean Water 

Volume 
Taken Volume of Volume of Absorbance Mercury Blank 
From Volume Aliquot Aliquot of in Corrected Mercury 

Sample Sample Shaker After After Used For Absorbance Reagent Aliquot Hg in Cone in 
No. Media Flask Filtering Digestion Analysis of Aliquot Blank Aliquot Water 

(mL) (mL) (mL) (mL) (ug Hg) (ug Hg) (ug Hg/L) 

Blank 100 0.008 0.007 

Blank 100 0.012 0.016 


24 hr 	 LM3S1 50.5 46.0 127.0 100.0 0.010 0.008 0.012 0.004 0.113 
LM4S1 50.5 45.0 136.0 100.0 0.002 0.008 ·0.005 ·0.012 ·0.371 
LM10S1 50.0 45.0 127.5 100.0 0.030 0.012 0.053 0.038 1.063 
LM12S1 50.0 46.1 134.0 100.0 0.003 0.008 0.004 -0.003 -o. 100 
CM3S1 50.2 46.0 139.0 3.0 0.129 0.008 0.238 0.230 6.961 

1 week 	 LM3S1 50.5 45.0 150.8 100.0 0.008 0.012 0.013 -0.003 ·0.098 
LM4S1 51.5 46.0 141.5 100.0 0.007 0.012 0.005 ·0.010 -0.314 
LM10S1 50.9 46.0 128.0 50.0 0.007 0.012 0.005 -0.010 -0.284 
LM12S1 50.1 42.0 134.5 100.0 0.005 0.012 0.001 ·0.014 -0.458 
CM3S1 50.2 43.5 141.9 1.0 0.363 0.012 0.499 0.483 15.756 

1 month 	 LM3S1 52.9 30.9 134.5 100.0 0.063 0.012 0.111 0.096 4.174 
LM4S1 52.0 38.7 132.0 100.0 0.012 0.012 0.020 0.004 0.138 
LM10S1 51.1 35.5 133.9 100.0 0.011 0.012 0.007 -0.009 ·0.333 
LM12S1 53.0 46.0 136.8 100.0 0.050 0.012 0.088 0.072 2.141 
CM3S1 50.5 44.1 260.8 0.3 0.077 0.012 0.148 0.133 7.854 
CM3S1(0up) 44.0 19.5 0.5 

Initial Initial 
Soil Volume 
Mass Water 
(gm) (mL) 

LM3S1 20.0 200 

LM4S1 20.1 200 

LM10S1 20.09 200 

LM12S1 20.12 200 

CM3S1 20.33 200 


ug Hg =2.0432(Absorption)·0.00891 for Absorbance < 0.25 
ug Hg =·0.0012084+1.7280(Absorption)·0.96707(Absorbance)~2 for Absorbance > 0.25 < 0.80 



APPENDIX9 


Biological Data Results for Total Mercury performed by FGL 


Laboratories, Santa Paula, CA and the California Department of Fish and 


Game Department Laboratories, Sacramento, CA 




A9-1 
Raw data from FGL laboratories for all species collected as part of the biological study of the Lake 
Nacimiento watershed. 

S~i~s Wt. (g) L(cm) H2 (ppm) Location Feed Habit 
Benthic 

Predator 
Predator 

Phytovore 
Predator 
Predator 
Benthic 

Phytovore 
Predator 
Predator 
Predator 
Benthic 

Predator 
Predator 
Predator 
Benthic 

Phytovore 
Phytovore 

Predator 
Phytovore 

Benthic 
Phytovore 
Phytovore 

Predator 
Benthic 
Benthic 

Phytovore 
Phytovore 
Phytovore 

Benthic 
Benthic 

Phytovore 
Predator 
Benthic 
Benthic 
Benthic 
Benthic 
Benthic 
Benthic 

l.n~bulQSYS 357 
2038 
1662 
44.3 
485 
505 
287 

41 
353 
266 
389 
258 
285 
711 
297 
359 
113 
63 

214 
138 
572 
130 
61 

283 
324 
762 

88 
92 
55 

214.5 
202 

41 
117 
128 
62 
56 

24.5 
38.5 
343 

27.5 
50.3 
46.2 
16.4 
32.5 
33.3 

32 
13.5 
28.5 
26.5 

29 
31 

26.2 
35.4 
26.6 
34.5 
12.5 

15 
25 
19 

36.8 
17.2 
14.8 

28 
35 
39 
15 

15.5 
14.3 
37.3 

24 
13 
21 
21 
17 

17.1 
4.6 
5.1 
27 

6.4 
4.36 
3.48 
1.57 

1.5 
1.23 

1.2 
1.2 

1.06 
0.91 
0.8 
0.8 

0.76 
0.75 
0.71 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.5 
0.5 
0.5 
0.5 

0.43 
0.4 
0.4 

0.36 
0.33 
0.29 
0.26 
0.2 
0.2 

0.17 
0.17 
0.06 
0.05 

0 

Harcourt 
B.V. Reservoir 
B.V. Reservoir 

Entrance 
Harcourt 

Down River 
Harcourt 
Harcourt 
Entrance 
Entrance 

Down River 
Down River 
Down River 

Entrance 
Entrance 
Harcourt 
Harcourt 
Harcourt 

Down River 
Down River 

Entrance 
Harcourt 
Harcourt 

Down River 
Down River 

Entrance 
Harcourt 

Down River 
Entrance 
Entrance 
Entrance 

Down River 
Harcourt 

Down River 
Ramage 
Ramage 
Ramage 
Ramage 

Harcourt 

M.salmQid~s 

M, salmoid~~ 
D.~tenen~ 

M.salmQides 
M,salmQid~s 
I.catus 
L.~:tan~llys 
M.chr:tSQl2S 
M.~hO:SQl2S 
M.salmQiQ~S 

I.l2Yn~tatys 
M.dolQmi~yi 

M.salmoid~s 
M.do1omi~ui 

I.J2ynctatus 
L, macrQchirus 
L. macrochirus 
M.salmQiges 
L.ma~r~hirus 
c.~cid~ntalis 

L.c:tan~llus 

L. macro~hirus 
M,salmQid~~ 

l.J2un~tatus 

C.camio 
L.ma~rQchirus 

L.macrochirus 
L.ma~rQ~hirus 

C.carpio 
I.nebylosus 
L,macrQ~hirus 

M,salmQides 
l,nebylQSUS 
I.n~bulosys 

l.nebylQSUS 
Pacifasticys sl2. 
Pacifasti~us sl2. 
I.nebulosus 



A9-;).

Raw data from COFG labs for all species collected as part of the biological study of the Lake 

Nacimiento watershed. 


Species ·wt. (2) L(cm) Hg (ppm) Location Feed Habit 
M.s.aJmQig~s 511 32.5 2 B.V. Reservoir Predator 
M.~lmoid~~ 563 33.4 1.4 B.V. Reservoir Predator 
M.salmQiQ~S 457 30.6 1.3 B.V. Reservoir Predator 
M.chr):SOJ2S 558 34.5 1.2 Entrance Predator 
o.~t~n~n~ 37.5 16.8 1.2 Entrance Phytovore 
M,dQlQmi~yi 312.5 29.3 1.1 Marina Forks Predator 
M.sal moig~~ 494 33.2 1 Harcourt Predator 
M.salmQig~~ 467 32.3 1 Nac. Riv Fork Predator 
M.salmQide~ 690 35.7 1 Nac. Riv Fork Predator 
M.salmQide~ 281 27.3 0.98 Harcourt Predator 
M.salmoides 604 34.3 0.98 Marina Forks Predator 
M.salmoig~s 481 32.5 0.94 Harcourt Predator 
M.dolQmieyi 532 34.7 0.94 Marina Forks Predator 
M.~h~SQJ2~ 346 29.5 0.81 Entrance Predator 
M.~hr):SQJ;!S 352 30.5 0.8 Entrance Predator 
M.do1Qmi~ui 349 30.8 0.78 Marina Forks Predator 
M,gQ1Qmi~yi 429 31.3 0.78 Nac. Riv. Fork Predator 
M.salmQig~s 482 33.8 0.78 Nac. Riv. Fork Predator 
c.~ao;!io 1160 46.6 0.77 Nac. Riv. Fork Benthic 
M.dolomieyi 422 31.5 0.75 Nac. Riv. Fork Predator 
M.golQmieyi 422 30.8 0.75 Nac. Riv. Fork Predator 
L.ma~ro~hirus 50 13.5 0.74 Harcourt Phytovore 
M,salmQid~s 668 35.4 0.72 Nac. Riv. Fork Predator 
M.~hrysous 328 28.8 0.7 Entrance Predator 
M,salmoig~s 496 34.1 0.69 Nac. Riv. Fork Predator 
M.do1Qmieui 484 33.3 0.69 Nac. Riv. Fork Predator 
M.Chr):SOJ2S 326 29.3 0.68 Entrance Predator 
M.gQlQmi~ui 407 31.4 0.68 Nac. Riv. Fork Predator 
L.c):an~llus 27 12 0.68 Harcourt Phytovore 
M,sal moig~s 587 33.1 0.67 Nac. Riv. Fork Predator 
M,salmQiges 491 31 0.66 Nac. Riv. Fork Predator 
L.~):anellys 39 12.5 0.66 Harcourt Phytovore 
M,dQlQmi~yi 173 24.9 0.65 Nac. Riv Fork Predator 
c.~iQ I 1550 50.8 0.65 Nac. Riv Fork Benthic 
M,gQlomieui I 264 26.3 0.63 Marina Forks Predator 
L,macro&;hirus I 64 15.1 0.62 Harcourt Phytovore 
L.macrQ~hirus 59 13.5 0.62 Harcourt Phytovore 
D.~ten~nse 37.5 16.8 0.61 Entrance Phytovore 
I.uunctatus 243 30 0.6 Down River Benthic 

""' 



A9-~
Raw data from CDFG labs for all species collected as part of the biological study of the Lake 
Nacimiento watershed. 

Species \\'t. (g) L (em) Hg (ppm) Location Feed Hahit 
M,salmQig~s 341 28.6 0.57 Entrance Predator 
M.salmoides 325.5 27.8 0.57 Nac. Riv. Fork Predator 
C. carpio 1256 43.6 0.57 Nac. Riv Fork Benthic 
M.salmoiges 350 28.4 0.56 Nac. Riv. Fork Predatort 
M.dolomi~yi 417 31.7 0.56 Marina Forks Predator 
L.ma~rQ~hirus 64 15 0.56 Down River Phytovore 
M.dolomieyi 256 26.1 0.56 Nac. Riv Fork Predator 
M.salmoid~s 127 18.7 0.55 Harcourt Predator 
M.dQlomi~yi 300 31.1 0.54 Nac. Riv. Fork Predator 
L,ma~rQ~hirns 66 14.5 0.54 Down River Phytovore 
M.salmQiges 27 13 0.54 Down River Predator 
L.macrochirus 57 14 0.53 Down River Phytovore 
M.salmoides 628 35.2 0.51 Nac. Riv. Fork Predator 
C.occidentalis 556 34.6 0.5 Entrance Benthic 
M.salmoides 330 27.8 0.47 Nac. Riv. Fork Predator 
I.J2ynctatus 162 24 0.47 Down River Benthic 
M.salmoides 403 31.3 0.45 Entrance Predator 
C.occidentalis 402 32.7 0.44 Marina Forks Benthic 
C.carpio 1160 46.6 0.4 Nac. Riv. Fork Benthic 
M.dolomi~ui 174 23.5 0.4 Entrance Predator 
D,~tenense 13 11.5 0.39 Nac. Riv Fork Phytovore 
C.ca.rpio 1256 43.6 0.38 Nac. Riv. Fork Benthic 
M.salmQides 249.5 26.1 0.36 Marina Forks Predator 
L.macrochirus 60 14.7 0.36 Marina Forks Phytovore 
M.salmQides 421 29.3 0.35 Marina Forks Predator 
C.carpio 1550 50.8 0.34 Nac. Riv. Fork Benthic 
L.macrochirus 43 12.5 0.34 Harcourt Phytovore 
C,occidentalis 536 34.8 0.34 Marina Forks Benthic 
L.macro~hirus 149.8 19.2 0.33 Marina Forks Phytovore 
C.occidentalis 491 33.1 0.33 Nac. Riv Fork Benthic 
C.occidentalis 453 32.4 0.33 Nac. Riv Fork Benthic 
L.macro~hirus 34 12.4 0.33 Marina Forks Phytovore 
L.ma~rohcirus 60 16 0.31 Marina Forks Phytovore 
C.occidentalis 428 33.3 0.3 Entrance Benthic 
M.chryso12s 164.6 23.3 0.28 Marina Forks Predator 
L.macrochirus 64 14.8 0.28 Nac. Riv Fork Phytovore 
M.salmQides 259 25.4 0.26 Nac. Riv. Fork Predator 
I.n~bulosus 72 17.5 0.24 Down River Benthic 
L.ma~rQchirus 41 12.9 0.23 Marina Forks Phytovore 
L.macrochirus 49 14 0.23 Marina Forks Phytovore 



Raw data from CDFG labs for all species collected as part of the biological study of the Lake 
Nacimiento watershed. 

Species \Vt. (g) L(cm) Hg (ppm) Location Feed Habit 
L,macrQi;hims 55 

42.5 
402 
69.5 
36.5 
536 
16.3 

15 
36.5 

14.6 
13.3 
32.7 
17.7 
5.5 

34.8 
3.8 
3.7 
5.5 

0.2 
0.2 

0.19 
0.14 
0.09 
0.08 
0.07 
0.06 
0.03 

Marina Forks 
Marina Forks 
Marina Forks 

Ramage 
Ramage 

Marina Forks 
Ramage 
Ramage 
Ramage 

Phytovore 
Phytovore 

Benthic 
Benthic 
Benthic 
Benthic 
Benthic 
S..,..i\.."i. 
Benthic 

L,msg:Qs:;hiiY~ 

~.~s:;ig~ntali~ 
I.n~bulQs.y~ 
P~ifi~D!;;Y~ SI!· 
Coccid~ntali~ 
Pf,!cifa~Dkl.!~ SJ2, 
Pas:;ifa~D!;;U5 SJ2, 
Pacifa~ti~u~ SJ2. 


