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Statement of Significance 

Occurrence of phase separation of calcium phosphate pastes and cements during 
injection limits their full exploitation as a bone substitute in minimally invasive surgical 
applications. Due to lack of theoretical understanding of the phase separation 
mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements 
has proven difficult. However, phase separation of pastes during delivery has been 
the focus across several research fields. Therefore in addition to a review of methods 
to reduce phase separation of calcium phosphate pastes and cements and the 
associated constraints, a review of phase separation mechanisms observed during 
delivery and the theoretical models used to describe these mechanisms is presented. 
It is anticipated this review will benefit future attempts to develop injectable calcium 
phosphate based systems. 

 

  



Critical Review: Injectability of Calcium Phosphate Pastes and Cements  

 

O’Neill, R1, McCarthy, HO2, Montufar, E3,4, Ginebra, M-P3,4, Wilson, DI5, Lennon, 

A1, Dunne, N2,6, 7* 

1. School of Mechanical and Aerospace Engineering, Queen’s University 
Belfast, Ashby Building, Stranmillis Rd, Belfast, BT9 5AH, United Kingdom 

2. School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast 
BT9 7BL, United Kingdom  

3. Biomaterials, Biomechanics and Tissue Engineering Group. Department of 
Materials Science and Metallurgical Engineering, Universitat Politècnica de 
Catalunya. BarcelonaTech (UPC), Av. Diagonal 647, 08028 Barcelona, Spain  

4. Institute for Bioengineering of Catalonia, C. Baldiri Reixach 10, 08028 
Barcelona, Spain 

5. Department of Chemical Engineering and Biotechnology, New Museums 
Site, Pembroke Street, University of Cambridge, CB2 3RA, United Kingdom 

6. Centre for Medical Engineering Research, School of Mechanical and 
Manufacturing Engineering, Dublin City University, Stokes Building, Collins 
Avenue, Dublin 9, Ireland 

7. Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, 
Trinity College Dublin, Dublin 2, Ireland 

 

*Corresponding author:  

Professor Nicholas Dunne, School of Mechanical and Manufacturing Engineering, 

Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland 

 

 

  



Abstract 

Calcium phosphate cements (CPC) have seen clinical success in many dental and 

orthopaedic applications in recent years. The properties of CPC essential for clinical 

success are reviewed in this article, which includes properties of the set cement (e.g. 

bioresorbability, biocompatibility, porosity and mechanical properties) and unset 

cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical 

site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in 

particular the occurrence of separation of the liquid and solid components of the pastes 

and cements during injection; and established methods to reduce this phase 

separation. In addition a review of phase separation mechanisms observed during the 

extrusion of other biphasic paste systems and the theoretical models used to describe 

these mechanisms are discussed. 

  



1 Introduction 

Compounds of calcium phosphate (CaP) have been investigated as bone repair 

materials since 1920 [1]. However, they saw little use in clinical applications until the 

1970s when CaP materials were used as bone substitutes in the form of porous blocks 

and granules [2–4]. The clinical potential of CaP materials further increased in the 

early 1980s with the development of self-setting calcium phosphate cement (CPC) [5]. 

In addition to its potential to mimic the mineral phase of bone, CPC has the ability to 

be moulded into bone defects and implant sites, then harden in situ to provide stability. 

This ability of CPC has shown great potential in percutaneous surgery whereby CPC 

is injected into the body to fill bone defects and stabilise fractures. Although CPC has 

shown clinical success in several orthopaedic applications requiring delivery by 

injection [6–12], it is thought that several issues currently prevent routine application 

in clinical applications. This has given rise to a high volume of studies aimed at 

improving the delivery of CPCs and broadening their clinical use [3].  

Many of the studies attempting to optimise CPC for clinical applications focussed on 

improving the delivery of CPC to the surgical site through injection. A major issue 

inhibiting successful delivery of CPC is the occurrence of phase separation during 

injection. If phase separation occurs the extrudate has a higher liquid content than 

desired, which may cause extravasation from the surgical site and be detrimental to 

the final properties of the set CPC. The occurrence of phase separation during 

injection/extrusion of CaP pastes and cements, and methods to reduce it is the 

principal focus of this review. 

Due to the high volume of studies published concerning CPCs, review articles have 

proven useful in presenting a summary of recent advances, highlighting current issues 

and opportunities within CPC research. The focus of recent comprehensive reviews 



have included: processing techniques [13], mechanical performance [14], methods to 

reinforce CPCs [15,16], the role of polymeric additives [17], in vivo degradation and 

resorption of CaP materials [18], influence of CaP material properties on cell behaviour 

[19], CaP materials as drug delivery systems [20–22], stem cell delivery via CPC [23], 

and the synthesis and application of nanostructured CaP based materials [24–26], in 

addition to broader overviews of recent progress in the development of CPC materials 

[27–29].  

In this article established methods to reduce the phase separation of CaP pastes and 

cements and the limits of their application are reviewed. Brief discussions relating to 

the other crucial properties of CPC and their influencing parameters are also included 

as many established methods to reduce phase separation are detrimental to the other 

crucial properties, as evident throughout this review. Therefore, when optimising any 

property of CPC, it is important to consider all the crucial properties. In addition phase 

separation mechanisms observed during the injection or extrusion of other biphasic 

paste systems and the theoretical models used to describe these mechanisms are 

discussed. It is anticipated that including comparisons to work from fields outside of 

Biomaterials will give a new perspective and a greater understanding of the phase 

separation mechanism of CPC during injection, which will benefit researchers 

attempting to optimise a fully injectable CPC.  

2 Types of Calcium Phosphate Cements 

Due to the high level of interest and research into CPC, many different formulations of 

CPC have been developed. They can be divided into two principal groups: (1) apatite 

(hydroxyapatite, HA, and calcium-deficient HA, CDHA) and (2) brushite cements 

(dicalcium phosphate dihydrate, DCPD) [30]. Both apatite and brushite CPC are 

produced by mixing a powder component consisting of one or more calcium 



orthophosphates with an aqueous solution. The mixing of these two phases induces 

the dissolution of the initial calcium orthophosphates. This is followed by precipitation 

into crystals of HA, CDHA or DCPD. During precipitation the newly formed crystals 

grow, and it is the entanglement of these new crystals, providing mechanical rigidity, 

that causes the cement to physically harden or set [29]. 

Hydroxyapatite (HA) can be formed via an acid-base reaction of tetra-calcium 

phosphate, TTCP (basic), and dicalcium phosphate anhydrous, DCPA (slightly acidic), 

Eq. 1. 

 𝐶𝐶𝐶𝐶4(𝑃𝑃𝑃𝑃4)2𝑃𝑃 + 𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝑃𝑃4 → 𝐶𝐶𝐶𝐶5(𝑃𝑃𝑃𝑃4)3𝑃𝑃𝐻𝐻 Eq. 1 

Calcium deficient HA (CDHA) can be obtained via the hydrolysis of a metastable CaP 

e.g. α-tricalcium phosphate (α-TCP), Eq. 2. 

 3𝛼𝛼 − 𝐶𝐶𝐶𝐶3(𝑃𝑃𝑃𝑃4)2 + 𝐻𝐻2𝑃𝑃 → 𝐶𝐶𝐶𝐶9(𝐻𝐻𝑃𝑃𝑃𝑃4)(𝑃𝑃𝑃𝑃4)5𝑃𝑃𝐻𝐻 Eq. 2 

Brushite (slightly acidic) can be obtained for instance by a reaction between β-TCP 

(almost neutral) and monocalcium phosphate monohydrate, MCPM (acidic), Eq. 3 

[29].  

 𝛽𝛽 − 𝐶𝐶𝐶𝐶3(𝑃𝑃𝑃𝑃4)2 + 𝐶𝐶𝐶𝐶(𝐻𝐻2𝑃𝑃𝑃𝑃4)2 ∙ 𝐻𝐻2𝑃𝑃 + 7𝐻𝐻2𝑃𝑃 → 4𝐶𝐶𝐶𝐶𝐻𝐻𝑃𝑃𝑃𝑃4 ∙ 2𝐻𝐻2𝑃𝑃 Eq. 3 

Although α- and β-TCP have the same chemical composition, they differ in 

crystallographic structure, resulting in α-TCP being much more soluble than β-TCP 

[31]. Through thermal treatment above 650°C there are several methods used to 

produce β-TCP [31], which can transform to α-TCP at temperatures greater than 

1125°C [32] (rapid quenching is required to prevent reverse transformation). A mixture 

of a α-TCP and β-TCP as the powder component and an aqueous solution of 2 wt% 

Na2HPO4 as the liquid part have been previously used to produce a CPC [33]. It was 



found α-TCP fully hydrolysed to CDHA, whereas β-TCP remained unreacted and 

embedded in the CDHA matrix. Increasing the proportion of β-TCP phase resulted in 

an increased setting time and a reduction in the compressive strength of the set 

cement [33]. In fact pastes produced with only β-TCP and water are generally 

regarded to be non-setting and are used as a model paste system to represent unset 

CPC [34–36]. These pastes are referred to in this review article as ‘CaP pastes’. 

 
3 Properties of Calcium Phosphate Cement 

When designing CPC for orthopaedic applications the properties of the unset and set 

cement require careful consideration to ensure clinical success. The hardened cement 

must be biocompatible and have sufficient mechanical integrity to stabilise the fracture 

or implant site. Ideally the hardened CPC should have a suitable composition and 

adequate porosity to be bioresorbed and replaced by host tissue. The cement prior to 

setting has to be easily prepared and handled during the surgical procedure; for 

percutaneous surgical procedures such as treatment of fractures of the radius [9], tibia 

[10,12] or vertebrae through vertebroplasty (PVP) [8,11] and kyphoplasty (BKP) 

[37,38], this requires injection via a cannulated needle into the fracture site.  

3.1 Bioresorbability and Biocompatibility  

Animals studies have been used to examine the bioresorption (removal of material by 

cellular activity and/or dissolution of a material in a biological environment [39]) of CPC 

in vivo. In this article, several animal studies have been summarised (Table 1) to 

demonstrate the influence that type, size and porosity has on the bioresorbability of 

CPC. Further details of the bioresorption mechanism for CaP materials and the 

influence of physical and chemical properties of CaP materials on cell behaviour has 



recently been presented in comprehensive reviews [18,19]. All cements considered in 

this article demonstrated good biocompatibility, as no signs of inflammation were 

detectable [40–43]. All cements were partially replaced by different amounts of new 

bone. However, variation in bioresorption rates was evident, Table 1. The variation of 

resorption may be attributed to inherent variation in animal studies, duration of the 

study, and also the type, size and porosity of CPC sample. Brushite CPC generally 

resorbs at a faster rate than apatitic based CPC, Table 1. This is due to the 

metastability of brushite in physiological conditions, i.e. brushite cement is not only 

resorbed by natural remodelling process but also by physiochemical dissolution [44]. 

The quantity of cement will also influence the resorption rate. In addition to size of 

sample, porosity will dictate the quantity of CPC. It can be observed that smaller 

(Knaak et al. [42]) and more porous (Miño-Fariña et al. [43]) samples have faster rates 

of resorption than larger less porous samples (Norian SRS tested by Apelt et al.[40] 

and Ooms et al. [41]), Table 1. Norian SRS demonstrated a lower porosity (~50% [45]) 

than the macroporous apatitic CPC investigated by Miño-Fariña et al. (75% [43]). 

However, the influence of porosity on the bioresorption mechanism of CPC is more 

complex than simply dictating the quantity of cement. Pore size and interconnectivity 

are also important influencing factors. As a result porosity of CPC has been the subject 

of several investigations, as illustrated in the next section.  

3.2 Porosity  

Porosity of the set CPC is closely related to the liquid-to-powder ratio, LPR, of the 

unset paste. As no, or little, water is consumed during the setting reaction, the majority 

of water or aqueous solution added to produce CPC is used as a dispersant medium 

to produce a workable paste [46]. A minimum amount of liquid is required to fill the 

voids between particles (this corresponds to the maximum solid volume fraction, 



SVFmax). The addition of liquid in excess of the minimum amount increases the 

particle-particle distance (reducing solid volume fraction, SVF) i.e. increasing LPR 

increases the porosity of the set cement. 

It should be noted that water quantity consumed during the setting of brushite Eq. 3 is 

considerably higher than that of apatite Eq. 2. Therefore, at similar LPR, set brushite 

CPCs are generally less porous [47]. Using atomic weights, the mass of water 

consumed relative to the total mass of reactants in the setting reactions represented 

by Eq. 2 and Eq. 3 was estimated as 1.90 wt% (LPR 0.02) for apatite and 21.25 wt% 

(LPR 0.26) for brushite. 

Although the microstructure of CPC based systems are porous, their porosity lies 

within the high nano to sub-micron range. This enables fluid flow within the 

microstructure of the cement and increases the surface area, leading to greater 

surface reactivity [48]; however, the pores are typically considered too small to 

facilitate tissue ingrowth [49]. As a result, resorption of CPCs generally occurs layer-

by-layer (i.e. from the outside to the inside) [31]. Interconnecting macroporosity 

enhances bone regeneration mechanisms [50] and improves apposition to host bone, 

allowing stabilisation of the defect and improves the healing process. Methods used 

to enhance macroporosity of CPC include the addition of porogenic agents, such as 

mannitol [51] or sucrose [52], the use of gas generating compounds, such as sodium 

bicarbonate [52,53], or the use of foaming agents such as albumen [43,50], gelatine 

[54], soybean gelatine combinations [55] or low molecular weight surfactants [56]. 

Even with these methods, the process for reliably controlling the pore structure of CPC 

during percutaneous surgery is difficult, especially when compared to 3D printing 

methods used to produce CaP scaffolds prior to implantation. Nevertheless, 

knowledge of the pore structure is essential and, as a result, investigations into 



accurate measurement of the pore size and morphology of CPC have been conducted 

[57–59]. However, with regards to increasing porosity of CPCs for hard tissue 

replacement, there is a major limitation — mechanical properties are strongly 

dependent on porosity and they decrease exponentially with an increase in porosity 

[31]. 

3.3 Mechanical Properties  

Compressive strength is the most common, and often the only criterion [14], used to 

assess the mechanical performance of CPCs. Compressive strength of CPC can be 

increased by reducing porosity or via the introduction of additives, such as citric acid 

[60] and superplasticisers [61]. In addition, apatitic CPCs generally have greater 

strength than brushite [14]. When optimising the strength of CPC, or selecting a 

commercial CPC for orthopaedic applications, it would make sense for the 

compressive strength of the cement to be similar to the compressive strength of bone. 

However the compressive strength of bone can vary widely, depending on age, 

gender, location within the body and the stress imposed on it. Bone adapts to the 

stresses imposed on it by remodelling, varying in size and altering the abundance of 

cortical (providing strength) and cancellous (reducing weight) bone.  

Therefore, depending on the clinical application, the required compressive strength 

will vary; i.e. the required compressive strength for filling and stabilising fractures at 

load bearing anatomical locations such as tibial plateau [10] or vertebrae [8,11] would 

differ to CPC used to fill defects in maxillofacial surgery applications [62].  

To investigate the effect PVP has on the strength of vertebrae, Lim et al. [63] and Hong 

et al. [64] evaluated the strengths of vertebral bodies pre-fracture and post-PVP.  

Vertebrae retrieved from human cadavers were subjected to compressive loading until 



failure. Post failure, the vertebrae were injected with cement to simulate PVP. The 

cements used included CPC and PMMA. Lim et al. [63] found that that the maximum 

compressive load (MCL) of the vertebrae was higher post PVP compared to MCL 

values pre-surgery. This was true when CPC or PMMA was used, although not always 

significantly with regards to CPC [63]. Hong et al. [64] also found vertebrae treated 

with PMMA bone cement demonstrated an increase in MCL. However vertebrae 

treated with CPC showed a decrease in MCL; this decrease was not statistically 

significant for all cases (Table 2). In both studies, MCL values of vertebrae treated with 

CPC were closer to the vertebrae prior to operation when compared to PMMA. 

Although studies have demonstrated that CPC can be used with PVP to improve the 

strength of a fractured vertebra to its pre-fractured strength [63], it has been stated 

that compressive strength alone is not a sufficient criterion to assess mechanical 

properties of CPC [14]. Other essential mechanical properties have been investigated, 

including fracture toughness [45,65,66] and fatigue behaviour through cyclic loading 

[45,65,67], but these have received less attention and should be the focus of future 

mechanical performance investigations [14]. The environment in which cements are 

tested should also be considered [68]. Generally mechanical testing of CPC is 

normally conducted under dry conditions at room temperature. However, testing under 

wet conditions at body temperature would be more representative of the in vivo 

scenario. Indeed the mechanical strength of several CPCs tested in both wet and dry 

conditions have been compared [68]. It was found that the mechanical strength was 

lower when tested under wet conditions with the exception of one CPC which exhibited 

no significant change in compressive strength [68]. 

However the major issue in future investigations attempting to optimise the mechanical 

properties of CPC will remain, i.e. improving mechanical properties without sacrificing 



other essential properties. For example, an investigation into fracture toughness of 

CPC showed the addition of collagen fibres improved the fracture toughness, but this 

addition also reduced the compressive strength and inhibited delivery of the cement 

through a cannulated needle [66].  

4 Properties and Delivery of Unset Calcium Phosphate Cement 

The method by which the CPC is delivered to the surgical site, can directly impact the 

properties previously discussed in Section 3.1 to Section 3.3. The unset CPC should 

be easily loaded into a syringe and injected into the body to the surgical site through 

a cannulated needle. The needles used in percutaneous surgeries such as PVP and 

BKP usually range from 13 to 8-gauge (internal diameters of 1.80 to 3.43 mm) [69] 

and from 100 to 150 mm in length [70]. The needle geometry required may be 

considerably smaller than this, depending on the surgical application. For example, 

during the manufacture of tissue engineered scaffolds via direct deposition methods, 

CPC has been extruded through 27 to 23 gauge needles (internal diameters of 0.16 

to 0.32 mm) [71]. The rheological properties of the paste should be sufficient to allow 

injection through the cannulated needle at a force that can be applied by an 

orthopaedic surgeon (usually taken as 100 N [70] to 300 N [60]) and fill the fracture 

site, yet not cause extravasation. In addition, the CPC should have sufficient cohesion 

to prevent disintegration in the body. There is evidence that disintegration, due to poor 

cohesion, of CPC in the body during PVP can lead to cement embolism [71,72], with 

potentially fatal consequences [71].  

A major issue in cement delivery is the occurrence of separation of the powder and 

liquid components of CPC during delivery using a syringe. This occurs when the liquid 

phase travels at a faster rate than the powder particles, resulting in extrudate with a 



significantly higher liquid content than the paste loaded into the syringe [34]. A higher 

liquid content leads to a decrease in the viscosity of the unset CPC [73], an increase 

in setting time [74], a reduction in cohesion [75] and a decrease in the mechanical 

strength of the set CPC (Section 3.3). Non-extrudable paste remaining in the syringe, 

due to a low liquid content, is also a consequence of phase separation [34].  

The extent of phase separation occurring during extrusion of CPC is commonly 

inferred from a measurement called ‘injectability’ [34]. Injectability is usually defined 

as the mass of extrudate relative to the mass of the initial paste. Poor injectability of 

CPCs is a major factor limiting their application in PVP and BKP surgical procedures 

[76,77]. As a result, many studies have focused on modifying the constituent parts of 

CPC to improve injectability; indeed, many improvement methods have been 

established.  

5 Improving Injectability of Calcium Phosphate Cement 

Phase separation of CPC is believed to be a result of high extrusion pressure relative 

to liquid filtration pressure [78]. Improvement methods would therefore include: (i) 

reducing the extrusion pressure, i.e. increasing the flowability (reducing the pressure 

required to cause the paste to flow), and (ii) increasing the pressure (PPS) required to 

force the liquid through the powder network, i.e. reducing the permeability (k) of the 

paste system.  

 𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑄𝑄𝜇𝜇𝑙𝑙𝐿𝐿
𝑘𝑘𝑘𝑘

 Eq. 4 

Where Q and μl are flow rate and viscosity of the liquid component, and L and A are 

the length and area of the powder bed. 



Many methods to improve injectability have been established, which will be discussed 

with reference to their effect on flowability and permeability of the paste system.  

5.1 Viscosity of Liquid Phase 

One method that has been shown to improve injectability of CaP based cement and 

paste is increasing the viscosity, μl, of the binder. This increases PPS (Eq. 4) and has 

been demonstrated to reduce [35,79] and even eliminate [76,80–82] phase 

separation. Viscous binders that have been investigated include aqueous solutions 

containing sodium hyaluronate [35], methylcellulose (MC) [79], hydroxypropyl 

methylcellulose (HPMC) [76,79,81], salts of alginic acid [82] and ethylene 

oxide/propylene oxide block copolymers such as Pluronic [80]. Contrastingly, Wang et 

al. [83] reported that the viscous gel produced with the addition of modified starch to 

CPC reduced injectability. However, in their study the modified starch was added to 

the powder to form the solid phase of the CPC before the addition of water [83].  

Although viscous binders have had favourable results with regards to reducing phase 

separation, they did present certain limitations. For example, increasing the 

concentration of Pluronic increased the extrusion force [80], possibly due to reducing 

the flowability of the bulk paste. A paste that will not readily flow may be desirable in 

applications such as robocasting of scaffolds, the application of interest to Franco et 

al. [80], as it increases the likelihood of the scaffold maintaining its shape during 

setting. However, it may not be suitable for percutaneous surgery as it will inhibit filling 

of the fracture site with cement. It was also observed that the cements produced with 

MC, HPMC and modified starch had significantly lower compressive strengths than 

cement that used water as the liquid phase [79,83]. This has been attributed to an 



increase in porosity due to air bubbles trapped in the CPC during production of the 

paste when viscous binders are used [79].  

5.2 Maximum Packing Fraction of Powder and LPR   

Optimising the solid phase of the paste may also improve injectability by altering the 

powder permeability and maximum packing solid volume fraction (SVFmax). The 

SVFmax of the powder component of pastes plays a significant role in the flowability of 

that paste. To produce a paste from powder and liquid components, the liquid has to 

first fill the voids of the powder matrix or network: any liquid in excess of this amount 

will then increase particle-particle distance and initiate flow (the greater the excess, 

the more readily the paste will flow). Therefore, the greater the deviation between SVF 

of the paste and SVFmax of the powder component the greater the flowability. 

Increasing SVFmax of powder and reducing SVF (i.e. increasing LPR) of the paste are 

methods to increase flowability. Indeed, increasing LPR has been seen to improve 

injectability of CPC significantly [70,76]. However, increasing the LPR will also 

increase permeability of the paste system and reduce the mechanical strength of the 

set cement due to an increase in porosity (Section 3.3), and is therefore limited as a 

CPC improvement method. For this reason increasing SVFmax is an appealing method 

to increase the flowability of CaP pastes.  Powder SVFmax and permeability can be 

optimised by altering the powder morphology including: (i) particle size, (ii) distribution 

and (iii) shape. 

(i) Particle Size 

Theoretically, particle size should not affect packing ability of powders. Hales et al. 

[84] proved Kepler’s conjecture that the SVFmax for hard spheres is, 𝜋𝜋
√18

= 0.74, 

independent of size; although it is widely accepted that the random SVFmax of mono-



sized spheres is approximately 0.64 [85]. However, in practice, reducing particle size 

may reduce SVFmax, due to agglomeration, as observed with CPC comprising of 

relatively finer particles [86]. Indeed, reducing particle size has been shown to increase 

viscosity of CPC [73]. However, a reduction in particle size would decrease 

permeability due to an increase in surface area, beneficial to enhancing injectability. 

In general, a smaller particle size has been demonstrated to improve injectability of 

CaP pastes [78,87] and CPCs [30,87]. In one study, although the general trend was 

that a reduction in particle size increased injectability, it was also observed that 

adopting excessive cryogenic and ball milling times had a detrimental effect on 

injectability [30]. This was attributed to agglomeration of particles [30]. This indicates 

there may be a limitation when using milling protocols to reduce the particle size of 

CaP powder and increase injectability.  

(ii) Particle Size Distribution 

Broadening the size distribution of powder by adding particles smaller than those in 

the bulk powder, filling the voids (Fig. 1B, C), is a common way to increase SVFmax. 

This also reduces permeability of the powder. The proportion of fine to coarse powders 

can be optimised to produce the highest achievable SVFmax, (Fig. 1C). Too low a 

quantity of fine particles will not sufficiently fill the voids, (Fig. 1B); too high a quantity 

will not allow the large particles to form a network (Fig. 1D). Again, in theory the SVFmax 

of the small particles (Fig. 1E) should be equivalent to that of the coarse powder (Fig. 

1A) [85]. Several models exist to estimate the SVFmax of powder mixtures, including 

the Furnas’ model [88] to estimate the SVFmax of binary mixes Eq. 5i and 5ii. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
1 − 𝑆𝑆𝑆𝑆𝑓𝑓

 Eq. 5i 



 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓
𝑆𝑆𝑆𝑆𝑓𝑓 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓 − 𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓

 Eq. 5ii 

 

Where SVFmaxm, SVFmaxf and SVFmaxc are the SVFmax of the binary mixture, and the 

fine and coarse components, VFf is the volume fraction of fines in the mixture. The 

locus of the Eq. 5i and 5ii intersect, Fig. 2. The intersect represents the optimum VFf 

to achieve the highest SVFmaxm, values above the intersect should be ignored [89]. 

The above discussion applies to cases where the difference in diameter of the original 

and added particles is sufficiently large that the added particles do not disrupt the 

packing structure of the original particles. If this is not the case the addition of different 

sized particles may increase the voidage. For example, if fine particles (outlined in red 

in Fig. 3) are not small enough to fit into interstices of coarse particles, the packing 

structure is disrupted, increasing the voidage. This is described as the loosening effect 

[90]. The voidage can also be increased if a particle with a larger (yet comparable) 

diameter is added (outlined in black in Fig. 3). As this has a similar effect on packing 

as a container wall may have, this is referred to as the wall effect [90]. 

With regards to CaP powders; Gbureck et al. [91], altered the packing ability by the 

addition of fine fillers, which reduced the water demand and improved injectability 

(Table 3). Qi and Ye [92] and Tadier et al. [35] added larger beads to CaP powders. 

Qi and Ye [92] found the addition of larger beads decreased injectability (Table 3). 

Tadier et al. [35] found the addition of beads with a diameter of 156 μm improved 

injectability. However the addition of 390 μm beads, had little detrimental effect on 

injectability depending on the wt% of beads (Table 3). 



In the studies by Gbureck et al. [91], Tadier et al. [35] and Qi and Ye [92], as the added 

particles were different in material than the bulk powder, it is difficult to determine if 

the observed effects were solely due to altering the SVFmax. Alternatively, some 

mechanism affecting the particle-particle interaction may have disrupted the solid 

network within the pastes. In addition, Torres et al. [77] investigated the injectability of 

pastes produced from β-TCP powders of various size and distribution, and 

demonstrated that particle size distribution (PSD) did influence injectability. The effect 

of PSD on packing ability was discussed, however methods to estimate the specific 

influence of median size, breadth of distribution or shape on packing ability were not 

conducted [77]. 

(iii) Particle Shape 

Particle shape has been shown to affect injectability, with spherical CaP particles 

having better injectability than irregular particles [93]. Although permeability of powder 

will increase with an increase in sphericity, it is generally observed that particles with 

higher sphericity will have higher packing abilities [85]. This could be the reason for 

the observed increase in injectability in many studies. It should be stated that particles 

with other regular geometric shapes (e.g. cubes and parallelepipeds) have been 

observed to achieve higher SVFmax than spheres [85]. However, these shapes would 

be difficult to achieve in normal CaP powder production processes.  

5.3 Particle-Particle Interactions 

Particle-particle interactions dictate the strength of the powder network and will 

therefore influence the flowability of pastes. Two particle interactions within 

concentrated CaP pastes and cement will be considered: (i) colloidal interactions and 

(ii) direct frictional contact. 



(i) Colloidal Interactions 

It has been stated that in liquid-powder systems colloidal interactions become 

significant when particle diameters are less than 40 μm and very significant at 

diameters below 10 μm [94]. As CPC particles are generally below 10 μm, colloidal 

interactions should be considered when investigating the flowability of unset CPC. 

Although there may be several complex forces influencing the interaction of colloidal 

particles in aqueous environments [95], generally forces are simplified to the sum of 

the attractive Van der Waals and the repulsive electrical double layer (EDL), defined 

in the Derjaguin, Verway, Landau and Overbeek (DVLO) theory [96,97], Fig. 4A. The 

EDL is formed due to the charge at the particle surface-liquid interface. To maintain 

neutrality counter ions are attracted to the particle surface [98]. The counter ions form 

two layers, (i) the stern layer and (ii) diffuse layer Fig. 4B. If the EDL of two particles 

overlap a repulsive force between the particles develops.  

At an increasing distance away from the particle surface, the potential decreases 

linearly through the stern layer and exponentially through the diffuse layer reaching 

zero at the bulk solution [99], Fig. 4B. A common laboratory measurement to estimate 

the magnitude of the surface potential is the zeta potential, ζP. The ζP is the potential 

at the slipping or shear plane, where counter ions within this boundary move with the 

particle, Fig. 4B. The greater the ζP the more stable the suspension, and with regards 

CPC pastes it has been observed the greater the ζP the greater the injectability [60]. 

Gbureck et al. found ζP of TTCP and DCPA in water was -18.4 ± 1.9 mV and -15.0 ± 

1.8 mV, whereas the ζP for the same powders in a trisodium citrate solution was -

50.1±1.0 mV and -50.6±3.8 mV [60]. Consequently a CPC produced with TTCP, 

DCPA and water achieved an injectability of 59%, while under the same conditions, a 



CPC produced with TTCP, DCPA and trisodium citrate solution achieved an 

injectability of 97.4%. However, increasing the magnitude of ζP is limited as an 

improvement method due to the detrimental effects that reducing particle attraction 

may have on cohesion [75]. 

(ii) Direct Frictional Contact 

Direct frictional contact between particles within concentrated pastes are strongly 

dependent on roughness and SVF [100]. Methods reducing frictional contact between 

particles, including increasing LPR [70,76], have been shown to improve injectability. 

Ishikawa et al. [93] observed spherical particles exhibited better injectability than 

irregular particles, which was attributed in part to  smoother surfaces. Leroux et al. 

[101] observed improved injectability when glycerol was added, due to the lubricating 

effect of the binder reducing frictional contact. Alternatively, this may have been due 

to a reduction in permeability, as the glycerol would be more viscous than water. 

5.4 Setting Reaction 

Particle interaction is also made more complex with the addition of a setting reaction. 

As needle like structures form at the surface, surface roughness increases and a 

porous solid forms due to the mechanical interlocking of the crystals. Thus, the setting 

reaction has often been observed to have a detrimental effect on the injectability of 

CPC [70,87,101]. The most common method of monitoring the setting reaction of CPC 

is using the Gillmore needle apparatus. This technique determines the time at which 

the setting cement can support a static pressure of 0.3MPa (initial setting time, tI) and 

5MPa (final setting time, tF) without being deformed. With regards to clinical 

applications the surgeon should be able to prepare and deliver the CPC to the surgical 

site before tI is reached [102]. Depending on the surgical procedure it has been 



suggested that tI should be between 3 and 8 min, close to 3 min for dental related 

procedures and close to 8 min for orthopaedic procedures, tF should be less than 15 

min [102].  Khairoun et al. [70] proposed a new term, relating the setting reaction to 

injectability, referred to as dough time, tD, defined as the time at which injectability 

reaches 0%. Some discrepancy has been observed in tD, however. Khairoun et al. [70] 

observed that tD was approximately half of tI, while Montufar et al. [87] observed 0% 

injectability (tD) was not reached until well after the initial setting time, Fig. 5. One 

reason for the different relationships between tI and tD in these two studies could be 

factors other than the setting reaction that influence injectability were not kept 

constant. The paste systems most likely differed in permeability and flow properties — 

therefore, the extent of phase separation would have varied between the studies. As 

discussed previously, phase separation causes the paste remaining in the barrel to 

dewater. It has also been established that reducing the LPR of CPC reduces the 

setting time [87]. Therefore, the setting time measured for the composition of CPC 

initially loaded into the syringe is not the setting time exhibited by the paste within the 

syringe during extrusion if phase separation occurs. This highlights that, when 

attempting to optimise setting times of CPC for surgical applications requiring injection 

or extrusion, it is crucial to consider if, and to what extent, phase separation occurs. 

Currently the most notable method used, attempting to reduce the influence of the 

setting reaction on the delivery process, is the development of premixed CPC that 

does not set until injected into the body [103–106].  

5.5 Extrusion Parameters 

Extrusion parameters have also been shown to significantly affect injectability. Habib 

et al. [34] observed injectability of a CaP paste was reduced when larger syringes 

were used and with the addition of a needle. However, Montufar et al. [87] reported no 



significant difference between the extrusion of a CaP paste with or without a needle, 

but did observe needle geometry affected injectability of CPC. Increasing extrusion 

rate, reducing the time for liquid to migrate [107] has been shown to increase 

injectability [34]. O’Neill et al. observed that modifying the syringe geometry by adding 

a taper at the barrel exit also significantly increased injectability [36]. Additionally, 

agitating CaP paste throughout extrusion by applying ultrasonic vibration also 

significantly improves injectability [108]. However, further investigation is required into 

the effect the amplitude of vibration has on the tip of the needle, which may have 

detrimental effects during PVP [108]. The manner by which the unset CPC is loaded 

into the syringe and mixed beforehand will also influence phase separation as mixing 

and loading will dictate the uniformity of liquid distribution throughout the unset CPC 

prior to injection. Therefore, it is important that the mixing method used is sufficient for 

a uniform liquid distribution to be achieved, which should not be altered during loading. 

The energy of mixing (duration and power) may also alter the flow properties of CPC 

and affect the injectability – even though the duration of CPC mixing is limited due to 

the setting reaction. However, to the best of the authors’ knowledge there have been 

no studies investigating the influence of mixing on the delivery of CPC based systems 

reported. Therefore, investigations into the influence of different mixing approaches 

(using low, medium- and high-energy regimes) in order to understand its influence on 

flow properties of CPC and consequently its injectability should be conducted in the 

future. Until then, it should be highlighted that research relating to the mixing of 

construction cements is well established and it has been reported that such cement 

when subjected to high shear mixing, demonstrate improved flow properties compared 

to the same cements, when subjected to low shear or hand mixing [111]. Due to the 



similarities between CPC and construction based cements it is likely a similar effect 

would be exhibited for CPC when subjected to relatively higher shear mixing regimes. 

5.6 Summary of Improvement Methods 

It is apparent that several methods have been established to improve injectability, and 

even produce fully injectable CPC in some cases, and injectable CPC based systems 

have had clinical success in several applications [6–12]. Yet, it is widely accepted that 

there are still many issues inhibiting the optimisation of an injectable CPC that fully 

satisfies clinical requirements [14,109]. A major issue is the fact that many of the 

methods to improve injectability are detrimental to other crucial properties of CPC and 

vice versa. Therefore, to produce a CPC within the constraints of a considered clinical 

application, a combination of improvement methods is required. Due to the number of 

independent and dependent variables to consider, optimisation of a CPC based 

system through experimental work alone has proven difficult and time consuming. This 

is evident from the large number of studies, conducted for over two decades, 

attempting to improve CPC. Thus, greater theoretical understanding of how, and to 

what extent, process variables affect the crucial properties of CPC is required. 

6 Theoretical Consideration of Injectability for Calcium Phosphate Paste  

Bohner and Baroud [78] applied a theoretical approach to investigate the effect of 

several variables on injectability of a CaP paste. They developed a model that 

combined the Hagen-Poiseuille equation (Eq. 6), describing the flow of the CaP paste 

through a cannulated needle, and a derivative of Darcy’s law (Eq. 7), representing the 

filtration of the liquid phase though the powder network:  



  
𝑃𝑃𝑖𝑖 =

128𝜇𝜇𝑝𝑝𝐿𝐿𝑛𝑛𝑄𝑄𝑝𝑝
𝜋𝜋𝐷𝐷𝑛𝑛4

 Eq. 6 

where Pi is injection pressure, Ln and Dn are length and diameter of the needle, and 

Qp and μp are the flow rate and viscosity of the paste, respectively. 
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Eq. 7 is concerned with cake filtration, i.e. the filtration of a liquid through a dense 

powder bed. Using Eq. 7 the thickness of the bed, th, is estimated based on the 

diameter of particles, De, the voidage (water volume fraction) of the paste and cake, ε 

and εm, time, t, the pressure drop through the cake, Pc, and the viscosity of the liquid, 

µl. 

It was assumed that Pc is equal to Pi, and μp can be described by the Quemada result 

(similar in form to the Krieger Dougherty equation, Eq.8. 
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Eq. 8 

It was assumed that 1 −  𝜀𝜀𝑚𝑚 = SVFmax and SVFmax was related to plastic limit (PL), 

which is the minimum LPR at which a ‘pasty block’ is formed. Upon converting the 

volume fractions (SVF, ε and εm) to mass ratios (LPR and PL) Eq. 7 becomes, 
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where, 
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Eq. 9 could not be directly corroborated with experimental results. Instead it was 

validated by establishing if factors decreasing cake growth were the same factors 

increasing injectability in experimental investigations.  The positive effects of increased 

LPR and decreased particle size observed experimentally were predicted by the 

model. However, experimentally it was found that increasing the viscosity of the liquid 

improved injectability, which was not predicted using the model [78]. This was probably 

due to the relative simplicity of the method used to deal with the pressure components. 

In the actual extrusion process of CaP paste, the required extrusion pressure would 

be the sum of various pressure components, i.e. pressure forcing the paste through 

the barrel exit (divided into pressure acting on the liquid and powder network) and 

pressure to overcome paste-wall friction. However, in this model it is simply assumed 

that Pc equals Pi. In replacing Pc Eq. 7 with the right hand side of Eq. 6 and using the 

Krieger Dougherty equation to predict μp, μl was removed and not represented in the 

model. The model also predicted a larger th, with a decrease in dn; however, 

injectability did not change considerably when altering the needle diameter during 

experimental investigations. This was thought to be due to a limited number of data 

[78].  

7 Limitations of ‘Injectability’ as a Measurement 

The model proposed by Bohner and Baroud [78] was the first attempt at relating 

important characteristics: namely, rheological and permeability properties and 

extrusion parameters of the paste system to injectability and phase separation of CaP 

materials. In doing so, Bohner and Baroud highlighted the lack of knowledge across 

these areas. Although dozens of investigations have been performed, the exact 

mechanism of phase separation and its effect on the permeability and flow properties 

of the CaP pastes throughout the extrusion process remains unknown.  The reason 



for this, in part, lies with measurement of ‘injectability’. Injectability is only a measure 

of one resulting aspect of a complex process revealing little of the process or the 

characteristics of the paste systems used. With this limited measurement and no 

standard testing protocol (e.g. syringe geometry, extrusion rate and force, particle size 

and LPR all differ between studies), it is very difficult to determine the benefits of one 

improvement strategy versus another by cross-comparing separate studies. 

Furthermore, injectability does not take into account the quality of extrudate. Without 

analysis of the extrudate the effect injectability improvement methods have on the 

quality of extrudate remains unclear. Therefore, increasing injectability may not 

necessarily mean increasing clinical applicability. It is for this reason that Bohner and 

Baroud [78] proposed injectability should be defined as the capacity of the CPC 

system to stay homogeneous during the injection process. 

Consequently, Habib et al. investigated paste homogeneity during extrusion by 

measuring and comparing the LPR [34] and PSD [110] of extrudate and paste 

remaining in the syringe post-extrusion. No particle size segregation was observed 

during extrusion [110]. However, phase separation was confirmed as the extrudate 

LPR was higher than that of the initial paste. In addition, the paste remaining in the 

barrel showed a considerable decrease in LPR,  resulting in an increase in required 

extrusion pressure [34]. Higher extrudate LPR compared to initial LPR was also 

reported by Tadier et al. [35] and O’Neill et al. [36] when investigating the extrusion of 

CaP pastes. Although phase separation was confirmed as the factor limiting 

injectability, the exact mechanism remains unknown. 



8 Permeability of Calcium Phosphate Powders 

Habib also investigated the correlation between injectability and permeability 

properties of CaP pastes [111]. Using the Blaine apparatus (ASTM C:204), Habib 

determined the permeability of β-TCP powders of various PSD [111]. To vary the PSD, 

finer plasma treated β-TCP and HA powders at various wt% were added to a 

commercial β-TCP powder. It was observed that decreasing voidage and increasing 

the wt% of fines (HA powder, 3 wt% max. and plasma treated β-TCP, 10 wt% max.) 

reduced permeability. To establish if a correlation between permeability and 

injectability existed, Habib compared the permeability values to injectability values 

obtained from pastes produced using the same powder mixtures at an LPR of 0.4. It 

was found that permeability values obtained were not a strong predictor of the liquid 

separation phenomenon [111].  

The study by Habib was the only study found investigating the permeability of CaP 

powders and relating it to the phase separation of CaP paste during extrusion. In 

addition, the SVF of powder used to test permeability (0.355 to 0.325) in the study was 

lower than SVF of pastes that were used to investigate injectability ≈ 0.45.  Further 

investigation into the effect permeability has on phase separation is thus required 

[111].  

9 Rheology of Calcium Phosphate Pastes and Cements 

The rheological properties of dilute suspensions are relatively well understood. In 

contrast, concentrated suspensions and pastes with a relatively high SVF, such as 

CPC for orthopaedic applications, exhibit an apparent viscosity far higher than that of 

the liquid component due to complex particles interactions. The rheology of these 

materials have received less attention and are therefore less understood [112].  



Due to the complexity and inherent heterogeneity of pastes it is difficult to obtain 

reliable and physically meaningful measurements from the rheometry of pastes [113]. 

The heterogeneity causes problems including liquid migration, sedimentation, wall 

slip, cohesion failure, and localised shear, which can lead to serious errors in the 

measurements [112]. For these reasons it is very tempting to use established semi-

empirical expressions to predict viscosity of suspensions, like the Krieger-Dougherty 

equation [114], or those proposed by Dabak and Yucel [115] and Liu [116]. Models to 

predict the yield stress of concentrated pastes have also been proposed [117]. 

However, these models only consider a portion of the factors influencing the 

rheological properties, relying on empirically derived parameters and ‘must be seen 

as only rough approximations of reality’ [100]. Therefore, overcoming the difficulties in 

performing rheometry of CPCs and pastes is essential to better understand the flow 

properties of the cement and the influencing factors. 

A common method to determine the flow properties of CaP pastes and cements is 

measuring the plastic limit, i.e. the quantity of liquid added to a powder to produce a 

pasty block [78,91,118]. It is a measure of water demand that can be used to infer the 

SVFmax of powder or flowability of pastes, as used by Bohner and Baroud in their 

theoretical model [78], the assumption being lower plastic limit leads to more flowable 

the paste. Indeed, plastic limit, specifically a function of plastic limit and initial LPR, 

has been observed to be a strong predictor of injectability [34,78]. However, the 

measure of plastic limit is quite subjective and does not determine how the paste will 

perform under flow conditions.  

Rheometers have been used to investigate how various CaP suspensions, pastes and 

cements perform under flow conditions [73,119–125]. Baroud et al. measured the 

rheological properties of a CaP paste (β-TCP and H2O) [73] using a rotational parallel 



plate rheometer at various increasing shear rates (from 0 to 200s-1). It was observed 

that increasing LPR and reducing milling time (also resulting in larger particles sizes) 

reduced viscosity. This was also observed by Friberg et al. during the rheometry of 

CPC (α-TCP and H2O) [125]. The addition of a flocculating modifier (e.g. xanthan) and 

a deflocculating modifier (e.g. sodium polyacrylate) was investigated:  xanthan 

increased viscosity and sodium polyacrylate decreased viscosity [73]. All formulations 

tested displayed a yield stress and shear thinning characteristics [73].  

Liu et al. used a rotational cone and plate rheometer to measure the flow properties of 

a CPC [123]. Their study focussed on the evolution of the particle network during the 

setting reaction; however, steady rheology was also investigated. A yield stress, shear 

thinning and thixotropic characteristics were evident, Fig. 6.  

Yield stress, shear thinning and thixotropic characteristics are commonly exhibited by 

concentrated pastes. The presence of these characteristics demonstrated the 

significance of the particle network with regards to the flowability of CaP pastes and 

cements. A yield stress suggests the sum of the interaction forces between particles 

is attractive, and this force and SVF are sufficiently high that the particles can create 

a continuous network. A certain shear stress is required to overcome the interparticle 

attractive force, breaking the network and inducing flow. Shear thinning of 

concentrated pastes and cements is attributed to the particle network being further 

broken or destructured as shear rate is increased, reducing the apparent viscosity. 

Thixotropy also involves the structural breakdown of the powder network. However, it 

is not only dependent on the instantaneous shear rate, but also the shear history. In 

addition thixotropy is reversible as the attractive bonds can reform when the paste is 

at rest. In Fig. 6, the apparent viscosity on the return sweep is lower than the outward 



sweep, due to breakdown of the particle network. Over time, at rest, the structure will 

reform and viscosity increase. 

In addition to the rheometry studies by Baroud et al. [73] and Liu et al. [123], several 

studies have performed both injectability tests and rheometry for various CaP paste 

and cement formulations [34,77,83,87,92,126]. Habib et al. [34] varied LPR of pastes 

produced with β-TCP. Torres et al. also investigated the effect LPR had on CaP 

pastes, in addition to various calcination temperatures and milling times [77]. Several 

studies have investigated the effect various additives had on the rheology of CaP 

pastes and cements: precipitated HA nanoparticles [87], chitosan, sodium alginate, 

modified starch [83], PLGA microspheres [92], polyethylene, glycerine, citric acid 

[126], and Na2HPO4 [87,126]. In general, it was found that methods to reduce viscosity 

increased injectability. However, this trend was not always observed. Torres et al. [77] 

using various pastes produced with β-TCP powders of different PSD observed that 

injectability was more sensitive to variations in PSD than the viscosity of the bulk paste 

alone (measured using a cone and plate rotational rheometer) [77]. 

Permeability is an obvious factor that influences phase separation and is dependent 

on PSD, but other unknown mechanisms may also be occurring. Therefore, when 

investigating phase separation, the permeability and rheological properties of the 

paste system should both be considered. This will enable the extent these properties 

affect phase separation to be investigated and also assist in the identification of any 

other mechanisms contributing to phase separation during extrusion. Indeed, although 

several studies have conducted both rheometry and injectability tests on CaP pastes 

and cements [34,77,83,87,92,126], there appears to be no attempt to theoretically or 

empirically determine the extent by which measured yield stress or viscosity affects 

injectability. Furthermore, comparison of flow properties of CaP cements and pastes 



between the studies discussed is also limited, as generally only viscosity or shear 

stress versus shear rate profiles have been reported. 

9.1 Comparing Rheological Properties of Pastes 

Commonly, flow properties of various pastes and fluids are compared between studies 

by using constitutive models, via flow curve fittings, to obtain key parameters. These 

parameters can also be utilised in theoretical models. Fatimi et al. used the Ostwald–

de Waele equation (Power law) Eq. 11 to obtain key parameters from the rheometry 

of a CPC (i.e. biphasic CaP and HPMC aqueous solution) [81]. The parameters were 

used with the Hagan-Poiseuille equation to estimate the extrusion pressure for the 

CPC. As the CPC was fully injectable, phase separation was not considered:  

 𝜏𝜏 = 𝑘𝑘�̇�𝛾𝑛𝑛 Eq. 11 

where k is the consistency parameter and n the shear rate index. 

The Ostwald–de Waele equation does not take into account the yield stress; however, 

the existence of a yield stress has been observed during several CaP rheometrical 

investigations [34,73,83,92,126]. A common and established model, similar to the 

Ostwald–de Waele model, which includes yield stress is the Herschel-Bulkley 

equation: 

 𝜏𝜏 = 𝜏𝜏0 + 𝑘𝑘�̇�𝛾𝑛𝑛 Eq. 12 

where τ0 is the yield stress.  

The Ostwald–de Waele and Herschel-Bulkley equations are very useful in identifying 

flow characteristics. If 𝑛𝑛 < 1 the material is shear thinning. If a linear relationship exists 

between 𝜏𝜏 and 𝛾𝛾 once yield stress is reached (i.e. 𝑛𝑛 = 1), the material is referred to as 



a Bingham plastic. Finally, if 𝑛𝑛 > 1, the material is shear thickening, Fig. 7. Note Fig. 

7 does not include an time dependency. 

In the construction industry, constitutive models have been of great benefit when 

comparing flow properties of various cement formulations. However, it has been 

observed that parameters obtained can vary vastly [127,128]. It is intuitive, due to 

complex flow characteristics such as shear thinning and thixotropy that parameters 

representing the viscous component of cement may vary between studies, depending 

on the rheometry device or protocol used. These complexities can also affect the 

measurement of the yield stress; methods used to prepare, mix and deliver the 

cement, how it is loaded into the device and any pre-shearing protocols the cement is 

subjected to before measurement will all affect the measured yield stress value. A 

review by Banfill [128] demonstrates very well the difficulties encountered when 

attempting to compare yield stress values for cement based pastes from different 

studies. Banfill found that reported yield stress values vary widely for construction 

cements, which are not sufficiently different in chemical composition or PSD to warrant 

the variation in measured yield stress observed [128].  

Even studies comparing the testing of identical cement pastes on different rotational 

rheometers found results differed considerably [129,130] (even over an order of 

magnitude [127]). Therefore with regards to CaP pastes and cement, care has to be 

taken when comparing inter-laboratory rheometry results. Although measured material 

properties should be ideally independent of the measuring device, this is rarely the 

case for rheometry of cement-like paste. To address this, Ferraris et al. [131] recently 

proposed a reference or calibration paste to use in rheological studies of cement-like 

pastes, which may prove useful in future rheometry investigations. When conducting 

rheometry investigations for homogeneous fluids standard reference oils with known 



rheological parameters can be used to test the reliability of the rheometer, geometry 

and protocol used. However, due to the previously discussed complexities associated 

with rheometry of biphasic pastes, there is more opportunity for erroneous 

measurements when compared to rheometry of homogeneous fluids. Therefore, 

achieving accurate rheometry measurements for standard reference oils does not 

necessarily mean that accurate and reliable measurements can be obtained for 

biphasic pastes using the same protocol. Ferraris et al. [131] have developed a 

biphasic paste - a mixture of corn syrup, water, and fine limestone, which they propose 

could be used as a reference paste. Ferraris et al. [131] have obtained rheological 

parameters for this paste using several different types of rheometers. Therefore, if the 

rheological properties of the reference paste are measured and compared to the 

published results prior to any rheometry investigation of biphasic pastes, it may 

indicate any deviations or errors and highlight issues with the rheometer, geometry, or 

protocol used that needs addressing.  

In addition, the measurements of flow properties vary depending on the type of flow 

imposed on the paste (e.g. simple shear, uniaxial extensional, or oscillatory 

deformation) [113]. This highlights a further issue: rheometry of CaP pastes and 

cements are commonly conducted using rotational rheometers and it has not been 

established if the results obtained are representative of the flow characteristics 

observed during extrusion. However, methods to obtain rheological properties directly 

from extrusion tests are available.  

10 Extrusion of Pastes: Benbow-Bridgewater Approach 

Faced with the considerations outlined above, Benbow and Bridgwater [132] 

developed a semi-empirical approach to describe paste flow into and along a die that 



enables useful rheological parameters to be obtained from extrusion testing of pastes. 

The parameters obtained could be applied to other extrusion configurations, for 

design, as well as allowing the effect of extrusion conditions and paste formulation to 

be compared.  

The model assumes the pressure (Pex) required to extrude the paste through the 

extruder comprises of two components: (i) the pressure difference (P1) required to 

shape the paste from the barrel into the die land, and (ii) the pressure drop (P2) to 

overcome wall friction as the paste travels along the die, Fig. 8.  

For shaping the paste into the die land the paste is assumed to behave as a perfect 

plastic, where the work done in the die entry region is approximated by that required 

to achieve a homogeneous compressive deformation,  

 𝑊𝑊 = 𝜎𝜎𝑦𝑦𝑘𝑘0𝑙𝑙0𝑙𝑙𝑛𝑛 �
𝑘𝑘0
𝑘𝑘
� Eq. 13 

where σy is uniaxial yield stress, A0 and A are the areas of the barrel and die, 

respectively, and l0 is the length of a paste element within the barrel. The pressure 

difference to shape the material at the die land is the work done per unit volume, giving 

 𝑃𝑃1 = 𝜎𝜎𝑦𝑦ln �𝐴𝐴0
𝐴𝐴
� or 𝑃𝑃1 = 2𝜎𝜎𝑦𝑦ln �𝐷𝐷0

𝐷𝐷
� Eq. 14 

In the die land is assumed to travel in plug flow (the bulk of the material flowing at a 

constant velocity) with only a very thin layer at the wall subject to shearing. The force 

required to enable the paste to flow through the die has to overcome the wall friction, 

which is the product of the wall shear stress and die perimeter area: 

 𝑆𝑆2 =
𝑃𝑃2𝜋𝜋𝐷𝐷2

4
= 𝜏𝜏𝑤𝑤𝜋𝜋𝐷𝐷𝐿𝐿 Eq. 15 



where τw is shear wall stress. Rearranging Eq. 15 gives 

 𝑃𝑃2 = 4𝜏𝜏𝑤𝑤 �
𝐿𝐿
𝐷𝐷
� Eq. 16 

The extrusion pressure can thus be written as 

 𝑃𝑃𝑒𝑒𝑚𝑚 = 2𝜎𝜎𝑦𝑦 ln �
𝐷𝐷0
𝐷𝐷
� + 4𝜏𝜏𝑤𝑤 �

𝐿𝐿
𝐷𝐷
� Eq. 17 

Velocity dependencies often arise in practice, which is incorporated in the expression 

for 𝜎𝜎𝑦𝑦 and 𝜏𝜏𝑤𝑤, giving either the six-parameter model  

 𝑃𝑃𝑒𝑒𝑚𝑚 = 2(𝜎𝜎0 + 𝛼𝛼𝑆𝑆𝑚𝑚)𝑙𝑙𝑛𝑛 �
𝐷𝐷0
𝐷𝐷
� + 4(𝜏𝜏0 + 𝛽𝛽𝑆𝑆𝑛𝑛) �

𝐿𝐿
𝐷𝐷
� Eq. 18 

where V is the velocity of paste in the die land, or, when linear dependency is 

observed, the four-parameter model: 

 𝑃𝑃𝑒𝑒𝑚𝑚 = 2(𝜎𝜎0 + 𝛼𝛼𝑆𝑆)𝑙𝑙𝑛𝑛 �
𝐷𝐷0
𝐷𝐷
� + 4(𝜏𝜏0 + 𝛽𝛽𝑆𝑆) �

𝐿𝐿
𝐷𝐷
� Eq. 19 

The parameters σo, α, m, τo, β, and n are obtained by conducting extrusion tests at 

various ram velocities and using different extruder geometries. It can be seen that Eq. 

18 and 19 can be used to estimate of the effect of syringe and needle geometry on 

injection performance. A second benefit of this approach is it allows the effect of 

different paste formulations and extrusion processes to be assessed and compared. 

Table 4 summarises paste systems and applications where this method has been 

used successfully [133–155] (Table 4). 

Similarities exist between several of the extrusion studies presented in Table 4 and 

extrusion studies of CaP pastes and cements. Zhou and Li [137] used the Benbow-

Bridgewater approach for the extrusion of short fibre reinforced construction cement. 



The similarities between unset CPC and construction cements have previously been 

established [91]. This indicates the Benbow-Bridgewater approach can be also used 

for CPC. A major difference between the study by Zhou and Li [137] and CPC studies 

is the extruder geometry used by Zhou and Li [137] was considerably larger (barrel 

and die diameters of 80 and 12 mm) than syringes used in CaP cement and paste 

extrusion studies. In CaP cement and paste extrusion studies barrel diameters are 

commonly 11.5-15.4 mm (representative of 5 and 10mL syringes) [36,77,81,87,110], 

however barrel diameters from 4.5 [35] to 24 [78] mm have been used. Die (barrel exit) 

diameters reported range from 1.75 to 3 mm [35,36,87,110]. Die diameters can be 

further reduced if needles are attached. Ram (plunger) velocities used in CaP paste 

and cements extrusion studies generally fall in the range of 0.08 to 0.33 mm/s 

[36,77,87,110]. Considering syringe geometry this corresponds to flow rates of 0.012 

to 0.048 mL/s. However due to variation in extruder geometry flow rates as low as 

0.006 mL/s [35] and as high as 0.905 mL/s [78] have been used.  

Martin et al. [134] used a barrel diameter of 25 mm when extruding a talc based 

hydraulic paste (SVF ≈ 0.5, mean diameter of talc powder = 7 μm). Various die 

diameters were investigated including diameters of 1, 2 and 3 mm. The ram velocities 

reported ranged from 0.05 mm/s to 2 mm/s (corresponding to flow rates of 0.0245 to 

0.982 mL/s). Similarly to CaP pastes and cements, Martin et al. observed significant 

phase separation at the lower ram velocities investigated [134]. 

10.1 Limitations of the Benbow-Bridgewater Approach 

The Benbow-Bridgewater model proved to be a successful and simple technique to 

obtain parameters concerning paste characteristics and extrusion conditions for 

design purposes [156]. However, several limitations exist:  



• The actual die entry pressure drop is greater than that of the model prediction. As 

the deformation is not homogeneous, work is expended in shearing the material 

without contributing to the reduction in cross-sectional area [156,157] and 

shearing was not considered in this part of the model, Eq.17.  

• Shearing is partially considered in Eq. 18 due to the dependence of velocity within 

the yield stress term, 𝜎𝜎0 + 𝛼𝛼𝑆𝑆𝑚𝑚. However, several authors [156,158,159] have 

highlighted that dealing with shear rate in this way neglects a term representing 

the geometry of the extruder, as the unit of measurement for shear rate is s-1, 

whereas for velocity it is ms-1. Therefore, if Benbow-Bridgewater parameters are 

obtained from an extruder of set dimensions, they may only be used to predict 

material behaviour on extruders of similar dimensions. To rectify this limitation, 

Zheng et al. [159] proposed that Eq. 18 should be modified as follows:  

 𝑃𝑃 = 2�𝜎𝜎0 + 𝛼𝛼
𝑆𝑆
𝐷𝐷

𝑚𝑚

� 𝑙𝑙𝑛𝑛 �
𝐷𝐷0
𝐷𝐷
� + 4(𝜏𝜏0 + 𝛽𝛽𝑆𝑆𝑛𝑛) �

𝐿𝐿
𝐷𝐷
� Eq. 20 

Basterfield et al. [160] presented an alternative result for the P1 term in which the 

Gibson model [116] was rewritten in terms of the Herschel-Bulkley model, Eq. 12. This 

model assumes a radially converging flow pattern at the die entry, characterised by 

entry angle θ: 

 𝑃𝑃 = 2𝜎𝜎0𝑙𝑙𝑛𝑛
𝐷𝐷0
𝐷𝐷

+ 𝑧𝑧𝑘𝑘𝑢𝑢 �
2𝑆𝑆
𝐷𝐷
�
𝑛𝑛

�1 − �
𝐷𝐷
𝐷𝐷0
�
3𝑛𝑛

� 
Eq. 21 

 

where 

 𝑧𝑧 =
2

3𝑛𝑛
(𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠(1 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠))

𝑛𝑛
 Eq. 22 



Like the Benbow-Bridgwater approach, this has been used to obtain rheological 

parameters directly from extrusion data of several paste formulations [161–163]. It also 

has limitations, including the absence of the work associated with the transition into 

and out of the radial flow, the absence of wall shear, and the deviation of the assumed 

flow pattern from those observed in flow visualisation studies [164,165]. 

These shortcomings in both the Benbow-Bridgwater and the Basterfield et al. models 

highlight the complexity of the flows, which are the subject of detailed computational 

investigations [164,165]. They do, nevertheless, provide a systematic framework for 

understanding the factors affecting extrusion and quantifying the impact of these. 

Ferstl et al. [148] and Liu et al. [140] observed a limiting velocity when obtaining 

Benbow-Bridgewater parameters for the paste formulations they investigated: below 

this velocity phase separation occurred. As with CPC, the phase separation caused 

the paste in the extruder to dewater, increasing the required extrusion pressure. If 

phase separation occurs, the Benbow-Bridgewater or Basterfield approach cannot be 

used to obtain rheological parameters.  

11 Phase Separation during Extrusion of Pastes 

Phase separation is not limited to CaP based cements and pastes. It has also been 

encountered during extrusion of various biphasic pastes in the chemical, food and 

pharmaceutical sectors. Phase separation is not only detrimental to the quality of 

extrudate; it can also be very damaging to the extrusion system, depending on 

materials used and extrusion pressure. These factors have stimulated numerous 

investigations into how to reduce phase separation for all the above sectors. The 

approaches taken to investigate phase separation in these studies were similar to 

those of Habib et al. [34]. The quality of extrudate and paste in the barrel were 



analysed, post and also during extrusion [134,140,166–169]. Additionally, some 

studies have been able to observe both liquid distribution of paste within the barrel 

during extrusion and flow of the powder component [107,164,165]. Recently, O’Neill 

et al. attempted to achieve this for the extrusion of CaP pastes [36]. The flow of the 

powder component of the CaP paste (β-TCP) was determined using powder tracing 

tests and the flow of the liquid was inferred by determining the lateral and radial liquid 

distribution within the syringe barrel. Important flow characteristics such as the 

existence of static zones at the lateral wall of the barrel, that readily released liquid 

exacerbating phase separation, were identified [36].  

Like the study by Bohner and Baroud [78], several studies have taken a theoretical 

approach in an attempt to gain a deeper understanding of the phase separation 

process and identify the mechanism and extent by which different methods may 

reduce phase separation [150,151,170,171]. As a result, the understanding of phase 

separation during extrusion of these pastes is more advanced compared to the 

extrusion of CPC. 

Several phase separation mechanisms have been identified in different research 

studies: (i) filtration in the barrel, where the pressure exerted by the plunger on the 

paste causes drainage of the liquid phase and the solids to undergo consolidation 

[152,172]; (ii) suction, driven by dilation of the powder network as it flows into the die 

[170]; and (iii) filtration in the needle (or die land), exacerbated with the formation of 

solid mats [171] (Fig. 9). 

Similar to the extrusion of CPC, there are a number of factors affecting phase 

separation of other biphasic pastes. To eliminate phase separation, these factors have 

to be optimised within the constraints of the considered application. Although other 



extrusion applications may not be as highly constrained as the extrusion of CPC for 

minimally invasive surgical applications, optimising paste formulation and extrusion 

parameters by experimental methods alone is still difficult. For this reason theoretical 

models describing the three mechanisms have been developed.  

11.1 Phase Separation by Filtration: Mechanism (i) 

During extrusion, pressure is applied to the paste through the plunger to shape the 

paste into, and push it through the die. If the SVF is high enough to form a connected 

network, the total extrusion pressure is the sum of pressure imposed on the particle 

network and interstitial liquid [151]. If the pressure imposed on the liquid (called pore 

pressure in soil mechanics), is high relative to the permeability of the particle network, 

phase separation will occur [151]. The liquid will migrate through the network to 

regions of lower pressure, i.e. out of the extruder, resulting in a faster flowing liquid 

relative to the powder and a liquid-rich extrudate. 

Khelifi et al. [150] and Rough et al. [151] used similar approaches to model this phase 

separation mechanism. For modelling purposes the paste within the barrel was 

considered as two separate regions: (1) the paste at the barrel exit or shaping zone, 

and (2) the paste upstream of the shaping zone in the remaining volume of the barrel. 

The paste in the shaping zone region was assumed to be homogeneous. Using the 

Benbow-Bridgewater approach the pressure required to extrude this paste was 

calculated. The paste upstream of the shaping zone was assumed to undergo plug 

flow and transmit the pressure exerted by the plunger to the paste at the shaping zone. 

It was in the region upstream of the shaping zone where liquid migration was modelled. 

Using a soil mechanics approach the pressure imposed on the solids and the pore 

pressure was calculated. A Darcy-like liquid flow through the permeable powder 



network was modelled. The paste was considered in separate layers (50 [150] and 12 

[151] layers). It was assumed that liquid filtered from each layer travelled to the layer 

below. Following every modelling iteration, each layer had a new SVF and the bottom 

layer was assumed to be extruded; the SVF of the bottom layer was then used to 

predict the extrusion pressure. This process was repeated until the final layer was 

extruded. The pressure gradient in the barrel due to friction between the paste and 

extruder wall also considered.  

Both studies employed empirically fitted parameters and values taken from soil 

mechanics literature. There was good agreement between the model predictions and 

the experimental observations, considering the level of approximation [150,151]. 

Rough et al. claimed the main inconsistency in the model was its inability to accurately 

predict the water content of the paste (a microcrystalline cellulose paste) at the die 

face. The measured paste liquid content was lower than the model predictions, 

attributed to the presence of static zones and suction effects resulting from dilation of 

the solids [151], i.e. mechanism (ii), which their 1-D model did not consider. 

11.2 Phase Separation by Dilation: Mechanism (ii) 

In concentrated pastes, powders are close to the SVFmax. To enable flow, particles 

must move apart to move past each other. This requirement is particularly evident 

during extrusion where particles in a highly concentrated paste within the extruder 

barrel are closely packed and have to move apart to flow through the die entry, i.e. the 

powder network must dilate. The dilation of the particle network results in an increase 

in voidage, reducing pore pressure (suction). This negative pore pressure, relative to 

the pore pressure of neighbouring regions, draws liquid from those regions through 

the particle network, resulting in a liquid rich extrudate. Patel [172] simulated extrusion 



of a paste, including pore suction, in a 2D finite element model based on soil 

mechanics theory. Stresses applied to the paste were divided between the liquid and 

powder network. The powder network was modelled using a modified Cam-Clay 

constitutive model, commonly used in soil mechanics. Liquid migration was predicted 

using Darcy’s law. The stress applied to the liquid and powder network, and the 

distributions of the two phases, was calculated throughout the barrel and along the die 

land. This allowed the effect of dilation at the barrel exit on the pore pressure of the 

paste in the surrounding area to be assessed.  

There was reasonable agreement between the model predictions and the 

experimental observations at low SVF, however agreement was poor at high SVF 

[172]. This study relied heavily on parameters taken from soil mechanics literature. 

The model paste studied consisted of 140 μm diameter glass spheres in a viscous 

aqueous glucose solution. Specialised characterisation techniques were required and 

some effort would be required to develop these for CPC and CaP materials. Their work 

nevertheless demonstrates that extrusion of biphasic systems subject to phase 

separation in geometries of interest to the field can be modelled using existing 

numerical techniques. 

11.3 Filtration in the Needle: Mechanism (iii) 

Yaras et al. [171] observed that phase separation of a concentrated paste (aluminium, 

ammonium sulfate and hydroxyl terminated polybutadiene) was exacerbated by the 

continual formation and break-up of mats of solids at the die. The extrudate became 

liquid rich and dry in a cyclic pattern and was extruded out in bursts [171]. This resulted 

in a peak- and trough-type plunger force profile due to formation and break-up of mats 

of solids, as well as an increase in required extrusion force due to dewatering of the 

paste within the barrel.  



Yaras et al. [171] did not model the formation and break-up of mats of solids directly. 

The simple model produced was based on competition between the velocity of the 

bulk paste flowing through the die and velocity of liquid draining through the powder 

network. A Darcy-type flow through the powder network was assumed. Several 

assumptions were made, including the pressure used to predict the flow of liquid 

through the powder network was assumed to equal the pressure to overcome the 

paste-wall friction within the die1, similar to the model proposed by Bohner and Baroud 

[78]. The phase separation predictions were reasonable considering the simplicity of 

the  Yaras et al. model [171]. 

12 Phase Separation Mechanism of Calcium Phosphate Pastes and Cements 

Considering the different possibilities reviewed above, it is evident that knowledge of 

the phase separation mechanism is required when applying theoretical approaches to 

describe experimental observations. A better theoretical understanding is essential to 

enable efficient optimisation of CaP pastes and CPC systems and to fully satisfy 

clinical requirements for surgical applications requiring extrusion or injection. 

When investigations into the injectability and phase separation of CaP pastes are 

cross-compared, common features exist that indicate the occurrence of a similar 

phase separation mechanism, or mechanisms. The common features that have been 

observed are: (1) similar extrusion pressure profiles, initially exhibiting a slight gradient 

or plateau followed by an abrupt increase in extrusion pressure [34–36,79,87]; (2) an 

                                            
1 It can be shown that the two pressures cannot be equal, as the work associated with 
the flow of liquid through the powder is dissipated against the fluid viscosity, so that 
no energy is then available to drive the solids along the wall. Likewise, if there is no 
fluid drainage, the pressure is equal to the work required to extrude the solids and any 
entrained liquid. It does, however, provide a reasonable estimate of the maximum 
drainage rate. 



extrudate with a higher LPR than the initial paste which remains relatively constant 

throughout extrusion [34–36] and (3) paste remaining in the barrel having a lower LPR 

than the initial paste, which is drier on the plunger side of the barrel compared to the 

exit side [34,36]. In addition, needle geometry does not appear to have a strong 

influence on phase separation during extrusion of CaP pastes [34,36,87]. However, 

alteration of the barrel geometry has been observed to significantly affect phase 

separation [36]. This indicates that the phase separation is located within the barrel, 

i.e. mechanism (i) or (ii). Differentiating between these two mechanisms is difficult. In 

a recent study, O’Neill et al. [36] proposed that phase separation by dilation may be 

the dominant mechanism. They observed that the extrudate LPR remained relatively 

constant throughout the extrusion process, indicating that a critical LPR had to be 

reached to enable the paste to exit the barrel. The extrudate LPR did not appear to be 

dependent on extrusion pressure, suggesting mechanism (i) was not the dominant 

mechanism. Therefore, it would be reasonable to assume the required dilation of the 

paste at the barrel exit to reach the critical LPR would create a suction pressure, 

drawing the liquid through the powder matrix, i.e. mechanism (ii). This would result in 

the paste remaining in the barrel being steadily dewatered and increasing extrusion 

pressure as the minimum LPR of paste remaining in the barrel is reached.  

Interestingly, although Montufar et al. observed the needle geometry had no effect on 

the extrusion of CaP pastes, an effect was observed during the extrusion of CPC [87]. 

Reducing the inner diameter of the needle significantly reduced the injectability of 

CPC. Episodes of clogging of the needle were evident on the extrusion profile for CPC 

[87]. This may be comparable to the formation of mats observed by Yaras et al. [171] 

and therefore  suggests that when a setting reaction is present mechanism (iii) may 

occur, in addition to the phase separation occurring in the barrel, i.e. mechanism (i) or 



(ii). Mats are known to form when non-spherical particles are extruded, via solid 

bridging, and becomes increasing important when the particle sizes approach the 

dimension of the needle [173]. 

Further work is required to confirm the phase separation mechanisms present during 

the extrusion of CaP pastes and cements, and the extent various factors influence 

these mechanisms.  

13 Concluding Remarks 

CPC have seen clinical success in many dental and orthopaedic applications due to 

their ability to be moulded into bone defects and implant sites, then harden in situ to 

provide stability. However, there is limited clinical use of CPC in surgical applications 

requiring extrusion or injection due to their relatively poor injectability.  

Poor injectability of CPC primarily arises from the separation of the solid and liquid 

phases during cement delivery from a syringe/cannulated needle arrangement, which 

was the focus of this review. Several methods to reduce the phase separation of CaP 

materials during extrusion have been established, which include: increasing LPR and 

injection rate, reducing plastic limit, increasing the viscosity of the liquid component or 

the repulsive force between particles, optimising barrel geometry, and agitating paste 

throughout extrusion. However, use of these methods is limited by the highly 

constrained nature of surgical applications and the fact that these improvement 

methods are usually detrimental to other crucial CPC properties. These constraints, 

and the number of factors potentially influencing phase separation, have hindered 

optimisation of an injectable CPC that fully meets the necessary requirements for 

minimally invasive surgical applications.  



Future formulations of CPC are likely to rely on the application of additives in an 

attempt to meet all clinical requirements, i.e. to reinforce CPC and improve mechanical 

performance, ensure cohesion during setting and enhance interconnected 

macroporosity. It has been observed that additives, whether powder or liquid, can have 

a detrimental or positive influence on the delivery process of CPC. Further 

investigations into how the size and proportion of solid additives relative to the bulk 

CaP powder can be used to optimise packing ability of the powder should be 

conducted. This will increase SVFmax (i.e. reduce plastic limit) and reduce phase 

separation during injection/extrusion. When using liquid or readily soluble additives, 

the influence on viscosity of the liquid component should be considered. A viscous 

liquid has been shown to reduce phase separation during injection/extrusion of CaP 

pastes and cements, but increasing viscosity of the liquid too much will increase 

extrusion force, which may exceed the force the surgeon is able to apply and still 

maintain sufficient control. Therefore, investigations into the optimal viscosity of the 

liquid component should be conducted in the future. 

In addition, as optimisation of CPC by experimental work alone has proven extremely 

difficult, greater focus should be on increasing the theoretical understanding of the 

phase separation of CPC during extrusion/injection. Development of accurate 

theoretical and computational models would improve the efficiency of the optimisation 

process. Indeed, several models describing phase separation mechanisms during the 

extrusion of biphasic pastes do exist. However, due to lack of knowledge surrounding 

the phase separation mechanisms occurring during the extrusion of CPC, and the fact 

that rheology and permeability of CaP paste systems are relatively under 

characterised, application of the these models for CPC has been limited. Although the 

understanding of phase separation has greatly improved recently, research is still 



needed to confirm the exact phase separation mechanisms that are present during the 

extrusion of CaP materials and the extent various factors influence these mechanisms; 

only then can accurate models become a realistic prospect.  

In addition, obtaining reliable parameters representing material characteristics such 

as permeability and rheological properties of the paste system is required when 

attempting to model the extrusion or phase separation process. Several studies have 

made progress in this area by investigating factors influencing the rheology of CaP 

cements and pastes. However, due to a lack of established protocols, comparison of 

rheological properties of different paste formulations between separate studies has 

been difficult. When obtaining parameters intended for inter laboratory use, it is 

imperative to know if variation observed between measurements is due to differences 

in material characteristics or differences in experimental protocol. Therefore, 

standardised protocols need to be established. It is evident from the more established 

field of cement rheology that it is extremely difficult to obtain absolute or even reliable 

and repeatable data, largely due to the complexity and inherent heterogeneity of 

cement based materials. Consequently, a considerable effort is required to 

standardise the methodologies and protocols used to determine the rheological 

properties for all cement like pastes, not just CPC based systems.  

Furthermore, with respect to phase separation occurring during extrusion of CaP 

materials, little work has been conducted to determine the extent permeability and 

rheological properties of CaP pastes and cements influence phase separation. In 

addition limited research has been conducted to directly measure factors influencing 

permeability of CaP paste systems. This should also be addressed in future studies.  



In summary, obtaining parameters that represent the permeability and rheological 

properties of CaP pastes and establishing the influence these properties have on the 

extrusion process is needed to improve the understanding of the phase separation 

mechanisms occurring during extrusion of CaP pastes and cements. It would also 

enable specific parameters to be tested with computational models describing the 

extrusion process of biphasic pastes to establish if these models can be used or 

modified to accurately describe the extrusion process of CaP pastes and based 

cements. A greater understanding of, and ultimately a rigorous theoretical model 

describing, the extrusion process of CaP pastes and cements will greatly aid studies 

attempting to optimise fully injectable CaP pastes or cements that fully meet clinical 

requirements for minimally invasive surgical applications.  
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Fig. 1: Packing fraction of mono- (A & E) and bi-dispersed (B, C & D) particles. 

  



 

 

Fig. 2: Calculated results from the Furnas equation. The solid line represents Eq. 4i, 

dashed line represents Eq. 4ii. SVFmaxf and SVFmaxc values used were 0.64. The letters 

relate to schematics presented in Fig. 1. 
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Fig. 3: Packing structure disrupted by the loosening and wall effect. 
  



 

Fig. 4: (A) Representation of DVLO theory- forces are simplified to the sum of the 

attractive Van der Waals and repulsive EDL forces, (B) schematic of the EDL, 

consisting of an inner (Stern) layer where counter-ions are strongly bound, and an 

outer (diffuse) layer where concentration of counter-ions decreases with distance, until 

equilibrium is reached. Within the diffuse layer there is a shear plane inside which 

counter-ions move with the particle. The potential at this boundary is the ζP. 
 

  



 

 

Fig. 5: Injectability and of α- (circles) and β- (squares) TCP (LPR of 0.45) either non-

calcined (open symbols) or calcined (close symbols), as functions of post-mixing time. 

Initial setting times of non-calcined α- and β-TCP were 35±2 and 52±32 min 

respectively. Reproduced from [57].  
  

                                            
2 The apparent setting reaction of the β-TCP, previously assumed to be non-setting, 

was thought to be due to partial amorphisation during milling. After calcination at 500 

°C, no amorphous phase was detected in the β-TCP powder and injectability of pastes 

produced from calcined β-TCP, remained constant throughout the 240 min. 
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Fig. 6: The relationship between shear stress and shear rate of calcium phosphate 

cement, 0.5 min after mixture of the powder with deionised water. Arrows indicate 

outward and return sweeps. Hysteresis loop indicative of thixotropy. Reproduced from 

[88]. 
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Fig. 7: Classification of fluids, based on relationship between shear stress and shear 

rate. 
  



 

 

Fig. 8: Schematic of ram extruder configuration. Barrel diameter D0, die diameter D 

and length L, at a mean extrudate velocity, V. Adapted from Wilson and Rough [98]. 
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Fig. 9: Phase separation mechanisms observed during extrusion of pastes and their 

location in the extruder. Schematic diagram is not to scale. 
 

  

Mechanism (ii): Suction. If 
the solid volume fraction of a 
paste is sufficiently high, 
particles must move apart to 
enable flow, i.e. the powder 
must dilate. Liquid is then 
drawn through the powder 
network to fill voids created by 

   

Mechanism (i): Filtration. 
When the pressure, P, exerted 
on a paste is high relative to 
the permeability of the paste 
system, consolidation of the 
powder phase and drainage of 
the liquid phase occurs. 

Mechanism (iii): Filtration in 
the needle. Above the red 
dotted line represents normal 
flow in die, below the same line 
shows the formation of a solid 
mat or powder blockage. As 
the powder is static or slow 
moving in the die, but the 
plunger is still moving, the 
liquid must flow through the 

      



able 1: A selection of animal studies investigating the resorption rate of different 

calcium phosphate cement based systems. 

Author Method Maximum 
Duration 

Calcium 
Phosphate 

Cement Type 

Volume 
Resorbed 

(%) 
Apelt et 

al. [17] 

Cement sample 
implanted in cylindrical 
bone defects (Ø 8mm, 
13mm deep) of sheep. 

6 month ChronOS Inject 
(brushite) 

60 

Experimental 
cement 

(brushite) 

90 

Norian SRS 
(apatitic) 

Bulk 
remained 

Ooms et 

al. [18] 

CPC injected as a paste 
into cortical bone 
defects of goats (Ø 
5mm). 

24 weeks Norian SRS 
(apatitic) 

Bulk 
remained 

Knaack 

et al. [19] 

Femoral slot (0.5 by 4 to 
6 mm) defects in dogs 
were filled with 
autologous bone 
implants or CPC. 

26 weeks Alpha-BSM 
(apatitic) 

>99 

Miño-

Fariña et 

al. [20] 

CPC injected into bone 
defect (Ø 6mm, 8mm 
deep) of rabbits. 

12 weeks Macroporous 
cement 
(apatitic) 

65 

 

 

  



Table 2: Comparison of the maximum compressive load (MCL) between initial and 

treated vertebrae (VB) of the thoracic and thoracolumbar regions in four cement 

groups (Data are presented as means ± SD). Adapted from [28]. 

  
Cement 
Group 

Compressive 
Strength 

(MPa) 

# 
VBs 

Initial 
MCL (N) 

Treated 
MCL (N) 

p 
value 

Th
or

ac
ic

 
sp

in
e 

CaP-1 5 10 2022 ± 800 1676 ± 596 0.009 

CaP-2 20 9 2438 ± 928 1906 ± 452 0.017 

CaP-3 50 10 2023 ± 806 1829 ± 821 0.177 

PMMA 80 9 1865 ± 649 2899 ± 795 0.000 

Th
or

ac
ol

um
ba

r s
pi

ne
 CaP-1 5 9 2878 ± 855 2546 ± 912 0.045 

CaP-2 20 9 3367 ± 

1098 

2918 ± 798 0.053 

CaP-3 50 8 3168 ± 

1302 

2710 ± 947 0.055 

PMMA 80 9 3239 ± 

1177 

4752 ± 1436 0.004 

 



Table 3: Selection of studies investigating the addition of secondary powders or beads to CaP (primary) powder. 

Author 

Primar

y 

powde

r 

D50 of 

primary 

powder 

(μm) 

Secondary 

powder or 

beads 

D50 of 

secondary 

powder (μm) 

Quantity of 

secondary powder 

added (wt%) 

Findings 

Gbureck et al. 
[61] 

α-TCP 9.84 

DCPA 1.161 23 
Significantly improved paste 
injectability and reduced water 
demand. Max. powder-liquid 
ratio was 3.5 g/mL for α-TCP 
and 5, 4.5 and 4 g/mL for 
DCPA, TiO2 and CaCO3 
mixtures, respectively. 

TiO2, 0.554 23 

CaCO3 0.724 23 

Tadier et al. [14]  

β-TCP 1.8 Glass beads 156 and 390 13, 25, 36.5, 42 and 
45.6 

Addition of 156 μm beads 
improved injectability. Addition 
of 390 μm beads had little 
effect on injectability. 
However,    42 wt% and 45.6 
wt%, was did not inject. 
Attributed to beads forming a 
percolating network. 

Qi and Ye [62] Part 
crystall

ised 
CaP 
and 

DCPA 

- 
PLGA 

microsphere
s 

100-200 10, 20, 30 and 40 

The addition of the 
microspheres decreased 
injectability. 
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Table 4: Examples of paste materials characterised using the Benbow-

Bridgewater model from 2000 onwards. Adapted and updated from Wilson and 

Rough [98]. 

Material Researcher (Year) 

Agro-chemical pastes Martin et al. (2004)  [99] 

Catalyst monoliths Das et al. (2002) [100] 

Yekta (2007) [101] 

Cement based material Zhou and Li (2005) [102] 

Ceramics Bates and Bridgewater (2000) [103] 

Guilherme et al. (2009) [104] 

Liu et al. (2012) [105] 

Raupp-Pereira et al. (2007) [106] 

Ribeiro et al. (2004) [107] 

Vitorino et al. (2014) [108] 

Wells et al. (2005) [109] 

Detergent Russell et al. (2004) [110] 

Fuel cell monoliths Powell and Blackburn (2010)[111] 

Powell et al. (2013) [112] 

Hard metal paste  Ferstl et al. (2012) [113] 

Pharmaceutical pastes Bryan et al. (2015) [114] 

Khelifi et al. (2013) [115] 

Rough et al. (2002) [116] 

Zhang et al. (2011) [117] 

Rocket propellants Wight and Reed (2002) [118] 

Snack food dough Cheyne et al. (2005) [119] 

Zeolite adsorbents Li et al. (2001) [120] 
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