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Constraints and spandrels of interareal
connectomes
Mikail Rubinov1,2

Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent

studies have identified modules, hubs, module hierarchies and rich clubs as structural hall-

marks of these wiring diagrams. An influential current theory postulates that connectome

modules are adequately explained by evolutionary pressures for wiring economy, but that the

other hallmarks are not explained by such pressures and are therefore less trivial. Here, we

use constraint network models to test these postulates in current gold-standard vertebrate

and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost

constraints inadequately explain connectome module organization, and that simultaneous

module and hub constraints induce the structural byproducts of hierarchies and rich clubs.

These byproducts, known as spandrels in evolutionary biology, include the structural

substrate of the default-mode network. Our results imply that currently standard connectome

characterizations are based on circular analyses or double dipping, and we emphasize an

integrative approach to future connectome analyses for avoiding such pitfalls.
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T
he connectome is the complete structural wiring diagram
of the brain or nervous system and an important substrate
of brain function1. Understanding the principles of

connectome organization is a grand challenge in systems
neuroscience. Such understanding requires the simultaneous
reconstruction of accurate whole-brain wiring diagrams, the
reduction of these diagrams to informative features, such as
anatomical maps of sensory, association and motor systems, and
the description of biologically valid mechanisms underlying the
organization of these features.

Interareal connectomes2,3 are wiring diagrams of whole-brain
interareal white-matter pathways, and are the only currently
reconstructible connectomes of vertebrate and invertebrate
organisms. (As an aside, we note that such diagrams have
also been termed mesoscale connectomes4 or macroscale
connectomes5; we use the term interareal connectomes to
sidestep this terminological ambiguity. These diagrams have
also been termed projectomes, to emphasize the relatively coarse
and non-synaptic nature of the observed connectivity6; but the
adoption of this term remains uncertain7.)

Two recent reconstructions of interareal connectomes, based
on data generated by the Allen Institute mouse brain initiative4,8

and the FlyCircuit Drosophila brain initiative9,10, have an
unmatched combination of brain-wide coverage (compared
with more spatially limited imaging studies3,11,12), single-site
acquisition (compared with meta-analyses of heterogeneous
studies5,13) and high-resolution light-microscopy imaging
(compared with lower quality diffusion MRI14,15). By virtue of
this combination, these data sets represent the current
gold-standard interareal connectome reconstructions of model
vertebrate and invertebrate organisms.

Network science is an intuitive framework for analysis
of connectome reconstructions16. This framework represents
connectomes as mathematical graphs (networks of nodes
and connections) and uses graph algorithms to detect interesting
connectome features17. Early network analyses of interareal
connectomes described modules and hubs as two putative
hallmarks of connectome organization. Modules are densely
intra-connected groups of areas, thought to form functionally
specialized systems18, while hubs are strongly or diversely
connected areas, thought to integrate information between such
systems19. Studies reported the simultaneous presence of modules
and hubs as a ‘small-world’ network organization20.

Recent analyses identified module hierarchies and rich clubs
as two additional putative connectome hallmarks. Module
hierarchies are nestings of smaller modules within larger
modules, thought to facilitate diverse functional brain states21.
Module hierarchies are distinct from sensory-motor hierarchies,
although they likewise represent arrangements of progressively
more specialized neural functional units22. In contrast, rich clubs
are densely intra-connected groups of hub areas, thought to
reflect the dense connectivity between association areas and
represent a backbone of functional brain integration23,24. One
prominent rich club is the structural substrate of the default-
mode network25, a system implicated in human cognition
(including self-referential processing, theory of mind and
autobiographical memory26), and brain disorders (including
depression, schizophrenia and autism27), but also present in
mice28 and rats29. Figure 1 and Supplementary Table 1 illustrate
and summarize module hierarchies and rich clubs described in
recent analyses of the mouse and fly interareal connectome
reconstructions8,10.
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Figure 1 | Convergent evidence for module hierarchies and rich clubs in mouse and fly interareal connectome reconstructions. (a) An idealized network

representation of module hierarchies and rich clubs. Module hierarchies are nestings of high-resolution modules in low-resolution modules: here, each of

the four low-resolution modules (blue-, green-, red- and brown-node borders) contains two four-node high-resolution modules (dark- and light-node

centres). Rich clubs are densely intra-connected groups of hub areas: here, a group of central areas (black diamonds) equally connect to all modules and

strongly interconnect between themselves. (b) Graph representations of mouse (left) and fly (right) connectome reconstructions. Nodes of one

hemisphere for each connectome are drawn at anisotropically scaled areal centres of mass (cf. inset isotropically scaled views of brain maximal

projections). The two strongest in- and out- projections for each node are shown as lines (projection weights are shown as line widths). Both connectomes

had a two-level module hierarchical organization, with seven high-resolution modules nested inside four low-resolution modules. In the mouse

connectome, the low-resolution modules comprise the brainstem/cerebellar (brown), visual/auditory (blue), somatosensory/somatomotor (red) and

olfactory/hippocampal (green) modules. In the fly connectome, the low-resolution modules comprise the visual (brown), auditory/mechanosensory (blue),

pre-motor (red) and olfactory (green) modules. Both connectomes had two rich clubs. In the mouse connectome, the auditory-visual rich club contained

nodes with high connection strength, largely located in the auditory-visual module, while the default-mode rich club (diamonds) contained nodes with high

connection diversity which could not be assigned to specific modules; these nodes represent the mouse structural substrate of the default-mode network.

In the fly connectome, rich clubs were reported as nested shells: an inner shell of high-strength areas spanning auditory/mechanosensory and visual

modules was nested in an outer shell (diamonds) which additionally included nodes from olfactory and premotor modules. See Supplementary Table 1 for

areal abbreviations and complete definitions of module hierarchies and rich clubs for both connectome reconstructions.
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An influential current theory, inspired by Ramón y Cajal’s
principles for conservation for time, space and material30,
postulates that the above connectome hallmarks arise from
competing selection pressures for economical functional
segregation and efficient functional integration31. Specifically,
this theory postulates that wiring-economy pressures explain the
presence of segregative modules, but not the presence of
integrative hubs, module hierarchies and rich clubs. Studies in
support of this theory show that wiring cost, a marker of white-
matter tract length and capacity, is low but not minimized in
interareal connectomes, that minimized-wiring-cost models of
connectomes are modular but not integrative; and that generative
models which reconcile wiring cost and functional integration
accurately predict global and specific features of connectome
organization8,32–41.

However, three important aspects of such studies are not
empirically grounded and thus difficult to interpret. First,
minimized-wiring-cost spatial lattices have unrealistically low
wiring costs, and are therefore artificial connectome representa-
tions. Second, generative models based on phenomenological
rules—such as preferential assignment of connections between
similar regions, or optimization of trade-offs between wiring-cost
and efficiency—are hard to validate in interareal connectomes.
Third, global connectome features—such as the modularity (an
anatomically nonspecific marker for the existence of modules),
node-centrality distributions (ditto hubs), small-world-ness (ditto
modules and hubs) and network motifs (ditto patterns of
recurring connectivity)—describe that the connectome is gener-
ically complex, but do not specify where this complexity is
instantiated.

Here, we adopt a qualitatively different, empirically grounded,
approach to the study of connectome organization. We assume
the existence of basic hallmarks, a set of anatomically specific
connectome features selected for independent functionality, and
study the effect of structural constraints induced by the
simultaneous presence of these features42,43. We hypothesize
that structural constraints are bound to induce a host of structural
byproducts44,45. Gould and Lewontin famously compared such
byproducts with spandrels, triangular spaces induced by
constraints of arches and rectangular frames46,47, and this
metaphor directly describes the effect we seek to investigate
(Fig. 2). We contrast this approach with reductionist analyses
which assume the independent functionality of all observed
features46, and which consequently risk engaging in circular
analyses or double dipping48.

We study constraint network models, networks which satisfy
empirical constraints but are otherwise maximally random. In
other words, we do not seek to phenomenologically generate
connectome-like networks, but rather to sample uniformly or
unbiasedly—and therefore independently of generative
mechanisms—the space of all networks with a priori specified
constraints, and thus to study the effect of these constraints on
other features of connectome organization. The robust presence
of higher-order (not explicitly constrained) features in such
networks implies that these higher-order features are byproducts
induced by structural constraints (that is, spandrels). Current
connectome studies typically constrain only node properties, and
mostly in simplified binary, undirected and sparse connectome
models49. Here, we immensely improve the utility and
applicability of constraint network models by adapting methods
for constraining a wide and potentially arbitrary range of
observed features in weighted, directed and dense connectome
reconstructions. This improvement allows us to directly test and
strongly challenge the major current notions of interareal
connectome organization, underscoring the importance of this
type of analysis for future connectome studies.

Results
Overview of the general approach. The key steps in our
approach are the choice of basic connectome hallmarks, the
uniform sampling of networks constrained by these hallmarks,
and the evaluation of sampled network accuracy. We now briefly
describe each of these steps in turn.

Our first step is the choice of basic connectome hallmarks. This
choice is equivalent in spirit to the formulation of postulates or
axioms essential for construction of systems of knowledge in any
scientific field, including in biology50. Previous studies considered
exponential-family or power-law relationships between physical
distance and connection weight to be the candidate basic
connectome hallmarks8,40,51,52. Below we examined similar
relationships in nonparametric wiring-cost models, but found
that such relationships did not determine important aspects of
connectome organization.

In contrast, we assumed that modules and hubs, the canonical
forms of segregation and integration, represent such basic
hallmarks of interareal connectomes. We denoted the anatomical
composition of modules and hubs through intra-module weight
and node-strength constraints (see ‘Methods’ section for
mathematical definitions). We inferred these features from the

Structural
byproduct
(rich club)

Coopted structural
byproduct (default-

mode network)

Basic hallmarks
(modules and hubs)

a b

Figure 2 | Architectural hallmarks, constraints and byproducts. (a) An elaborate architectural work, such as a triumphal arch, contains multiple features

postulated to be primary or important for its overall functionality or design (such as curved arches and pillars). The simultaneous presence of such basic

hallmarks necessarily constrain other parts of this architectural system. (b) Spandrels, the roughly triangular empty spaces induced by arch and pillar

constraints (grid) are structural byproducts of such constraints, and an apt metaphor for equivalent byproducts in evolutionary biology. Structural

byproducts may be nonfunctional, or may be evolutionarily coopted to perform new function (sculpture). The present study shows that the postulated

basic hallmarks of modules and hubs induce the structural byproducts of hierarchies and rich clubs. The study posits that the default-mode network

represents a structural byproduct coopted for higher cognition in humans.
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data and thus ensured that our assumptions are empirically
grounded. At the same time, and in contrast to more data-driven
approaches53, these assumptions are biological hypotheses,
testable and falsifiable in future analyses, as we discuss below.
In principle, modules and hubs may underpin the organization of
other complex systems, but such assumptions need to be made on
a domain-specific basis.

Our second step is the uniform sampling of networks with the
specified empirical constraints. Uniform sampling is an impor-
tant part of our approach, as it focuses the investigation on the
basic hallmarks, and away from phenomenological generative
mechanisms. However, it is hard to uniformly sample networks
with all but the simplest constraints (it is unlikely that such
sampling can be achieved in polynomial time). Here, we used two
methods, with complementary strengths and weaknesses, to
approximate such sampling with distinct strategies (see Table 1
and ‘Methods’ section for more details).

Our primary method54 is based on minimization of constraint
errors with simulated annealing, a metaheuristic numerical
optimization algorithm. This method samples networks with
hard constraints, such that each network satisfies the constraints
with high accuracy; we ensured that constraint errors were low
(normalized constraint error o0.005) and similar for all sampled
network models (Supplementary Fig. 1). We focused on results
obtained with this method, due to its potential to uniformly
sample networks with arbitrary constraints. However, it is
important to note that despite this potential, such uniformity of
sampling is not formally guaranteed.

Our alternative sampling method55 is based on maximum-
likelihood estimation, an exact procedure for computing network
probabilities. This method unbiasedly samples networks with soft
constraints such that the constraints are satisfied on average in
the full network ensemble, but not, in general, in each
individually sampled network56,57. However, it is important to
note that sampling with soft constraints may not accurately
approximate the target distributions we wish to sample, for
instance if such distributions are multimodal.

Our third step is the evaluation of accuracy with which the
sampled networks reproduced the empirical module hierarchies
and rich clubs (Supplementary Table 1). We evaluated the
accuracy of module hierarchies with the normalized mutual
information (NMI) between high- and low-resolution module
and connectome partitions. This measure of partition similarity
ranges from 1 for identical partitions to 0 for maximally different
partitions, or in the absence of stable partitions. We accounted for
inaccuracies due to variability of individual samples by

comparing our results with a hierarchical benchmark model, a
model with constrained high- and low-resolution intra- and
inter-module weight, as well as node strength (Supplementary
Fig. 2c). In practice, this benchmark provided an upper bound on
the accuracy of hierarchical structure in our studied models.

We evaluated the existence of empirical rich clubs by
computing the model/connectome empirical rich-club density
for each model. A model lacks a rich club when this density is
much lower than one, and possesses a rich club otherwise. The
rich-club density, unlike the NMI, is a physical quantity, such that
variability of individual samples averages out in the network
ensemble; in practice this makes comparison with a benchmark
model less necessary.

We reported all results as medians (interquartile ranges)
estimated from 100 network samples for each type of model.

Wiring cost and module organization. Current notions consider
low wiring cost to represent an accurate proxy of module orga-
nization. Indeed, minimized wiring-cost spatial lattices, network
models constructed by assigning progressively stronger weights to
shorter pathways, had a relatively high NMI with high-resolution
connectome module partitions (NMI: mouse 0.68 (0.68–0.69), fly:
0.62 (0.60–0.62); Fig. 4a,b). Nonetheless the module organization
of these lattices was less accurate than that of the benchmark
models (NMI mouse 0.84 (0.81, 0.87), fly: 0.84 (0.79, 0.86);
Supplementary Fig. 3a,b). Qualitatively, the accuracy was highest
for the more peripheral and well-delineated modules, such as the
brainstem and cerebellar modules of the mouse, and the visual
module (optic lobe) of the fly, and lowest for the more central and
spatially intertwined modules, such as the olfactory and hippo-
campal modules of the mouse, and the premotor module
(central complex) of the fly.

Spatial lattices are artificial models with unrealistically low
wiring cost, and it is generally assumed that modifications of
these lattices which increase wiring cost to realistic levels (for
example, through inclusion of long and costly inter-module
connections), have little effect on module organization. However,
this assumption is typically tested with phenomenological
models. Here, we found that this assumption is inaccurate;
network models with empirical levels of wiring cost had
consistently low intra-module weight (Fig. 3b,c), and a low
NMI with high-resolution module partitions in both
connectomes (NMI mouse: 0.43 (0–0.50), fly: 0.48 (0.39–0.53);
Fig. 4a,b). These results suggest that realistic wiring-cost

Table 1 | Comparison of network sampling methods.

Primary method: constrained randomization of empirical
networks

Alternative method: exact maximum-likelihood estimation of
maximum-entropy/exponential random-graph models

Type of
sampling

Uniform sampling of networks with hard constraints: the
constraints are satisfied with high accuracy for each individual
sampled network.

Unbiased sampling of networks with soft constraints: the
constraints are satisfied on average for the network ensemble, but
not, in general, for each individual network.

Method of
sampling

Specification of constraint-error function, and sampling of
individual networks via numerical minimization (with simulated
annealing) of this function.

Maximum-likelihood estimation of network probability distribution
by numerical solution of systems of nonlinear equations, and
sampling of individual networks directly from this distribution.

Type of
studied
constraints

Weighted and binary node-strength, module-weight, and wiring-
cost constraints. In addition, all empirical connection weights are
automatically preserved.

Weighted node-strength and module-weight constraints. Empirical
connection weights are not preserved.

Accuracy A small normalized constraint error (o0.005), similar for all
network models.

Constraint errors are guaranteed to vanish in the limit of the full
network ensemble. The studied 1,000-network ensembles had
constraint errors similar in magnitude to the primary method.

Disadvantages Uniform sampling is possible but not formally guaranteed. Sampled distributions may not be representative of target
distributions.
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constraints, with no additional assumptions, represented an
insufficient determinant of module organization.

Basic hallmarks and structural byproducts. In contrast,
we adopted the intra-module weight of high-resolution modules
as a more direct constraint of module organization. We intro-
duced the basic-hallmark model, a network model with
constrained intra-module weight and node strength (Fig. 3d and
‘Methods’ section). The basic-hallmark model, unlike wiring-cost
constrained models, reproduced the high-resolution module
organization of both connectomes (NMI mouse: 0.85 (0.84–0.87),
fly: 0.84 (0.79–0.88); Fig. 4a,b) with accuracy comparable to the
benchmark model (above), and thus allowed us to study more
directly the effects of combined module and hub constraints on
other connectome features.

The basic-hallmark model reproduced much of the
(not explicitly constrained) low-resolution module organization
of both connectomes (NMI mouse: 0.71 (0.68–0.75), fly: 0.71
(0.64–0.76); Fig. 4a,b) with accuracy comparable to, or lower
than, the benchmark model (NMI mouse: 0.75 (0.71, 0.81), fly
0.89 (0.83, 0.92); Supplementary Fig. 3a,b). These results suggest
that module and hub constraints induced module hierarchies,
likely through a better approximation of inter-module weights
(Supplementary Fig. 2d). This effect is nontrivial, and
low-resolution modules were less well reproduced with other
models, such as models with constrained wiring cost and node
strength (NMI mouse: 0.22 (0–0.35), fly: 0.18 (0.17–0.30);
Fig. 4a,b), and a model with constrained intra-module weight
but not node strength (NMI mouse: 0.30 (0.30–0.46), fly: 0.50
(0.46–0.56); Supplementary Fig. 3a,b). In general, we noted

smaller effect sizes for the fly connectome, consistent with its less
well-resolved connectome reconstruction (44% of nodes and 30%
of connections of the mouse connectome reconstruction); we
posit that such effect sizes will increase in more highly resolved
reconstructions.

The basic-hallmark model additionally, and in contrast to
simpler models, reproduced all rich-club densities in both
connectomes (Fig. 4c,d and Supplementary Fig. 3c,d), namely
the visual-auditory rich club (model/connectome rich-club
density: 0.95 (0.92–0.97)) and the default-mode rich club
(density: 1.04 (0.96–1.12)) of the mouse connectome, as well as
the inner-shell rich club (density: 0.97 (0.92–1.03)), and the
outer-shell rich club (density: 1.01 (0.99–1.04)) of the fly
connectome. The visual-auditory and the inner-shell rich clubs
are largely localized within modules (Fig. 1b, Supplementary
Table 1), and so it is unsurprising that constrained intra-module
weights enforced these rich-club densities to empirical levels. In
contrast, the default-mode and the outer-shell rich clubs are not
localized to specific modules and are therefore not subject to the
same mechanism. Most interestingly, the default-mode rich club
is comprised of nodes which, by virtue of their highly distributed
connections, could not be assigned to any modules and could not
therefore be directly affected by constrained intra-module weight
(Fig. 1b, Supplementary Table 1a). The accurate reproduction of
this rich-club density is likely to arise from indirect effects of
combined module and hub constraints. The many strong
connections of hub nodes cannot be equally distributed between
modules (to maintain constrained intra-module weights) and
must therefore be preferentially placed between other hubs,
enforcing the connectivity within this rich club to empirical
levels.
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Figure 3 | Wiring-cost constraints systematically underestimate intra-module weight in mouse and fly interareal connectome reconstructions. Left and

middle: scatter plots of connectome versus model high-resolution intra-module weight and node strength for models with (a) minimized wiring-cost model,

(b) constrained wiring-cost, (c) constrained wiring-cost and node strength and (d) constrained basic hallmarks, as described in the main text. Network

models constrained by empirical levels of wiring-cost (b,c) had lower intra-module weight for all modules in both connectome reconstructions. All

networks were sampled with the primary (hard-constraint) method. Bars show medians and interquartile ranges estimated from 100-sampled network

models. All values for the fly connectome were divided by 1,000 for clarity of presentation. Right: graph visualizations of connections averaged over 100-

network model samples, presented and coloured as in Fig. 1.
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Robustness of results to differences in sampling. We evaluated
the robustness of our results to differences in sampling, using an
alternative sampling method. This alternative method supports
weighted node and module constraints, but not wiring-cost
constraints, nor simultaneous binary and weighted constraints; in
addition, the method does not preserve empirical connection
weights (Table 1). This method guarantees that imposed
constraints are satisfied on average in the full network ensemble:
Supplementary Fig. 4a–h shows decreases in constraint error
associated with increases in sampled network ensemble size. We
noted that 1,000-network ensembles had similar constraint errors
to our primary sampling method (cf. Supplementary Fig. 1), and
for ease of comparison, focused on averages of network measures
(that is, on consensus module partitions and average rich-club
densities) computed on these 1,000-network ensembles
(for completeness, Fig. 5 also shows results computed on single

networks). Note that averages of measures computed over 1,000-
network ensembles were very stable, and thus mostly had negli-
gible variance.

Results for the basic-hallmark model were robust to differences
in sampling methods. Figure 5a,b shows that the basic-hallmark
model sampled with the alternative method, similarly reproduced
the high-resolution (NMI mouse: 0.88 (0.88–0.88), fly: 0.79
(0.79–0.79)) and low-resolution (NMI mouse: 0.75 (0.75–0.79),
fly: 0.66 (0.66–0.66)) connectome module partitions. Further-
more, a simpler model with constrained intra-module weight but
not node strength reproduced the low-resolution partition less
accurately in the mouse (NMI: 0.30 (0.30–0. 30), Supplementary
Fig. 6a) but more accurately in the fly (NMI: 0.88 (0.88–0.88),
Supplementary Fig. 6b); future analyses of more highly resolved
connectome reconstructions should help to resolve this
discrepancy.

Figure 5c,d shows that the basic-hallmark model sampled with
the alternative method reproduced all rich-club densities in both
connectomes. Moreover, rich-club densities in these models were
even higher than in the connectomes; especially for the mouse
default-mode rich club (density: 1.45 (1.45–1.46)), and for the fly
inner-shell rich club (density: 1.25 (1.24–1.26)). We investigated
this effect in more detail by considering a third sampling method,
which had properties intermediate to the primary and alternative
methods. On the one hand, this method sampled networks with
hard constraints and thus automatically preserved connection
weights (similar to the primary method); on the other hand, this
method matched only weighted, but not binary, constraints
(similar to the alternative method). Basic-hallmark models
sampled with this method had rich-club densities closer to
empirical levels (default-mode rich club: 1.24 (1.16–1.32), inner-
shell rich club: 1.00 (0.95–1.04)), suggesting that the absence of
additional binary and connection-weight constraints surprisingly
raised these densities to higher-than-empirical levels.

Discussion
Our results have three important implications for future
connectome analyses.

First, these results suggest that realistic wiring-cost constraints
are insufficient to reproduce the connectome module organiza-
tion, but that module hierarchies are structural byproducts of
modules and hubs. These results diminish the perceived
importance of economical wiring and module hierarchies on
connectome organization. Such importance was posited, at least
for vertebrate brains, in a modern version of Ebbesson’s
parcellation hypothesis58,59, which described that wiring
pressures drive the hierarchical subdivision of larger and less
differentiated brain areas into smaller and more differentiated
brain areas, through selective connection loss. In an important
counterbalance to this view, Deacon’s displacement
hypothesis59,60 emphasized a greater role for connectional
‘invasion’, the propensity for disproportionately expanded brain
areas to form evolutionary new connections. Our findings
attribute greater importance to such displacement processes,
although more comprehensive comparative analyses are clearly
needed61. Our findings additionally prompt a substantial
reformulation of the cost-efficiency hypothesis. As we already
noted, the biologically interpretability of such reformulation
would benefit from increased emphasis on empirical and
anatomically specific features, and reduced emphasis on
artificial or phenomenological models, or on generic measures.

Second, our results suggest that rich clubs are structural
byproducts of modules and hubs. These results may help to
reconcile the conflicting association between the default-mode
network and human cognition on one hand, and the presence of
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Figure 4 | Module hierarchies and rich clubs are structural byproducts of

basic connectome hallmarks. (a,b) NMI between model and connectome
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medians of benchmark models (cf. Supplementary Fig. 3a,b).

(c,d) Normalized (model/connectome) rich-club densities. Horizontal lines

indicate the rich-club density threshold of 1. The minimized-wiring-cost

model approximated high-resolution module structure, but did not

reproduce hierarchical or rich-club structure. The two wiring-cost-

constrained models did not reproduce hierarchical or rich-club structure. In

contrast, the basic-hallmark model reproduced hierarchical and rich-club

structures in both connectome reconstructions. All networks were sampled

with the primary (hard-constraint) method. Bars show the medians and

interquartile ranges estimated from 100-network model samples.
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the default-mode network in mice and rats on the other hand. For
instance, Braga and Leech62 hypothesized that the default-mode
network may have originally evolved for a more basic
homeostatic function, and was subsequently coopted for higher
cognition in humans63. Our results simplify this hypothesis by
removing the need to postulate such an adaptive function
(Fig. 2b). Buckner and Krienen64 hypothesized that the
disproportionate cortical expansion in humans resulted in the
formation of densely interconnected cortical association areas
freed or ‘untethered’ from developmental (for example, axonal
guidance) constraints. Our results add to this hypothesis by
noting that the putative propensity for association areas to form
many connections, through connectional displacement or similar
processes (‘hub constraints’), together with the evolutionarily
conserved architecture of sensory, motor and homeostatic

systems (‘module constraints’) necessarily leads to dispropor-
tionately dense connectivity between association areas (‘rich-club
byproducts’). Our observations on the mouse suggest that
such effects may represent a more general feature of the
mammalian brain, potentially accentuated in humans through
disproportionate expansion of the late-developing association
cortex65.

Third, our results imply that the currently standard reports of
simultaneously present modules, hubs, hierarchies and rich clubs
engage in circular analysis or double dipping. Constraint network
models emphasize an integrative approach to connectome
analysis and provide an empirically grounded framework for
avoiding similar pitfalls in future studies. We used these models
to reduce the stipulated principles of connectome organization
from the set of modules, hubs, hierarchies, rich clubs, and wiring-
cost/efficiency trade-offs into a simpler and empirically grounded
set of modules and hubs. An important benefit of our approach is
the need to directly formulate the often tacitly made assumptions
of basic connectome hallmarks. This direct formulation in turn
emphasizes the need to test the biological and evolutionary basis
for these assumptions in future studies. For example, our
assumption for the importance of hubs, while presently
ubiquitous and uncontroversial19, conflicts with knowledge
that putative hubs in the mammalian diencephalon or in the
insect central complex, contain diverse cytoarchitecturally or
connectionally distinct subunits66,67. A subdivision of these areas
in future more highly resolved connectome reconstructions may
substantially alter the evidence for the existence or importance of
interareal hubs. However, and in spite of any such future insights,
pervasive interdependences between connectome features are
likely to persist, and to require the types of analyses we
emphasized in the present work.

Methods
Mouse interareal connectome data set. We studied the mouse interareal
connectome reconstruction described in Rubinov et al.8 and based on data from
461 anterograde recombinant adeno-associated virus tracer injections in adult male
wild-type C57BL/6J mice, registered into a common template brain and made
available by the Allen Institute for Brain Science at http://connectivity.brain-
map.org/ (ref. 4). The whole brain was subdivided into 56 bilaterally symmetric
areas (a total of 112 areas), using a developmental ontology for extra-cortical areas
from http://developingmouse.brain-map.org/ (refs 68,69) and a topographic
ontology for cortical areas from http://mouse.brain-map.org/ (ref. 70). See
Supplementary Table 1a for all region names and Puelles et al.68 for comparison of
topographic and developmental ontologies. Directed interareal projection weights
were quantified as projection densities normalized by areal volumes; 6,542
connections were detected (53% connection density) and connection weights scaled
over several orders of magnitude (Supplementary Fig. 4i). Interareal distances of
white-matter pathways were quantified with deterministic tracer tractography, and
tract bandwidth, a measure of pathway capacity, was quantified as the normalized
estimated pathway cross-section8. All injections were right sided, and whole-brain
connectome reconstruction assumed hemispheric symmetry.

Drosophila interareal connectome data set. We studied the Drosophila interareal
connectome reconstruction described in Shih et al.10, and based on data for 12,995
GFP-labelled projection neurons in adult female Drosophila, registered into a
common template brain and made available as part of the FlyCircuit database at
http://www.flycircuit.tw/ (ref. 9). The whole brain was subdivided into 23
bilaterally symmetric areas and 3 unpaired areas of the central complex (a total of
49 areas), using detection of local processing units, anatomically contiguous areas
with self-contained local-neuron populations9. See Supplementary Table 1b for all
region names and Ito et al.71 for comparisons with other anatomical
nomenclatures. Directed interareal connection weights were quantified as the mean
number of dendritic and axonal terminals for each neuron summed over all
neurons for each area; 1,950 connections were detected (83% connection density),
and connection weights scaled over several orders of magnitude (Supplementary
Fig. 4j). For the present study, we additionally quantified interareal distances of
white-matter pathways with deterministic tracer tractography along masks of
white-matter pathways from the FlyCircuit database, which we affinely registered
to the JFRC2 adult Drosophila brain template72 made available by the Virtual Fly
Brain resource at http://www.virtualflybrain.org/ (ref. 73). In the absence of
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Figure 5 | Results for the basic-hallmark model are robust to sampling

methods. Basic-hallmark model sampled with the primary (hard-constraint)

and alternative (soft-constraint) methods (a,b) NMI between model and

connectome hierarchical module partitions. Horizontal lines indicate

medians of benchmark models (see also Supplementary Fig. 3a,b).

(c,d) Normalized (model/connectome) rich-club densities. Horizontal lines

indicate the rich-club density threshold of one. Averages of network

measures from 1,000-network ensembles sampled with the alternative

method (model ii) reproduced the hierarchical and rich-club structures in

both connectome reconstructions. Moreover, rich-club densities of

networks sampled with this method were even higher than rich-club

densities of the connectomes. Bars show the medians and interquartile

ranges estimated from 100-network model samples (for the primary

method) or 100-network model ensembles (for the alternative method).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13812 ARTICLE

NATURE COMMUNICATIONS | 7:13812 | DOI: 10.1038/ncomms13812 | www.nature.com/naturecommunications 7

http://connectivity.brain-map.org/
http://connectivity.brain-map.org/
http://developingmouse.brain-map.org/
http://mouse.brain-map.org/
http://www.flycircuit.tw/
http://www.virtualflybrain.org/
http://www.nature.com/naturecommunications


pathway cross-section information, we equated tract bandwidth with pathway
connection weight.

Constraint network models. We represent each network by its directed weights
matrix W¼ {wij} and denote the special case of the connectome itself by
W ¼ wij

� �
. We seek to generate ensembles of random networks which satisfy

k types of constrains imposed by node, module, wiring-cost or other network
features. We represent each network feature by c ¼ fc ið Þ

j g, where i is the index on
the type on constraint (for example, node strength) and j is the index of each
constrained element (for example, the strength of node j). We denote the special
case of connectome features we seek to constrain by c ¼ fc ið Þ

j g.
The node strength is defined as

sout
i ¼

X
j

wij and sin
j ¼

X
j

wij;

where the sum is over all nodes in the network.
The node wiring cost is defined as

rout
i ¼

X
j

dijbij and rin
j ¼

X
j

dijbij;

where dij is the length and bij is the bandwidth, of directed white-matter pathway
from i to j.

The total weight between modules u and v is defined as

luv ¼
X
i2u

X
j2v

wij;

where the sums are over nodes in both modules; luu is the intra-module
weight of u.

We constrained node strengths and wiring costs for all nodes, and we
constrained intra- and inter-module weights for all modules, whenever these
constraints were imposed. In addition, our primary sampling method preserved
weighted and binary variants of all constraints, while our alternative sampling
method preserved only weighted variants of all constraints (Table 1). We computed
binary variants of all constraints by substituting all weights wij (and independently
all bandwidths bij) with adjacencies aij representing the presence (aij¼ 1) or
absence (aij¼ 0) of a connection from node i to node j.

Primary network sampling method. This sampling method is based on
constrained randomization of empirical networks and aims to uniformly sample
networks with hard constraints, such that each individual sampled network in
the ensemble satisfies the constraints exactly54. Each network in the ensemble is
sampled by randomizing the connectome, while numerically minimizing the
constraint error E,

E ¼ 1
k

Xk

i¼1

h c ið Þ
j � c ið Þ

j

��� ���i
hc ið Þ

j i

0
@

1
A

q2
4

3
5

1
q

;

where h�i is the arithmetic mean over all constraints of type i (for example, node
strength), and q defines the type of error. E is essentially a generalized mean,
½1k
Pk

u¼1 ð�Þ
q�

1
q, of the mean absolute constraint error, h c ið Þ

j � cðiÞj

��� ���i, normalized by
individual constraint magnitude, hcðiÞj i. In this study, we used q¼ 2, and thus
minimized the mean squared error; the choice of q does not affect the global
minimum of E, and exploratory analyses using the mean absolute error (q¼ 1),
or the maximum absolute error (q-N), did not our change results. We also note
that the connectome satisfies E¼ 0 for all combinations of q and constraints c; this
underscores the empirical grounding of constraint network models.

We minimized the constraint error using simulated annealing, a popular
metaheuristic search algorithm motivated by the analogy of cooling a physical
system. Global minimization with simulated annealing is implemented by
iteratively swapping random pairs of connections with probability 1 if such swaps
lower the error (DEo0), or with probability exp(�DE/T) otherwise. At the start of
each search, the parameter T (‘temperature’ in the physical analogy) is very high,
such that effectively all swaps are accepted, and the system is randomized without
constraints. As the search proceeds, T is slowly reduced (‘the system is cooled’ in
the physical analogy), such that swaps which raise the error are less likely to
become accepted. Towards the end of the search, T is very low, such that effectively
only swaps which reduce the error are accepted.

The simulated annealing search satisfies the conditions of ergodicity (that is, it
can reach all possible network states), and reversibility (that is, all swaps are
potentially reversible), and consequently, with a sufficiently slow lowering of
T (‘cooling schedule’ in the physical analogy), it is guaranteed to escape local
minima, and to reach all global minima with equal probability—in other words
to uniformly sample all networks exactly matching the specified constraints74.
However, in practice it is not possible to say precisely what constitutes a sufficiently
slow cooling schedule for each system; moreover, it is likely that sufficiently slow
cooling schedules are computationally impractical. Here we set a more realistic goal
of sampling networks with a small error, Eo0.005, comparable to 0.5% deviation
from the global minimum E¼ 0 (Supplementary Fig. 1).

Our search starts by shuffling the empirical connectome, with preserved
bilateral weight relationships or symmetry. We preserved bilateral weight
relationships, since the bilateral symmetry assumption was inherent in the weight
reconstruction of the mouse connectome (above), and since approximate bilateral
symmetry was also observed in the Drosophila connectome (Spearman correlation
of 0.82 between bilaterally symmetric connections).

We used a slow cooling schedule, initially setting T¼ 1, which in practice allows
network randomization without constraints. At every iteration, we randomly
swapped two connection weights, and their bilaterally symmetric equivalents,
and accepted this swap with

probability of swap ¼ 1 if DEo0 or Enewo0:005
expð�DE=TÞ otherwise

:

�

We ran the algorithm for 109 iterations, and slowly reduced the temperature, as
Tnew’0.999T, at every 104 iterations.

Alternative network sampling method. This sampling method is based on exact
maximum-likelihood estimation of maximum-entropy/exponential random-graph
models, and aims to unbiasedly sample networks with soft constraints, such that
the constraints are exactly satisfied for the full network ensemble average, but not
for each individual network55. For each connectome matrix W and set of
constraints c, we sample constraint models W from a probability P(W). It can be
shown75 that the only unbiased choice of probability P(W) in this case is the one
which maximizes the entropy S,

S ¼ �
X

w

P Wð Þ ln P Wð Þ;

subject to the constraints X
w

P Wð ÞcðWÞ ¼ ch i ¼ c;

where c(W) is the value of c computed in network W, and hci is the average of all
c(W) in the network ensemble.

It is possible to derive the expression for the unbiased probability P(W), by
introducing for each constraint c ¼ fc ið Þ

j g auxiliary variables, known as Lagrange
multipliers, h ¼ fyðiÞj g, using these variables to write the entropy with constraints
as a single expression, differentiating this expression with respect to P(W), and
setting the derivative to 0. This gives

P W j hð Þ ¼ exp �H W; hð Þ½ �
Z hð Þ ;

where the function H W; yð Þ, also known as the graph Hamiltonian, enforces the
constraints

H W; hð Þ ¼
X

i;j

yðiÞj cðiÞj Wð Þ;

and the normalization constant Z(h), also known as the partition function,
is given by

Z hð Þ ¼
X

W

exp �H W; hð Þ½ �:

A binary version of these models has been extensively studied under the name of
p* or exponential random-graph models56,57. Here, we make use of recent results
which show that for first-order constraints (which include node-strength and
module-weight, but not wiring-cost constraints), it is possible to derive exact
expressions for the maximum-likelihood values of h, solve these expressions
numerically and thus estimate the maximum likelihood of P(W) (ref. 55). We
summarize these results below and refer the reader to a detailed exposition of these
results in ref. 55.

In the most general case of node-strength and module-weight constraints, with
u and v denoting the modules of node i and j respectively, H(W, h) may be
factorized as:

H W; hð Þ ¼
X

i

yð1Þi sout
i Wð Þþ

X
j

yð2Þj sin
j Wð Þþ

X
i;j

y 3ð Þ
uv luv Wð Þ

¼
X

i;j

yð1Þi þ yð2Þj þ yð3Þuv

h i
wij;

and the normalization constant Z(h) may be written exactly as

Z hð Þ ¼
X

W

exp �
X

i;j

yð1Þi þ yð2Þj þ yð3Þuv

h i
wij;

" #

¼
Y

i;j

1

1� exp � yð1Þi � yð2Þj � yð3Þuv

h i ;
where we assumed integer weights without loss of generality (real-valued weights
can be linearly mapped to integers with arbitrary precision). Furthermore, the
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probability P(W|h) may be factorized as:

P W jhð Þ ¼
Y

i;j

Pij wij jh
� �

where Pij wij jh
� �

, the conditional probability of each connection weight, is
expressed as:

Pij wij jh
� �

¼ p
wij

ij 1� pij
� �

;

with

pij ¼ exp � yð1Þi � yð2Þj � yð3Þuv

h i
;

such that each individual (non-negative) integer weight wij is essentially sampled
from the so-called geometric distribution Pij wij jh

� �
(ref. 76).

After introducing auxiliary variables, xi � exp½ � y 1ð Þ
i �, yj � exp½ � y 2ð Þ

j �, and
zuv � exp½ � y 3ð Þ

uv �, the expectation of each geometrically distributed weight wij can
be written analytically as:

wij
� 	

¼ pij

1� pij
¼ xiyjzuv

1� xiyjzuv
:

The constraints can now be directly expressed in terms of weight expectations,

sout
i ¼

X
i

wij
� 	

¼
X

i

xiyjzuv

1� xiyjzuv

sin
j ¼

X
j

wij
� 	

¼
X

j

xiyjzuv

1� xiyjzuv

luv ¼
X
i2u

X
j2v

wij
� 	

¼
X
i2u

X
j2v

xiyjzuv

1� xiyjzuv
:

This coupled system of nonlinear equations is easily solved with modern numerical
software (we used MATLAB’s fsolve). This solution is equivalent to the maximum-
likelihood estimate for h, and thus finally gives us the unbiased probabilities of
individual connection weights Pij(wij).

Cost-minimized lattice model. We compared constraint models with the widely
studied wiring-cost-minimized generative model, constructed by assigning
progressively stronger weights to shorter pathways. To robustly assign weights to
connections with similar lengths, we perturbed the estimated distance of each
pathway by uniform noise on the order of 1% median connection distance; in
practice this had negligible effect on the final results.

Assessment of module hierarchies. Similarly to the original analyses of these
connectome reconstructions, we detected module hierarchies using a multistep
metaheuristic optimization algorithm based on maximization of the modularity
statistic77,

Q ¼ 1
v

X
u

X
i;j2u

wij � g
sout

i sin
j

v

" #

where g is a module-resolution parameter (such that higher g results in smaller
modules) and v is a normalization constant (equivalent to the total network
weight).

We detected characteristic module partitions for each g¼ 0.5, 0.55,y, 2.5 by
performing consensus clustering78 on 1,000 local-maxima partitions79 obtained at
each value of g (ref. 80). We defined partitions as stable if they did not change for
an interval of length Z0.2 (for example, for an interval of 1.0rgr1.2). These
criteria ensured that the detected modules were robust to a range of module-
resolution parameter values. In the mouse connectome we detected a two-level
hierarchical organization, equivalent to our original analysis of these data
(Fig. 1b, Supplementary Table 1a)8. In the fly connectome we also detected a
two-level hierarchical organization as in the original analysis of these data
(Fig. 1b, Supplementary Table 1b)10; however, in contrast to the original analysis,
which simply assumed the presence of a stable low-resolution partition at g¼ 1,
we detected a low-resolution partition at a slightly higher 1.15rgr1.3. For
consistency with the original analysis, we fixed g¼ 1 for the low-resolution
partition of the fly connectome and network models, noting that the precise choice
of g for this partition did not change our results.

We compared the accuracy of module hierarchies in each network model, by
applying the module detection algorithm to each model, and quantifying the
similarity of stable partitions, closest in g to the low-resolution and high-resolution
partitions of each connectome. We quantified partition similarity with the NMI,
a widely used information-theoretic measure of partition similarity defined as:

NMI M;M
� �

¼ 2 S M
� �
þ S Mð Þ� S M;M

� �
 �
S M
� �
þ S Mð Þ ;

where M and M are connectome and model partitions, S(M) is the entropy and
S M;M
� �

is the joint entropy. NMI is 1 for identical partitions, and 0 for maximally
different partitions, or in the absence of stable partitions.

Assessment of rich clubs. Rich clubs or cores are surprisingly highly connected
groups of hub nodes81. Analyses demonstrated the presence of two rich clubs in
each of the mouse and fly connectomes (Fig. 1, Supplementary Table 1)8,10. We
assessed the existence of rich clubs in network models by computing, for each rich
club R, the normalized rich-club density82,

DðRÞ ¼
P

i;j2R wijP
i;j2R wij

;

where wij and wij denote connection weights of the model and connectome
respectively, and the sums are over all nodes in the rich club. This measure is
equivalent to the inverse rich-club coefficient81. A network lacks a rich club
when D(R)o1, and has a rich club when D Rð Þ\1.

Code availability. Relevant code is available on request from the author, from the
author’s website (http://www.mikail-rubinov.net/), or from the Brain Connectivity
Toolbox (http://www.brain-connectivity-toolbox.net/).

Data availability. Mouse connectivity data was obtained and made available by
the Allen Institute for Brain Science, USA (http://www.brain-map.org/). Drosophila
connectivity data was obtained and made available by the National Center for
High-performance Computing and National Tsing Hua University, Taiwan
(http://www.flycircuit.tw/). Relevant data are available on request from the author.
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