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ABSTRACT: Electrospinning is a versatile technique for the con-
struction of microfibrous and nanofibrous structures with considerable
potential in applications ranging from textile manufacturing to tissue
engineering scaffolds. In the simplest form, electrospinning uses a high
voltage of tens of thousands volts to draw out ultrafine polymer fibers
over a large distance. However, the high voltage limits the flexible
combination of material selection, deposition substrate, and control of
patterns. Prior studies show that by performing electrospinning with a
well-defined “near-field” condition, the operation voltage can be
decreased to the kilovolt range, and further enable more precise
patterning of fibril structures on a planar surface. In this work, by using
solution dependent “initiators”, we demonstrate a further lowering of
voltage with an ultralow voltage continuous electrospinning patterning
(LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber
patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics
and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode,
such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique
reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.
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■ INTRODUCTION

Applications of micro−nanofibrous structures have become
vital to a number of emerging technologies such as fiber-based
sensors,1−3 filtration membranes,4−6 batteries and energy
storage7−9 and a range of bioengineering technologies such as
tissue scaffold implants,10−12 drug delivery13 and wound
dressing.14 Electrospinning is regarded as one of the most
widespread techniques offering rapid, inexpensive, and
relatively large-scale fabrication for fibrous structures.15−18

Conventional electrospinning processes operate at high
voltages (more than tens of kilovolts) and creates randomly
coiled fibers because of the inherent bending instability of the
fiber jet.19 To fabricate refined, well-controlled geometrical
structures, researchers have developed several experimental
techniques (such as electrospinning with a modified electric
field20 and using a rotating cylinder as a collector21) to allow
aligned fibrous construction with limited flexibility and
configurations. Precise control of fiber placement is essential
in determining the functionalities of biomimetics and electronic
devices.17 However, this is difficult to achieve using high-
voltage techniques. Recent development in melt electro-

spinning successfully demonstrates precisely controlled micro-
to nanoscale fibril structures in 3D.22,23 This technique sees
great potential to complement the present additive manufactur-
ing techniques, though it is limited to thermoplastic materials.
Significant improvement on controllable patterning has been
made by mechano-electrospinning24−26 where not only fibers
but also beaded deposition can be made.26 In particular, near-
field electrospinning (NFES) techniques27,28 enable the
patterning of a variety of polymer−solvent combinations with
some reduced flexibility in patterning precision due to a lower
viscous jet. Operating at a closer distance (e.g., ∼1 mm) over a
moveable stage, the applied voltage of NFES is usually in the
kilovolt range. Various functional materials have been patterned
by NFES to date, such as for electrical,28,29 optical,30 and
biological31 applications. Two-dimensional patterns with
enhanced complexity have been deposited on silicon wafers,
by varying the experimental setup or processing parameters.32
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Current improvements still need to be seen are associated with
the precise deposition control in a substrate-free form, or in a
3D configuration. However, this is limited by a number of
existing technical constraints. First, while NFES enables a much
reduced voltage (1−2 kV) compared to conventional electro-
spinning (tens of kilovolts33), such a voltage level may still
induce degradation and damages to the inherent electronic,
biological or pharmaceutical functionalities associated with
individual fibers. Second, as most NFES are operating at an
average field strength in the order of MV/m (close to the
dielectric strength of air), electric discharge may occur which
can damage any delicate depositing substrates. Our experience
in using NFES also shows that direct patterning on insulating
substrates such as glass or PDMS are limited at a thickness of
∼1 mm. Finally, because precise deposition requires a low
solution feed rate, this often results in the drying of the droplet
exposed, blocking the output of the flow feeding, and thus the
deposition process cannot be continuously sustained. In an
industrial level, further undesirable effects arise from the high
electric field are such as deviation of the multijet electro-

spinning and fiber collection difficulties caused by the high
electric field surrounding the needles.34

Herein, we report an ultralow voltage continuous electro-
spinning patterning (LEP) technique, with typical operation
voltages at 100 V DC, in a template free route. Under this
electrospinning mode, the combination of the lateral
mechanical stretching force and the electrostatic field focusing
effects facilitates the initiation of the polymeric jet, mitigating
the various fiber deposition challenges inherent with a high
voltage technique as described above. Precisely controlled
single fiber geometries are patterned over large areas at a line
speed up to 150 mm/s. With the low application voltage,
designed patterns can be fabricated on a range of substrates,
from conducting to insulating in nature, and from hydrogels to
solids. Furthermore, a versatile range of solutions can be
deposited with voltages as low as 50 V. We demonstrate
solution systems based on a high boiling point organic solvent,
a low boiling point organic solvent, and an aqueous solvent,
with common molecular weight polymers of polystyrene (PS),
polyvinylpyrrolidone (PVP), gelatin, and poly(ethylene oxide)

Figure 1. Overview of the attributes of LEP as a versatile material, versatile substrate deposition technique. (a−c) Versatile deposition substrates,
such as PEO fibers on glass; gelatin fibers first deposited on glass and then on top of an agarose gel; and suspending gelatin fiber bridging two PDMS
pillars. (d−f) versatile depositing materials, such as gelatin in the form of a suspending cross-lattice; polystyrene fibers with surface roughness formed
from a rapidly solidifying solution, where the LEP helps to solve the drying issue during printing; and fluorescent proteins encapsulated into PEO
fibers. (h−k) Various forms of patterns can be achieved similar to the conventional NFES techniques, such as grids, straight lines, and curly lines
resulting from the mismatch between jet speed and stage speed.
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Figure 2. (a) Schematic figure illustrates the configuration of the LEP setup. (b−d) Frames taken by a high-speed camera during the LEP process.
(e) Simulation on the electric field distribution with the translation of the initiator relative to the jetting tip. Numeric curves in (f) reflect the
corresponding electric field change following the stage movement in e. The three lines in each plot are z distances (in mm) sampled from the
grounded collector (z = 0) toward the apex of the droplet. One can clearly identity an electric field enhancement effect caused by the initiator,
through comparing the peak electric field values (e.g., the red curves) across the three tip-initiator positions.

Table 1. Solution Conductivity versus Voltage Threshold at a Fixed Working Distance (1 mm) during Electrospinning without
and with Initiatora

polymer
mol wt Mw

(Da)
concentration (wt/

wt)
conductivity (μS/

cm)
voltage threshold (V) (without

initiator)
voltage threshold (V) (with

initiator)
nanofiber

morphology

PEO 400 000 0.03 106.4 X 1000 (g/s) beads,
discontinuous

0.04 100 2000 1000 (g/s) beads,
discontinuous

0.05 99.7 1000−2000 50 (g/s) beads, continuous
0.06 99.7 600 50 (g/s) uniform,

continuous
PVP 600 000 0.15 6.3 X X X

0.2 6.4 2000 1000 s only beads,
discontinuous

0.25 6.5 1000 70 s only uniform,
continuous

0.30 4.5 1000 70 s only uniform,
continuous

PS 280 000 0.2 0.35 X X X
0.25 0.30 1200 50 s only uniform,

continuous
0.3 0.19 1200 50 s only uniform,

continuous
aThe glass slides (denoted with a symbol ‘g’) and silicon wafer (denoted with a symbol ‘s’) were used as insolating and conductive initiators,
respectively, in order to compensate or match the solution conductivities. Other insulating (e.g., plastics) or conducting materials (e.g., metallic
plates) can also be used. To obtain consistent comparison from the initiators for fiber onset, we kept the thickness of the initiators for both glass and
silicon wafers at ∼0.5 mm. The symbol (s/g) represents that both silicon wafers or glass slides can be used as initiators; (s only) means only silicon
wafer is used as the initiator, mainly because of the low conductivity of the solution.
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(PEO). LEP also allows 3D construction and patterning living
bacteria with reduced electrostatic influence. Our experiments
show the universality of LEP technique, demonstrating its
potentials in a number of emerging fields.

■ RESULTS AND DISCUSSION

The proposed advantages and applications of LEP system are
summarized in Figure 1. The key to reducing the operational
voltage is to minimize the threshold voltage required for jet
initiation. In established NFES processes, a voltage of 1−2 kV is
applied to a metallic tip35 resulting in an electrostatic force on
the suspended droplet. The internal charge repulsion leads to
the deformation of the droplet into a Taylor cone,36 which in
turn initiates fiber jetting.28 If continuous electrospinning is to
occur under a reduced voltage, it is essential to sustain a
comparable electric field around the local position of the
droplet to overcome the surface tension. Unlike conventional
far-field electrospinning, at the close distances employed in
NFES, the suspended droplet volume becomes non-negli-
gible.17,37 Thus, it is undesirable to decrease the electrospinning
distance to reduce the voltage because the suspending droplet
may cause electric sparkling when the droplet is being stretched
to bridge the tip and the deposition substrate.37 Furthermore,
because the electric field rapidly decreases from the tip toward
the grounded collector, it is therefore difficult to initiate fiber
jetting with voltages below 500 V, which is especially the case
for solutions of low conductivities.
Electrospinning in Low Voltages. To overcome the

difficulties of continuous electrospinning under low voltages,
LEP incorporates a lateral mechanical stretching force, in
conjunction with an electrostatic field focusing effect, to initiate
polymeric jetting. The combined effects can be achieved by
utilizing “initiators” on either sides of the patterned route,

shown in Figure 2a. The selection of initiators (e.g., conducting
or insulating) depends on the solution conductivity, see Table 1
and the Experimental Section. It is of note that after initial
solution charging, a voltage reduction to zero can still yield
temporary fibers production. However, such fiber production
cannot be self-sustained. In order to obtain continuous
deposition, voltages have to be continuously applied during
the fiber patterning process.
Sequential images recorded by a high-speed camera in Figure

2b−d show the electrospinning patterning process: first, the
droplet is significantly deformed above the initiator, with a thick
fiber ejecting from the apex of the droplet; in the second frame,
as the initiator moves away from the tip, the droplet forms a
cone shape and the fiber exhibits thinning, directed toward the
depositing substrate. We suggest this process assists the
redistribution of the surface charges on the droplet, providing
a local region that contains higher charges at the droplet
surface.38 The initiators also change the global electric field
distribution; where comparatively more concentrated local
electric field is formed when the initiators are closer to the tip,
as confirmed by simulation shown in Figure 2e. Figure 2f
quantifies the corresponding electric field intensity along the z-
axis from the grounded collector (z = 0 mm,) to a level just
below the droplet apex (i.e., z = 0.8 mm) above the collector, as
a function of substrate position. The spatial dependence of the
electric field is modified by the movement of the initiators and
the substrate, with a concentrated electric field between the tip
and the initiator edge. With an applied voltage of 100 V, local
focusing of the electric field can reach as high as 2500 V/cm
when the initiator is close to the tip position. As the substrate
moves to the center, the highest value field strength decreases
to 2000 V/cm and the global electric field distribution becomes
symmetrical. Under this condition, fibers can then be deposited

Figure 3. SEM images of PEO fibers fabricated through LEP. (a) 5% PEO-water solution through 50 V giving a beads-on-string feature, where the
fiber is not attached to the substrate. (b) 6% PEO-water solution with 50 V giving a straight fiber with twisted morphology. (c) 6% PEO-water
solution with 90 V, showing a uniform fiber evenly attached to the substrate. (d) Direct comparison by the simulation of electric field distribution for
a voltage application of 100 and 1000 V, using a model with/without the consideration of the droplet effect. (e) Viscosity profiles of different
polymeric solutions used for this study.
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accurately with prescribed patterns. By adjusting the collector
speed and the flow rate of the polymer solution, a steady-state
is achieved which enables continuous electrospinning. During
this process, the suspending droplet is refreshed by the
initiators; simultaneously, the volume of the droplet remains
constant by the adjusted polymer flow rate. The above
procedure with cyclic initiation thus enables a continuous
electrospinning and direct-patterning process.
On the basis of the above experimental and simulation

results, we suggest that the presence of the initiator can assist
the onset of fiber jetting, as well as enhancing the fiber thinning
process. First, the configuration of the initiator helped to
strengthen the localized electric field at regular times (e.g.,
approximately every few seconds depending on the sample
size), when the sample moved to the position near the initiator
as shown in Figure 2f. Second, the initiator provides a
mechanical lateral stretching force when the initiator is moved
away from the droplet, see Figure 2b. This mechanical thinning
effect resembles that of the fiber drawing mechanism used in
other fibrous patterning techniques(STEP)39−41 where fibers
were drawn without a voltage application. In STEP39 and the
subsequent work, only organic solvent-based solutions were
demonstrated. Here, since an electrospinning mechanism
(Taylor cone) was employed for fiber initiation, a variety of
solvent-material combinations can be used, which will be
demonstrated in the following section. Third, for highly volatile
solvents, one can actually use a higher flow rate to keep the
droplet refreshed without affecting the patterning process. This
is because, the droplet would be undergone the most
deformation at the initiator positions. Hence, any excessive
increase in droplet volume would be drawn to and deposited at
the position of the initiators, rather than affecting the fiber
patterning on the targeted substrate.
The competition of Coulomb’s force, solution viscosity and

solution surface tension determines both the fiber trajectory
and the single fiber morphologies during an electrified jet
printing process.15,19 In NFES, the ejected polymer stream
avoids several bending instabilities, as well as environmental
disturbance including the lateral aerodynamic resistance as the
fiber falling toward the collector. This is because the localized
electric field is sufficient to dominate over the aerodynamic
disturbance. In comparison, LEP shows distinct fiber
morphologies depending on the voltage application and the
solution concentration (see Figure 3a−c). We suggest this to be
attributed to the fact that the aerodynamic resistance is of
similar magnitude to the electrostatic force. To evaluate the
relative difference between a NFES and a LEP processes, Figure
3d compares the electric field focusing effect introduced at the
metallic tip with a 1 kV operation voltage (i.e., a standard NFES
process), and a 100 V operation voltage (an LEP process) at a
typical working distance of 1 mm. It is shown that the electric
field intensity decreases dramatically at the surface of the
collector. This simulation results suggest that the fiber
trajectory can be influenced by aerodynamic disturbance.
Next, we will discuss the effect of solution viscosity on fiber
morphology (see Figure 3a−c, e). With a low solution viscosity
(a low polymer concentration), continuous fibers fabricated
using a 5% PEO-water solution (2.3 Pa s) under 50 V exhibits a
beads-on-string structure, which slightly differs from the
existing work showing uniform fibers42 with similar viscosity,
probably because of the difference in the PEO molecular weight
used. Mechanisms for forming morphologically similar beaded
structures have been proposed in far field electrospinning.43 It

was postulated that fibers formed from lower polymer
concentrations were more prone to beaded structures because
of the prolonged solidification time, and thus the fiber
morphology was a combined effect of surface tension and the
viscoelastic property of the solution.44,45 In comparison, fibers
formed from solutions of high concentrations could solidify
faster, and tend to be uniform in thickness and were less
influenced by the Rayleigh instability.44,45 In our LEP case,
although the duration needed for fibers to reach a collector is
reduced because of a small working distance, the fibers could
still exist in a semiliquid state when deposited (also evidenced
from previous studies28,31). This is in contrary to the far-field
electrospinning case, where the fibers were allowed sufficient
time to solidify during traveling to the collector. Thus, we
postulate that for LEP, the formation of beads-on-string
structure can be explained with a similar mechanism proposed
for far-field electrospinning because of Rayleigh instability;43

but instead this modulation would take place on the substrate
rather than in air.44,45 Because the liquid fiber would interact
with the substrate surface, both the fiber solidification time as
well as the wetting between the substrate and the “wet” fiber
can also affect the fiber morphology. Nonetheless, when the
PEO−water solution concentration increases to 6%, the fiber
becomes smooth and uniform. Because of the weak electric
field, the fibers exhibit twists and do not firmly attach to the
substrate. As the applied voltage further increases to 90 V,
twist-free, straight, and firmly attached fibers are obtained. In
this case, it is likely that the electrostatic force is large enough
to overcome any lateral disturbance, giving a direct patterning
process. Overall, the interplay between applied voltage, solution
viscosity and aerodynamic effect governs the fiber morphology
and the degree of fiber attachment onto a substrate. This will in
turn determine the controllability of the deposited patterns.

Electrospinnability. The onset of fiber formation, though
varied between different polymer and solvent combinations,
greatly depends on the solution properties such as conductivity,
surface tension, viscosity, as well as experimental parameters
including applied voltage, tip shape, and working distance.15 In
this work, we aim to establish general protocols that can be
adapted to a wide range of polymers, using a selection of
example polymers as summarized in Table 1. Since non-
negligible droplet volume increased the electric field focusing
effect significantly as opposed to a tip-only situation (shown in
Figure 3d), we selected initiator materials based on the polymer
solution conductivity used for electrospinning. Table 1 shows
the conductivity value of PEO−water, PS−DMF, and PVP−
ethanol solutions in different concentrations and their electro-
spinning performance. The conductivity of a polymer solution
is strongly dependent on the nature of the polymer and its
solvent but weakly dependent on the polymer concentrations
within the electrospinnable regime. The conductivity of PEO−
water, PVP−ethanol, and PS−DMF solution lies in the range
between 95 and 107 μS/cm, 4.6 and 5 μS/cm, and 0.3 and 1
μS/cm, respectively. Therefore, because of the high con-
ductivity of PEO−water solution, insulating initiators (glass
slides) were used to assist jet initiation. For PS−DMF and
PVP−ethanol solutions, conducting initiators (silicon wafers)
were used because of the low solution conductivity.
The limiting polymer concentrations required for LEP were

also investigated. Figure 3e shows the shear viscosities for the
PEO (Mw = 400 kDa) in water (aqueous), PS (Mw = 280
kDa) in dimethylformamide (DMF) (a high boiling point
organic solvent) and PVP (Mw = 600 kDa) in ethanol (a low
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boiling point organic solvent) solutions. Experimentally, we
found that solutions with a low viscosity (i.e., 3−4% PEO−
water, 15−20% PS−DMF, and 15−20% PVP−ethanol)
produce nonuniform fibers under low voltage electrospinning
or conventional NFES. As the polymer solution concentration
increases, more entanglements of the polymer chains are
established, resulting in a sharp upturn of the solution viscosity.
To demonstrate this trend, we applied linear regression to the
viscosity vs concentration curves in the less-entangled and the
more-entangled regimes separately, as shown in Figure 3e. The
gradient of the 3−4% PEO−water solution is 13.0, and
increased to 132.0 for 4−6%. Increasing the concentration of
PS−DMF and PVP−ethanol solutions from 20 to 30%, the
gradient increased from 2.6 to 26.9 and 6.0 to 34.3, respectively.
The threshold of entanglement concentration for LEP
associated with each polymer solution corresponds well with
the electrospinnable polymer concentration. For example,
PEO−water solution with >5% polymer concentration (η>
2.3 Pa s), and PVP−ethanol solution with >25% (η > 2.4 Pa s),
could be electrospun into continuous fibers under the LEP with
a typical voltage of 100 V. In all, we suggest that for the
polymers tested in our work, the operation of sub-100 V
electrospinning requires the polymer solutions to reach certain
concentrations (i.e., above 5% for PEO-water, 25% for PVP-
ethanol, and 25% for PS-DMF (η> 1.4 Pa s)).
Next, we study the dependence of fiber width with respect to

the applied voltage. For established NFES processes, it was
found that the fiber width decreased as the applied voltage
decreased. Chang et al. accounted this to the suspending
droplet size which had pronounce effects on the fiber diameters
due to the small gap distance between the tip and the
collector.37 In this work, with a fixed electrospinning distance

between the tip and the collector (0.5 mm), the dependence of
the fiber width on the applied voltage is not monotonic, as
shown in Figure 4a−c. In our experiment, we find that the
radius of the fiber first decreases with the electric field, and then
increases. Our findings differ from the scaling law relationship
associated with the far-field electrospinning, which predicted
that the fiber radius h, continuously decreases with increased
electric field, E, in the form of h ∝ E−α, with a power exponent
α = 1/4 as found in previous works.46 The scaling law was
mainly due to the electric stretching force imposed on the fiber
jet. The above scaling law relationship is established based on
the assumption that the size of droplet cone leading to fiber
production, stays constant with an electric field. In reality, the
cone size is also affected by the electric field, and this factor is
pronounced for the near-field mode of electrospinning than the
far-field mode. To account for the electric field influence on the
cone size, and to explain our observation of the nonmonotonic
dependence of fiber diameter on the electric field, we perform
the following analysis. First for simplicity, we assume the shape
of the droplet as a sphere, as shown in Figure 4d. With an
increased electric field, the radius of the core will increase, due
to electrostatic-repulsion in the droplet. The total energy
change of the system for fiber formation, ΔF ≈ − πγ(h0 +
Δh(E))2 + 2πσh0, includes two terms. The first term, −πγ(h0 +
Δh(E))2 is the surface energy change of the droplet cone,
where γ is the surface tension of the droplet, h0 is the initial
fiber radius; thus π(h0 + Δh(E))2 is the reduction in area at the
cone due to the fiber formation, where Δh(E) is the radius of
the plate which is effectively approximated for the lost surface,
as a function of the electric field, E. The second term 2πσh0 is
the formation/nucleation energy of the fiber, where σ is the line
tension of the fiber. Note that Δh(E) decreases with an

Figure 4. (a−c) Average fiber diameter with standard deviation dependence on the applied voltages for PS, PVP, and PEO. Inset: Normalized
frequency of fiber diameter distribution at the specified voltage. (d) Scheme showing how the fiber diameter can be determined by the applied
electric field by taking into account the effects of droplet deformation and fiber stretching. (e) Bar chart showing the influence of syringe tip size on
the resulted fiber diameter, for a gelatin−aqueous solution.
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increased electric field. By minimizing the total energy change
of the system, ΔF, with respect to the initial radius of the fiber,

h0, i.e., =∂Δ
∂ 0F

h0
, one can obtain, ∝ − Δσ

γ
h h E( )0 , showing

that the initial fiber radius h0 increases with the applied voltage
due to the − Δh(E) term. Meanwhile, we can also assume that
the “poststretched” fiber radius follows the relationship of

∝ ∝ − Δα σ
γ

α− −⎡⎣ ⎤⎦h h E h E E( )0 . Therefore, the dependence of

fiber diameter on electric field depends on two competing
factors E−α versus − Δσ

γ
h E( ). From our experimental results,

it is shown that when the electric field is small, E−α dominates
how h changes, actually decreases with the electric field; when

the electric field is large, − Δσ
γ

⎡⎣ ⎤⎦h E( ) dominates, and the fiber

diameter h increases with the electric field. Despite the voltage
dependence, the histograms in Figure 4a−c show that under a
fixed operating condition, the fiber dimensions are relatively
well controlled, i.e. for PS at 200−300 V, PVP at 120 V and
PEO at 90 V. It seems that the decrease of electrospinning
voltage is at the cost of the enlarged variation of fiber width,
thus further improvements are needed in order to enhance the
uniformity of fiber dimensions in the low voltage electro-
writing process. Using a gelatin solution, Figure 4e demon-
strates that under the same voltage application, the average fiber
diameter decreases when a smaller syringe tip is used. In order
to give a comprehensive comparison, a brief summary on the
experimental parameters and the as-spun fiber characteristics of
selected current techniques for micronano scaled printing are
shown Table S1.

Figure 5. (a) Scheme showing the process of bacteria patterning using LEP. (b, c) Confocal images of E. coli arrays post deposition onto a glass
coverslip. (d) Growth curves of the deposited bacteria and (e) line-width dependence on flow rate. Inset: histogram of the line width distribution at a
flow rate of 300 μL/h. (f) Bacteria orientation released from 1 μm thick PEO fibers; straight line, at t = 0 h; dashed line, after 2 h’ culture. (g)
Bacteria released from 3 μm thick PEO fibers. Particularly, the bacteria released from the 3 μm fiber showed no peak in the angle distribution after 2
h of incubation, indicating the orientation is random.

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.6b07797
ACS Appl. Mater. Interfaces 2016, 8, 32120−32131

32126

http://pubs.acs.org/doi/suppl/10.1021/acsami.6b07797/suppl_file/am6b07797_si_001.pdf
http://dx.doi.org/10.1021/acsami.6b07797


Electrospinning Bacteria. The low-voltage (low electric
field) operation provides a potential mild processing route for
biological elements, e.g., living cells and proteins. One
application is to directly pattern bacteria to study the influence
of geometries on pathogenicity. Using far-field electrospinning,
several groups have demonstrated the encapsulation of bacteria
into nano- and microfibers; however, there are mixed reports
on the bacteria cell viability.47−50 A further benefit of a lowered
voltage operation is to widen the substrate choice for direct
deposition (e.g., directly patterning on hydrogels or micro-
fluidic devices). Thus, by providing a lower electric field
intensity, the LEP technique brings unique advantages to meet
the above two requirements. To demonstrate the feasibility for
bacterial cell patterning, we encapsulated Escherichia coli (E.
coli) into a carrier polymer which was deposited onto a glass
substrate. Figure 5a shows the schematics of such a process.
The E. coli suspension was first mixed with a carrier polymer
(PEO−water, 10% in a culture media) to obtain adequate
viscosity and conductivity for LEP. E. coli embedded PEO fibers
with prescribed diameters were directly printed onto a glass
coverslip. The sample was then covered with an agarose gel.
After the carrier polymer was dissolved in the gel immediately,
lines of E. coli arrays were remained for further cell culture.

Confocal images (Figure 5b, c) demonstrate the E. coli arrays
patterned with the LEP technique. It was found that the
number of E. coli multiplied significantly after 2 h incubation.
One also observes that the bacteria were successfully configured
into oriented arrays. Figure 5d shows the growth curve of the
deposited bacteria against a reference group where the bacteria
were cultured in comparative conditions with the absence of an
applied voltage, and a group of bacteria subjected to
conventional high-voltage NFES processing. Each growth
curve was fitted with a growth equation of y = a/(1 +
e−k(x−xc)), where xc indicates the time duration of the lag phase,
and k is the growth rate associated with the growth phase.
These growth curves were employed to evaluate the effect of
the LEP voltage application on the bacterial viability. The fitted
parameters indicate that under the same experimental
conditions, the onset of the lag-phase was delayed with
increased voltage application, although the growth recovered
after these initial periods. These experiments show that the use
of low voltages may be important for certain applications to
minimize the effects of voltages on the resulting bacteria
behavior.
With a fixed applied voltage of 100 V, tunable width of PEO

fibers encapsulated with E. coli cells can be achieved by

Figure 6. (a) Scheme of tuning fiber placement by adjusting the voltage application over a channel. (b) Optical images showing fibrils bridging
experiments over a channel of 2 mm deep with a separation distance between 2.4 and 3.2 mm. Fibers were fabricated using voltages of 0.25, 0.3, and
0.4 kV, respectively. As the voltage was increased, fibers were deposited onto the substrate underneath rather than being held in suspension. A
transient region was also observed at a voltage of around 0.3 kV; on the right, SEM images show the PVP fibers were in suspension when fabricated
using 0.1 kV, whereas laying on to the collector firmly when fabricated using 1 kV. (c, d) 3D reconstructed confocal images showing a layer of fibrous
membrane network created using the LEP process at 100 V. (e, f) 3D reconstructed confocal images showing a layer of fibrous membrane network
created at 230 V, with the membrane network more compact than the 100 V case. (g) Side view of the reconstructed confocal image of the cell-
cultured membrane within a microfluidic device. EA.hy926 cells were stained for cytoskeletons (F-actin, green) and nucleus (orange). (h) Top-view
of the cell layer cultured on top of the suspending fibrous membrane over the microfluidic channel, showing that cellular morphology is modulated
by the membrane fibril density.
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adjusting the solution flow rate during the LEP process (Figure
5e). For example, PEO fibers with ∼0.5 μm width can be
obtained by using a 100 μL/h flow rate; while a flow rate of 500
μL/h can produce a fiber line width of ∼3.5 μm. It is found that
the as-deposited fiber line width controls the subsequent
bacterial orientation (described by the absolute value of the
angle between the long axis of the E. coli cell and the printed
line direction). With a 1 μm thick PEO fiber, a narrow peak in
the distribution shows that most of the orientation angle
appears at ∼10°, which indicates that the bacteria embedded in
the fibers were highly aligned (Figure 5f). This may be due to
the narrow as-deposited fibers, which confined the bacterial
cells (with a short body-axis of ∼0.5 μm) to their long body-
axis. In contrast, when the fiber width increases to ∼3 μm, the
bacterial orientation becomes more random (Figure 5g).
Additionally, this thicker line provides more space to allow
bacteria to stay close (e.g., two bacteria could be observed
situated within a distance of 2 μm from each other). It is to
note that the orientation of E. coli cells also evolves with time.
For example, for the sample of 1 μm thick PEO fibers, at the
moment the bacteria was printed, the orientation was mainly
distributed between 0 and 20°. The peak of the distribution
decreased and became more widespread after 2 h of incubation.
For the sample of 3 μm thick lines, the absence of the peak in
the orientation distribution after 2 h of incubation indicates that
the bacterial cells become randomly distributed.
Tuning Fiber Suspension, And Free-Standing Mem-

branes. LEP also extends the application to construction of
submicro- and microscale fibrous membrane architectures. In
particular, this has applications for printing synthetic and
biologically derived polymer scaffolds mimicking extracellular
matrices (ECMs). Various 3D hybrid electrospun scaffold and
direct-drawn free-standing fibrous net have been demonstra-
ted.39,40,51−54 In this study, we show that by varying the
subjected voltage magnitude, template-free and tunable
suspension of individual fibers and membrane-net can be
achieved using an aqueous polymer solution. First, we
investigated the effect of voltage application on manipulating
the suspending fibril structures. By electrospinning a 19 wt %
gelatin solution over PLA grids, Figure 6a, b shows that when
the applied voltage was tuned, one can adjust the electrospun
fibers placement between in suspension and deposited at the
base of the channel. A transient region is shown at around 300
V for a channel width of 3 mm, at which fibers are partially
suspended. SEM images illustrate that when electro-patterning
was performed at a higher voltage (e.g., 1 kV), a fiber would
firmly attach to the grounded substrate. When a lower voltage
(100 V) was applied, the fibers can be “suspended” across over
the gap as strands. We further explored the flexibility in
controlling the fiber-substrate attachment by patterning fibril
structures over PDMS (polydimethylsiloxane) with precasted
channels. Figure 6c−f shows reconstructed confocal images of
fiber membranes fabricated with fluorescently labeled gelatin
fibers. At 100 V, a free-standing single membrane layer was
formed, although the low voltage resulted in less attachment
between membrane edges and the PDMS channel supporting
sides. At 230 V, thin and straight fibers were obtained. The
voltage was sufficient for the membrane edges to attach firmly
to the PDMS sides. We also observe a more compact
membrane structure resulted from the 230 V fabrication
compared to the 100 V case. Notably when a voltage is further
increased to, for example, 500 V or greater, the fiber diameter
was irregular with thick fibers forming over the PDMS channel.

The lack of controllability over fiber size makes it difficult to
fabricate consistent samples.

Cell Morphology Study. Here, we use LEP to study the
interaction between cells and fibrous structure mimicking an
ECM network. Since LEP allows direct polymer-deposition on
complex structure, we fabricated membrane-like fibrous net-
works on microfluidics made of PDMS, as shown in Figure 6g,
h. The PDMS microfluidic device was casted with channels that
was 120 μm in width and 70 μm in depth. To provide sufficient
cell adhesion, the patterned PEO fibers were coated with
collagen IV that is a native protein mostly found in the
basement membrane. Human endothelial cell line EAhy926 was
cultured on the fibrous membrane. By tuning the fiber density
of the suspending network, one observes a gradual change in
the cell morphology, as shown in Figure 6h. At low fiber
density, where the pore-size of the fibrous network is larger
than the size of a cell, cells are constrained, having their cellular
processes elongating along the suspending fibers. There is little
direct contact between cells. As the fiber density increases and
the pore size is comparable to the cell size, cells can adhere to
the rim of a “pore” in the fibrous network and fill the pores. In
this case, there is increasing cell−cell contact through the fibers
and cells spreading out more. As the fiber density further
increases until the pore-size of fibrous network is about half the
size of a cell, direct contact between cells increases significantly
and there is an increased tendency in forming a confluent layer.
It is important to note that, because the fibrous networks are
freestanding instead of attaching to a substrate, the scaffold
offers the freedom for potential cellular remodelling. It is
known that cells can trans-migrate with pore sizes smaller than
their nucleus (e.g., 7 μm2, or ∼3 μm diameter pore for cancer
cells),55 thus we found cells were able to penetrate through the
membrane pores in our systems and proliferated in the base of
the channel. Overall, our experiment showed that LEP can be
used as a one-step deposition procedure to fabricate micromter
thick, suspending membrane decorating microfluidic devices.
To this end, the LEP gives a potential route to the deposition of
fibrous structures of a variety of materials for future organ-on-
chip applications.

■ CONCLUSION

In summary, we demonstrated a direct patterning method, LEP
with a new, simple configuration that facilitates nano- and
microscale fiber patterning with low voltages. It offers
advantages over traditional electrospinning protocols in the
range of usable materials and substrates, providing continuous
deposition mitigating electric sparks. In order to guide the
onset of fiber formation at voltages at around 100 V, different
types of initiators should be used depending on the polymer
conductivity; to this end, the electrospinnable range of the
polymeric solution concentrations is also widened. In the
current work, we demonstrated fibril patterns of various
polymers, directly deposited onto substrates such as hydrated
agarose gel and PDMS with millimeter thicknesses. The wide
range of voltage tuneability helps to build various suspending
fibril structures. It also provides a platform to systematically
study cellular behaviors under tailored physical environments.
LEP shows potential in the field of fibril and membrane
constructions, providing a flexible, adaptable route to printing
living and viable bioelements, and electrically sensitive
structures.
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■ EXPERIMENTAL METHODS
Setup. Our electrospinning setup consisted of an X-Y translational

stage (PI micos, LMS- 60) to implement the patterning route and with
a Z stage (Thorlabs, L490MZ/M) to tune the working distance
accurately, a voltage source (built in house by Cambridge Electronic
Department), a blunt metallic tip (BD Microlance) and a pump
(World Precision Instruments, AL- 1000). The “initiators” could be
silicon wafers (University Wafer) or glass slides with up to several
millimeters thick.
Computation. The simulation of the electric field distribution

when electrospin PEO solution was performed by a commercial finite
element software package COMSOL. To simplify, it is assumed no
charge dissipation for approximation. The relative permittivity of the
PEO-water solution was assumed as 90 and the solution conductivity
was set as 0.096 mS/cm. The distance of the collector to the tip apex
was fixed at 1 mm for the simulation, where the collector was chosen
as 0.5 mm in thickness.
Sub-100 V Electrospinning. To demonstrate the generality of

this technique, the solutions for electrospinning were prepared using
various polymers and concentrations (in weight ratio). In detail, PEO
(Mw = 400 kDa, Sigma-Aldrich) was prepared as 3, 4, 5, 6, 7, 8, 9, and
10% in water; PVP (Mw = 600 kDa, Sigma-Aldrich) was dissolved into
ethanol to form 15, 20, 25, and 30% solutions; PS (Mw = 280 kDa,
Sigma-Aldrich) was prepared as 20, 25, and 30% in DMF and gelatin
(porcine skin Sigma-Aldrich) with 19 wt % in an acetic acid and ethyl
acetate combination were used as solutions for electrospinning.31 First,
polymer solution was placed into a 1 mL plastic syringe (BD
Plastipak) and a metallic tip (inner diameter between 0.2 to 0.4 mm)
was used to connect the voltage source. The substrate (either
conducting or insolating materials) was placed under the tip location
and two initiators were fixed on the substrate. During electrospinning,
a flow rate of 200 μL was fixed for all solutions to match a collector
speed of 100 mm/s. Applied voltage ranged from 50 to 150 V for
PEO-water solution, 50 to 200 V for PVP solution and 50 to 700 V for
PS-DMF solution, and 100−150 V for gelatin solution. The working
distance was set as 1 mm, with an initiator height of 0.5 mm above the
ground, for fabricating the fibers of which results are shown in Figure
4a−c, e. All the electrospinning experiments were conducted in room
temperature and humidity conditions. The fabricated patterns were
controlled by a LabVIEW program (National Instrument, USA)
written in house.
Solution and Fiber Properties Measurement. All measure-

ments were carried out at room temperature. Specifically, all the fiber
diameters presented in this article were measured using both
microscope and SEM, with a sample size more than 5 different points
of single fiber, and 15 different fibers from the same experimental
condition. Solution conductivity of the polymer solutions with
different concentrations were measured using a conductivity tip
(InLab 731 ISM, Mettler Toledo) and a rheometer (Physica MCR
501, Anton Paar) was used for viscosity measurement. The viscosity is
calculated by extrapolating the viscosity curve to an angular frequency
of 0. Fiber diameter was measured from images taken by an optical
microscope (ZEISS Axioplan) and a scanning electron microscopy
(SEM, XL 30 sFEG, Philips and Zeiss EVO LS15); and analyzed by
ImageJ.
Preparation of Bacterial Suspension. A loop of E. coli MRR

stock was streaked onto a Luria broth (LB) agar plate and incubated at
37 °C overnight. A single colony was then inoculated with LB culture
media and grown overnight at 37 °C, with shaking at 200 rpm. This
culture was transferred into fresh LB media (1:50) and incubated with
shaking until stationary phase was reached (12−14 h) to obtain the
microbial suspension, which contained ∼1 × 109 colony forming units
per mL (CFU/mL). The stationary phase culture was used to harvest
bacteria by centrifugation at 1200 g for 5 min, and then the bacterial
pellet was resuspended in fresh 2 × LB media. Ampicillin was added
into the LB agar plate and fresh liquid medium at 50 μg/mL.
Suspending Fiber and Membrane Construction. The voltage

applied ranges from 100 to 500 V to control the spatial position of the
fibers. To fabricate suspending fiber configurations, we set the distance

between the tip and collector at 3 mm and the thickness of initiator
was 2.5 mm. We note the effects of applied voltage on the fiber
placements as shown in Figure 6b. Confocal (Leica) and SEM were
used for characterizing the fiber and membrane morphologies. PVP
(25% in ethanol), or gelatin (19 wt % in an acetic acid and ethyl
acetate combination) solutions were used to demonstrate the fibril
patterning. It is noted that for suspending fibers and 3D construction,
the fibers should be solidified rapidly to form solid struts. The free-
standing strand was electrospun using various voltages shown in
Figure 6. Microfluidics made from PDMS were used as the template
for the fabrication of the membranes on the top of the channels.

EAhy926 Cell Culture. Human umbilical vein cell line (EAhy926)
was cultured in Dulbecco’s Modified Eagle Medium (DMEM) under
5% CO2 at 37 °C. The cell medium DMEM was supplemented with
1% L-glutamine (Invitrogen), 10% Fetal Bovine Serum (FBS, Sigma)
and 1% Penicillin Streptomycin (Sigma). To achieve collagen IV
coating, the microfluidic device was subjected to plasma treatment and
collagen IV solution was added on the sample immediately afterward.
The coated sample was incubated at 37 °C for 1 h followed by a
thorough wash using DMEM to remove excess coating. The sample
was immersed in DMEM overnight before cell seeding.

Cell Staining. EAhy926 cells were fixed using 4% formaldehyde at
37 °C and the staining was performed under room temperature. The
cells were permeabilized in 0.2% Triton X in PBS before being
incubated with 4% bovine serum albumin (BSA) for 1 h. Hoechst
33258 (Sigma) and Phalloidin 488 (Invitrogen) were used to stain the
cell nuclei and cytoskeleton, respectively.
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