JVI Accepted Manuscript Posted Online 23 November 2016 J. Virol. doi:10.1128/JVI.01656-16 Copyright © 2016 Alfajaro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

1 Activation of COX-2/PGE₂ Promotes Sapovirus Replication via the

- 2 Inhibition of Nitric Oxide Production
- 3
- 4
- Mia Madel Alfajaro^{a,1}, Jong-Soon Choi^{b,1}, Deok-Song Kim^a, Ja-Young Seo^a, Ji-Yun
 Kim^a, Jun-Gyu Park^a, Mahmoud Soliman^a, Yeong-Bin Baek^a, Eun-Hyo Cho^a, Joseph
 Kwon^b, Hyung-Jun Kwon^c, Su-Jin Park^c, Woo Song Lee^c, Mun-Il Kang^a, Myra
 Hosmillo^d, Ian Goodfellow^{d,2}, Kyoung-Oh Cho^{a,2}
- 9
- 10 ^aLaboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

- 11 National University, Republic of Korea;
- 12 ^bDivision of Life Science, Korea Basic Science Institute, , Republic of Korea;
- 13 ^cBioindustry Research Center, Korea Research Institute of Bioscience and
- 14 Biotechnology, Republic of Korea;
- ^dDivision of Virology, Department of Pathology, University of Cambridge, United
- 16 Kingdom
- 17 ¹These authors contributed equally to this paper.
- 18

Running title: COX-2/PGE2 Pathway Enhances Sapovirus Replication

20

19

21 ²Corresponding authors:

22 Ian Goodfellow, Division of Virology, Department of Pathology, University of

23 Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom,

24 Tel.: +44-0-1223-762653, Fax: +44-0-1223-333346, E.mail: <u>ig299@cam.ac.uk</u>

25 Kyoung-Oh Cho, Laboratory of Veterinary Pathology, College of Veterinary Medicine,

26 Chonnam National University, Gwangju 500-757, Republic of Korea, Tel.: +82-62-

27 530-2845, Fax: +82-62-530-0835, E.mail: choko@chonnam.ac.kr

M

Journal of Virology

28 ABSTRACT

29	Enteric caliciviruses in the genera Norovirus and Sapovirus are important pathogens that
30	cause severe acute gastroenteritis in both humans and animals. Cyclooxygenases (COXs)
31	and their final product prostaglandin E_2 (PGE ₂) are known to play important roles in the
32	modulation of both the host response to the infection and replicative cycle of several
33	viruses. However, the precise mechanism(s) by which the COXs/PGE2 pathway
34	regulates sapoviruses replication remains largely unknown. In this study, the infection
35	of porcine sapovirus (PSaV) Cowden strain, the only cultivable virus within the genus
36	Sapovirus, markedly increased COX-2 mRNA and protein levels at 24 and 36 hours
37	post-infection (hpi) with only a transient increase of COX-1 levels seen at 24 hpi. The
38	treatment of cells with pharmacological inhibitors such as nonsteroidal anti-
39	inflammatory drugs or siRNAs against COX-1 and COX-2 significantly reduced \mbox{PGE}_2
40	production as well as PSaV replication. Expression of the viral proteins VPg and ProPol
41	was associated with the activation of the COXs/PGE_2 pathway. We observed that
42	pharmacological inhibition of COX-2 dramatically increased NO production, causing a
43	reduction in PSaV replication that could be restored by inhibition of nitric oxide
44	synthase via the inhibitor N-nitro-L-Methyl-Arginine-ester. This study has identified
45	pivotal role for the COXs/PGE2 pathway in the regulation of NO production during the

46 sapovirus life cycle, providing new insights into the life cycle of these poorly
47 characterized family of viruses. Our findings also reveal potential new targets for
48 treatment of sapovirus infection.

49

 \sum

50 **IMPORTANCE**

51	Sapoviruses are one of major etiological agents of acute gastroenteritis in both humans
52	and animals, but little is known about sapovirus host factor requirements. Here, using
53	only cultivable porcine sapovirus (PSaV) Cowden strain, we demonstrate that PSaV
54	induced the vitalization of cyclooxygenases (COXs) and prostaglandin E_2 (PGE_2)
55	pathway. Targeting of COX1/2 using nonsteroidal anti-inflammatory drugs (NSAIDs)
56	such as the COX-1/2 inhibitor indomethacin and the COX-2 specific inhibitors NS-398
57	and celecoxib or siRNAs targeting COXs, inhibited PSaV replication. Expression of the
58	viral proteins VPg and ProPol was associated with the activation of the $\ensuremath{\text{COXs/PGE}}_2$
59	pathway. We further demonstrate that the production of $\ensuremath{\text{PGE}}_2$ provides a protective
60	effect against the antiviral effector mechanism of nitric oxide. Our findings uncover a
61	new mechanism by which PSaV manipulates the host cell to provide an environment
62	suitable for efficient viral growth, which in turn can be new targets for treatment of
63	sapovirus infection.

deaths per annum in children <5 (2, 3). Despite their socioeconomic impact, the
fastidious nature of viruses within these genera has significantly hindered our
understanding of their life cycle and development of vaccines and therapeutics (4, 5).
Porcine sapovirus (PSaV) is the only cultivable member of the Sapovirus genus and
replicates in the presence of porcine intestinal contents or bile acids (4, 5). Therefore,
PSaV serves as a robust model for studies on the sapovirus life cycle and for the
development of therapeutic interventions (6).
The coexistence of viruses and their hosts imposes an evolutionary pressure on
both the virus and the host immune system. Therefore, viruses have evolved diverse
strategies to create a suitable environment conducive for their existence by either
activating or suppressing cellular pathways to facilitate replication. The
cyclooxygenase-2 (COX-2)/prostaglandin E_2 (PGE ₂) pathway is one of the several host
pathways that participate in the modulation of the host response to the infection and the
replicative life cycle of viruses (7). For example, the activation of COX-2/PGE_2
pathway results in increased replication of cytomegalovirus (8, 9), but PGE ₂ inhibits

Diarrhea is the second largest cause of mortality in children worldwide (1). Viruses

within the genera Norovirus and Sapovirus in the family of Caliciviridae are significant

cause of gastroenteritis in humans and animals with noroviruses alone causing ~200,000

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

82	viral replication of parainfluenza 3 virus and adenovirus (10, 11). COXs convert
83	arachidonic acid released by phospholipases A2- and C-mediated hydrolysis of plasma
84	membrane phospholipids following exposure to diverse physiological and pathological
85	stimuli into prostaglandins (PGs), prostacyclines, and thromboxanes (12, 13). Three
86	forms of COXs have been identified to date with COX-1 and COX-2 being the most
87	widely studied. COX-1 is constitutively expressed and known to synthesize various PGs
88	including PGE_2 that participate in a diverse range of normal physiological processes
89	such as cytoprotection of the gastric mucosa, the regulation of renal blood flow, bone
90	metabolism, nerve growth and development, wound healing, and platelet aggregation
91	(12, 13). In contrast, COX-2 is rapidly induced by various stimuli including viral
92	infection, and catalyzes the synthesis of various PGs including \mbox{PGE}_2 that have various
93	activities including pro-angiogenic or anti-apoptotic properties (12, 13). Some of the
94	biological effects of $\ensuremath{\text{PGE}}_2$ on immunity and inflammation are exerted through the
95	binding to G-protein coupled receptors on the plasma membrane called E prostanoid
96	receptors (14). PGE_2 is recognized as the major prostanoid produced in immune and
97	nonimmune cells, and acts as potent regulators of cell-cell interaction, antigen
98	presentation, cytokine production, differentiation, survival, apoptosis, and cell migration
99	(14).

 \sum

ŏ	
Š	
3	
등	
<u></u>	
õ	
ē	
Q	
⇒	
5	
ĭ	
2	
⊐	
표	
2	
<u> </u>	
ğ	
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
–	
Ö	
Ĕ	
Q	
\sim	
2	
_	
Т	
<u>e</u>	
<u>o</u>	
Ľ	
a	
5	
്ര	
• • •	
2	
710	
017 k	
017 by	
017 by I	
017 by M	
017 by ME	
017 by MED	
017 by MEDIO	
017 by MEDIC.	
017 by MEDICA	
017 by MEDICAL	
017 by MEDICAL F	
017 by MEDICAL RE	
017 by MEDICAL RES	
017 by MEDICAL RESE	
017 by MEDICAL RESE/	
017 by MEDICAL RESEA	
017 by MEDICAL RESEAR	
017 by MEDICAL RESEARC	
017 by MEDICAL RESEARCH	
017 by MEDICAL RESEARCH	
017 by MEDICAL RESEARCH C	
017 by MEDICAL RESEARCH CO	
017 by MEDICAL RESEARCH COU	
017 by MEDICAL RESEARCH COUN	
017 by MEDICAL RESEARCH COUNC	
017 by MEDICAL RESEARCH COUNCL	
017 by MEDICAL RESEARCH COUNCL	
017 by MEDICAL RESEARCH COUNCL -	
017 by MEDICAL RESEARCH COUNCL - U	
017 by MEDICAL RESEARCH COUNCL - UK	
017 by MEDICAL RESEARCH COUNCL - UK S	
017 by MEDICAL RESEARCH COUNCL - UK SE	
017 by MEDICAL RESEARCH COUNCL - UK SB	

100

101

102

103

104

105

106

107

efficient viral growth.

This study sets to examine the potential role of COXs/PGE2 pathway in the

regulation of the sapovirus life cycle. We demonstrate that COXs/PGE2 pathway is

induced during PSaV replication and that this induction occurs following the expression

of the viral VPg and protease-polymerase (ProPol) proteins. We further demonstrate

that the production of PGE₂ provides a protective effect against the antiviral effector

mechanism of nitric oxide (NO), uncovering a new mechanism by which

enteropathogenic viruses manipulate the host cell to provide an environment suitable for

108 MATERIALS AND METHODS

Cell and virus. LLC-PK porcine kidney cells obtained from the American Type Culture Collection (ATCC, USA) were maintained in Eagle's minimal essential medium (EMEM) containing 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin. The tissue culture-adapted PSaV Cowden strain was recovered from the full-length infectious clone pCV4A, and was propagated in LLC-PK cells with the supplement of bile acid (15).

115

116	Chemicals and antibodies. Celecoxib, NS-398, SC-58125, SC-236,
117	nimesulide and SC-560 were purchased from Cayman Chemical (Ann Arbor, MI, USA).
118	Glycochenodeoxycholic acid (GCDCA), dimethyl sulfoxide (DMSO), L-NAME, MDL-
119	12330A and indomethacin were from Sigma-Aldrich (St. Louis, MO, USA). COX-1
120	siRNA, COX-2 siRNA and scrambled siRNA were purchased from Santa Cruz
121	Biotechnology, Inc., (CA, USA). Monoclonal antibody (Mab) against mouse COX-1
122	and polyclonal antibody against rabbit COX-2 were obtained from Abcam (Cambridge,
123	MA, UK). Mouse Mab against hemagglutinin (HA) tag was purchased from OriGene
124	(Rockville, MD, USA). Synthetic PGE2 was purchased from Tocris Bioscience
125	(Ellisville, MO, USA). The anti-PSaV capsid Mab and the anti-PSaV VPg polyclonal

130	PA., USA).
131	
132	Cytotoxicity assay. The cytotoxicity of the chemicals used in this study was
133	determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
134	(MTT) assay (17, 18) as per the manufacturer's instructions. Briefly, cells in 96 well
135	plates were incubated with medium containing different concentration of various
136	chemicals for 24 hr. After removal of the media, 200 μl of MTT solution was added to
137	each well and incubated for 4 hr at $37^{\circ}C$ in a CO ₂ incubator. Each well was added with
138	150 μl of DMSO and incubated at room temperature for 10 min. The absorbance was
139	read in an ELISA reader at 570 nm. The percentage of cell viability was calculated
140	using the following formula: $[OD_{(sample)} - OD_{(blank)} / (OD_{(control)} - OD_{(blank)}] x 100.$ Non-

antibody were previously described (16). Secondary antibodies used were horse radish

peroxidase conjugated goat immunoglobulin against rabbit IgG (Cell Signaling, Beverly,

MA., USA) and mouse IgG (Santa Cruz), and fluorescein isothiocyanate (FITC)

conjugated goat immunoglobulin against rabbit IgG (Jackson Immuno Research Lab,

- toxic concentrations of each chemical were used in this study. 141
- 142

126

127

128

129

143

145	inhibitors were dissolved in DMSO to make a 10 mM stock concentration. When
146	appropriate, a series of dilutions were made by diluting the appropriate volumes of
147	chemical or inhibitor stocks in EMEM. Treatment groups were typically as follows:
148	mock-treatment, pre-treatment, post-treatment, and pre-post-treatment. Confluent LLC-
149	PK cells were pre-treated with various concentrations of the inhibitors for 24 h. The
150	cells were washed with phosphate-buffered saline (PBS, pH 7.4) and inoculated with
151	PSaV at a multiplicity of infection (MOI) of 1 fluorescent focus unit (ffu)/cell. For post-
152	treatment groups, different concentrations of inhibitors were added in the maintenance
153	media after the virus adsorption step. For the pre-post treatment groups, LLC-PK cells
154	were pre-treated with different concentrations of inhibitors for 24 h. After removal of
155	inhibitors, the cells were washed twice with PBS and inoculated with PSaV. The
156	inhibitors were again added at the end of virus adsorption period.

were grown in 6 or 12 well plates to attain the desired confluency. The chemicals and

157

144

Plasmid constructs and cell culture. Each of the regions coding for the PSaV 158 proteins, NS1, NS2, NS3, NS4, NS5, NS6-7, VP1, and VP2 (19) was amplified from the 159 full-length infectious clone pCV4A by PCR assays with primer pairs containing SalI 160 and NheI restriction enzyme sites (Table 1). Each forward primer specific for above 161

 \sum

 \leq

162	gene(s) had N-terminal HA tag sequences (Table 1). Each amplicon was purified by
163	PuriGel (Invitrogen, Waltham, MA, USA) following the manufacturer's instruction and
164	subcloned into pUNO cloning vector (InvivoGen, San Diego, CA, USA). All amplified
165	regions were verified by Sanger sequencing. Plasmid constructs inserted with different
166	viral genes or empty vector were individually transfected in LLC-PK cells grown in 6
167	well plates using the Lipofectamine® 2000 reagent (Invitrogen) following the
168	manufacturer's instruction. Cell were harvested at different post-transfection points, and
169	subjected to quantitative real-time PCR and Western blot analysis using the anti-HA
170	antibody.

171

In vitro transcription and RNA transfection. LLC-PK cells were seeded in 6-172 well or 24-well plates and transfected with 1 µg of capped in vitro transcribed PSaV 173 RNA using Lipofectamine 2000® (Invitrogen). The capped in vitro transcripts were 174 175 derived from the full-length PSaV cDNA clone pCV4A (20) by the mMESSAGE 176 mMACHINE Kit (Ambion, Austin, TX, USA) following the manufacturer's instruction. Transfections were performed for 4 h and media was replenished with eagle's minimum 177 essential medium (EMEM) supplemented with or without 200 µM GCDCA. After 6 178 days post transfections, cells were lysed, harvested and subjected to immunoblotting 179

and qPCR to analyze COX-1, COX-2 and PSaV VPg levels.

181

182	siRNA transfection. LLC-PK cells were cultured in 6 or 12 well culture plates
183	at 70-80% confluency and transfected with siRNA (80 pmole of COX-1, COX-2, and
184	scrambled control siRNA) using the Lipofectamine® 2000 reagent (Invitrogen)
185	following the manufacturer's instruction. Cells were then infected with PSaV at a MOI
186	of 1 ffu/cell. After 1 h, unabsorbed viruses were removed and the cells were maintained
187	in EMEM with 2.5% FBS and 100 μM GCDCA. Cells were harvested at different time
188	points and subjected to qPCR, median tissue culture infective dose (TCID ₅₀) and
189	Western blot analyses.

190

Preparation of cell extract and Western blot analysis. Confluent LLC-PK cells in 6 well plates infected with or without PSaV, treated with or without chemicals or inhibitors, transfected with or without siRNAs, or transfected with or without each gene construct of PSaV were harvested at different time points. The cells were washed twice with PBS and lysed with a cell extraction buffer (Invitrogen) supplemented with protease and phosphatase inhibitors (Roche, Basel, Switzerland). Total cell lysates were denatured and resolved in sodium dodecyl sulfate (SDS)-polyacrylamide gels. The

M

198	resolved proteins were transferred in nitrocellulose blotting membrane (Amersham
199	Protran, GE Healthcare Life science, Germany) and immunoblotted with primary
200	antibodies specific to COX-1, COX-2, glyceraldehyde 3-phosphate dehydrogenase
201	(GAPDH), HA or PSaV VPg. Secondary antibodies against rabbit or mouse IgG were
202	applied after the primary antibody. Immunoreactive bands were developed using the
203	enhanced chemoluminescence reaction kit (DoGen, Seoul, South Korea) and images
204	were taken using the Davinch-Western Imaging System (Young Ltd., Kang-nam, Seoul,
205	South Korea). To confirm equal protein loading, transferred blotting membranes were
206	also incubated with an antibody against GAPDH and its reactivity was compared with
207	the intensity of target bands. The quantification of the protein density for COX-1 and
208	COX-2 were performed using Image Studio Lite (LI-COR Biotechnology, Lincoln, NE,
209	USA) and was normalized to the corresponding density of GAPDH of the same samples.
210	
211	RNA isolation. For quantifying intracellular RNA levels of signaling molecules,
212	mock- or PSaV-infected, chemical or inhibitor treated, or siRNA transfected cells were

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

washed twice with PBS, scraped and collected in clean microtubes. Samples were
centrifuged at 10,000 rpm for 10 mins and total RNA was isolated using the PureLink
RNA mini kit (Ambion Life technologies, Carlsbad, CA., USA) following the

224	Quantitative real-time PCR. cDNAs were prepared by using 1 μ g of RNA and
223	
222	determined at 260 nm using the BioPhotometer plus (Eppendorf, Hamburg, Germany).
221	manufacturer's instructions. The RNA concentrations were spectrophotometrically
220	RNA was extracted from supernatants using RNeasy kit (Qiagen) following the
219	with the remaining bulk samples were collected and stored at -80° C until used. Total
218	and cell debris was spun down at 2,469 x g for 10 min at 4 °C. The supernatants along
217	chemical or inhibitor treated, or siRNA transfected cells were freeze-thawed three times,
216	manufacturer's instructions. For quantifying PSaV RNA, mock- or PSaV-infected,

225	reverse transcribed using random hexamers (Promega, Madison, WI., USA). The
226	oligonucleotide primers used in the quantitative real-time PCR were designed from the
227	published sequences of COX-1, COX-2, and PSaV VPg (Table 1). Reactions were set
228	up in 25 μl volumes containing 10 pmol of forward and reverse primers, cDNA, and
229	TOPreal qPCR 2X PreMIX (Enzynomics, Daejon, South Korea). For COX-1 and COX-
230	2, the amplification profile was as follows: 1 cycle of initial denaturation at 95°C for 10
231	min, 45 cycles of denaturation at 95°C for 10 s, primer annealing at 55°C for 30 s and
232	extension at 72°C for 45 s. The amplification profile for VPg included 1 denaturation at
233	95°C for 10 min, followed by 40 cycles of denaturation 95°C for 10 s, primer annealing

234	at 60°C for 20 s and extension at 72°C for 20 s. Relative expressions of COX-1 and
235	COX-2 levels were calculated by the using $2^{-\Delta\Delta}$ CT (21). Samples were normalized to
236	the quantity of β -actin gene. The copy number of the VPg gene was calculated using 10-
237	fold dilutions of known amount of pCV4A to generate the standard curve.

238

239	TCID ₅₀ assay. The TCID ₅₀ assay was performed as previously described (6).
240	Briefly, ten-fold serial dilutions of clarified virus supernatants were prepared in EMEM.
241	Of these dilutions, 200 μl was inoculated to monolayers of LLC-PK cells grown on 96-
242	well plates supplemented with 200 μM GCDCA and incubated at 37°C in a 5% CO_2
243	incubator. Virus titers were calculated at 6 days post-infection and expressed as
244	TCID ₅₀ /ml values by the method of Reed and Muench (22).

245

Determination of the infectivity titer by immunofluorescence assay. 246 Infectivity assay was carried out as described previously (16). Briefly, confluent 247 248 monolayers of cells on the confocal dish were treated with various inhibitors or 249 chemicals as described above. Mock or treated cells were infected with PSaV at a MOI of 1 ffu/cell and incubated at 37°C for 1 hr. Cells were washed three times with PBS, 250 replaced with maintenance medium and then incubated for 36 hr at 37°C prior to being 251

Ŋ

Journal of Virology

252 fixed with 4% formaldehyde in PBS.

253	Immunofluorescence assay was performed as previously reported (16). Briefly,
254	fixed cells in 8-well chamber slides were permeabilized by the addition of 0.2% Triton
255	X-100, incubated at room temperature for 10 min, and washed with PBS containing 0.1%
256	newborn calf serum (PBS-NCS). Chamber slides were added with anti-PSV capsid
257	(1:40 dilution) Mab and then incubated at 4°C overnight. Cells were then washed three
258	times with PBS-NCS. FITC-conjugated goat secondary antibody (diluted to 1:100) was
259	then added. After washing with PBS, chambers were mounted with SlowFade Gold
260	antifade reagent (Life technologies, Eugene, OR, USA) containing DAPI solution for
261	nucleus staining. Infected cells were observed with a LSM 510 confocal microscope and
262	analysed using LSM software (Carl Zeiss). To calculate the percentage of antigen-
263	positive cells in each well, 1,000 cells in each well were counted, using a 40x objective
264	and a 10x eyepiece, yielding a final magnification of 400x. The percentage of antigen-
265	positive cells between mock- and drug-treated or scrambled RNA- and siRNA against
266	COX-2 gene was compared.

267

268 Determination of NO concentration. The concentration of NO was determined in269 culture supernatant of mock- or PSaV-infected cells in the presence or absence of

uscript		
Mant	27	70
ted /	27	71
cep	27	'2
Ă	27	73
	27	74
	27	' 5
	27	76

277

standard and calculated by linear regression analysis. 278

M

chemicals or inhibitors by assaying nitrite, one of its stable end products. Collected

supernatants were centrifuged to remove cell debris. The assay was done using the

Griess reagent system (Promega, Madison, WI., USA) according to the manufacturer's

instruction. Briefly, equal volume of each experimental sample and sulfanilamide

solution were incubated at room temperature for 10 min. An equal volume of N-1-

naphthylethylenediamine dihydrochloride solution was then added to all wells and

incubated for 10 min. The absorbance was read at 540 nm in a plate reader. The nitrite

concentration for each sample was determined by comparing it with a generated nitrite

279 **RESULTS**

280	PSaV infection induces COXs expression and leads to the production of PGE ₂ . To
281	determine whether the COXs/PGE ₂ pathway was activated during PSaV replication, we
282	examined the impact of PSaV replication on COX gene expression. COX-2 mRNA and
283	protein levels were markedly piled up at 24 and 36 hours post-infection (hpi)
284	concomitant with the increase in PSaV viral RNA and protein levels, whereas COX-1
285	levels were transiently increased at 24 hpi only (Fig. 1A–C). The level of PGE_2 in the
286	infected cell culture supernatant was also significantly elevated from 12 hpi (Fig. 1D).
287	To confirm whether the observed increase in soluble PGE_2 was as a direct result of
288	the PSaV-mediated induction of COX-1 and COX-2, the effect of selective or non-
289	selective COX inhibitors on PGE_2 production was examined (Fig. 2). Importantly, all
290	studies were performed at doses of inhibitors shown not to affect cell viability under the
291	experimental conditions used (data not shown). The non-selective COX-1/2 inhibitor
292	indomethacin and the selective COX-2 inhibitor NS-398 both inhibited PSaV-mediated
293	PGE ₂ production in a dose-dependent manner when added either immediately after the
294	removal of the virus inoculum (Post treatment) or during the entire course of the
295	infection (Pre-Post treatment) (Fig. 2A and B). In contrast, due to the reversible nature
296	of the inhibitors, the pretreatment of cells and subsequent removal of the inhibitor prior

Z

297	to the addition of PSaV had no effect on the levels of PGE_2 production (Fig. 2A and B).
298	Similar results were also obtained with a range of other COX inhibitors (Fig. 2C and D;
299	data not shown).

300	To further confirm a direct role for $COX-1$ and $COX-2$ in the production of PGE_2
301	during PSaV infection, the effect of COX-1 or COX-2 specific siRNAs was also
302	examined. Transfection of siRNA against COX-1 or COX-2 into LLC-PK cells reduced
303	expression levels of their respective target proteins. Although the inhibition of both
304	intracellular proteins was not complete by siRNA transfection, the levels of \ensuremath{PGE}_2
305	released from COX-1 and COX-2 siRNA-transfected cells were significantly reduced
306	(Fig. 2E and F). These results confirmed that the inductions of both COX enzymes are
307	responsible for the observed increase in PGE_2 from PSaV-infected cells. In addition, the
308	level of siRNA-mediated reduction of COX-1 and COX-2 was sufficient to significantly
309	reduce the production of PGE ₂ .

310

311 Inhibition of both COX enzymes negatively regulates PSaV replication. To 312 determine the impact of COX induction on PSaV replication, we examined the effect of 313 COX inhibitors and siRNAs on PSaV replication. Cells were treated with either 314 inhibitors (selective or nonselective) or transfected with siRNAs specific for COX-1 or

315	COX-2, and the effect on virus replication was monitored at 36 hpi by examining viral
316	titers as well as viral RNA and protein levels. There was no significant effect of COX
317	inhibitors on PSaV replication when cells were pre-treated but the inhibitors were
318	removed prior to infection (Pre) (Fig. 3A-H; Fig. 4A-D). However, the inclusion of
319	COX inhibitors following the removal of the virus inoculum (Post) or during the entire
320	course of infection (Pre-Post) resulted in a significant reduction in PSaV replication (Fig
321	3A-H, Fig. 4A-D). The COX-1 inhibitor SC-560 reduced the levels of PSaV RNA and
322	infectious virus by up to ~10 fold at 36 hpi (Fig. 3G-H). In contrast, COX-2 specific
323	inhibitors NS-398 and celecoxib, and non-selective COX-1/2 inhibitor indomethacin
324	showed a more significant effect, typically leading to a ~1000 fold decrease in virus
325	yield and RNA synthesis (Fig. 3A-F). Other specific COX-2 inhibitors (SC-58125, SC-
326	236, and nimesulide) were also tested; however less robust inhibition against PSaV
327	replication was observed (data not shown).
328	The effect of COX-specific siRNAs on PSaV replication was also examined (Fig.
329	3I-L; Fig. 4E and F). Transfection of COX-2 specific siRNA had a more substantial

viral titer with a concomitant decrease in viral RNA levels and viral protein production
(Fig. 4E and F). Infection assays also demonstrated that treatment of cells with either

effect on PSaV replication than COX-1 siRNAs, causing an ~1000 fold reduction in

21

 $\overline{\leq}$

330

337

production of PGE₂.

338	Supplementation of PGE ₂ relieves the COX inhibition of PSaV replication.
339	If the pro-viral effect of COX gene induction on PSaV replication was due solely to the
340	production of increased PGE_2 , then the addition of PGE_2 would be expected to reverse
341	the inhibitory effect of COX inhibitors on virus replication. To examine this possibility,
342	the ability of exogenous PGE_2 to restore PSaV replication after treatment with the non-
343	selective COX-1/2 inhibitor indomethacin and the COX-2 specific inhibitor NS-398
344	was examined. The addition of exogenous PGE_2 led to a dose-dependent restoration of
345	both PSaV infectivity and viral RNA levels in cells treated with either inhibitor (Fig. 5).
346	These results confirmed that PGE ₂ , the final product of both COX enzymes, mediates
347	the pro-viral effects of COX gene induction on PSaV replication.
348	

NS-398 or transfection with COX-2 specific siRNAs resulted in a significant decrease

in the number PSaV antigen-positive cells (Fig. 4G). Combined these data suggest that

both COX-1 and COX-2 enhance PSaV replication possibly via the increased

349

Bile acid does not influence COX-2 expression during PSaV infection.

PSaV replication in cell culture relies on the presence of bile acids including GCDCA in 350

351	the cell culture medium through a function that had previously been linked to an effect
352	of bile acids on the innate immune response to infection (15). However, recent studies
353	have indicated that this initial conclusion was incorrect as PSaV remains sensitive to the
354	type I interferon (IFN) response in the presence of bile acids (6) and that bile acids
355	function to promote virus uncoating (23). To determine whether bile acids have an
356	effect on the induction of COX-2/PGE2 pathway during PSaV replication, the induction
357	of COX-2 and PGE_2 was examined in the presence or absence of GCDCA following the
358	transfection of in vitro transcribed and capped PSaV genome (Fig. 6). Transfected RNA
359	was used to bypass any role of GCDCA which may play during viral entry and
360	uncoating (23). We observed that COX-2 and PGE_2 were induced in cells transfected
361	with in vitro transcribed and capped PSaV genomic RNA, irrespective of whether
362	GCDCA was present or absent (Fig. 6A). As expected, the COX-2 inhibitor NS-398
363	reduced expression of COX-2 and PGE_2 , and replication of PSaV (Fig. 6A-D). These
364	data indicate that induction of COX-2 and PGE ₂ was a direct result of PSaV replication
365	and was not due to any supplementary effect of GCDCA.
366	

367 PSaV VPg and ProPol activate COX-2/PGE₂ pathway. Given our
 368 observation that PSaV replication was required for the induction of the COX-2/PGE₂

 \sum

 \leq

 ≠		
scrip		
\anu:	369	pathway, we investigated whether the expression of viral protein alone was sufficient.
≥d N	370	The LLC-PK cells were transfected with plasmid carrying each PSaV gene including
cepte	371	NS1, NS2, NS3, NS4, NS5, NS6-7, VP1, and VP2 (19). Expression of each viral protein
Acc	372	was confirmed via the detection of a HA tag fused to the N-terminus of each protein
	373	(Fig. 7A). Western blotting and qPCR analysis of the levels of COX-1 and COX-2

NS2, NS3, NS4, NS5, NS6-7, VP1, and VP2 (19). Expression of each viral protein onfirmed via the detection of a HA tag fused to the N-terminus of each protein 7A). Western blotting and qPCR analysis of the levels of COX-1 and COX-2 demonstrated that VPg or ProPol expression significantly enhanced the expression of 374 375 COX-2 and led to an increase in PGE₂ production (Fig. 7B-D).

376

PGE₂ blocks the antiviral effect of nitric oxide (NO). Previous studies have 377 378 indicated that at least one of the effects of the prostaglandin production is the regulation of nitric oxide (NO) production (24). NO is a key molecule involved in the host defense 379 mechanism against various pathogens including protozoans, parasites, fungi, bacteria, 380 381 and viruses (25). NO also has a regulatory role at many stages of the development of 382 inflammation (26). To determine if the PGE₂ produced during PSaV replication 383 impacted NO production, we first examined the level of NO produced during PSaV replication. PSaV infected cells maintained low level of NO prior to 36 hpi when upon a 384 385 significant increase in PGE₂ production was observed (Fig. 8A). These data suggested

386

387	important role in the inhibition of NO production during PSaV replication.
388	To examine this possibility further, the effect of the COX-2 inhibitor NS-398 on
389	NO production during PSaV infection was also examined (Fig. 8B). Inhibition of COX-
390	2 activity was found to lead to a concomitant increase in NO production during PSaV
391	replication, which could be reversed in a dose-dependent manner by the addition of
392	nitric oxide synthase (NOS) inhibitor, L-NAME (Fig. 8B). The reversal of the effect of
393	COX-2 inhibition by L-NAME also resulted in a subsequent restoration of PSaV
394	infectivity levels as well as PSaV RNA and protein levels (Fig. 8C-E). Collectively,
395	these data suggest that the pro-viral effects of \ensuremath{PGE}_2 produced by both COX-1 and
396	COX-2 enzymes as a result of PSaV infection are mediated by the inhibition of the
397	antiviral effect of the NO.

that COX induction and the associated increase in \mbox{PGE}_2 production may play an

 \sum

Ś
3
ਙ
$\widetilde{\mathbf{w}}$
ã
ē
Q
-
2
ĭ
⊐
Ъ
Ē
σ
~
5
≤.
5
8
š
.⊃
ò
Ē.
é
Ч
П
Ð
σ
2
2
F
\leq
ŝ
N
0
2
017
017 k
017 by
017 by I
017 by M
017 by ME
017 by MEE
017 by MEDI
017 by MEDIC
017 by MEDICA
017 by MEDICAL
017 by MEDICAL I
017 by MEDICAL R
017 by MEDICAL RE
017 by MEDICAL RES
017 by MEDICAL RESE
017 by MEDICAL RESEA
017 by MEDICAL RESEAF
017 by MEDICAL RESEAR(
017 by MEDICAL RESEARC
017 by MEDICAL RESEARCH
017 by MEDICAL RESEARCH (
017 by MEDICAL RESEARCH C
017 by MEDICAL RESEARCH CO
017 by MEDICAL RESEARCH COL
017 by MEDICAL RESEARCH COUN
017 by MEDICAL RESEARCH COUN
017 by MEDICAL RESEARCH COUNCI
017 by MEDICAL RESEARCH COUNCL
017 by MEDICAL RESEARCH COUNCL -
017 by MEDICAL RESEARCH COUNCL - L
017 by MEDICAL RESEARCH COUNCL - UF
017 by MEDICAL RESEARCH COUNCL - UK
017 by MEDICAL RESEARCH COUNCL - UK S
017 by MEDICAL RESEARCH COUNCL - UK SB
017 by MEDICAL RESEARCH COUNCL - UK SBS

D

Accepted Manuscript Posted Online

398 DISCUSSION

During viral infection, numerous host inflammatory responses are induced, leading to 399 the production of cellular effectors and soluble factors such as IFNs, PGE₂ and NO (27, 400 28). As obligate intracellular parasites, viruses must therefore subvert and/or avoid the 401 402 host response to infection in order to complete their life cycle. As a result, pathogens including viruses have evolved a wide variety of mechanisms that enable the control of 403 404 cellular pathways, evade the host immune response and hijack signaling pathways to 405 facilitate viral replication and pathogenesis. Here, we investigated the potential role of 406 the COXs/PGE₂ pathway in the PSaV life cycle and the control of infection. We found 407 that the COXs/PGE₂ pathway was activated during the PSaV life cycle and that this activation had pro-viral effects via the inhibition of NO production. Furthermore, we 408 determined that expression of the VPg and ProPol proteins of PSaV was sufficient to 409 410 induce COX expression and PGE₂ production.

Among the soluble factors produced during the response of host cells to viral infection, NO is well known in the antiviral repertoire (29-32). In the immunological system, iNOS is induced by cytokines at the transcriptional level primarily in macrophages, neutrophils, epithelial cells, and hepatocytes where NO is produced in high concentrations (33, 34). Inducible NOS (iNOS), the enzyme responsible for the 416

417

418	by the induction of PGE_2 production during VSV replication in vivo (24). Here, we
419	showed that activation of the COX-2/PGE $_2$ pathway also enhances PSaV replication
420	through an inhibitory effect on NO production.
421	NO production is significantly enhanced in patients suffering from gastroenteritis
422	(30); this has been observed in norovirus or rotavirus infections in children (32). NO
423	secretion can be triggered in vitro and in vivo by the rotavirus nonstructural protein 4
424	(NSP4) (34-36) which in turn may cause diarrhea by elevating intestinal permeability
425	(37, 38), regulating intestinal motility (39) and intestinal ion transport (40, 41). In
426	contrast to rotavirus infection (34-36), little NO production was observed during PSaV
427	replication in the LLC-PK cells, possibly due to the synthesis of PGE ₂ , suggesting that
428	NO may not be involved in sapovirus-induced diarrhea. However, it is important to note
429	that we cannot fully rule out the potential role for NO in PSaV pathogenesis in vivo,
430	where the cellular response to infection is influence by numerous cell types and may not
431	be entirely reproduced in immortalized cells in vitro.
432	In a few instances, viral proteins have been identified to stimulate the activation of
433	COXs/PGE ₂ pathway, often by acting either directly or indirectly as a transcriptional

production of NO, can be regulated by the COX/PGE2 pathway (31). NO production is

known to restrict the VSV infection (29), an effect that is similarly thought to be offset

434

435	this activity has been reported, the hepatitis C virus (HCV) protein NS3, a viral serine
436	protease, is known to enhance COX-2/PGE $_2$ pathway by activating multiple signaling
437	pathways (46). In addition, the severe acute respiratory syndrome coronavirus (SARS-
438	CoV) nucleocapsid protein also activates the expression of COX-2/PGE_2 pathway by
439	binding directly to regulatory elements for NF- κB and CCAAT/enhancer binding
440	protein (45). In the present study, we demonstrated that expression of the PSaV VPg or
441	ProPol proteins in isolation was sufficient to lead to the activation of COX-2/ \mbox{PGE}_2
442	pathway. The mechanism behind this activation remains to be determined and is the
443	subject of future study.
444	In the present study, the levels of COX-1/2 mRNA and proteins were increased in
445	the response to PSaV infection so that we evaluated the effect of COX-1 specific, COX-
446	2 specific or non-selective COX-1/2 inhibitors on PSaV replication. Among these
447	inhibitors tested, COX-2 specific inhibitors NS-398 and celecoxib, and non-selective
448	COX-1/2 inhibitor indomethacin exerted stronger anti-PSaV effects than other inhibitors;
449	having a ~ 1000 fold decrease effect in virus yield and RNA synthesis. However, other
450	specific COX-2 inhibitors had less strong inhibitory effect against PSaV replication,
451	most likely due to their less potent activity and the fact that higher concentrations

transactivator of COX-2 gene expression (42-45). Among the viral proteins for which

 \sum

452

453

454	COX-1/2 nonselective inhibitor indomethacin on PSaV replication was observed in
455	post-treatment compared with the pre-post-treatment. The mechanism why post-
456	treatment of these inhibitors has stronger effect than pre-post-treatment remains
457	unknown. The one possibility is that it could be an off-target effect of using high dose of
458	these inhibitors in the LLC-PK cells, although there are no published reports of these
459	kinds of phenomena.
460	In the present study, we observed only a transient increase in COX-1 levels during
461	PSaV infection whereas COX-2 induction was more significantly induced and induction
462	was sustained during the later stage of the viral life cycle. However, the dramatic effect
463	of the non-selective COX inhibitor indomethacin, the COX-2 specific inhibitor NS-398
464	and the effect of COX-specific siRNAs support the hypothesis that both COX-1 and

required for effective COX inhibition resulted in cell toxicity observed during their use.

In addition, a more robust inhibitory effect of COX-2 specific inhibitor NS-398 and the

In conclusion, our results demonstrate crucial role for the COXs/PGE₂ pathway in the regulation of NO production during the PSaV replication, which provide an environment suitable for efficient PSaV growth. In addition, our data would indicate that pharmacological targeting of COX-2 could provide a potential targeting strategy for

M

- 470 the control of sapovirus infection facilitating the antiviral effect of NO production.
- 471 Further studies are required to determine if targeting of the COXs/PGE₂ pathway *in vivo*
- 472 has a negative impact on PSaV pathogenesis.

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

473 ACKNOWLEDGMENTS

474 We thank Kyeong-OK Chang (Kansas State University) for his generous gift of the full-

475 length infectious clone pCV4A.

476

477 FUNDING INFORMATION

This study was supported by a grant (2014R1A2A2A01004292) of Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT and Future Planning, the Korea Basic Science Institute
grant (C33730), and Bio-industry Technology Development Program (315021-04)
funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea. IG is
a Wellcome Senior Fellow supported by the Wellcome Trust (097997/Z/11/Z).

×
2
<
5
S.
Ш.
Q
Ō
Q
-
2
\overline{O}
3
_
5
Ħ
Ö
0
2
2
à
ົດ
Ë
\neg
ò
¥
ര
-
0
¥
Т
<u>ה</u> '
쓰
\leq
÷
<u></u>
=
\leq
~
Ĵ
_
N
20
201
2017
2017 ł
2017 by
2017 by
2017 by N
2017 by MI
2017 by ME
2017 by MEC
2017 by MEDI
2017 by MEDIC
2017 by MEDIC/
2017 by MEDICAI
2017 by MEDICAL
2017 by MEDICAL F
2017 by MEDICAL RI
2017 by MEDICAL RE
2017 by MEDICAL RES
2017 by MEDICAL RESE
2017 by MEDICAL RESE/
2017 by MEDICAL RESEA
2017 by MEDICAL RESEAR
2017 by MEDICAL RESEARC
2017 by MEDICAL RESEARCI
2017 by MEDICAL RESEARCH
2017 by MEDICAL RESEARCH (
2017 by MEDICAL RESEARCH C
2017 by MEDICAL RESEARCH CC
2017 by MEDICAL RESEARCH COL
2017 by MEDICAL RESEARCH COU
2017 by MEDICAL RESEARCH COUN
2017 by MEDICAL RESEARCH COUNC
2017 by MEDICAL RESEARCH COUNCI
2017 by MEDICAL RESEARCH COUNCL
2017 by MEDICAL RESEARCH COUNCL -
2017 by MEDICAL RESEARCH COUNCL - I
2017 by MEDICAL RESEARCH COUNCL - U
2017 by MEDICAL RESEARCH COUNCL - UK
2017 by MEDICAL RESEARCH COUNCL - UK
2017 by MEDICAL RESEARCH COUNCL - UK S
2017 by MEDICAL RESEARCH COUNCL - UK SE
2017 by MEDICAL RESEARCH COUNCL - UK SB
2017 by MEDICAL RESEARCH COUNCL - UK SBS

484 **REFERENCES**

1. Anderson EJ. 2010. Prevention and treatment of viral diarrhea in pediatrics. Exp

- 490 3. Patel MM, Hall AJ, Vinjé J, Parashar UD. 2009. Noroviruses: a comprehensive
- 491 review. 2009. J Clin Virol **44:**1–8. http://dx.doi.org/10.1016/j.jcv.2008.10.009.
- 492 4. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, Gonzalez-
- 493 Hernandez MB, Iovine NM, Wobus CE, Vinjé J, Tibbetts SA, Wallet SM,
- 494 Karst SM. 2014. Enteric bacteria promote human and mouse norovirus infection of

495 B cells. Science **346:**755–759. http://dx.doi.org/10.1126/science.1257147.

496 5. Oka T, Wang Q, Katamayan K, Saif LJ. 2015. Comprehensive review of human

497 sapoviruses. Clin Microbiol Rev 28:32–53. http://dx.doi.org/10.1128/CMR.00011498 14.

499 6. Hosmillo M, Sorgeloos F, Hiraide R, Lu J, Goodfellow I, Cho KO. 2015.
500 Porcine sapovirus replication is restricted by the type I interferon response in cell
501 culture. J Gen Virol 96:74–84. http://dx.doi.org/10.1099/vir.0.071365-0.

⁴⁸⁶ Rev Anti Infect Ther **8:**205–217. http://dx.doi.org/10.1586/eri.10.1.

^{487 2.} Ayukekbong JA, Mesumbe HN, Oyero OG, Lindh M, Berdström T. 2015. Role
488 of noroviruses as aetiological of diarrhea in developing countries. J Gen Virol

⁴⁸⁹ **96:**1983–1999. http://dx.doi.org/10.1099/vir.0.000194.

502

7.

Paul AG, Chandran B, Sharma-Walia N. 2013. Cyclooxygenase-2-prostaglandin

sensitive mutants. Acta Microbiol Immunol Hung 41:173-188. 519

520	12.	Warner TD, Mitchell JA. 2002. Cyclooxygenase-3 (COX-3): filling in the gaps
521		toward a COX continuum? Proc Natl Acad Sci U S A 99:13371-13373.
522		http://dx.doi.org/10.1073/pnas.222543099.
523	13.	Smith WL, DeWitt DL, Garavito RM. 2000. Cyclooxygenases: structural,
524		cellular, and molecular biology. Annu Rev Biochem 69:145–182.
525		http://dx.doi.org/10.1146/annurev.biochem.69.1.145.
526	14.	Kalinski P. 2012. Regulation of immune responses by prostaglandin E2. J Immunol
527		188:21-28. http://dx.doi.org/10.4049/jimmunol.1101029.
528	15.	Chang KO, Sosnovtsev SV, Belliot G, Kim Y, Saif LJ, Green KY. 2004. Bile
529		acids are essential for porcine enteric calicivirus replication in association with
530		down-regulation of signal transducer and activator of transcription 1. Proc Natl
531		Acad Sci U S A 101:8733-8738. <u>http://dx.doi.org/10.1073/pnas.0401126101</u> .
532	16.	Kim DS, Hosmillo M, Alfajaro MM, Kim JY, Park JG, Son KY, Ryu EH,
533		Sorgeloos F, Kwon HJ, Park SJ, Lee WS, Cho D, Kwon J, Choi JS, Kang MI,
534		Goodfellow I, Cho KO. 2014. Both a2,3- and 2,6-linked sialic acids on O-linked
535		glycoproteins act as functional receptors for porcine sapovirus. PLoS Pathog
536		10:e1004172. http://dx.doi.org/10.1371/journal.ppat.1004172.
537	17.	Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival:

Journal of Virology

538		application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63.
539	18.	Kim DS, Son KY, Koo KM, Kim JY, Alfajaro MM, Park JG, Hosmillo M,
540		Soliman M, Baek YB, Cho EH, Lee JH, Kang MI, Goodfellow I, Cho KO. 2016.
541		Porcine sapelovirus uses $\alpha 2,3$ -linked sialic acid on GD1a ganglioside as a receptor.
542		J Virol 90: 4
543		067-4077. http://dx.doi.org/10.1128/JVI.02449-15.
544	19.	Oka T, Katayama K, Ogawa S, Hansman GS, Kageyama T, Ushijima H,
545		Miyamura T, Takeda N. 2005. Proteolytic processing of sapovirus ORF1
546		polyprotein. J Virol 79: 7283-7290. http://dx.doi.org/10.1128/JVI.79.12.7283-
547		7290.2005.
548	20.	Chang KO, Sosnovtsev SV, Belliot G, Wang Q, Saif LJ, Green KY. 2005.
549		Reverse genetics system for porcine enteric calicivirus, a prototype sapovirus in the
550		Caliciviridae. J Virol 79: 1409–1416. <u>http://dx.doi.org/10.1128/JVI.79.3.1409-</u>
551		<u>1416.2005</u> .
552	21.	Alfajaro MM, Kim HJ, Park JG, Ryu EH, Kim JY, Jeong YJ, Kim DS,
553		Hosmillo M, Son KY, Lee JH, Kwon HJ, Ryu YB, Park SI, Lee WS, Cho KO.
554		2012. Anti-rotaviral effects of Glycyrrhiza uralensis extract in piglets with rotavirus
555		diarrhea. Virol J 9:310. http://dx.doi.org/10.11863/1743-422X-9-310.

 \sum

556	22.	Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints.
557		Am J Hyg 27: 493–497.
558	23.	Shivanna V, Kim Y, Chang KO. 2014. The crucial role of bile acids in the entry of
559		porcine enteric calicivirus. Virology 456-457: 268–278.
560		http://dx.doi.org/10.1016/j.virol.2014.04.002.
561	24.	Chen N, Warner JL, Shoshkes-Reiss C. 2000. NSAID treatment suppresses VSV
562		propagation in mouse CNS. Virology 276: 44–51.
563		http://dx.doi.org/10.1006/viro.2000.0562.
564	25.	Akaike T, Maeda H. 2000. Nitric oxide and virus infection. Immunology 101:300–
565		308.
566	26.	Guzik TJ, Korbut R, Adamek-Guzik T. 2003. Nitric oxide and superoxide in
567		inflammation and immune function. J Physiol Pharmacol 54:469–487.
568	27.	Steer S, Corbett JA. 2003. The role and regulation of COX-2 during viral
569		infection. Viral Immunol 16: 447–460.
570		http://dx.doi.org/10.1089/088282403771929283.
571	28.	Koyama S, Ishii KJ, Coban C, Akira S. 2008. Innate immune response to viral
572		infection. Cytokine 43: 336–341. http://dx.doi.org/10.1016/j.cyto.2008.07.009.
573	29.	Bi Z, Reiss CS. 1995. Inhibition of vesicular stomatitis virus infection by nitric

Σ

oxide. J Virol 69:2208-2213. 574

575	30. Herulf M, Svenungsson B, Lagergren A, Ljung T, Morcos E, Wiklund NP,
576	Lundberg JO, Weitzberg E. 1999. Increased nitric oxide in infective
577	gastroenteritis. J Infect Dis 180:542-545. http://dx.doi.org/10.1086/314908.

31. Kash JC, Goodman AG, Korth MJ, Katze MG. 2006. Hijacking of the host-cell 578

- response and translational control during influenza virus infection. Virus Res 579
- 580 119:111–120. http://dx.doi.org/10.1016/j.virusres.2005.10.013.
- 581 32. Sowmyanarayanan TV, Natarajan SK, Ramachandran A, Sarkar R, Moses PD,
- 582 Simon A, Agarwal I, Christopher S, Kang G. 2009. Nitric oxide production in
- 583 acute gastroenteritis in Indian children. Trans R Soc Trop Med Hyg 103:849-
- 851. http://dx.doi.org/10.1016/j.trstmh.2009.05.003. 584
- 33. Zaki MH, Akuta T, Akaike T. 2005. Nitric oxide-induced nitrative stress involved 585
- in microbial pathogenesis. J Pharmacol Sci 98:117-129. 586
- 34. Rodríguez-Díaz J, Banasaz M, Istrate C, Buesa J, Lundgren O, Espinoza F, 587
- 588 Sundqvist T, Rottenberg M, Svensson L. 2006. Role of nitric oxide during
- rotavirus infection. J Med Virol 78:979-985. http://dx.doi.org/10.1002/jmv.20650. 589
- 590 35. Borghan MA, Mori Y, El-Mahmoudy AB, Ito N, Sugiyama M, Takewaki T,
- Minamoto N. 2007. Induction of nitric oxide synthase by rotavirus enterotoxin 591

592		NSP4: implications for rotavirus pathogenicity. J Gen Virol 88:2064-2072.
593		http://dx.doi.org/10.1099/vir.0.82618-0.
594	36.	Ge Y, Mansell A, Ussher JE, Brooks AE, Manning K, Wang CJ, Taylor JA.
595		2013. Rotavirus NSP4 triggers secretion of proinflammatory cytokines from
596		macrophages via toll-like receptor 2. J Virol. 87:11160-11167.
597		http://dx.doi.org/10.1128/JVI.03099-12.
598	37.	Kubes P. 1992.Nitric oxide modulates epithelial permeability in the feline small
599		intestine. Am J Physiol 262 :G1138–G1142.
600	38.	Kukuruzovic R, Robins-Browne RM, Anstey NM, Brewester DR. 2002. Enteric
601		pathogens, intestinal permeability and nitric oxide production in acute
602		gastroenteritis. Pediatr Infect Dis J 21:730–739.
603		http://dx.doi.org/10.1097/01.inf.0000022729.15753.b8.
604	39.	Hoffman RA, Zhang G, Nüssler NC, Gleixner SL, Ford HR, Simmons RL,
605		Watkins SC. 1997. Constitutive expression of inducible nitric oxide synthase in the
606		mouse ileal mucosa. Am J Physiol Gastrointest Liver Physiol 272:G383–G392.

607 40. Resta-Lenert S, Barrett KE. 2002. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. 608 609 Gastroenterology 122:1070-1087.

610

611	activity of Shigella enterotoxin 1 (ShET1) is mediated by inducible nitric oxide
612	synthase activity. J Pediatr Gastroenterol Nutr 33 :400–416.
613	42. Lee CH, Yeh TH, Lai HC, Wu SY, Su IJ, Takada K, Chang Y. 2011. Epstein-
614	Barr virus Zta-induced immunomodulators from nasopharyngeal carcinoma cells
615	upregulate interleukin-10 production from monocytes. J Virol 85:7333-7342.
616	http://dx.doi.org/10.1128/JVI.00182-11.
617	43. Alvarez S, Serramía MJ, Fresno M, Muñoz-Fernández MA. 2007. HIV-1
618	envelope glycoprotein 120 induces cyclooxygenase-2 expression in astrocytoma
619	cells through a nuclear factor-kappaB-dependent mechanism. Neuromolecular Med
620	9: 170–193.
621	44. Murono S, Inoue H, Tanabe T, Joab I, Yoshizaki T, Furukawa M, Pagano JS.
622	2001. Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane
623	protein 1 is involved in vascular endothelial growth factor production in
624	nasopharyngeal carcinoma cells. Proc Natl Acad Sci U S A 98:6905-6910.

41. Rhee SJ, Wilson KT, Gobert AP, Nataro JP, Fasano A. 2001. The enterotoxic

- 625 http://dx.doi.org/10.1073/pnas.121016998.
- 45. Yan X, Hao Q, Mu Y, Timani KA, Ye L, Zhu Y, Wu J. 2006. Nucleocapsid
 protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding

629 binding protein. Int J Biochem Cell Biol 38: 1417–	1428.				
630 http://dx.doi.org/10.1016/j.biocel.2006.02.003.	http://dx.doi.org/10.1016/j.biocel.2006.02.003.				
46. Tomei L, Failla C, Santolini E, De Francesco R, La Monica N. 1993. NS3 is a					
632 serine protease required for processing of hepatitis C virus polyprotein. J Virol					
633 67: 4017–4026. http://dx.doi.org/10.1073/pnas.121016998.	67:4017–4026. http://dx.doi.org/10.1073/pnas.121016998.				

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

634

636	FIG 1 Induction of COX-1 and COX-2 by PSaV infection. (A and B) The expression of
637	COX-1, COX-2, and PSaV viral RNA in LLC-PK cells infected with PSaV (MOI = 1
638	ffu/cell) was quantified by real-time PCR (qPCR). In the case of COX-1 and COX-2,
639	expression levels were normalized to β -actin and are depicted as the fold induction
640	compared with that of the mock inoculated cells. (C) The levels of the VPg, COX-1,
641	COX-2 and GAPDH proteins were analyzed by Western blot. GAPDH was used as a
642	loading control. (D) The levels of PGE_2 in the supernatants harvested at 36 hours post-
643	infection (hpi) from PSaV-infected LLC-PK cells were determined by ELISA. The
644	levels of PGE_2 in the supernatants were compared between mock- and virus-inoculated
645	groups. Data are presented as means \pm standard error of the mean from three
646	independent experiments. Differences were evaluated using the One-Way ANOVA.
647	** <i>p</i> <0.001; *** <i>p</i> <0.0001.

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

648

FIG 2 Effects of COX-2 inhibitors in PGE_2 production during PSaV infection (A-D) LLC-PK cells were treated with selective COX-2 inhibitors (NS398 and celecoxib), nonselective COX inhibitor (indomethacin), and selective COX-1 inhibitor (SC-560) as indicated prior to the addition of the virus inoculum (MOI = 1 ffu/cell) and then

654	infection (Post) or treated prior to the addition of the inoculum as well as for the
655	duration of the infection (Pre-Post). The levels of PGE_2 in the supernatants harvested at
656	36 hpi were determined by ELISA. The levels of PGE_2 in the supernatants of virus-
657	infected cultures were compared between mock- and chemical-treated groups. (E-F)
658	Confluent of LLC-PK cells was transfected with siRNAs against COX-1, COX-2 or
659	scrambled-siRNA (Scram-siRNA) prior to infection with PSaV (MOI = 1 ffu/cell).
660	Supernatants were collected and ELISA was conducted to determine the PGE2
661	concentration. The levels of PGE_2 in the supernatants were compared between mock-
662	and siRNA-transfected groups. (Inset) Western blot analysis for COX-1, COX-2 and
663	GAPDH was conducted with LLC-PK cells transfected with COX-1, COX-2 or
664	scrambled-siRNA (Scram-siRNA). Data are presented as means \pm standard error of the
665	mean from three independent experiments. Differences were evaluated using the One-
666	Way ANOVA. ** <i>p</i> <0.001; *** <i>p</i> <0.0001.

removed (Pre), after the addition of the virus inoculum then left for the duration of the

667

653

FIG 3 Inhibition of COXs attenuates PSaV replication. (A-F) LLC-PK cells were pre-668 treated (Pre), post-treated (Post) or pre-post-treated (Pre-Post) with non-cytotoxic doses 669 670 of NS-398, indomethacin, celecoxib, and SC560. At 36 hours post-inoculation (hpi)

 $\overline{\leq}$

671	with PSaV (MOI = 1 ffu/cell), cells were harvested and the levels of viral RNA (A, C, E,
672	and G) and titer (B, D, F, and H) were determined by quantitative real-time PCR and
673	TCID ₅₀ , respectively. (I-L) LLC-PK cells were transfected with siRNAs against COX-1,
674	COX-2 or scrambled-siRNA (Scram-siRNA) before inoculation with PSaV (MOI = 1
675	ffu/cell). Samples were harvested at 36 hours post-inoculation (hpi) and the levels of
676	viral RNA (I and K) and titer (J and L) were determined by quantitative real-time PCR
677	and TCID ₅₀ , respectively. Data are displayed as the mean \pm standard error of the mean
678	from three independent experiments. Differences were evaluated using the One-Way
679	ANOVA. * <i>p</i> <0.05, ** <i>p</i> <0.001, *** <i>p</i> <0.0001.

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

680

FIG 4 Effect of COX inhibitors or siRNA in PSaV replication. (A-D) LLC-PK cells 681 were pre-treated (Pre), post-treated (Post) or pre-post-treated (Pre-Post) with non-682 cytotoxic doses of NS-398, indomethacin, celecoxib, and SC560. At 36 hours post-683 inoculation (hpi) with PSaV (MOI = 1 ffu/cell), cells were harvested and the level of 684 protein of viral VPg was determined by Western blot analyses. (E-F) LLC-PK cells were 685 transfected with siRNAs against COX-1, COX-2 or scrambled-siRNA (Scram-siRNA) 686 before inoculation with PSaV (MOI = 1 ffu/cell). Samples were harvested and 687 processed as mentioned above. GAPDH was used as a loading control. (G) LLC-PK 688

689	cells were infected with PSaV (MOI = 1 ffu/cell) and the effect of the COX-2 inhibitor
690	NS-398 on viral antigen production was determined by confocal microscopy.

691

FIG 5 Addition of exogenous PGE2 reverses the effect of COX inhibitors on PSaV 692 replication. LLC-PK cells were infected with PSaV (MOI = 1 ffu/cell), treated with 693 non-cytotoxic doses of NS-398 or indomethacin and then supplemented with exogenous 694 695 PGE₂ in the maintenance media. After 36 hours post-infection, cells were harvested and 696 the levels of viral RNA synthesis (A and C) and titer (B and D) were determined by 697 quantitative real-time PCR and TCID₅₀, respectively. Data are represented as the means 698 ± standard error of the mean from three independent experiments. Differences were evaluated using the One-Way ANOVA. **p*<0.05; ***p*<0.001; ****p*<0.001. 699

700

FIG 6 Bile acid GCDCA does not influence the expression of COX-2 during PSaV infection. LLC-PK cells were either infected with PSaV (MOI = 1 ffu/cell) or transfected with one microgram of *in vitro* transcribed PSaV capped RNA, and the effect of the COX-2 inhibitor NS-398 or the bile acid GCDCA were examined. Infected cells were harvested at 36 hours post-infection whereas transfected cells were harvested after 6 days post-transfection and subjected to Western blot analysis to assess viral

707

708

709	represented as the means \pm standard error of the mean from three independent
710	experiments. Differences were evaluated using the One-Way ANOVA. ** p <0.001;
711	*** <i>p</i> <0.001.
712	
713	FIG 7 Role of PSaV proteins in stimulating COX-2 expression. LLC-PK cells were
714	transfected with one microgram of pUNO plasmids containing each PSaV gene tagged
715	with a HA epitope as indicated in the materials and methods section. As controls, pUNO
716	empty or HA carrying (pUNO-HA) plasmids were transfected. At 36 hours post-
717	transfection (hpt), cells were harvested and the expression levels of viral proteins (A) as
718	well as COX-1 and COX-2 (B) proteins were determined by Western blot analysis.
719	GAPDH was used as a loading control. In the case of COX-1 and COX-2, the
720	expression levels were also quantified by real-time PCR, normalized to $\beta\text{-actin}$ and
721	depicted as the fold induction compared with that of the vehicle transfected cells (C). To
722	determine the \ensuremath{PGE}_2 concentration, supernatants were collected and ELISA was
723	conducted (D). The levels of PGE_2 in the supernatants were compared between vehicle-
724	and PSaV gene-transfected groups. Data are presented as means \pm standard error of the

protein production (A), as well as to qPCR for viral RNA (B) and COX-2 (C).

Supernatants were also collected for ELISA to quantify the levels of PGE_2 (D). Data are

45

 \sum

mean from three independent experiments. Differences were evaluated using the OneWay ANOVA. ** p<0.001, ***p<0.0001.

727

FIG 8 PGE₂ blocks the antiviral effect of nitric oxide (NO) for PSaV infection. (A) 728 Supernatants from mock- or PSaV-infected samples were collected and the nitrite 729 concentration was determined using the Griess reagent system as described in the 730 731 materials and methods section. LLC-PK cells were infected with PSaV (MOI = 1 732 ffu/cell) and subsequently treated with the COX-2 inhibitor NS-398 or the nitric oxide 733 synthase inhibitor L-NAME, either singularly or in combination. (B) The effect of 734 inhibitor treatment on nitric oxide production was then determined as described for panel (A). The levels of viral titer (C), RNA (D), and protein (E) were determined by 735 TCID₅₀, real-time RT-PCR, and Western blot analyses, respectively. GAPDH served as 736 the loading control. Data are means \pm standard error of the mean from three different 737 independent experiments. Differences were evaluated by One-Way Anova. ***p<0.0001. 738

A

5

36

hpi

VPg

36

0.4

2.4

12

0.8

1.2

24

1.2

2.6

 \sum

С

Z

 100

 100
 #**

 100
 #0

 100
 #0

 100
 #0

 100
 #0

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 100
 #

 10
 #

Z

NS5

NS6-7 VP1 VP2

С

3

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

А

GAPDH

Downloaded from http://jvi.asm.org/ on February 9, 2017 by MEDICAL RESEARCH COUNCL - UK SBS

Target	Primer	Sequence (5' -3')	Region (nt)	Size (bp)
p11	pUNO-	F: gtg gtcgac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT GCT AAT TGC CGT CCG		165
1	HA-p11	TTG CCT ATT GGG		
		R: atc getage TCA TTG CGC CAC AAA CAC GTC		
p28	pUNO-	F: ttt_gtcgac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT GGG GTG GTG GAT GAT	178-204	762
	HA-p28	TTC TTC CGC CCC		
		R: atc gctagc TCA CTG CGG CGT GTA GAG GC	939-923	
p35	pUNO-	F: tac gtcgac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT GCA GGC AAT GAT CTC	940-966	1017
	HA-p35	ATC ATA TTG GGG		
		R: gac <u>gctagc</u> TCA CTC GCT GTT GTA CTT C	1956-1941	
p32	pUNO-	F: tac gtcgac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT GCC GCT GAT GTC AAA	1957-1983	855
	HA-p32	CAT CTA TGG TTC		
		R: ttt getage TCA CTC GCT AAG CGT GTT TTC	2811-2794	
VPg	pUNO- ΗΛ-VPα	F: ac gtegac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT GCG AAA GGG AAA AAC		338
	11A- VI g	Reactage TCA CTC ACT GTC ATA GGT GTC ACC TTT		
ProPol	nUNO-	F: ateage ate TAC CCA TAC GAT GTT CCA GAT TAC GCT GGG CGT GGA TAC GTG GTA	3151-3177	1995
110101	HA- CCC ATG AC		5151-5177	1775
	ProPol	R: gctage TCACTCCATCACGAACACTTCTGGCTCTTC 5		
VP1	pUNO-	pUNO- F: gtcgac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT GAG GCG CCT GCC CCA		1627
	HA-VP1	VP1 ACC CGT TCG GTT		
		R: gctage TCATCGTGAGCTGTGAATGGACCTTCC		
VP2	pUNO-	F: ctc gtcgac atg TAC CCA TAC GAT GTT CCA GAT TAC GCT AGT TGG ATT GCA GGA	6774-6800	492
	HA-VP2	GCA ATG CAG GGC		
		R: agg gctage TCA TCA CAC TTT GCT GTG AGT G	7265-7247	
VPg		F: CAA ACG CGG ACG TGG TGC TCG	2826-2846	145
		R: TGA TGC GCC TGA CAG TGC GCG	2970-2950	
*COX-1		F: CCG GAG GAA GTT CAT ACC TGA CCC	253-275	108
		R GCC AGG ACC CAT CTT GCC AGA	360-340	

Σ

ine
\cap
\cup
-0
O
1
^o
Q
5
. 🗠
· 🖂
Ū
Š
Ē
0
\leq
\leq
-0
O
-
\circ
O
Ũ
Ŭ

**COX-2	F: CAC CCA TGG GTG TGA AAG GGA GG	181-203	201
	R: CCA AAG GAC AGG GCC ATG GGG	381-361	
Small underlined letters: r			

Italic letters: polypeptide hemagglutinin sequences. Bold letters: start codon.

*Derived from partial sequence of porcine COX-1; GenBank accession no. AF207823.1. **Derived from partial sequence of porcine COX-2; GenBank accession no. AF207824.1.

 \sum