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Quantum correlations between imprecision and backaction are a hallmark of continuous linear
measurements. Here, we study how measurement-based feedback can be used to improve the visibility
of quantum correlations due to the interaction of a laser field with a nanomechanical oscillator. Backaction
imparted by the meter laser, due to radiation-pressure quantum fluctuations, gives rise to correlations
between its phase and amplitude quadratures. These quantum correlations are observed in the experiment
both as squeezing of the meter field fluctuations below the vacuum level in a homodyne measurement and
as sideband asymmetry in a heterodyne measurement, demonstrating the common origin of both
phenomena. We show that quantum feedback, i.e., feedback that suppresses measurement backaction,
can be used to increase the visibility of the sideband asymmetry ratio. In contrast, by operating the feedback
loop in the regime of noise squashing, where the in-loop photocurrent variance is reduced below the
vacuum level, the visibility of the sideband asymmetry is reduced. This is due to backaction arising from
vacuum noise in the homodyne detector. These experiments demonstrate the possibility, as well as the
fundamental limits, of measurement-based feedback as a tool to manipulate quantum correlations.
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Measurements proceed by establishing correlations
between a system and a meter. In a quantum description
of this process [1], the effect of measurement persists in
the system in the form of measurement backaction. For a
class of measurements—continuous linear measurements
[2,3]—where the meter couples linearly and weakly to
the system, correlations between the system and meter
additionally manifest as backaction-induced quantum
correlations between the degrees of freedom of the meter.
A paradigmatic example is the interferometric position
readout of a mechanical oscillator [4]. The meter in this
case is an optical field, which possesses two degrees of
freedom (quadratures): amplitude and phase. The position
of the oscillator is imprinted onto the phase quadrature.
Backaction arises from vacuum fluctuations of the ampli-
tude quadrature, which are imprinted onto the phase via
the backaction-driven motion of the oscillator, leading to
amplitude-phase correlations in the meter field. In a
homodyne detector, these quantum correlations manifest
as ponderomotive squeezing of an appropriately chosen
field quadrature [5–8]. In a heterodyne detector, they

manifest as motional sideband asymmetry [9–12].
Differences between these effects arise from the details
of how meter fluctuations are converted to a classical signal
by the detection process [10,13–15] [16]
Here, we investigate the effect of measurement-based

feedback on quantum correlations due to the interaction of
an optical field with a nanomechanical oscillator. Recent
advances [18] have enabled operation of an optomechanical
system such that the mechanical oscillator can be measured
at a rate approaching its thermal decoherence rate, a regime
where measurement backaction becomes comparable to the
thermal motion. Harnessing this capability, we show that
feedbackof a homodynemeasurement canbeused to improve
thevisibility ofmotional sideband asymmetry by suppressing
both thermal motion and measurement backaction. Indeed,
the feedback loop cools the oscillator to a final phonon
occupancy (neff ) that is more than 2 orders of magnitude
lower than that due to the quantum backaction (nqba) of the
meter beam. In contrast to previouswork [19–30], our system
therefore operates in the quantum feedback regime, where
quantum backaction is effectively suppressed by feedback,
and feedback can manipulate quantum correlations without
destroying them. This is possible because the measurement
used for feedback contains a faithful record of its own
backaction [31]. Furthermore, we study how these quantum
correlations are obscured in the regime where quantum
noise in the in-loop detector causes the dominant force noise
on the oscillator (i.e., feedback backaction): a regime corre-
sponding to “squashing” of the in-loop photocurrent [32].
Conceptually, this feedback backaction-dominated regime is
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analogous to the quantum-backaction limit of sideband
cooling [33]. Finally, we probe quantum correlations via a
homodyne detector tuned close to the amplitude quadrature
and observe squeezing, i.e., a reduction of the homodyne
photocurrent noise below the vacuum level. By observing
both squeezing and sideband asymmetry in the same field, the
common origin of motional sideband asymmetry [10,14] and
ponderomotive squeezing [8,11] in general linear detection
of the meter field is experimentally illustrated.
A pedagogical description of continuous linear

measurement is germane to understanding our approach.
We denote as xðtÞ the position of a quantum harmonic
oscillator and yðtÞ ∝ xðtÞ the output of a linear continuous
position detector. Since it is a continuous observable,
yðtÞ must commute with itself at different times
(½yðtÞ; yðt0Þ� ¼ 0). The physical motion xðtÞ does not obey
this constraint, which requires that the detector output
contains an additional noise term xnðtÞ that enforces the
commutator. The noise xn contains two components: an
apparent (imprecision) noise, ximp, which arises from quan-
tum fluctuations of the meter degree of freedom coupled to
the detector, and a physical (backaction) noise, xba, which
arises from quantum fluctuations of the meter degree of
freedom coupled to the system. The total detector signal,

y ¼ xþ xba þ ximp ≡ xtot þ ximp, is characterized by a
(symmetrized, double-sided [34]) noise spectrum [2,3],

S̄yyðΩÞ ¼ S̄imp
xx ðΩÞ þ S̄totxxðΩÞ þ 2ReS̄xbaximpðΩÞ; ð1Þ

which contains terms due to quantum fluctuations of the
meter (ximp), total physical motion (xtot), and quantum
(imprecision-backaction) correlations, respectively.
In our experiment, we monitor the position fluctuations

of a cryogenically precooled (T ≈ 6 K) nanomechanical
string coupled dispersively to an optical microcavity [35].
The fundamental out-of-plane mode of the string forms
the oscillator (frequencyΩm ¼ 2π · 4.3 MHz, damping rate
Γm ¼ 2π · 7 Hz). The meter is a laser field passing reso-
nantly through the cavity (wavelength λ ≈ 774 nm), whose
quadratures are monitored simultaneously by a homodyne
and a heterodyne detector [Fig. 1(a)]. Both detectors are
operated with an imprecision far below that at the standard
quantum limit, implying that quantum backaction due to
the measurement (quantified as a phonon occupancy nqba)
contributes significantly to the total motion of the nano-
mechanical oscillator (ntot); in our case, nqba ≈ 0.15ntot.
We first assess the resulting optomechanical quantum

correlations by measuring the output field with a homodyne

(a) (b)

FIG. 1. Using homodyne feedback to increase the visibility of quantum-correlation-induced motional sideband asymmetry. (a) Linear
position measurement and feedback control of a nanomechanical string (Si3N4, red) is provided by evanescent coupling to an optical
microdisk cavity (SiO2, blue). Whispering gallery modes of the microdisk are driven by a pair of tunable diode lasers using a tapered
optical fiber (black). The “meter” field (orange arrow) is directed to a pair of balanced interferometers (homodyne, green; heterodyne,
blue). A delayed and amplified copy of the homodyne signal is imprinted onto the amplitude of the “feedback” field (blue arrow),
effecting cold damping of the fundamental beam mode. The taper, nanobeam, and microdisk are integrated into a He cryostat (grey).
(b) Schematic of the closed-loop homodyne (left) and heterodyne (right) noise spectrum for various feedback gains. With no feedback
(gfb ¼ 0, top panel), the homodyne signal (orange line) is proportional to the total thermal occupation, while the heterodyne signal (blue
line) is asymmetric because of � 1

2
phonon equivalent contributions (red dashed line) from quantum correlations. At optimal feedback

(middle panel), the homodyne signal (black line) coincides with the measurement imprecision (grey line) due to classical correlations
(green dashed line) arising from feedback backaction exactly canceling the total motion (orange dashed line); in this case, visibility of
heterodyne sideband asymmetry is maximum. A further increase in the feedback gain (bottom panel) leads to squashing of the
homodyne signal and a decrease in the visibility of sideband asymmetry in the heterodyne detector due to feedback backaction that is
large compared to the thermal occupation.
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detector. Measuring the quadrature of the meter field at
phase θ, imprecision-backaction correlations in the homo-
dyne signal take the form [see Eq. (B8)]

S̄homxbaximp
ðΩÞ ∝ Cηhom sinð2θÞRe χmðΩÞ; ð2Þ

where C ¼ 4g20nc=κΓm is the multiphoton cooperativity of
the optomechanical system, ηhom is the detection efficiency,
and χmðΩÞ ¼ ð−Ω2 þΩ2

m − iΩΓmÞ−1=m is the susceptibil-
ity of the mechanical oscillator to an applied force. Here, g0
is the vacuum optomechanical coupling rate, nc is the
mean intracavity photon number, and κ (Γm) is the cavity
(oscillator) decay rate. When measuring the phase quad-
rature (θ ¼ π=2), where sensitivity to mechanical motion is
largest [shown in Fig. 1(b), top left], these correlations do
not appear in the homodyne photocurrent. However, near
the amplitude quadrature (θ → 0), the magnitude of the
correlation term can be comparable to the thermal motion,
leading to observable squeezing of the homodyne photo-
current [36]. Figure 2 shows homodyne detection of such
optical squeezing near the amplitude quadrature. The
observed squeezing, while small in magnitude (≈1%),
can still be clearly distinguished in the measurement.
Measurements of squeezing near the amplitude quad-

rature, reported in Fig. 2, are sensitive to laser amplitude
noise [37], which in our experiments constitute less than
0.01% of the observed photocurrent shot noise (see
Appendix A 2). In principle, the effect of laser phase noise
is, on the one hand, negligible for amplitude quadrature
squeezing, while on the other, it is suppressed heavily
because of the bad cavity regime (i.e., Ωm ≪ κ) in which
we operate. In practice, we verify that the squeezing
spectrum is unchanged when using a low-noise Ti∶Sa
laser in lieu of a diode laser.
Detecting ponderomotive squeezing provides bona fide

proof of the presence of quantum correlations in the meter
field. Next, we probe the alternate manifestation of these
correlations as sideband asymmetry—in a heterodyne
detector. A heterodyne detector, as used in the experiment,
monitors both quadratures of the meter simultaneously
(see Appendix 1 a), giving access to S̄hetyy ðΩ > 0Þ, where
S̄hetyy ðΩIF � ΩmÞ corresponds to upper (þ) and lower (−)
motional sidebands (displaced by the heterodyne inter-
mediate frequency ΩIF). Quantum correlations between the
phase and amplitude of the meter manifest as an asymmetry
of the heterodyne motional sidebands. This can be under-
stood from the three terms in Eq. (1), illustrated as
components of the heterodyne signal in Fig. 1(b) (top
right panel). Detector imprecision (gray)—arising from
the vacuum fluctuations in the phase and amplitude
quadrature of the probe—contributes a phonon-equivalent
noise of nhetimp ≡ S̄het;imp

yy ðΩIF �ΩmÞ=S̄zpxxðΩmÞ. Physical
motion—arising from a combination of thermal force
and meter backaction—contributes nm þ 1

2
phonons to each

sideband. Imprecision-backaction correlations—arising
from amplitude-phase correlations in the meter—contribute
� 1

2
phonons to the lower or upper sideband (red dashed

line) [see Eq. (A23)]. Here S̄zpxxðΩmÞ ¼ 4x2zp=Γm is the zero-
point position spectral density on resonance. The resulting
asymmetry of the sidebands (blue traces),

R≡ S̄hetyy ðΩþ
hetÞ − S̄het;imp

yy ðΩþ
hetÞ

S̄hetyy ðΩ−
hetÞ − S̄het;imp

yy ðΩ−
hetÞ

≈
nm

nm þ 1
; ð3Þ

is commensurate with one phonon and arises purely from
quantum correlations in the meter (here,Ω�

het ≡ΩIF �Ωm).
This asymmetry corresponds directly to the visibility of
imprecision-backaction correlations with respect to the
total noise power, i.e.,

ξ≡ 2ReS̄xbaximp
ðΩþ

hetÞ
S̄imp
xx ðΩþ

hetÞ þ StotxxðΩþ
hetÞ

≈
1 − R
1þ R

¼ 1

2nm þ 1
: ð4Þ
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FIG. 2. Squeezing in homodyne detection. Quantum correla-
tions in the meter field exiting the cavity manifest as squeezing
when measured using a homodyne detector set near the amplitude
quadrature. The blue trace shows the shot noise in the homodyne
detector when the meter field is blocked. Red shows the
measurement when the meter field has interacted with the
mechanical oscillator; squeezing at the level of 1% is visible.
Here, the homodyne interferometer, set close to the amplitude
quadrature (θ ≈ 0.15 rad), is fed with a quantum-noise-limited
Ti∶Sa laser such that the optomechanical system is interrogated
with a mean intracavity photon number, nc ≈ 2 × 104. By
directing all of the cavity transmission to the homodyne detector,
we realize an overall detection efficiency of ηhom ≈ 0.2. The
observed squeezing agrees well with the theoretical prediction
(black dashed line); the grey band shows models with 10%
variation in θ, nc, ηhom. The wideband shot noise detected far
from mechanical resonance agrees very well with the expected
local oscillator shot noise. The peak at Ω ≈ 2π × 4.6 MHz is due
to the in-plane mode of the nanobeam, whose contribution to the
imprecision at Ω¼Ωm≈2π×4.3MHz is negligible.
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Our objective is to increase the sideband asymmetry
1 − R in the heterodyne spectrum, and thereby ξ, by
actively cold damping [18,38] the mechanical oscillator
using the homodyne measurement as an error signal.
Concretely, the homodyne signal in the phase quadrature
(θ ¼ π=2) is imprinted onto the amplitude quadrature
of an independent feedback laser resonant with an auxiliary
cavity mode (λ ≈ 840 nm). The loop delay is tuned
(τfb ≈ 176 ns, corresponding to a phase of ϕfb ≈ 3π=2 at
the mechanical frequency) in order to produce a purely
viscous radiation pressure feedback force, effectively
coupling the oscillator at a rate Γfb ≈ gfbΓm to a cold bath
with an occupation equal to the phonon-equivalent homo-
dyne imprecision nhomimp ¼ S̄imp;hom

x ðΩmÞ=2S̄zpx ðΩmÞ (here,
gfb is the dimensionless gain of the feedback loop). The
occupation of the oscillator is thereby reduced to [18,38,39]

nm þ 1

2
≈
ntot
gfb

þ gfbnhomimp ≥ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntotnhomimp

q
; ð5Þ

with the minimum achieved at an optimal gain of

goptfb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntot=nhomimp

q
. (Here, ntot ¼ nth þ nba is the effective

bath occupation of the mechanical oscillator, including
measurement backaction.) Notably, cold damping allows
access to nm → 0 when a highly efficient measurement
is used, corresponding to an imprecision-backaction

product approaching the uncertainty limit 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntotnhomimp

q
→ 1

2
.

Two regimes may be identified: (1) an efficient feedback
regime (gfb < goptfb ), in which the motion of the oscillator—
resulting from thermal noise and measurement
backaction—is efficiently suppressed; (2) an inefficient
feedback regime, in which thermal force and measurement
backaction are overwhelmed by feedback backaction
nfb ¼ g2fbn

hom
imp (i.e., feedback of homodyne imprecision

noise), resulting in an increase of nm. We explore these
regimes in two experiments.
An experimental demonstration of efficient feedback

cooling, where feedback backaction is weak (nfb < ntot), is
shown in Fig. 3. Here, ntot ≈ 7 × 104, corresponding to an
effective bath temperature of 13 K (arising partly because
of quantum measurement backaction, nba ≈ 4 × 104 [18]).
From the perspective of the heterodyne measurement, the
objective is to “distill” a motional sideband asymmetry of
one phonon out of ntot. This is made possible by a low shot-
noise-limited homodyne imprecision of nhomimp ≈ 1.2 × 10−4

[see Fig. 3(d) for details]. To trace out the cooling curve in
Fig. 3(a), the feedback gain is tuned electronically while
keeping all other experimental parameters (such as mean
optical power and laser-cavity detuning) fixed. The side-
band ratio R is extracted from fitting a Lorentzian to each
heterodyne sideband and taking the ratio of the fitted areas.
The phonon occupation nm is inferred from R as well as
the area beneath the lower sideband. In-loop (homodyne)

and out-of-loop (heterodyne) noise spectra are shown in
Fig. 3(b). As a characteristic of the efficient feedback
regime, the area under the left sideband decreases linearly
with gfb, corresponding to nm∝g−1fb [red circles in Fig. 3(a)].
As the optimal gain is approached, the in-loop spectrum
is reduced to the imprecision noise floor [black trace in
Fig. 3(b)]. This transition coincides with the “appearance”
of a sideband asymmetry of 1 − R ≈ 12% (ξ ≈ 6%),
corresponding to nm ≈ 7.3.
To confirm the faithfulness of these measurements, two

major sources of error were investigated:
(1) Drift over the course of measurement can intro-

duce small changes in the relative magnitude of
S̄hetyy ðΩ�

hetÞ. In our experiment, this effect is mitigated
by recording both heterodyne sidebands simultane-
ously. Augmented by operating in the bad cavity
regime (Ωm=κ ≪ 10−3) and the exceptionally
low imprecision of the heterodyne measurement,
nhetimp ¼ ð4ηhetC0ncÞ−1 ≈ 3 × 10−3 [see Fig. 3(d)],
statistical fluctuations of R over the course of a
typical measurement set can be as small as 0.5% [see
Fig. 3(c)]. Error bars for R in Fig. 3(a) are derived
from the standard deviation of similar data sets,
in addition to a small contribution from the fit
covariance matrix. At the largest damping rates,
the reduced heterodyne signal-to-noise ratio results
in insufficient convergence of the periodogram
estimate of the spectra (keeping acquisition time
and analysis bandwidth fixed), leading to larger error
bars, δR ¼ �2%.

(2) Excess laser noise affects R by producing addi-
tional imprecision-backaction correlations [10,37].
Assuming a mean thermal photon occupation of
CqqðppÞ for the amplitude (phase) quadrature of
the injected meter field, the correlator in Eq. (1)
becomes [see Eq. (A26)]

2ReS̄hetxbaximp
ðΩ�

hetÞ
S̄zpxxðΩmÞ

¼∓ ηhet

�
1

2
þ Cqq �

4Δ̄Ωm

κ2
Cpp

�
;

ð6Þ

where ηhet is the heterodyne detection efficiency,
and Δ̄ is the mean laser-cavity detuning. In our
experiment, independent measurements reveal that
Cqq < 0.01 and Cpp < 30 (owing partly to excess
cavity frequency noise) for typical meter powers
of Pin < 5 μW (see Appendix A 2). Operating on
resonance ðΔ̄ ≈ 0Þ and in the bad cavity regime
substantially reduces sensitivity to Cpp. Using a
typical value of Δ̄ ¼ 0.01 × κ, we estimate that
½ð4Δ̄ΩmÞ=κ2�Cpp < 0.005, contributing negligibly
to Eq. (6). Operating in the bad cavity regime also
alleviates systematics arising from an asymmetric
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cavity transduction when Δ̄ ≠ 0: For a finite detun-
ing offset, the apparent asymmetry is given by
4Δ̄Ωm=κ2, which is typically less than 0.1% in
our experiments.

Having established that our measurements of motional
sideband asymmetry are not contaminated by classical
artifacts, the results shown in Fig. 3 may be interpreted
as “distillation” of quantum correlations using feedback.
Efficient measurement-based feedback can therefore coher-
ently modify the response of the optomechanical system
while suppressing quantum backaction but not destroying
the subtle correlations they establish in the meter.
We now explore the complementary regime of inefficient

feedback, where feedback backaction is stronger than the
thermal force and measurement backaction (nfb > ntot). We
access this regime by changing the homodyne/heterodyne
splitting ratio, thereby increasing the homodyne impreci-
sion to nhomimp ≈ 10−3. As shown in Fig. 4, increasing the gain
beyond its optimum value (corresponding to nm ≈ 13.4
and 1 − R ≈ 7%) results in a reduction of the homodyne
signal below the shot-noise level [Fig. 4(b), left panel].
Simultaneously, the areas of the heterodyne sidebands

increase, while their asymmetry (1 − R) decreases. The
discrepancy between “squashing” [32,40] of the in-loop
signal and the “disappearance” of sideband asymmetry
relates to a basic difference between feedback backaction
and meter backaction; namely, feedback backaction is
correlated with the in-loop imprecision and not with the
out-of-loop imprecision [32].
Squashing of the in-loop signal is caused by correlations

between the feedback backaction-driven motion xfb and the
in-loop measurement imprecision [see Eq. (C2)],

2ReS̄homxfbximp
ðΩmÞ

2S̄zpxxðΩmÞ
¼ −nhomimp gfb; ð7Þ

represented by the negative-valued green trace in Fig. 1(b)
(left panel). Interestingly, these classical correlations, in
conjunction with the generalized Heisenberg uncertainty
principle [2,3], can be used to predict the transition from
efficient to inefficient feedback; viz.

S̄FF · S̄imp;hom
xx ≥

ℏ2

2
þ ð2ReS̄Fximp;hom

Þ2 ð8Þ
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FIG. 3. Motional sideband asymmetry in the heterodyne measurement of a cold-damped mechanical oscillator. (a) Heterodyne
sideband asymmetry (R, blue) and inferred mechanical mode occupation (nm, red) vs closed-loop mechanical damping rate (Γfb) for
various feedback gains. A maximum asymmetry of 1 − R ≈ 12% (nm ≈ 7.3) appears as the feedback gain approaches its optimal value.
Dashed lines correspond to models R ¼ nm=ðnm þ 1Þ [Eq. (A25), blue line] and nm þ 1

2
≈ ðΓm=ΓfbÞntot þ ðΓfb=ΓmÞnhomimp [Eq. (5), red

line]. The solid blue band is a confidence interval based on uncertainties in estimates of ntot, nhomimp , and Γm. We infer the feedback
damping rate Γfb from the observed linewidth of the out-of-loop spectra, given by Γm þ Γfb, and the known value of the intrinsic
linewidth Γm ≈ 2π × 7 Hz measured independently. Open red circles are independent estimates of nm based on the area beneath the left
heterodyne sideband. (b) Homodyne (left panel) and heterodyne (right panel) spectra used to obtain (a). Black traces correspond
to lowest occupation; asymmetry is highlighted in the inset. Only a subset of heterodyne spectra are shown, for low nm, with colors
matching the corresponding homodyne spectra. An important feature of these spectra is their low imprecision noise floor, nhomimp ¼
ð16ηhomC0ncÞ−1 ¼ 1.2 × 10−4 and nhetimp ¼ ð4ηhetC0ncÞ−1 ¼ 2.9 × 10−3. This is made possible by the high photon collection efficiency

η ≈ 0.2, single photon cooperativity, C0 ¼ 4g20=κΓm ≈ 0.3, and power handling capacity of the microcavity-based sensor (allowing for
intracavity photon numbers of nc ≈ 104). (c) Statistical fluctuations of R for low feedback gain, indicates the ability to discriminate a
0.5% asymmetry, corresponding to nm ≈ 100. (d) Phonon-equivalent imprecision of the heterodyne and homodyne detectors as a
function of the power of the meter field, showing the linear scaling expected for quantum-noise-limited operation.
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is saturated for goptfb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntot=nhomimp

q
[using Ffb ∝ gfbxhomimp and

Eq. (7)]. The limits of feedback cooling and the prospects
for feedback-based enhancement of quantum correlations
are related to the detection of meter fluctuations and the
choice of feedback strategy—optimization of either seems
pertinent.
Looking forward, efficient measurement-based feedback

may be directly compared against autonomous control
for the manipulation of quantum systems. For example,
unconditional squeezing of a mechanical oscillator may be
realized from a record of the backaction evasion measure-
ment of its motion [41]. Ultimately, with a sufficiently
efficient linear measurement, a harmonic oscillator may be
rendered anharmonic by nonlinear feedback.
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APPENDIX A: EXCESS LASER NOISE

The effect of laser noise on sideband asymmetry mea-
surements is well studied for cavity optomechanical sys-
tems in the resolved sideband regime [37,42]. In this case,
sidebands have been observed separately by scattering
them into the cavity with a probe laser red/blue detuned.
Here, we discuss the effect of laser noise on sideband
asymmetry measurements in the “bad cavity” regime
(Ωm ≪ κ), wherein a resonant probe is used to detect the

sidebands simultaneously in a heterodyne measurement.
A theoretical model is developed in Sec. A 1. In Sec. A 2,
we present measurements confirming the negligible con-
tribution of laser noise to the reported results.

1. Contribution of excess noise for resonant probing
and simultaneous detection of sidebands

In our experiment, we probe the optomechanical system
using a resonant laser at frequency ωL. The photon flux
amplitude operator of the laser, ainðtÞ, is assumed to have
the form

ainðtÞ ¼ e−iωLt½āin þ δainðtÞ�; ðA1Þ

where āin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin=ℏωL

p
is the mean photon flux and the

fluctuations δainðtÞ satisfy

½δainðtÞ; δa†inðt0Þ� ¼ αδðt − t0Þ: ðA2Þ
Note that we explicitly “tag” the commutator so as to
follow its contribution to the measured quantities [10]; in
reality, α ¼ 1.
The canonically conjugate quadratures corresponding to

the fluctuations are defined as

δqinðtÞ ≔
δainðtÞ þ δa†inðtÞffiffiffi

2
p ;

δpinðtÞ ≔
δainðtÞ − δa†inðtÞ

i
ffiffiffi
2

p ; ðA3Þ

such that

½δqinðtÞ; δpinðt0Þ� ¼ iαδðt − t0Þ: ðA4Þ
Excess (“classical”) noise in the laser is modeled as
Gaussian fluctuations, for which
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FIG. 4. Appearance and disappearance of sideband asymmetry. (a) Repeat of the experiment shown in Fig. 3(a) with lower homodyne
detection efficiency. Feedback with the same range of gain results in lower optimal asymmetry (R ≈ 6%) and accesses the “strong
feedback” regime in which feedback backaction (nfb) dominates physical motion, resulting in reduced R. Black points are an estimate of
the mechanical occupation due to feedback backaction, nm;fb ¼ ðΓm=ΓfbÞnfb ¼ gfbnhomimp , based on the noise floor of the homodyne
spectra. (b) Left panel: In-loop homodyne spectra. In the strong feedback regime, noise is “squashed” (reduced below the open-loop
imprecision), corresponding to in-loop squeezing. Right panel: Out-of-loop heterodyne spectra. Inefficient feedback manifests as an
increase in the off-resonant noise power and reduced asymmetry.
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� hδqinðtÞδqinðt0Þi hδqinðtÞδpinðt0Þi
hδpinðtÞδqinðt0Þi hδpðtÞδpðt0Þi

�

¼ 1

2

�
αþ 2Cqq iαþ 2Cqp

−iαþ 2Cqp αþ 2Cpp

�
δðt − t0Þ: ðA5Þ

The terms Cij (i ¼ q, p) represent the noise in excess of the
fundamental vacuum fluctuations in the field quadratures,
distributed uniformly (i.e., “white”) in frequency. We hence-
forth omit the cross-correlationCqp and attempt to bound its
effect via an appropriate inequality [43] (see Sec. A 3). Thus,

� hδainðtÞδainðt0Þi hδainðtÞδa†inðt0Þi
hδa†inðtÞδainðt0Þi hδa†inðtÞδa†inðt0Þi

�

¼ 1

2

�
Cqq − Cpp 2αþ Cqq þ Cpp

Cqq þ Cpp Cqq − Cpp

�
: ðA6Þ

We now consider an optomechanical system where the
optical cavity is driven by a noisy input field satisfying
Eq. (A6). The mechanical oscillator couples to the cavity
field via radiation pressure and is additionally driven by a
thermal Langevin force. Fluctuations of the intracavity field
amplitude (δa) and the mechanical oscillator amplitude
(δb) around their stable steady states satisfy [47]

_δa ¼ þiΔδa −
κ

2
δaþ igðδbþ δb†Þ þ ffiffiffi

κ
p

δain; ðA7Þ

_δb ¼ −iΩmδb −
Γm

2
δbþ iðg⋆δaþ gδa†Þ þ

ffiffiffiffiffiffi
Γm

p
δbin:

ðA8Þ
Here, Δ ¼ ωL − ωc is the laser detuning, g ¼ g0ā is the
dressed (“multiphoton”) optomechanical coupling rate,
and ā ¼ ffiffiffi

κ
p

āin=ðκ=2Þ − iΔ is the mean intracavity field
amplitude. We have also assumed here that the cavity
decay rate is dominated by its external coupling, i.e.,
κ ¼ κ0 þ κex ≈ κex. The mechanical Langevin noise corre-
lators are

hδbinðtÞδb†inðt0Þi ¼ ðnth þ βÞδðt − t0Þ; ðA9Þ

hδb†inðtÞδbinðt0Þi ¼ nthδðt − t0Þ; ðA10Þ

where nth is the ambient mean thermal phonon occupation
of the oscillator. Note that we also “tag” the contribution
due to the zero-point fluctuation of the thermal bath to
determine its role in the observables; in reality, β ¼ 1.
Equations (A7) and (A8) can be solved in the Fourier

domain,

δa½Ω� ¼ χc½Ω�½
ffiffiffi
κ

p
δain½Ω� þ igðδb½Ω� þ δb†½Ω�Þ�; ðA11Þ

δa†½Ω� ¼ δa½−Ω�† ¼ χ⋆c ½−Ω�½
ffiffiffi
κ

p
δa†in½Ω� − ig⋆ðδb½Ω� þ δb†½Ω�Þ�;�

δb½Ω�
δb†½Ω�

�
¼

ffiffiffiffiffiffi
Γm

p
N ½Ω�

�
χ⋆−1m ½−Ω� − iΣ½Ω� −iΣ½Ω�

þiΣ½Ω� χ−1m ½Ω� þ iΣ½Ω�

��
δbin½Ω�
δb†in½Ω�

�

þ i
ffiffiffi
κ

p
N ½Ω�

�
g⋆χ⋆−1m ½−Ω�χc½Ω� gχ⋆−1m ½−Ω�χ⋆c ½−Ω�
−g⋆χ−1m ½Ω�χc½Ω� −gχ−1m ½Ω�χ⋆c ½−Ω�

��
δain½Ω�
δa†in½Ω�

�
: ðA12Þ

Here, χm and χc are the bare mechanical and cavity
response functions, respectively, given by

χm½Ω� ≔ ½Γm=2 − iðΩ −ΩmÞ�−1;
χc½Ω� ≔ ½κ=2 − iðΩþ ΔÞ�−1: ðA13Þ

Note that Σ½Ω� is the mechanical “self-energy,”

Σ½Ω� ¼ −ijgj2ðχc½Ω� − χ⋆c ½−Ω�Þ ¼ Σ⋆½−Ω�; ðA14Þ
which describes the modification to the mechanical
response due to radiation pressure, and

N ½Ω� ¼ χ−1m ½Ω�χ⋆−1m ½−Ω� þ 2ΩmΣ½Ω� ¼ N ⋆½−Ω�: ðA15Þ
The input-output relation, δaout ¼ δain −

ffiffiffi
κ

p
δa, gives

the fluctuations of the output fields in terms of the
fluctuations of the input fields:

δaout ¼ A½Ω�δain þ B½Ω�δa†in þ C½Ω�δbin þD½Ω�δb†in;
ðA16Þ

where

A½Ω� ¼ 1 − κχc½Ω� −
2ijgj2κΩmχc½Ω�2

N ½Ω�

≈ −
�
1þ 4i

Δ
κ

��
1þ C0nc

2iΩmΓm

N ½Ω�
�
;

B½Ω� ¼ −
2ig2κΩmχc½Ω�χ⋆c ½−Ω�

N ½Ω� ≈ −C0nc
2iΩmΓm

N ½Ω� ;

C½Ω� ¼ −
ig

ffiffiffiffiffiffiffiffi
κΓm

p
N ½Ω� χc½Ω�χ⋆−1m ½−Ω�

≈ −i
ffiffiffiffiffiffiffiffiffiffi
C0nc

p �
1þ 2i

Δ
κ

�
Γmχm½Ω�;

D½Ω� ¼ −
ig

ffiffiffiffiffiffiffiffi
κΓm

p
N ½Ω� χc½Ω�χ−1m ½Ω�

≈ −i
ffiffiffiffiffiffiffiffiffiffi
C0nc

p �
1þ 2i

Δ
κ

�
Γmχ

⋆
m½−Ω�: ðA17Þ
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Here, approximate expressions are given for the case of
interest, namely, resonant probing (jΔj ≪ κ), small side-
band resolution (Ωm ≪ κ), and weak coupling (jgj ≪ κ).
We have also introduced the single-photon cooperativity,
C0 ¼ 4g20=ðκΓmÞ, and the mean intracavity photon number,
nc ¼ jāj2.
Balanced heterodyne detection of the cavity output is

used to measure motional sideband asymmetry. The output
field is superposed on a balanced beam splitter with a
frequency-shifted local oscillator,

aLO ¼ e−iðωLþΩIFÞtðāLO þ δaLOÞ: ðA18Þ

The fields at the output of the beam splitter,
1ffiffi
2

p ðaLO � aoutÞ, are detected with identical square-law

detectors, whose photocurrents are subtracted. Note the
implicit assumption that the local oscillator and signal paths
are balanced in length; together with a balance of power
beyond the combining beam splitter, this ensures suppres-
sion of common-mode excess noise [13].
The difference photocurrent is described by the

operator

I ∝ a†LOaout þ H:c: ðA19Þ

When āLO ≫ āout, fluctuations in the photocurrent are
described by

δIðtÞ ∝ e−iΩIFtā⋆LOδaoutðtÞ þ H:c: ðA20Þ

The power spectrum of the heterodyne photocurrent is
proportional to

S̄hetII ðΩÞ ¼
1

2

Z
∞

−∞
hfδIðtþ t0Þ; δIðt0ÞgieiΩtdt; ðA21Þ

where we have introduced the (time-averaged) current
correlator,

fδIðtþ t0Þ; δIðt0Þg ∝ e−iΩIFtfδa†outðtÞ; δaoutð0Þg
þ eþiΩIFtfδaoutðtÞ; δa†outð0Þg:

ðA22Þ

Assuming ΩIF ≫ Ωm > 0, we obtain, for the balanced
heterodyne spectrum normalized to the local oscillator
shot noise,

S̄hetII ðΩ − ΩIFÞ ≈ αþ 4C0nc
Γ2
m

4

�
jχm½−Ω�j2

�
ntot þ

β

2
−
�
α

2
þ Cqq

�
þ 4ΔΩm

κ2
Cpp

�

þjχm½Ω�j2
�
ntot þ

β

2
þ
�
α

2
þ Cqq

�
þ 4ΔΩm

κ2
Cpp

��
: ðA23Þ

This represents the heterodyne spectrum measured in the experiment and depicted in Figs. 3 and 4. Here, the total bath
occupation, arising from the ambient thermal bath and the measurement backaction due to the meter beam, is given by

ntot ¼ nth þ C0nc(αþ Cqq þ
�
4ΔΩm

κ2

�
2

Cpp)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nba

: ðA24Þ

The sideband ratio extracted from such a spectrum is

R ≔
Rþ∞
0þ (S̄hetII ðΩ −ΩIFÞ − S̄hetII ðΩ ¼ Ωþ

IF Þ) dΩ
2πR

0−

−∞ (S̄hetII ðΩ −ΩIFÞ − S̄hetII ðΩ ¼ Ω−
IF Þ) dΩ

2π

¼ ntot þ β−α
2

− Cqq þ 4ΔΩm
κ2

Cpp

ntot þ βþα
2

þ Cqq þ 4ΔΩm
κ2

Cpp

¼ ntot þ ð4ΔΩm
κ2

Cpp − CqqÞ
ntot þ 1þ ð4ΔΩm

κ2
Cpp þ CqqÞ

: ðA25Þ

First, characteristic of linear detection, deviation
of R from unity in the ideal case ðCqq ¼ 0 ¼ CppÞ
is due to correlations developed between the

quantum-backaction-driven mechanical motion and the
detection process [10,42]. When Cqq and Cpp are finite,
classical correlations are established that affect R.
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The response of the cavity (for Δ=κ ≈ 0) ensures that
excess classical correlations due to input amplitude noise
lead to an enhanced asymmetry, whereas those arising
from input phase noise lead to a common increase in the
sideband noise power.

a. Expression for S̄hetyy ðΩÞ
In order to compare with Eq. (1), we identify the

heterodyne spectrum Eq. (A23) with that of a position-
equivalent heterodyne observable yhet, viz.,

S̄hetyy ðΩ −ΩIFÞ ¼
�

1

4C0nc

�
S̄zpxxðΩmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S̄imp;het
xx ðΩÞ

þ Γ2
m

4
ðjχm½−Ω�j2 þ jχm½Ω�j2Þ

�
ntot þ

1

2

�
S̄zpxxðΩmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S̄totxxðΩÞ

þ Γ2
m

4
(jχm½−Ω�j2

�
1

2
þ Cqq þ

4ΔΩm

κ2
Cpp

�
þ jχm½Ω�j2

�
−
1

2
− Cqq þ

4ΔΩm

κ2
Cpp

�
)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2ReS̄hetxbaximp
ðΩÞ

: ðA26Þ

The identification is made by comparing the magnitude
of the total thermal noise signal S̄totxx .

b. Sensitivity of heterodyne and homodyne readout

In the main text, frequent use is made of the phonon-
equivalent sensitivity of the heterodyne and homodyne
detectors. The sensitivity of balanced heterodyne detection
(for the ideal case ηhet ¼ 1), quantified as imprecision
quanta,

nhetimp ¼ ð4ηhetC0ncÞ−1; ðA27Þ

is reduced by a factor of 4 compared to balanced homodyne
detection (for the ideal case ηhom ¼ 1) of the phase
quadrature of the output field, for which

nhomimp ¼ ð16ηhomC0ncÞ−1: ðA28Þ

This loss arises in equal part because (a) the heterodyne
spectrum is double-sided and (b) both quadratures of the
output field are detected.

2. Measurement of excess laser noise

a. Excess amplitude noise

In order to measure the noise in the amplitude quad-
rature, we employ direct photodetection of the probe laser
(NewFocus Velocity). The measurement is made at the
output of the tapered fiber, with the fiber retracted from
the cavity. Analysis of the resulting photocurrent reveals
the single-sided spectrum of the incident optical intensity
(referred here for convenience to the incident optical power
P ¼ ℏωL _n),

S̄PðΩÞ ¼ ðℏωLÞ2 · 2S̄ _n _nðΩÞ ¼ ðℏωLÞ2 · 2h _nið1þ 2CqqÞ:
ðA29Þ

A convenient characterization of the intensity noise is via
the relative intensity noise (RIN) spectrum,

S̄RINðΩÞ ≔
S̄PðΩÞ
hPi2 ; ðA30Þ

where excess amplitude noise manifests as a deviation from
the shot-noise scaling ∝ 1=hPi; more precisely,

Cqq ¼
1

2

�h _ni
2

S̄RINðΩÞ − 1

�
: ðA31Þ

Figure 5 shows an inference of Cqq using Eq. (A31) and a
measurement of S̄RINðΩÞ vs mean optical power. For
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FIG. 5. Integrated (in a 100-kHz band) relative intensity
noise Var½P�=hPi2 ≔ R

S̄RINðΩ ≈ ΩmÞðdΩ=2πÞ vs mean optical
power. Deviation from shot-noise scaling is evident for
hPi≳ 1 mW, attributed to classical amplitude noise.
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typical experimental conditions (hPi ¼ 1–5 μW),
Cqq ≈ 10−4, so its contribution to sideband asymmetry is
negligible.
Similar measurements performed on a Ti∶Sa laser

(MSquared Solstis) do not show deviation from shot-noise
behavior even at 1 mW; indeed, the ability to discern excess
amplitude noise is limited by the saturation of our photo-
detectors beyond about 2 mW of incident power. The
squeezing measurements in Fig. 2 are performed using the
Ti∶Sa laser.

b. Excess phase noise

Noise in the phase quadrature of the field leaking from
the cavity is measured using balanced homodyne detection.
This signal reveals phase noise originating from the input
laser as well as apparent phase noise from the cavity.
Referred to as cavity frequency noise, the homodyne
photocurrent spectral density is given by

S̄ωðΩÞ ¼ Ω2S̄ϕðΩÞ
¼ Ω2½S̄in;shotϕ ðΩÞ þ S̄in;exϕ ðΩÞ
þS̄cav;exϕ ðΩÞ þ S̄cav;mech

ϕ ðΩÞ�: ðA32Þ
Here, S̄ω contains contributions from laser phase noise
(shot and excess), cavity substrate noise (including ther-
morefractive [48,49] and thermomechanical noise [50]) and
thermal motion of other modes of the mechanical resonator.
The total excess noise in the phase quadrature is modeled
by Cpp, which allows us to infer the latter using

Cpp

h _ni ¼ S̄in;exϕ ðΩmÞ þ S̄cav;exϕ ðΩmÞ: ðA33Þ

Figure 6(c) shows a homodyne measurement made
with 3 mW of local oscillator power, whose shot noise
has been subtracted. The spectrum is calibrated by
referencing it against a known phase modulation tone
injected at the input of the homodyne interferometer [52].
The total excess frequency noise (red line) is dominated
by thermal motion of the in-plane and out-of-plane modes,
both of which are gas damped for this measurement. A
joint fit to (a) a model of a velocity-damped oscillator
(blue dashed line) and (b) a model combining thermor-
efractive [48,49] and white frequency noise (black dashed
line), gives an estimate of S̄exω ðΩÞ. Frequency noise
intrinsic to the diode laser was independently measured
using an imbalanced interferometer, consistent with the
model used to fit the total observed frequency noise. Near
the mechanical frequency, S̄exω ðΩmÞ ≈ 2πð35 Hz=

ffiffiffiffiffiffi
Hz

p Þ2,
implying [via Eq. (A33)] Cpp ≈ 30 (using signal power
of ≈100 nW).
From this estimate of Cpp, we are able to bound two

quantities. First, in conjunction with Cqq ≪ 0.01, the
excess noise cross-correlation is bounded as Cqp ≪ 1.
Second, referring to Eq. (A23), we are able to estimate
the contribution of phase noise to the heterodyne sideband.
This contribution, characterized as an equivalent phonon
occupation (since it adds positive noise power to either
sideband),

nϕ ¼ Δ
κ

4Ωm

κ
Cpp; ðA34Þ

has a mean value determined by the mean offset in the
detuning Δ̄. Figure 6(a) allows an estimate, Δ̄ ≈ 0.01 · κ,
giving
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FIG. 6. (a) Residual detuning offset at dc estimated from the transmission signal when the laser is locked to the cavity. (b) Spectrum
analysis of the lock error signal, generated via frequency-modulation spectroscopy [51], reveals low-frequency detuning jitter; when
locked (red line), apparent detuning noise is limited by electronic noise (gray line) in the feedback loop, predominantly from the
photodetector. (c) Excess frequency noise around the mechanical frequency inferred from a balanced homodyne measurement of the
cavity output on resonance. The shot-noise-subtracted signal (red line) is composed of the thermomechanical motion of the mechanical
mode (blue dashed line) and a contribution from excess frequency noise in the laser and cavity substrate (black dashed line).
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n̄ϕ ¼ Δ̄
κ

4Ωm

κ
Cpp

¼ 0.0052 ·

�
Δ̄=κ
0.01

�
4

�
Ωm=2π
4.3 MHz

��
1 GHz
κ=2π

��
Cpp

30

�
:

ðA35Þ
Low-frequency detuning noise δΔ [Fig. 6(b)] causes
deviations from this mean, which are significant if their
effect is comparable to n̄ϕ. We bound the probability
for such “large” statistical excursions using Chebyshev’s
inequality [53],

Prðjnϕ − n̄ϕj > n̄ϕÞ ≤
Var½nϕ�

n̄2ϕ

¼
�
4Ωm

κ

Cpp

n̄ϕ

�
2Var½δΔ�

κ2

≈ 10−6: ðA36Þ
We thus estimate that mean residual detuning is the

leading contribution to phase noise contamination; how-
ever, the contamination, characterized as a phonon-
equivalent noise power n̄ϕ ¼ 0.005, is an insignificant
contribution to the sideband ratio Eq. (A25).

3. Bounding the value of the classical
noise cross-correlation Cqp

In Ref. [37], excess classical noise in the laser is modeled
as an independent classical stochastic process introduced
explicitly into δain. The added term, being a classical
stochastic process, obeys a Cauchy-Schwarz inequality
for its second moments, resulting in the inequality
Cqp ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CqqCpp

p
, which may be employed to bound the

magnitude of Cqp, given measurements of Cqq and Cpp.
Here, we consider a more natural alternative, where the

ansatz Eq. (A6) is supposed to arise from a choice of the
underlying quantum state that models the classical com-
ponent of the noise. From this perspective, the ansatz in
Eq. (A6) is a valid one as long as it arises from a legitimate
quantum state ρ. The sufficient condition for the matrix in
Eq. (A6) to be a valid covariance matrix is [54]

V ≔
� 1

2
þ Cqq Cqp

Cqp
1
2
þ Cpp

�
≥ 0: ðA37Þ

In particular, this implies that TrV ≥ 0 and detV ≥ 0; the
latter condition gives

C2
qp ≤ CqqCpp þ

1

2
ðCqq þ CppÞ

≤ CqqCpp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CqqCpp

p
¼ CqqCpp

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CqqCpp
p

�
: ðA38Þ

Here, the second line is obtained by employing the
inequality Cqq þ Cpp ≥ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CqqCpp

p
, which generally fol-

lows from the fact that Cqq;pp are positive.
Ultimately, in the limit CqqCpp ≫ 1, we recover the

result in Ref. [37], namely, Cqp ≤ ðCqqCppÞ1=2; however,
in the opposite limit, CqqCpp ≪ 1, the appropriate bound is
Cqp ≤ ðCqqCppÞ1=4, so employing the conventional
Cauchy-Schwarz inequality would lead to an underestimate
of Cqp.
In our case, CqqCpp ≈ 3 × 10−3, and Eq. (A38) sug-

gests Cqp ≪ 1.

APPENDIX B: SQUEEZING
IN HOMODYNE DETECTION

In the experimentally relevant bad cavity regime,
Ωm ≪ κ, resonant probing Δ ¼ 0, and quantum-noise
limited probe laser, a significantly simplified analysis
illustrates the presence of correlations in the transmitted
field.
Following from Eqs. (A16) and (A17), the cavity trans-

mission is given by

δaout½Ω� ≈ −δain½Ω� − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0ncΓm

p
xzp

ðxth½Ω� þ xba½Ω�Þ;

ðB1Þ

where the total motion, x ≔ xzpðbþ b†Þ, has been parti-
tioned into the (intrinsic) thermal motion xth because of the
ambient environment,

δxth½Ω� ≔ xzp
ffiffiffiffiffiffi
Γm

p
ðχm½Ω�δbin½Ω� þ χm½−Ω��δb†in½Ω�Þ;

ðB2Þ

and xba, the backaction-driven motion,

δxba½Ω� ≔ xzp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0ncΓm

p 2Ωm

N ½Ω� δqin½Ω�

≈ xzp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0ncΓm

p δqin½Ω�
ðΩ −ΩmÞ − iðΓm=2Þ

ðB3Þ

because of the vacuum fluctuations in the amplitude
quadrature of the input optical field. Note that the second
equality neglects dynamical backaction and assumes a
high-Q mechanical oscillator.
In terms of the amplitude (δq) and phase (δp) quad-

ratures, Eq. (B1) takes the form
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δqout½Ω� ¼ −δqin½Ω�;

δpout½Ω� ¼ −δpin½Ω� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0ncΓm

p
xzp

ðxth½Ω� þ xba½Ω�Þ

¼ −δpin½Ω� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C0ncΓm

p xth½Ω�
xzp

−
2C0ncΓm

ðΩ −ΩmÞ − iðΓm=2Þ
δqin½Ω�: ðB4Þ

Note that the transmitted phase quadrature has a
component proportional to the transmitted amplitude quad-
rature, leading to phase-amplitude correlations described
by the (unsymmetrized, double-sided) cross-correlation
spectrum,

Soutpq ðΩÞ ¼ −
i
2
þ C0ncΓm

ðΩ − ΩmÞ − iðΓm=2Þ
; ðB5Þ

where the first term is due to the commutation relation of
the transmitted fields, while the second arises from corre-
lations induced by the optomechanical interaction.
Homodyne detection of the phase quadrature, corre-

sponding to a measurement of δpout alone, does not give
access to these optomechanically induced correlations.
However, homodyne detection at a finite phase offset θ,
corresponding to a measurement of

δqθout½Ω� ≔ δqout½Ω� cos θ þ δpout½Ω� sin θ; ðB6Þ

can directly access amplitude-phase correlations. Indeed, the
homodyne photocurrent spectrum, S̄hom;θ

II ðΩÞ∝ S̄out;θqq ðΩÞ,
takes the form

S̄hom;θ
II ðΩÞ ∝ cos2θS̄outqq ðΩÞ þ sin2θS̄outppðΩÞ

þ sinð2θÞReSoutpqðΩÞ; ðB7Þ

so for θ ≠ 0, π=2, the correlation term is manifest. Including
the effect of nonideal detection efficiency, ηhom ≤ 1, and
normalizing to shot noise, the homodyne photocurrent
spectrum is

S̄hom;θ
II ðΩÞ ¼ 1þ 4C0ncηhom

S̄xxðΩÞ
x2zp

sin2θ

þ 2C0ncηhom ΓmðΩ−ΩmÞ
ðΩ−ΩmÞ2þðΓm=2Þ2 sinð2θÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2ReS̄hom;θ
xbaximp

ðΩÞ

: ðB8Þ

The last term, antisymmetric in frequency about the
mechanical resonance frequency Ωm, can contribute neg-
atively to the photocurrent spectrum, leading to squeezing
below the shot-noise level. The last term can be identified
as being due to correlations between the backaction-driven
motion xba and the fluctuations of the transmitted field that

set the imprecision in homodyne detection. The above
equation is used to fit the squeezing spectrum in Fig. 2.

1. Relation to heterodyne sideband asymmetry

Following the discussion of heterodyne detection in
Sec. A 1, leading up to Eqs. (A21) and (A22), the
heterodyne photocurrent spectrum centered around the
intermediate frequency ΩIF is given by

S̄hetII ðΩ − ΩIFÞ ∝ S̄outqq ðΩÞ þ S̄outppðΩÞ
þ ImðSoutqp ð−ΩÞ − Soutpq ðþΩÞÞ; ðB9Þ

where Ω ≥ 0 and the approximation ΩIF ≫ Ωm ≫ 0 is
used. Indeed, the asymmetry in the heterodyne spectrum,
about Ω ¼ ΩIF, arises from the imaginary part of the
quantum correlations between the phase and amplitude
of the transmitted field. Compared to the analogous
expression for the homodyne photocurrent spectrum in
Eq. (B7), where the real part of the correlation leads to
optical squeezing, it is the imaginary part of the phase-
amplitude correlation [Eq. (B5)] that contributes to side-
band asymmetry.

APPENDIX C: DISPLACEMENT SPECTRUM OF
A COLD-DAMPED MECHANICAL OSCILLATOR

Here, we recall a few useful expressions for the
displacement spectrum of a cold-damped mechanical
oscillator [18,38]. We denote by x the physical displace-
ment of the oscillator and by yhom ¼ xþ xhomimp the apparent
displacement measured at the in-loop (homodyne) detector.
Following the arguments detailed in the supplementary
information of Ref. [18], we get

S̄xðΩÞ ¼ jχeffðΩÞj2ð2ntot þ 1ÞS̄zpx ðΩmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S̄totx ðΩÞ

þ jχeffðΩÞj2ð2nhomimp g
2
fbÞS̄zpx ðΩmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S̄fbx ðΩÞ

ðC1Þ

for the physical displacement spectrum and

S̄homy ðΩÞ ¼ 2nhomimp S̄
zp
x ðΩmÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

S̄imp;hom
x ðΩÞ

þ jχeffðΩÞj2ð2ntot þ 1ÞS̄zpx ðΩmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S̄totx ðΩÞ

þ jχeffðΩÞj2ð−2nhomimp gfbÞS̄zpx ðΩmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2ReS̄homxfbximp

ðΩÞ

ðC2Þ

for the apparent displacement spectrum. Here, the effective
susceptibility for the displacement is given by
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χeff ¼
ΩmΓm

ðΩ2
m −Ω2Þ þ iΩðΓm þ ΓfbÞ

; ðC3Þ

where Γfb ¼ Γmgfb is the feedback damping rate. In the
main text, we use the approximation Γm þ Γfb ≈ Γfb.
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