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Abstract

African trypanosomes have complex life cycles comprising at least ten developmental

forms, variously adapted to different niches in their tsetse fly vector and their mammalian

hosts. Unlike many other protozoan pathogens, they are always extracellular and have

evolved intricate surface coats that allow them to obtain nutrients while also protecting them

from the immune defenses of either insects or mammals. The acquisition of macromolecular

nutrients requires receptors that function within the context of these surface coats. The best

understood of these is the haptoglobin–hemoglobin receptor (HpHbR) of Trypanosoma bru-

cei, which is used by the mammalian bloodstream form of the parasite, allowing heme acqui-

sition. However, in some primates it also provides an uptake route for trypanolytic factor-1, a

mediator of innate immunity against trypanosome infection. Recent studies have shown that

during the evolution of African trypanosome species the receptor has diversified in function

from a hemoglobin receptor predominantly expressed in the tsetse fly to a haptoglobin–

hemoglobin receptor predominantly expressed in the mammalian bloodstream. Structural

and functional studies of homologous receptors from different trypanosome species have

allowed us to propose an evolutionary history for how one receptor has adapted to different

roles in different trypanosome species. They also highlight the challenges that a receptor

faces in operating on the complex trypanosome surface and show how these challenges

can be met.

Living in the Hinterland

Receptor proteins of a persistent extracellular pathogen, such as the African trypanosome,

inhabit the hinterlands. Outside the safety and protection of the cell body, they experience an

environment full of opportunity but where opportunity is matched with danger. The blood

and tissue fluids of a mammalian host, or the tissue and blood meals of the biting insects that

they inhabit, are nutrient-rich, and receptors are bathed with molecules of great value to the

parasite. However, these parasites are also vulnerable and potentially under attack by the

immune system of the host and, if detected, risk destruction. The receptors are, therefore,

under pressure at the molecular and cellular level to retain the capacity to bind their ligands

while avoiding the consequences of recognition by the host.
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It is this context in which the haptoglobin–hemoglobin receptors (HpHbR) of the African

trypanosomes operate. HpHbR first gained fame as the primary uptake route for trypanolytic

factor-1 (TLF-1) [1], one of the innate immunity factors in serum responsible for rendering

the majority of African trypanosomes unable to infect humans and some other primates [2–8].

This lytic factor contains a pore-forming component, ApoLI, which kills trypanosomes [9] as

well as the haptoglobin-related protein, Hpr, which provides an uptake route for TLF1 through

its interaction with HpHbR [1]. HpHbR is the best understood trypanosome receptor, and

a recent series of studies allows us to propose how it has evolved during trypanosome specia-

tion—changing structure, ligand-specificity, and expression pattern to adapt to different roles

[10–14] (Fig 1).

An Ancient Receptor with a Changing Role

HpHbR was first identified in Trypanosoma brucei and its two human infective subspecies, T.

b. rhodesiense and T. b. gambiense [1]. In these trypanosomes, the receptor is expressed in the

proliferative slender bloodstream form of the parasite, in which it mediates the acquisition of

heme [1]. Under normal circumstances, human blood contains little free hemoglobin (Hb), as

Hb released from damaged erythrocytes is detoxified through interaction with haptoglobin

(Hp) to form haptoglobin–hemoglobin (HpHb) complexes [15, 16]. These are then cleared

from the blood through endocytosis by macrophages via the CD163 receptor [16]. T. brucei
HpHbR (TbHpHbR) binds specifically to HpHb, allowing the cell to scavenge heme [1].

Fig 1. The structures of trypanosome surface proteins. A. The structures of the major surface proteins of the T. congolense epimastigote,

the glutamic acid rich protein (GARP) and of the T. brucei bloodstream form, the variant surface glycoprotein (VSG), and the structures of the

T. brucei and T. congolense haptoglobin–hemoglobin receptors (TbHpHbR and TcHpHbR). Both TbHpHbR and TbVSG are elongated by

additional C-terminal domains, which are not represented [10]. B. The structure of a complex of two TcHpHbR bound to a single hemoglobin

tetramer. The receptors are coupled to the cell membrane by a GPI anchor and will tilt in order to simultaneously bind to a single hemoglobin.

C. The structure of a complex of two TbHpHbR bound to a haptoglobin–hemoglobin tetramer (silver and gold), showing how the kink in the

receptor allows two membrane-linked TbHpHbR to simultaneously bind to a single HpHb.

doi:10.1371/journal.ppat.1006055.g001
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However, TbHpHbR has no appreciable affinity for free Hb [1], which is generally present at

only negligible levels in the blood.

As all African trypanosomes share the capacity of T. b. brucei to live in the blood of their

various mammalian hosts, it was assumed that HpHbR would have a similar role across spe-

cies. However, a recent discovery revealed that HpHbR in the common cattle pathogen T. con-
golense has very different properties [12, 14]. Firstly, the T. congolense receptor has different

ligand specificity, binding to free Hb with an affinity some 1,000-fold stronger than its affinity

for HpHb [12, 14]. Secondly, it has a changed expression profile. Analysis of T. congolense
bloodstream form cells have shown no detectible levels of HpHbR RNA [14] or protein [12,

14], and no uptake of Hb was observed into these cells, indicating that the receptor is present

at a very low copy number, if at all [14]. Experiments with transgenic mice do, however, imply

the presence of some HpHbR in the blood stage of T. congolense. The growth of T. congolense
in mice transgenic for the trypanolytic pore-forming protein, ApoLI, is significantly reduced

by the additional expression of the haptoglobin-related protein, Hpr [17]. As HpHbR is the

primary route for the high efficiency uptake of Hpr-containing complexes into trypanosomes

[1], this suggests the presence of sufficient HpHbR in T. congolense bloodstream forms to

allow uptake of enough ApoLI to kill the cells while not being detectable in other assays. In

contrast to these low expression levels, the receptor is expressed to extremely high levels in the

T. congolense epimastigote, a late developmental form found in the mouthparts of the tsetse fly,

allowing uptake of Hb [12, 14, 18]. T. congolense HpHbR (TcHpHbR) is therefore primarily a

hemoglobin receptor that is used as the trypanosome inhabits its insect vector.

So, what came first: an HpHb receptor expressed primarily in the bloodstream form or an

Hb receptor expressed primarily in the insect? A clue came from studying the receptor from

T. vivax, which diverged from the common ancestor earlier in evolutionary history than the

divergence of T. congolense and T. brucei [19, 20]. The discovery that the T. vivax HpHbR is

also an Hb receptor [12] that is expressed primarily in epimastigotes [21] provides strong evi-

dence for the view that this is the ancestral form of HpHbR and that later evolutionary changes

resulted in a bloodstream form HpHb receptor in T. brucei [12].

Our knowledge of the structure and function of HpHbR from these parasite species allows

us to propose some of the evolutionary adaptations that have taken place as the receptor has

changed its location and role. This also illustrates some of the pressures experienced by a

receptor of the trypanosome hinterlands and identifies some general principles that are likely

to affect how such a receptor operates.

The Ancestral Receptor—Lessons from T. Congolense

The epimastigotes of T. congolense inhabit the mouthparts of tsetse flies, adhering tightly to the

chitin-rich surfaces of the cibarium and proboscis [22–24] (Fig 2). In this location, they are

likely to be exposed to any Hb that has been released from lysed red cells of an incoming blood

meal as it passes towards the tsetse midgut or as it passes back from the midgut to the mouth-

parts, as the tsetse fly regurgitates gut contents during feeding. Both will allow the acquisition

of heme through binding and internalization of this Hb. Because these opportunities are fleet-

ing, the parasite has ensured that it is poised for feeding time with the expression pattern and

location of the receptor both optimized for this role. Firstly, the receptor is highly expressed,

with around half a million copies per cell [12], which is three orders of magnitude greater than

that found on bloodstream form T. brucei [1, 25]. Secondly, HpHbR is evenly distributed over

the entire epimastigote surface [12]. This will increase its opportunity to interact with, and

capture, hemoglobin, followed by stochastic diffusion to the flagellar pocket for subsequent

uptake. The mobilization of the receptor in this way allows the parasite to take advantage of
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the transient nature of its exposure to ligand, perhaps allowing it to acquire and store sufficient

heme to last until the next blood meal.

The structure of the receptor is also well suited to allow it to operate in the context of other

surface molecules. While the protein density of the epimastigote cell surface has not been

quantitatively characterized, electron microscopy images suggest that these cells lack the dense

protein coat observed in bloodstream form trypanosomes [26]. TcHpHbR is an elongated

three-helical bundle [10], ~25% longer than the predominant epimastigote surface molecule,

glutamic-acid rich protein (GARP) [10, 27]. The Hb binding site lies on the side of the receptor

at its membrane distal end [12] and is therefore expected be accessible to ligand despite the

Fig 2. The T. congolense HpHbR is an epimastigote expressed Hb receptor. In the life cycle of T.

congolense, HpHbR is expressed predominantly in the epimastigotes that inhabit the mouthparts of the tsetse

fly, where it binds to Hb present in the blood meal of the fly. Here the receptor functions in the context of the

major epimastigote surface protein, GARP. In the structure figure TcHpHbR is green, GARP is light blue, and

Hb is orange and red.

doi:10.1371/journal.ppat.1006055.g002
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other molecules of the epimastigote surface coat. In addition, the mode of attachment of the

receptor to the membrane surface, through a flexible GPI-anchor at the C-terminus, is

expected to allow it to move laterally across the membrane surface, as seen for the variant sur-

face glycoproteins (VSGs) [28], and also to adopt a significant tilt angle. This will allow two

receptors to simultaneously bind to a single hemoglobin tetramer, further increasing the avid-

ity for the ligand and uptake into the parasite [12] (Fig 1). The lateral mobility allowed by the

GPI-anchor will also give the receptor-Hb complex freedom to diffuse across the cell until it

reaches the flagellar pocket, an active site of endocytosis, from which it will be internalized

[29].

The Switch to the Blood Stage—A Complex Story of Molecular

Adaptation

In T. brucei, a major transition appears to have taken place in the structure and function of

HpHbR, with the receptor now employed primarily as a bloodstream-expressed HpHb recep-

tor [1] (Fig 3). The reasons for this are only partly understood, but the transition may have

begun when the epimastigotes changed their preferred location within the tsetse fly. Instead of

being located in the mouthparts of the fly, the epimastigotes of T. brucei are found within the

salivary glands [22–24]. It is possible that moving to this new location provided them with a

niche not occupied by other trypanosomes. Alternatively, it may have increased their transmis-

sion to their mammalian host. Either way, this change rendered the receptor redundant, as epi-

mastigotes in the salivary glands are no longer exposed to Hb from the blood meal. Instead,

the receptor became primarily expressed in the bloodstream form, in which it can support

heme acquisition from the blood [1]. This is clearly advantageous, as demonstrated by the

reduced virulence that results from deletion of the receptor in T. brucei [1]. However, the

bloodstream form trypanosome surface provided a new and challenging context for receptor

function, which necessitated changes in both its structure and cellular distribution.

In a number of respects, ancestral HpHbR was well suited to its new role as an HpHb

uptake receptor. T. congolense HpHbR binds HpHb complexes [10], albeit with ~1,000-fold

lower affinity than Hb, perhaps allowing it to also scavenge HpHb from the blood meal [12].

Indeed, the mechanism of binding Hb to the receptor, in which the receptor interacts with two

adjacent Hb subunits [12], will give it the capacity to interact with HpHb even if the Hp chain

does not directly interact with the receptor. The receptor could therefore immediately be

mobilized for its new function, as its affinity for HpHb is sufficient to operate at the physiologi-

cal concentrations of HpHb in sera. However, the bloodstream trypanosome surface is very

different from that of the epimastigote. Unlike the tsetse fly, mammalian blood is the site of an

immunoglobulin-based acquired immune system, and bloodstream form trypanosomes have

evolved a cell surface coat of VSG molecules at close to the maximum possible packing density

as a counter measure [30–32]. When combined with a system of antigenic variation, this allows

a successful population survival mechanism to allow the cell to avoid immune clearance [33].

This provides an unusual context in which the receptor must function. In addition, the pres-

ence of immunoglobulins has a second consequence—a high copy number receptor distrib-

uted across the cell surface would be vulnerable to detection, putting the trypanosome at risk

of destruction. A number of adaptations have therefore occurred to better equip T. brucei
HpHbR to function in the context of the bloodstream form surface.

Firstly, the structure of the receptor has altered to allow it to bind to its ligand more effi-

ciently, increasing the affinity for HpHb by around 10-fold relative to that of the T. congolense
receptor. A comparison of the structures of HpHbR from T. congolense and T. brucei suggests

that this increase in affinity has resulted from subtle changes to the path of the helical bundle,

PLOS Pathogens | DOI:10.1371/journal.ppat.1006055 January 26, 2017 5 / 12



causing it to alter in curvature to allow closer interaction with the haptoglobin chain of HpHb

[11, 13]. This gain in affinity for HpHb has been coincident with a total loss of affinity for Hb

[1, 12] after the removal of any selection pressure to retain Hb binding in the absence of free

Hb to scavenge from the blood.

Secondly, with the HpHb binding site lying on the side of the receptor, the dense VSG coat

would make it inaccessible to HpHb if the receptor retained the structure seen in T. congolense.

Fig 3. The T. brucei HpHbR is a bloodstream form HpHb receptor. In the life cycle of T. brucei, the

epimastigotes inhabit the salivary glands of the tsetse fly and do not express HpHbR. Instead, TbHpHbR is

predominantly expressed in the bloodstream form, in which it acts as an HpHb receptor that exists within the

densely packed VSG layer. In the structure figure HpHbR is blue, VSG is blue-white, and HpHb is yellow,

orange, and red. The ovals represent the C-terminal domains of the VSG and HpHbR. These lie between the

N-terminal domains and the membrane, but their relative locations are uncertain.

doi:10.1371/journal.ppat.1006055.g003
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The T. brucei receptor has gained a C-terminal domain, making it longer than the VSG mole-

cules and raising the ligand-binding site further away from the plasma membrane. It has also

evolved a ~50˚ kink in its three-helical bundle [11, 13]. This kink will push apart VSG mole-

cules on either side of the receptor and orient the HpHb binding surface so that it faces the

external milieu, ready to bind HpHb. The kink also allows two receptors to bind to a single

HpHb dimer without significant tilting of the receptors at the membrane attachment site—

something that will be impossible in the densely packed VSG coat. This bivalent binding is

important for efficient ligand uptake as the affinity of the receptor for HpHb monomers is

only ~1 μM, and only dimeric ligand uptake is efficient in live cells [11]. The receptor has

therefore adopted several structural changes to allow it to function in its new location.

Finally, the shift to expression in the bloodstream form has caused changes in both the

expression levels and surface distribution of the receptor. While the opportunity for an epi-

mastigote to acquire Hb from a blood meal is fleeting, the bloodstream form inhabits an envi-

ronment with a more constant supply of HpHb and does not require a high receptor surface

density for occasional gorging in the brief times of plenty that occur during a tsetse blood

meal. In the blood, the presence of antibodies provides a selection pressure to reduce receptor

expression in order to avoid detection and immune clearance. The same pressure has also

affected the position of the receptor on the cell surface. While the epimastigote receptor is

evenly distributed across the cell surface [12], in the bloodstream form it is concentrated in the

flagellar pocket [1], a region of the cell surface that is a site of active endocytosis with reduced

accessibility to immune effector cells [29]. This reduced receptor density, coupled with the

majority of the receptors being localized to the flagellar pocket, will protect the cell from detec-

tion within the mammalian host while allowing it to continue to acquire sufficient heme.

A Receptor Evolving Away from a New Threat

The evolution of the receptor did not finish with its adaption in T. brucei to a bloodstream

form protein with an affinity for HpHb, as it experienced a new selection pressure from a sub-

set of its mammalian hosts. The majority of species of trypanosomes are not able to infect

humans or other primates due to the presence of the trypanolytic factors [6]. These complex

particles contain a primate-restricted lytic factor, apolipoprotein LI (ApoLI), which, when

taken up into the lysosome of the trypanosome, causes cell death [9, 34]. In addition to ApoLI,

the trypanolytic factors contain a variant of haptoglobin, the haptoglobin-related protein

(Hpr), bound to Hb [35]. HprHb is recognized by T. brucei HpHbR, providing a route for the

uptake of trypanolytic factors into the cell [1, 11]. This places the trypanosomes in a dangerous

situation, with the same receptor providing an important nutrient but also leaving them sus-

ceptible to attack by factors of the host innate immune system.

Two subspecies of T. brucei have evolved the capacity to survive in humans and other pri-

mates. T. b. rhodesiense has a single molecule, SRA, which binds to and inactivates ApoLI [9,

36]. In contrast, T. b. gambiense has a more complex mechanism for resistance involving mul-

tiple factors, several of which relate to changes in HpHbR [10, 37–39]. Type 1 T. b. gambiense
HpHbR has evolved a single point mutation, L210S [10, 40, 41]. This change to a residue that

lies adjacent to the HpHb binding site is predicted to disrupt the structure of the receptor and

affect HpHb binding [10, 11]. Indeed, this polymorphism results in reduced affinity for both

HpHb and TLF1 [10]. This has a greater effect on TLF1 binding than HpHb binding [10]. This

may be because the HpHb is dimeric, due to a disulphide-linked dimer, while the Hpr compo-

nent of TLF1 lacks this disulphide bond, perhaps reducing the percentage of dimeric molecules

in the TLF1 particle [42]. Alternatively, it is possible that the insertion of Hpr into TLF1 parti-

cles reduces its accessibility to receptor binding.
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An additional protective change in T. b. gambiense is the expression of HpHbR at lower lev-

els than the corresponding receptor in T. brucei [39], and the combination of lower expression

levels and reduced ligand affinity decreases the uptake of TLF1 into cells [39]. Coupled with

additional factors such as altered cysteine protease activity and the action of TgsGP, which

increase the resistance of cells to the smaller amount of internalized trypanolytic factor [37,

38], this allows the parasite to survive in human serum, albeit with potential consequences for

its rate of growth [39]. Therefore, HpHbR continues to evolve with its mammalian hosts as it

meets the balance between acquiring sufficient nutrients and surviving in an environment in

which it is targeted by mechanisms of innate immunity.

Is HpHbR a Paradigm for Trypanosome Receptors?

HpHbR is the best studied of the trypanosome receptors, and our knowledge of how it operates

in both T. congolense epimastigotes and T. brucei bloodstream form cells allows us to develop

principles that are likely to be followed by other such molecules. It highlights the versatility of

the three-helical bundle architecture and shows that receptors can operate in pairs to make

uptake more efficient (Fig 1). In addition, adaptations that have taken place to allow the recep-

tor to operate effectively in different trypanosome developmental forms give insight into the

surface architecture of these cells and the constraints that they impose on receptor function.

The three-helical bundle architecture is found in many of the cell surface proteins of Afri-

can trypanosomes (Fig 1). The simplest examples are GARP [27] and HpHbR from T. congo-
lense [10]. In each case, an elongated three-helical bundle is capped with a small membrane

distal head structure, with the major difference being in their length. GARP, which does not

have any known binding partner, is around 80% of the length of HpHbR [10], with the greater

length of the receptor perhaps allowing it greater access to its ligand. An adaptation to this is

seen in T. brucei HpHbR, in which a change in the placement of the hydrophobic residues that

line the core of the helical bundle leads to a ~50˚ kink that aids its function in the crowded

bloodstream trypanosome surface [11, 13]. Alternative adaptations are seen in the VSGs, with

the third helix and the membrane distal head becoming decorated with extensions and loops

[43–45]. This is a response to the exposure of the VSGs to the mammalian acquired immune

system, which provides a route to VSG diversification, creating a wide range of VSGs to allow

a system of antigenic variation and immune evasion [46]. Unlike GARP and HpHbR, VSG has

also become dimeric, with the first and second helices forming the dimerization interface [43].

Finally, at least three proteins with different functions have arisen from diversification of VSG

proteins: the heterodimeric transferrin receptor [47, 48] and two proteins associated with

counteracting human innate immunity factors, SRA [36, 49] and TgsGP [37, 38, 50]. These are

all currently of unknown structure. This wide range of molecules with different structures and

functions shows the deep versatility of the three-helical bundle architecture to adaptation and

embellishment [46]. It will be no surprise to discover other trypanosome surface proteins,

built from a three-helical bundle, with novel functions.

Studies of HpHbR also show that trypanosome receptors can work in pairs. The affinity of a

single T. brucei HpHbR for HpHb is moderate at ~1μM with a rapid off rate. Indeed, the nar-

row, elongated structure of the receptor presents a relatively small surface for ligand binding,

making it more challenging to develop a high affinity interaction [11, 13]. In the case of

HpHbR, this is overcome by the use of bivalent ligand binding. The attachment of receptors to

the cell surface through GPI-anchors allows flexibility in lateral movement and also allows

receptors to tilt relative to the membrane plane. Two receptors will therefore come together in

an appropriate orientation to bind a single ligand. In T. brucei bloodstream forms, in which

dense packing of the VSG coat makes this less likely, the receptor has developed a kink to
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allow bivalent ligand binding without the receptors adopting a high tilt angle. These ap-

proaches dramatically increase the apparent affinity for the ligand and allow dimeric HpHb

uptake at reduced concentrations in live trypanosomes [11]. Receptor dimerization to give

improved ligand uptake may also be applied in other cases but will only be successful for

ligands that have two equivalent binding sites, such as Hb tetramers or HpHb. A natural exten-

sion of this, to non-symmetrical ligands, is the assembly of heterodimeric receptors. An exam-

ple of this may be the transferrin receptor of T. brucei, which is a heterodimer of ESAG6 and

ESAG7 with a structure predicted to resemble a VSG dimer [47]. Further studies will show

whether dimerization, either mediated by the ligand or before ligand binding, is widespread in

other trypanosome surface proteins.

Structural studies of TbHpHbR have also challenged dogmas about the organization of the

bloodstream trypanosome surface. Models assumed that the VSG layer would extend above

receptor proteins, covering and protecting them from detection by immunoglobulins. The

finding that T. brucei HpHbR is longer than a VSG showed instead that the receptor protrudes

above the surface of the VSG layer [10]. Indeed, ligands for HpHbR are large macromolecular

complexes such as HpHb (~150 kDa) [15], TLF1 (~500 kDa), and TLF2 (~1000 kDa) [3, 4],

and, on reflection, it is not surprising that the receptor must be readily accessible, as such large

ligands would not be able to penetrate the densely packed VSG layer. The use of elongated

receptors is not the only strategy used to ensure that they are accessible to large macromolecu-

lar ligands. The T. brucei transferrin receptor is predicted to be similar in size and structure to

the VSGs, and it is proposed that extensive glycosylation of the receptor on the surfaces facing

the VSG molecules will hold them apart, spreading out the VSG layer and thereby increasing

accessibility of the receptor surface to serum ligands [51]. The kink in the T. brucei HpHbR

provides another mechanism by which VSG molecules can be forced apart to leave ligand-

binding sites accessible [11, 13]. It will be no surprise to discover that other receptors on the

trypanosome surface use these, or other mechanisms, to ensure that their binding sites are

accessible to large macromolecular ligands.

The presence of surface accessible receptors on the bloodstream trypanosomes has conse-

quences, as a receptor that is accessible to a large macromolecular ligand such as HpHb, will

also be accessible to an immunoglobin (~150 kDa). In the epimastigote developmental form,

this is not a concern as tsetse flies lack an adaptive immune system, allowing HpHbR to be dis-

tributed over the entire surface of the cell at high levels [12]. However, in the bloodstream

form, exposure of receptors to the serum will put the cells at danger of immune clearance. To

avoid this, the cells have evolved significantly lower receptor expression levels [25] together

with adopting a predominant localization in the protected environment of the flagellar pocket

[1, 29], thereby reducing their likelihood of detection and clearance. In addition, bloodstream

form trypanosomes swim forward, creating forces of hydrodynamic flow across their surface,

pushing attached ligands towards the flagellar pocket [52]. This has been demonstrated to

aid the clearance of antibodies attached to VSG [52, 53], and if receptors are found on the try-

panosome surface, their complexes with antibodies will also be swept towards the flagellar

pocket for clearance. A similar arrangement, with small quantities of receptors predominantly

clustered at the flagellar pocket, is also likely to be seen for other trypanosome bloodstream

receptors.

A combination of recent studies of trypanosome HpHbRs have, therefore, shown how one

receptor has evolved over eons, adapting to the unique conditions on the cell surface as try-

panosome species have diversified. Differences in structure and function between the epimas-

tigote-expressed Hb receptor of T. congolense and the bloodstream-form expressed HpHb

receptor of T. brucei have highlighted the different pressures on a receptor that functions

within these different surface coats. Future studies will show whether other trypanosome
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receptors meet these challenges in the same way or accomplish the same goals through differ-

ent adaptations.
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