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ABSTRACT: We present graphics processing unit (GPU)-acceleration of
various computational energy landscape methods for biomolecular systems.
Basin-hopping global optimization, the doubly nudged elastic band method
(DNEB), hybrid eigenvector-following (EF), and a local rigid body
framework are described, including details of GPU implementations. We
analyze the results for eight different system sizes, and consider the effects of
history size for minimization and local rigidification on the overall efficiency.
We demonstrate improvement relative to CPU performance of up to 2
orders of magnitude for the largest systems.

1. INTRODUCTION

Basin-hopping global optimization,1,2 the doubly nudged elastic
band method (DNEB),3 and hybrid eigenvector-following
(EF)4 are well established tools for the location of minima
and transition states in the characterization of potential energy
landscapes. Their application to biomolecules has so far focused
on smaller systems, due to computational expense. We would
like to open up the study of larger biomolecules within the
computational potential energy landscape approach, through
the use of GPU hardware for acceleration.
Graphics processing units (GPUs) were originally designed

for fast graphics rendering, but they have become increasingly
used in general-purpose computations as massively parallel
processors.5 Relative to a CPU, they have a greater number of
transistors devoted to data-processing, than to data-caching and
flow control. This feature makes them ideal for computations
with high arithmetic intensity (the ratio of arithmetic
operations to memory operations).6 The NVIDIA parallel
computing platform and programming model CUDA facilitates
the task of exploiting this architecture effectively. CUDA allows
the definition of functions known as “kernels”, which execute N
times in parallel on N threads. Threads are grouped together
into blocks, many of which can execute concurrently, forming a
grid. GPUs have several different memory spaces available.
Each thread can make use of registers, which have extremely
fast access, but only have the lifetime of the thread. Low access
latency shared memory allows threads within a block to share
data. The majority of the available memory is global device
memory, which is available to any thread in any block over the
lifetime of the application, though access to this resource is
relatively slow. Read-only, cached texture memory and constant
memory can also be useful in certain applications.
The remainder of this report outlines the potential energy

landscape framework, the adaptations for GPUs, and results for
a range of system sizes.

2. METHODS
2.1. Basin-hopping global optimization. Basin-hopping

global optimization facilitates the exploration of potential
energy surfaces. It is particularly useful for locating the global
minimum, though other properties of interest may be
investigated by performing thermodynamic calculations using
the database of local minima found during the search. The
coordinate space is explored stepwise using random structural
perturbations. For biomolecules, these perturbations may be
Cartesian moves of the backbone, rotations of amino acid side
chains, or short molecular dynamics (MD) runs. After each
perturbation, geometry optimization is performed to find the
local minimum associated with this point in coordinate space,
usually via L-BFGS7 minimization (the limited-memory version
of the BFGS algorithm, named for Broyden,8 Fletcher,9

Goldfarb,10 and Shanno11). The step taken is then either
accepted or rejected using a Metropolis criterion. Thus, the
landscape is transformed into a series of plateaux or “basins of
attraction”.2 The transformed energy can be expressed as

̃ =E EX X( ) min{ ( )} (1)

where min indicates that a local minimization is carried out
from the starting coordinates, X. The main advantage of this
method is the ease with which areas of the landscape separated
by high barriers can be explored.
The most time-consuming component of the above process

is the calculation of the potential energy and gradient. Much of
the previous work employing basin-hopping to investigate
biomolecular systems has used the CPU implementation of the
AMBER potential interfaced with our GMIN code.12 This
interface is henceforth referred to as “A12GMIN”. A GPU-
accelerated version of the AMBER potential13 has now been
released. The generalized Born (GB) implicit solvent potential
from AMBER 12 was interfaced with GMIN. The DPDP
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precision model was used, in which contributions to forces and
their accumulation are both performed in double precision. The
GPU-accelerated version of GMIN will be referred to as
“CUDAGMIN”.
Although the potential energy calculation accounts for the

majority of the basin-hopping run time, the time taken by the
vector operations comprising the L-BFGS routine7 is still
significant. L-BFGS is a quasi-Newton optimization algo-
rithm,14 where the approximation to the inverse Hessian is
represented implicitly through a number of vector pairs that are
updated at each iteration. An overview of the method for the
minimization of a function, f, is expressed in Algorithm 1.15

The initial approximation to the Hessian, Hk
0, may vary freely

between iterations. One commonly used method is to set
Hk

0 = γk I, where

γ = − −

− −

s y

y yk
k
T

k

k
T

k

1 1

1 1 (2)

This scaling factor, γk, is an estimate of the magnitude of the
second derivative along the most recent search direction,
ensuring that pk is appropriately scaled.

15 The usual procedure
for calculating Hk∇f k is known as the two-loop recursion
algorithm and is shown in Algorithm 2.15

A line search is often used to determine an appropriate step
length, αk. However, we have found it more efficient to use a
simple procedure that checks whether the step is a descent
direction, and ensures that it does not exceed a specified
maximum step size and energy rise. This approach is further
described in Algorithm 3.
Although many of the individual vector calculations are

amenable to parallellization, the loops through the history size,
m, in Algorithm 2 are necessarily serial. At larger history sizes, a
larger number of vector calculations must therefore be
performed sequentially. This scaling gives a more accurate
step direction, so fewer steps (and hence fewer potential calls)
would be required for convergence; however, it is not

immediately clear whether a larger history size would result
in reduced time for convergence on GPU hardware.
The L-BFGS algorithm has been implemented on GPUs by

various other authors.16−26 In adapting any application to make
use of GPU hardware, a decision must be made as to which
computations should take place on the GPU and which would
better be left on the CPU. In “GPU Computing Gems”, Haque
and Pande consider this problem with reference to the L-BFGS
algorithm. For their application, the function and gradient
evaluation are well-suited to efficient parallelization on the
GPU because of high data parallelism and arithmetic intensity.
Conversely, they find that the L-BFGS direction update is ill-
suited to GPU parallelization, as it consists of a large number of
sequential, low-dimensional vector operations, requiring
frequent thread synchronization and leaving many idle threads.
However, leaving the update operations on the CPU
necessitates copying large amounts of data between the host
and device, which is expensive. In their case, implementing the
entire algorithm on the GPU turned out to be the most
efficient approach.16 D’Amore et al.17 also point out the
difficulty of parallelizing the update operations in the L-BFGS
routine. Although a dot product computation has a high degree
of parallelism, each multiplication requires two read operations
from the input vectors and one write operation to the output
vector. The calculation is therefore strongly memory bandwidth
bound. The upper limit for GPU-acceleration of the dot
product is given by the ratio of GPU to CPU memory
bandwidth, which is usually less than ten. D’Amore et al. made
use of the cuBLAS library in their work, a GPU-accelerated
version of the complete standard BLAS library.
Several other authors have also implemented versions of L-

BFGS with both the function and gradient evaluation and
vector update operations taking place on the GPU, namely Fei
et al.,18 Zhang et al.,19 and Wetzl et al.20 In contrast, others
have opted to put only the function and gradient evaluation on
the GPU.21−26 In cases where the problem size has low
dimensionality, the cost of data transfer between host and
device is lowered, and the poor parallelization of the update
steps becomes more significant.23 However, several of these
authors speculate that costly memory transfer negatively
impacts the performance of their applications.24−26 The most
efficient approach likely depends on the hardware, the nature of
the cost function, and the L-BFGS parameters selected.
We chose to port the whole L-BFGS algorithm to GPU so

that we could compare it to having just the potential energy
function on GPU. Our implementation is a modified version of
“CudaLBFGS”20,27 (Creative Commons Attribution 3.0 Un-
ported License), an existing GPU-accelerated version of L-
BFGS, authored by Wetzl and Taubmann. They programmed
all the vector operations of Algorithms 1 and 2 on GPU using
the NVIDIA cuBLAS library, which delivers 6 to 17 times faster
performance than the latest MKL BLAS library.28 Single-
threaded kernels are used to perform operations in device
memory not involving vectors or matrices. We also
implemented the line search described in Algorithm 3 using
cuBLAS, and made various other modifications to make the L-
BFGS routine as similar as possible to its CPU equivalent in
GMIN. This code, written in a mixture of C++ and CUDA C,
was interfaced with the Fortran code of GMIN. The starting
coordinates and other relevant parameters are copied from host
to device at the start of the calculation, and the energy,
gradient, and other useful output values are copied from device
to host at the end.

Algorithm 1: L-BFGS

Algorithm 2: Two-Loop Recursion
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Local rigid body framework. The local rigid body
framework in our programs, GMIN and OPTIM,29 provides
a way of reducing the number of degrees of freedom, while still
retaining full atomistic interactions.30,31 Rigid body coordinates
are used to generate atomic coordinates, prior to the calculation
of the energy and gradient. The atomistic forces are then
projected to obtain the forces and torques on the rigid bodies,
as required for L-BFGS.
The position of each rigid body is specified using three

coordinates for the center of geometry, rI, and three for its
orientation, pI. Capital letters are used here to refer to rigid
bodies and lower case letters for atoms or sites. The reference
coordinates of the atoms in rigid body I, relative to the center
of geometry, are denoted by {ri

0}i∈I. Using an angle-axis
framework,32 the rotation vector can be expressed as
pI = θIp̂I = (pI

1, pI
2, pI

3), where p̂I is a unit vector defining the
rotation axis and θI describes the magnitude of the rotation
about that axis. pI

1, pI
2, and pI

3 are the components of the
rotation vector in the x, y, and z directions, respectively. The
rotation matrix, RI, can be obtained from Rodrigues’ rotation
formula33 as

θ θ= + − ̃ ̃ + ̃R I p p p(1 cos ) sinI I I I I I (3)

where I is the identity matrix. p̃I is the skew-symmetric matrix
defined as
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−
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which is constructed using the rotation vector pI. The formula

= +∈ ∈r r R ri I I I i I
0

(5)

defines the transformation from rigid body coordinates to
atomistic coordinates.30

The projection of the atomistic forces onto the translational
degrees of freedom of the rigid bodies is given by the sum30

∑∂
∂

= ∂
∂∈

U
r

U
rI

k
i I i

k
(6)

The accompanying projection of the forces on the atoms onto
the rotational degrees of freedom is obtained through the chain
rule as
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follows geometrically from eq 5.31

The derivative of the rotation matrix RI
k (k = 1,2,3) can be

expressed as34
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where, for example,
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If the entirety of the L-BFGS algorithm is to be on the GPU,
the coordinate transformation and gradient projection should
also take place there to avoid unnecessary memory copying.
The rotation matrix of eq 3 is calculated independently for each
rigid body, presenting an obvious opportunity for paralleliza-
tion. A kernel to calculate the rotation matrices was
implemented, launching a number of threads equal to the
number of rigid bodies, each of which also constructed the
intermediate skew-symmetric matrix of eq 4 in registers. The
calculations involving loops through small, nine-element
matrices were unrolled for performance. The resulting rotation
matrices, stored in global memory, were passed as an argument
to the subsequent transformation kernel. This kernel encoded
the main transformation of eq 5 and utilized a greater degree of
parallellization than the previous kernel, with a number of
active threads equal to the number of atoms.
For the sum of eq 6, providing the translational forces on the

rigid bodies, an approach based on the “Shuffle On Down”
algorithm was used to perform a parallel reduction.35 This
procedure makes use of a feature first introduced with the
Kepler GPU architecture, namely the shuffle instruction, which

Algorithm 3: Step Scaling in GMIN
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allows threads to read the registers of other threads in the same
warp (group of 32 threads). There are four shuffle intrinsics,
but only “__shfl_down()” is used in this case, specifically the
double-precision implementation detailed in ref 35. The final
result of the shuffle down instruction is that values held in
registers for each thread are shifted to lower thread indices.
Reduction within a warp can be achieved by summing pairs of
values obtained through a shuffle down operation, where the
shift is initially half the warp size and then repeatedly bisected
until thread 0 holds the final value, i.e. constructing a reduction
tree. Parallel reduction using shuffle instructions in this way is
much faster than the approach of using shared memory to
exchange data between threads. This function was implemented
for summations involving rigid bodies of 32 atoms or fewer.
Using a kernel launch with a number of threads equal to 32
times the number of rigid bodies, the register values to be
summed are either the appropriate value read from global
memory, or zero where the atom does not exist. The first
thread of each warp was designated to write the final reduced
values to global memory.
The most frequently employed local rigid groupings do not

involve more than 32 atoms, and so this approach is sufficient
in these cases. However, sometimes larger rigid bodies are
needed, so the reduction must be extended to summing more
than 32 values. To reduce across a whole block of threads,
reductions must first be performed within each warp. The first
thread of each warp can then write its partial sum to an array in
shared memory. After thread synchronization, the first warp can
read these values from shared memory and perform another
warp reduction to give the final value.
To reduce across the whole grid, more than one kernel

launch is needed for global communication. A kernel was
designed such that the number of values to be reduced for each
rigid body was equal to the number of atoms in the largest rigid
body in the system, rounded up to the nearest multiple of the
block size, so that no block contained a mixture of values from
different rigid bodies. The kernel launched a number of threads
equal to this number multiplied by the number of rigid bodies.
A block reduction was performed for all blocks, with the results
written to a temporary array in global memory. Another similar
kernel was then used to reduce this array in sections (one
section per rigid body). This kernel was configured to launch
repeatedly until the number of blocks became equal to the
number of large rigid bodies, at which point the reduced value
for each block was written to the global memory gradient array.
In a similar manner to the coordinate transformation, a

kernel using one thread per rigid body was used to calculate the
derivatives of the rotation matrices following eq 9. The nine-
element loops were unrolled as before and the final values were
written to global memory. Due to higher register use, optimal
performance required a smaller block size than that for the
coordinate transformation kernel.
The derivatives of the rotation matrices were passed in global

memory to another kernel, which performed the matrix
multiplication and dot product of eq 7 in parallel for each
atom. This result was again saved in global memory and passed
to another pair of parallel reduction kernels, similar to the
previous implementation of the “Shuffle On Down” algorithm,
to obtain the rotational forces on the rigid bodies.
In our tests, we used the RMS force formulation described in

ref 31, based on a distance measure for angle-axis coordinates
that is invariant to global translation and rotation. This gives a
more accurate result than the standard procedure, and fewer

minimization steps are required for convergence. This method
was adapted for GPUs using techniques similar to those already
discussed.

2.2. Transition state determination. In OPTIM,
transition states are usually located using the DNEB algorithm
to generate initial guesses between two end points, and then
these candidates are refined using hybrid EF. These processes
both account for a significant proportion of the computational
time spent in constructing a kinetic transition network. As with
basin-hopping global optimization, the calculation of the
potential energy and gradient accounts for the majority of the
time taken in both these procedures. The GPU-accelerated
AMBER potential has been interfaced with OPTIM, in a similar
manner to its interface with GMIN, to form “CUDAOPTIM”.
This is the GPU equivalent of the existing A12OPTIM code.
DNEB is a double-ended transition state search method,

where paths between end points are represented as a series of
images connected by springs.4 In the nudged elastic band
method,36,37 the parallel component of the true gradient and
the perpendicular component of the spring gradient are
projected out to avoid sliding down and corner cutting,
respectively. In the “doubly nudged” modification of this
approach, a portion of the spring gradient perpendicular to the
path is retained.3

As optimization of the images is not converged tightly and
steps are not required to be accurate, a small history size of four
is usually used. It is unlikely that implementing the whole
algorithm on GPU for DNEB would bring much benefit, so
only the calculation of the energy and gradient were performed
on the GPU.
In hybrid EF, uphill steps are usually taken along the

eigenvector associated with the smallest nonzero Hessian
eigenvalue, and minimization is performed in the orthogonal
subspace until a transition state is reached.4 Due to the
changing geometry, the uphill eigenvector is recalculated
frequently. As second derivatives are not available for the
AMBER potential on GPU, a variational approach must be used
to calculate the smallest eigenvalue and eigenvector.
Here we minimize a Rayleigh−Ritz ratio

λ =x
x Hx

x
( )

T

2 (11)

with respect to the eigenvector x associated with the smallest
eigenvalue λ(x) of the Hessian, H. λ(x) can be approximated as
a numerical second derivative of the energy using the central
difference approximation

λ ζ ζ
ζ

≈ + + − −V V V
x

X x X x X
x

( )
( ) ( ) 2 ( )

( )2 (12)

where V(X) is the energy at point X in nuclear configuration
space and ζ ≪ 1. Differentiating eq 12 gives

λ ζ ζ
ζ

λ∂
∂

= ∇ + − ∇ − −V V
x

X x X x
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x
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( ) ( ) 2
2 2 (13)

Roundoff error in eq 12 can result in loss of precision for
systems with large values of V(X). An alternative formulation of
λ(x) using

λ ζ ζ
ζ

≈ ∇ + − ∇ − ·V V
x

X x X x x
x

( )
{ ( ) ( )}

2 2 (14)
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gives a significantly better estimate in these cases, especially
when the magnitude of the gradient is small in comparison to
the energy.38

Components of the eigenvector corresponding to overall
translation or rotation are removed by calculating unit vectors
for infinitesimal translational and rotational displacements and
using these in a projection procedure. The eigenvector is also
normalized at every iteration of the minimization.
After the lowest eigenvector has been found, an uphill

eigenvector-following step is taken in this direction, with
minimization in all orthogonal directions. To prevent
minimization in the uphill direction, x, the projection

= − ·G G G x x( ) (15)

can be used to remove the component of the gradient along x.
L-BFGS has been found to be faster than the conjugate

gradient algorithm for minimization of the Rayleigh−Ritz ratio
and also for the subspace minimization,39 meaning that much
of the CUDA code written for basin-hopping global
optimization can be reused. λ(x) and ∂λ/∂ x of eq 12 and eq
13 were calculated using the cuBLAS library. Orthogonalization
and normalization of the uphill eigenvector required a mixture
of cuBLAS operations and custom kernels with vector length
parallelization for more complex vector operations. The

determination of the length of the eigenvector-following step
took place on CPU, with the actual step itself performed using a
cuBLAS call. The projection of gradient components in the
subspace minimization, as in eq 15, also used cuBLAS.

3. RESULTS AND DISCUSSION
Here we present results for CUDAGMIN and CUDAOPTIM.
Eight different systems of varying sizes (shown in Figure 1)
were used to test these methods: the pentapeptide Ac-
WAAAH+-NH2 (W1H5)

40 (81 atoms), the p53 upregulated
modulator of apoptosis (PUMA) protein41,42 (581 atoms), the
myoglobin structure from the AMBER GPU Benchmark
Suite43 (2492 atoms), human aldose reductase with its
nicotinamide adenine dinucleotide phosphate (NADP+)
cofactor44 (5113 atoms), an epoxide hydrolase from
Acinetobacter nosocomialis45 (10053 atoms), the trimeric
hemagglutinin (HA) glycoprotein of the influenza A(H1N1)
virus46 (22811 atoms), a monomeric version of HA (7585
atoms), and finally a truncated version of this monomer (3522
atoms). HA has previously been used to investigate receptor
binding. Due to its large size, a truncated monomer structure
was employed to make the simulations computationally feasible
on CPU. All systems used the AMBER ff99SB force field with
an effectively infinite nonbonded cutoff (999.99 Å). Although a

Figure 1. Structures of the biomolecules used in the present tests.

Table 1. L-BFGS Benchmarking (m = 4) Using Two GPU Implementations and a CPU Implementationa

System
Number
of atoms

Average minimization
time for GPU

Implementation 1
(m = 4)/ s

Average minimization
time for GPU

Implementation 2
(m = 4)/ s

Average minimization
time for CPU
Implementation

(m = 4)/ s

Time for CPU
Implementation/GPU
Implementation 1

(m = 4)

Time for CPU
Implementation/GPU
Implementation 2

(m = 4)

A 81 2.6 1.2 1.9 0.7 1.6
B 581 5.9 3.4 131.6 22.3 39.2
C 2492 32.8 29.0 4192.1 127.8 144.4
D 3522 40.1 39.4 5937.7 148.1 150.8
E 5113 69.2 71.7 11768.0 169.9 164.2
F 7585 489.9 492.1 86552.8 176.7 175.9
G 10053 1333.4 1374.4 248394.9 186.3 180.7
H 22811 2546.9 2527.1 517567.7 203.2 204.8

aGPU Implementation 1 has the entire L-BFGS routine on GPU, including the potential calculation. GPU Implementation 2 has just the potential
calculation on GPU. Averages are taken from the minimization of 100 different starting structures from high temperature MD trajectories. The
systems used are labeled as follows: “A” is W1H5, “B” is PUMA, “C” is myoglobin, “D” is the truncated monomer of HA, “E” is aldose reductase and
NADP+, “F” is the full monomer of HA, “G” is epoxide hydrolase, and “H” is the full trimeric HA structure. The ff99SB force field was used for all
systems with the modified GB solvent model47,48 (AMBER input flag igb = 2).
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finite cutoff would be more usual for CPU calculations, this
option is not supported on GPU, so an infinite cutoff was used
in both cases for a proper comparison. The modified GB
solvent model47,48 (AMBER input flag igb = 2) was used at the
salt concentration 0.2 M with a cutoff of 12 Å for the
calculation of the effective Born radii. CUDAGMIN and
CUDAOPTIM were compiled on the x86_64 architecture
running the Ubuntu 14.04.4 operating system, using Intel
compiler version 14.0.4 and NVIDIA CUDA Toolkit 6.5.49

GeForce GTX TITAN Black GPUs with the NVIDIA Linux
driver version 346.59 and 2.10 GHz Intel Xeon E5-2620 v2
CPUs were employed. A12GMIN and A12OPTIM were
compiled on the x86_64 architecture running the Scientific
Linux release 6.2 operating system, using Intel compiler version
14.0.4, and run on 2.67 GHz Intel Xeon X5650 CPUs.
3.1. Basin-hopping global optimization. Basin-hopping

global optimization can be viewed in terms of sequential L-
BFGS minimizations. Routines other than L-BFGS account for
a negligible amount of the overall run time, so it is reasonable
to benchmark L-BFGS in isolation so that test minimizations
can run concurrently. The calculation of the energy and
gradient accounts for the majority of the time spent in L-BFGS,
with the percentage of time taken up by linear algebra
operations varying with the size of the history of updates, m. As
the history size increases, a larger number of vector operations
are performed in the sequential loop through the history and
fewer L-BFGS steps (and hence fewer potential calls) are
needed for convergence, as the directions of the steps taken are
more accurate. The optimal history size for a particular system
differs between GPU and CPU, so results are presented here
for both a small history size of four and a relatively large history
size of 1000. For each of the eight systems, 100 configurations
were extracted from high temperature MD runs and used as
starting structures for minimization. Table 1 shows the average
L-BFGS minimization times for these sets of structures for a
history size of four. Timings are shown for three different
implementations: both the L-BFGS vector operations and the
potential function on GPU, L-BFGS on CPU with the potential
on GPU, and both L-BFGS and the potential on CPU. The
equivalent results for a history size of 1000 are shown in Table
2. All minimizations used a maximum L-BFGS step size of
0.4 Å, with the maximum rise in energy allowed per step capped
at 10−4 kcal mol−1, and a convergence condition on the root-
mean-square (RMS) force of 10−5 kcal mol−1 Å−1.
Comparing the times shown in Tables 1 and 2 for all three

implementations, the CPU-only minimizations are all faster for
the larger history size of 1000. However, the calculations where
the GPU is used are mostly faster for the smaller history size of

four. These CPU results can be explained by the fact that fewer
expensive potential calls need to be made for a larger history
size. This result is also true for the GPU, but the CPU/GPU
speed up ratio for the potential calculation is much greater than
that for the vector calculations, so in many cases it is actually
fastest to shift the balance toward more potential calls and
fewer vector operations, i.e. use a small history size. Comparing
times for the two GPU implementations within the same
history size, very little difference can be seen in average times
for history size m = 4, as vector operations are only a tiny
percentage of the overall calculation. However, for history size
1000, where more vector operations are performed, we see that
L-BFGS with both the potential and vector calculations on the
GPU is slower than the implementation with just the potential
calculation on the GPU for small systems, but faster for larger
systems. These results occur because BLAS calculations, such as
dot products, are actually slower on the GPU relative to CPU
for small vectors, as explained in the Methods section. Speed
improvements start to be seen for BLAS in the three largest
systems. Profiling runs show that cudaMemcpy does not
become a significant bottleneck for either GPU implementa-
tion, even at these large history sizes, presumably because the
potential calculation is sufficiently time-consuming in compar-
ison. Overall, excellent speed ups are obtained for a range of
history sizes. The only system for which a significant
improvement is not seen is W1H5, which is too small for the
GPU arithmetic hardware to be fully utilized.13

As the speed up for cuBLAS becomes more significant with
increasing vector size, it is sensible to optimize the history size
to find the fastest balance between the number of potential calls
and cuBLAS calls. Referring to Tables 1 and 2, the 22811 atom
full trimeric HA system actually minimizes faster with the larger
history size of 1000, than for the smaller history size of four.
Results are collected in Table 3, showing average minimization
times for both GPU implementations for a range of history
sizes. Timings for the whole L-BFGS algorithm are faster than
those with just the potential on the GPU for all history sizes,
except the very smallest. The fastest average minimization time
is for the all-GPU implementation with a history size of 75.

3.2. Local rigid body framework. The local rigid body
framework30 is now available on GPU for both CUDAGMIN
and CUDAOPTIM. Benchmarking was performed for just the
L-BFGS algorithm, as for basin-hopping global optimization.
Locally rigid systems were compared to their atomistic
equivalents using the implementation of L-BFGS where the
whole algorithm is on the GPU. A comparison to CPU timings
was not performed, but the average number of L-BFGS steps
required was recorded, which will be very similar to that on

Table 2. L-BFGS Benchmarking (m = 1000) Using Two GPU Implementations and a CPU Implementationa

System
Number
of atoms

Average minimization
time for GPU

Implementation 1
(m = 1000)/s

Average minimization
time for GPU

Implementation 2
(m = 1000)/s

Average minimization
time for CPU
Implementation
(m = 1000)/s

Time for CPU
Implementation/GPU
Implementation 1

(m = 1000)

Time for CPU
Implementation/GPU
Implementation 2

(m = 1000)

A 81 11.3 0.4 0.6 0.1 1.4
B 581 144.5 14.1 92.9 0.6 6.6
C 2492 475.9 201.9 3091.1 6.5 15.3
D 3522 382.1 239.6 4561.2 11.9 19.0
E 5113 421.8 364.4 9123.3 21.6 25.0
F 7585 1249.5 1609.0 48754.5 39.0 30.3
G 10053 2478.7 4217.0 142404.4 57.5 33.8
H 22811 2392.5 4747.1 337077.0 140.9 71.0

aImplementation and parameters are identical to those in Table 1.
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CPU. The same parameters were used for L-BFGS as for the
atomistic benchmarking, and two systems with different
patterns of rigidification were considered. The results in
Table 4 are for a system containing a large number of small

local rigid bodies, namely the HA monomer, which was used in
the previous benchmarking set with aromatic rings, peptide
bonds, and sp2 centers rigidified (a total of 671 rigid bodies,
none exceeding a size of 11 atoms). The results in Table 5 are
for a system with one large rigid body and a few small rigid
bodies, as might be used in a factorized superposition approach
(FSA)44 calculation. The system in question is aldose reductase
with aromatic rings, peptide bonds, and sp2 centers rigidified
between 16 and 17 Å distant from the binding site of the
phenylacetic acid (PAC) ligand (a total of 22 bodies, none
exceeding a size of 11 atoms), and everything beyond 17 Å
grouped as one large rigid body of size 3678 atoms. Starting
structures for the test minimizations were taken from a basin-
hopping run for the locally rigidified structure, with random
perturbations at each step consisting of side-chain group

rotations and backbone Cartesian moves. The first 100 starting
structures to successfully converge formed the benchmarking
set. The average minimization times, the average number of L-
BFGS steps taken, and the time per step averaged over the
whole set are shown in Tables 4 and 5 for a range of history
sizes for both rigid and atomistic systems. Different sets of
history sizes are used for the two cases, which were chosen to
best illustrate the variations observed.
The average time per step for both systems shows that the

coordinate and gradient transformations add very little
overhead to each step, as they are well optimized for the
GPU. As for basin-hopping global optimization, a large history
size gives the optimal minimization time on the CPU. It was
found in the original work for rigid body systems on CPUs that
minimization takes less time than for atomistic representations,
as fewer steps are taken due to the reduction in the number of
degrees of freedom.30 Looking at the average number of L-
BFGS steps taken for rigid and atomistic systems in Tables 4
and 5, we see that this result holds only for larger history sizes.
At small history sizes, rigid body systems actually take more
steps than their atomistic equivalents, an effect that is
particularly pronounced for the system with FSA rigidification
in Table 5. This result implies that rigid body systems require a
more accurate step direction in minimization. Rigid body
timings only become lower than atomistic timings for history
sizes where fewer steps are taken. On a GPU, due to the
competing effects of history size, it follows that the optimal
history size for fast minimization may be larger for locally rigid
systems than for atomistic. This result is certainly true for the
highly rigidified system in Table 5, but the average number of
L-BFGS steps does not decrease as steeply with increasing
history size for the system with minimal rigidification, so the
optimal history size is the same as for atomistic. We note that
for both systems the fastest minimization is still for the
atomistic system with a fairly small history size. It is likely that
individual L-BFGS minimizations will only be faster for locally
rigid systems on the GPU when the system is sufficiently large
and complex that a large history size is required for the
atomistic representation. However, excellent speed ups

Table 3. Variation of HA Minimization Time with History
Size Using Two GPU Implementationsa

History
size (m)

Average HA minimization
time for GPU

Implementation 1/s

Average HA minimization
time for GPU

Implementation 2/s

4 2546.9 2527.1
10 2035.3 2047.2
50 1817.9 1917.8
75 1788.3 1951.3
100 1836.3 1999.6
250 1880.8 2253.0
500 2010.1 3229.4
750 2223.8 4067.4
1000 2392.5 4747.1

aGPU Implementations 1 and 2 are described in Table 1. HA refers to
the full trimeric structure (“H” in Tables 1 and 2).

Table 4. GPU Minimization of the HA Monomer for Locally
Rigid and Atomistic Representationsa

Average
minimization time

(GPU
Implementation

1)/ s
Average number of

L-BFGS steps
Average time per

step/s

History
size (m) Rigid Atomistic Rigid Atomistic Rigid Atomistic

4 360.6 296.2 19639 16514 0.018 0.018
10 281.6 236.0 15102 13006 0.019 0.018
25 249.2 219.4 12799 11563 0.019 0.019
50 252.4 230.4 12013 11296 0.021 0.020
75 256.9 245.6 11279 11249 0.023 0.022
100 265.5 265.9 10837 11238 0.024 0.024
250 348.8 385.3 9885 11023 0.035 0.035
500 496.9 581.3 9450 10979 0.053 0.053
750 635.7 719.9 9153 10757 0.069 0.067
1000 757.4 890.1 8858 10561 0.085 0.084

aGPU Implementation 1 has the entire L-BFGS routine on GPU,
including the potential calculation. Averages were taken for the
minimization of 100 different starting structures obtained from a basin-
hopping run. The atomistic HA monomer is labeled “F” in Tables 1
and 2. The rigid representation has aromatic rings, peptide bonds, and
sp2 centers grouped as local rigid bodies.

Table 5. GPU Minimization of Aldose Reductase for Locally
Rigid and Atomistic Representationsa

Average
minimization time

(GPU
Implementation

1)/s
Average number of

L-BFGS steps
Average time per

step/s

History
size (m) Rigid Atomistic Rigid Atomistic Rigid Atomistic

4 335.8 49.2 32431 5224 0.010 0.009
250 110.9 102.9 4155 3999 0.027 0.026
500 92.8 162.1 2200 3890 0.042 0.041
750 87.9 215.5 1739 3827 0.050 0.056
1000 94.7 265.7 1571 3798 0.059 0.069
1500 82.7 347.5 1391 3713 0.057 0.092
2000 78.6 414.6 1350 3691 0.057 0.109

aGPU Implementation 1 has the entire L-BFGS routine on GPU,
including the potential calculation. Averages were taken for the
minimization of 100 different starting structures obtained from a basin-
hopping run. Aldose reductase is complexed with the PAC ligand, and
the rigidified version is considered for an FSA simulation with an
atomistic layer of radius 16 Å; a local rigid layer of 1 Å with rigid
aromatic rings, peptide bonds, and sp2 centers; and the rest of the
protein (3678 atoms) rigidifed as a single large rigid body.44
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compared to the CPU are indeed obtained for locally rigid
systems, and the advantage of the significant reduction in
minima on the potential energy surface is still present.
3.3. Transition state determination. Hybrid EF4 and

DNEB3 optimizations account for the majority of the time
spent in determining transition states with the OPTIM
program. As explained in the Methods section, gradient-only
hybrid EF consists of two different modified versions of L-
BFGS with an uphill eigenvector-following step in between.
This overall process of finding a transition state starting from
coordinates proposed by DNEB was analyzed as a whole, rather
than for the separate components. The implementation of L-
BFGS with the entire routine on GPU was used in these tests.
The same systems were used as for basin-hopping global
optimization, excluding the smallest, where too few unique
transition states were found. Short basin-hopping runs were
performed to generate a distinct second end point for each
system. Connection attempts using OPTIM were then
performed to try and locate some transition states between
the two end points. The first 100 starting coordinates generated
by the DNEB procedure, which went on to successfully
converge to transition states, were saved as the reference
coordinates.
The approximation of eq 14 was used to calculate the

eigenvector in all cases. A maximum L-BFGS step size of 0.4 Å
with a maximum allowed rise in energy of 10−4 kcal mol−1 was
used in both versions of L-BFGS. The maximum number of
iterations in the Rayleigh−Ritz ratio minimization for
calculating the smallest nonzero Hessian eigenvalue4 was set
to 1000, and a convergence criterion of 0.01 kcal mol−1 Å−3 was
adopted for the RMS gradient, with the additional constraint
that the percentage change of the eigenvalue must have fallen
below 1% for the final two steps. The subspace minimization
was limited to a maximum of 20 iterations before the eigenvalue

converged, as judged by modulus overlap with the previous
vector better than 0.9999, and then increased to a maximum of
200 iterations after the eigenvalue converged. A trust radius of
0.5 Å was used for adjusting the size of the maximum uphill
step along the eigenvector,50 with the step size constrained
between 0.01 and 0.5 Å. A maximum of 1000 iterations of
hybrid EF was allowed. Transition state convergence was
deemed to have occurred when the RMS force fell below
10−5 kcal mol−1 Å−1 and the magnitude of the hybrid EF step
fell below 0.02 Å. The same initial guess for the eigenvector was
used for all 100 starting DNEB structures, and the time taken to
converge to a transition state was recorded for both CPU and
GPU tests.
Table 6 shows the average time taken for hybrid EF for both

GPU and CPU and the corresponding speed ups using a small
history size of four. The equivalent results for large history sizes
of 1000 are shown in Table 7. Again, the GPU implementation
is fastest with a history size of four and the CPU
implementation is fastest with a history size of 1000. Excellent
speed ups are obtained on GPU hardware, though slightly
below those found for basin-hopping global optimization, due
to the greater number of dot products and other vector
operations performed in projecting out components of the
gradient in the subspace minimization.
The analysis of DNEB is fairly straightforward, as there is

little variation in time taken for a particular system with a fixed
set of parameters. Usually, a fixed maximum number of steps is
used, rather than continuing until convergence. In this case, 10
images were employed in the DNEB and the maximum number
of iterations used to optimize these was set to 300. A small
history size of m = 4 was employed. The convergence tolerance
for the RMS DNEB force on all the images was set to
0.01 kcal mol−1 Å−1.

Table 6. Hybrid EF Benchmarking (m = 4) for GPU and CPUa

System
Number of

atoms
Average time for GPU Implementation

(m = 4)/s
Average time for CPU Implementation

(m = 4)/s
Time for CPU Implementation/GPU

Implementation (m = 4)

B 581 14.8 192.1 13.0
C 2492 20.2 2102.4 104.2
D 3522 25.7 3529.1 137.4
E 5113 51.4 7399.4 143.8
F 7585 197.1 36779.8 186.6
G 10053 195.9 33549.2 171.3
H 22811 1047.6 176550.7 168.5

aThe GPU implementation has the entire Rayleigh−Ritz L-BFGS and L-BFGS routines with gradient projection on GPU, including the potential
calculation. 100 DNEB structures that successfully converged to transition states during a connection attempt between two random minima were
used as starting points for the searches. The systems used are labeled as follows: “B” is PUMA, “C” is myoglobin, “D” is the truncated monomer of
HA, “E” is aldose reductase and NADP+, “F” is the full monomer of HA, “G” is epoxide hydrolase’ and “H” is the full trimeric HA structure. The
ff99SB force field was used for all systems with the modified GB solvent model47,48 (AMBER input flag igb = 2).

Table 7. Hybrid EF Benchmarking (m = 1000) for GPU and CPUa

System
Number of

atoms
Average time for GPU Implementation

(m = 1000)/s
Average time for CPU Implementation

(m = 1000)/s
Time for CPU Implementation/GPU

Implementation (m = 1000)

B 581 113.3 142.7 1.3
C 2492 215.1 1650.3 7.7
D 3522 186.3 3160.9 17.0
E 5113 238.3 6576.0 27.6
F 7585 669.6 32046.2 47.9
G 10053 449.9 30073.3 66.8
H 22811 1225.4 169234.0 138.1

aImplementation and parameters are identical to those in Table 6.
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The speed ups are shown in Table 8 along with the average
times taken for both CPU and GPU (only the potential is
implemented on GPU). These times are an average of those for
the first three individual DNEB runs performed in the
connection attempts used for generating the DNEB structures
for benchmarking hybrid EF. Again, speed ups of more than 2
orders of magnitude have been obtained, providing a significant
acceleration for the complete process of transition state
location.

4. CONCLUSIONS

This contribution has detailed our implementation of various
key components of computational energy landscapes theory on
GPU hardware. We first accelerated basin-hopping global
optimization in the GMIN code, using a version of L-BFGS
adapted for CUDA, and an interface to the GPU-accelerated
AMBER potential.13 These results were then extended to form
the basis of a GPU-accelerated version of hybrid eigenvector-
following, one component of transition state location in the
OPTIM code. DNEB, the other component employed in
OPTIM for transition state characterization, was also
accelerated using the interfaced potential. Additionally, we
adapted our local rigid body framework, which can be be used
in either GMIN or OPTIM, for GPU hardware. Tests
performed for system sizes in the range of 81 to 22811
atoms gave a speed up relative to CPU of up to 2 orders of
magnitude on Titan Black GPUs. Hence, it will now be feasible
to explore much larger biological systems than previously
accessible using energy landscape methods, opening up a wide
array of new applications.
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Hornegger, J. In Bildverarbeitung fu ̈r die Medizin 2013: Algorithmen -
Systeme - Anwendungen. Proceedings des Workshops vom 3. bis 5. Ma ̈rz
2013 in Heidelberg; Meinzer, H.-P., Deserno, M. T., Handels, H.,
Tolxdorff, T., Eds.; Springer: Berlin, Heidelberg, 2013; Chapter GPU-
Accelerated Time-of-Flight Super-Resolution for Image-Guided
Surgery, pp 21−26.
(21) Yatawatta, S., Kazemi, S., Zaroubi, S. Innovative Parallel
Computing (InPar); Institute of Electrical and Electronics Engineers
(IEEE): San Jose, CA, 2012; Chapter GPU Accelerated Nonlinear
Optimization in Radio Interferometric Calibration, pp 1−6.
(22) Sukhwani, B.; Herbordt, M. C. In Numerical Computations with
GPUs, 1st ed.; Kindratenko, V., Ed.; Springer International Publishing:
Cham, Switzerland, 2014; pp 379−405.
(23) Gates, M.; Heath, M. T.; Lambros, J. Int. J. High Perform.
Comput. Appl. 2015, 29, 92−106.
(24) Gu, J.; Zhu, M.; Zhou, Z.; Zhang, F.; Lin, Z.; Zhang, Q.;
Breternitz, M. Implementation and Evaluation of Deep Neural

Table 8. DNEB Benchmarking (m = 4) for GPU and CPUa

System
Number of

atoms
Average time for GPU Implementation

(m = 4)/s
Average time for CPU Implementation

(m = 4)/s
Time for CPU Implementation/GPU

Implementation (m = 4)

B 581 2.8 90.1 32.5
C 2492 10.5 1203.8 114.2
D 3522 18.6 2275.3 122.2
E 5113 30.9 4593.6 148.5
F 7585 59.5 9569.0 160.8
G 10053 100.1 16535.6 165.2
H 22811 452.9 80680.2 178.1

aThe GPU implementation has just the potential calculation on GPU. The average of three DNEB runs of 300 iterations each was taken from a
connection attempt between two random minima. The systems used are the same as those in Tables 6 and 7.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00934
J. Chem. Theory Comput. 2016, 12, 6182−6191

6190

mailto:rgm38@cam.ac.uk
mailto:cen1001@cam.ac.uk
mailto:dw34@cam.ac.uk
http://orcid.org/0000-0003-4029-3445
https://doi.org/10.5281/zenodo.163633
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www-wales.ch.cam.ac.uk/GMIN/
http://www-wales.ch.cam.ac.uk/GMIN/
http://dx.doi.org/10.1021/acs.jctc.6b00934


Networks (DNN) on Mainstream Heterogeneous Systems. Proceedings
of 5th Asia-Pacific Workshop on Systems, New York, NY, USA, 2014; pp
12:1−12:7.
(25) Rong, G.; Liu, Y.; Wang, W.; Yin, X.; Gu, X.; Guo, X. IEEE
Trans. Vis. Comput. Graphics 2011, 17, 345−356.
(26) Martinez, J.; Claux, F.; Lefebvre, S. Raster2Mesh: Rasterization
based CVT meshing; [Research Report] RR-8684, 2015; p 27.
(27) cudaLBFGS. https://github.com/jwetzl/CudaLBFGS (accessed
Oct 1, 2013).
(28) cuBLAS. https://developer.nvidia.com/cublas (accessed Sep 21,
2016).
(29) OPTIM: A program for optimizing geometries and calculating
reaction pathways. http://www-wales.ch.cam.ac.uk/OPTIM/ (ac-
cessed Sep 21, 2016).
(30) Kusumaatmaja, H.; Whittleston, C. S.; Wales, D. J. J. Chem.
Theory Comput. 2012, 8, 5159−5165.
(31) Rühle, V.; Kusumaatmaja, H.; Chakrabarti, D.; Wales, D. J. J.
Chem. Theory Comput. 2013, 9, 4026−4034.
(32) Wales, D. J. Philos. Trans. R. Soc., A 2005, 363, 357−377.
(33) ROTATION. http://www.mech.utah.edu/~brannon/public/
rotation.pdf (accessed Sep 21, 2016).
(34) Chakrabarti, D.; Wales, D. J. Phys. Chem. Chem. Phys. 2009, 11,
1970−1976.
(35) Faster Parallel Reductions on Kepler. https://devblogs.nvidia.
com/parallelforall/faster-parallel-reductions-kepler/ (accessed Sep 21,
2016).
(36) Henkelman, G.; Uberuaga, B. P.; Jońsson, H. J. Chem. Phys.
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