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Abstract. Gap junctions are intercellular channels made of 
connexin proteins, mediating both electrical and biochemical 
signals between cells. The ability of gap junction proteins to 
regulate immune responses, cell proliferation, migration, apop‑
tosis and carcinogenesis makes them attractive therapeutic 
targets for treating inflammatory and neoplastic disorders in 
different organ systems. Alterations in gap junction profile and 
expression levels are observed in hyperproliferative skin disor‑
ders, lymphatic vessel diseases, inflammatory lung diseases, 
liver injury and neoplastic disorders. It is now recognized that 
the therapeutic effects mediated by traditional pharmacolog‑
ical agents are dependent upon gap junction communication 
and may even act by influencing gap junction expression or 
function. Novel strategies for modulating the function or 
expression of connexins, such as the use of synthetic mimetic 
peptides and siRNA technology are considered.
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1. Introduction

Gap junctions are intercellular channels that mediate both 
electrical and biochemical coupling through the exchange 
of ions, second messengers and small metabolites (1,2). Gap 
junction intercellular communication (GJIC) is essential for 
regulating cellular differentiation and apoptosis, movement of 
cells within tissues, and intracellular signalling (3). In excit‑
able tissues, GJIC also governs conduction of electrical signals 
between successive cells (4‑8). Each gap junction is formed 
by two connexons (hexamers of connexins, Cx) that align 
in the extracellular space (9). Currently 21 members of the 
human connexin gene family have been identified (10). Some 
connexin isoforms are cell‑type specific, and their expression 
varies during different metabolic states, such as pluripotent 
stem cell induction (11), epidermal wound healing (12), epithe‑
lial‑to‑mesenchymal transition (EMT) (3) and pathological 
states such as hepatitis (13).

Connexin can be found in both excitable and non‑excitable 
tissues. An example of excitable tissue, the cardiac myocar‑
dium, has abundant expression of the isoforms Cx30.2, Cx40, 
Cx43 and Cx45 (14). Their expression levels vary with the 
region concerned. Thus, Cx40 is only expressed in the atria, 
whereas the ventricles show extensive expression of Cx43 
and Cx45 but not Cx40. Other connexin isoforms have been 
detected in many non‑excitable tissues (15). Cx43 can be found 
in breasts, kidneys, skin and lungs. Cx26 is expressed in liver, 
kidneys and oesophageal epithelium, and Cx32 is found in 
liver and kidneys (16).

Gap junctions function through two distinct gating 
mechanisms: membrane voltage‑dependent and transjunc‑
tional voltage‑dependent gating (also known as fast and slow 
gating) (17). Besides voltage sensitivity, both mechanosensi‑
tivity and chemosensitivity have been reported (17,18). For 
example, connexin activity is influenced by intracellular Ca2+, 
pH, chemical uncouplers (19), phosphorylation events (20,21), 
and lipid availability in the immediate environment, including 
LDL, apo‑B (22) and cholesterol (23).

In recent years, there has been a growing interest in the 
role of connexins in different physiological and pathological 

The role of gap junctions in inflammatory 
and neoplastic disorders (Review)

PUI WONG1,  VICTORIA LAXTON2,  SAURABH SRIVASTAVA3,   
YIN WAH FIONA CHAN4  and  GARY TSE5,6

1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China; 
2Intensive Care Department, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP; 3Faculty of Medicine, 
Imperial College London, London SW7 2AZ; 4School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK;   

5Department of Medicine and Therapeutics and 6Li Ka Shing Institute of Health Sciences, 
Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China

Received September 9, 2016;  Accepted December 23, 2016

DOI: 10.3892/ijmm.2017.2859

Correspondence to: Dr Gary Tse, Department of Medicine and 
Therapeutics, Faculty of Medicine, Chinese University of Hong 
Kong, 30‑32 Ngan Shing Street, Hong Kong, SAR, P.R. China
E‑mail: tseg@cuhk.edu.hk

Key words: cancer, gap junctions, connexins, mimetic peptides, 
inflammation 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77415972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


WONG et al:  THE ROLE OF GAP JUNCTIONS IN INFLAMMATORY AND NEOPLASTIC DISORDERS2

states, and the use of gap junction modulators in different 
clinical conditions (24). Apart from modifying gap junction 
function, interventions can be applied through modulating 
synthesis, transport, assembly, phosphorylation, and degra‑
dation of gap junction proteins (25). It has been shown that 
gene therapy restores or increases GJIC in transfected cells or 
‘knock‑in’ animals (25,26). This review focuses on reviewing 
the therapeutic applications of gap junction modulators in 
inflammatory and neoplastic disorders. Potential directions 
for further investigation and treatment development are also 
discussed.

2. Hyperproliferative skin disorders

Several autosomal dominant hereditary epidermal diseases 
are attributed to mutations in genes encoding for connexins. 
These diseases include Vohwinkel syndrome, Bart‑Pumphrey 
syndrome, hystrix‑like ichthyosis with deafness syndrome, 
keratitis‑ichthyosis‑deafness (KID) syndrome, erythro‑
keratoderma variabilis, hidrotic ectodermal dysplasia and 
oculodentodigital dysplasia (27,28).

Cx26 is known to be a significantly upregulated gene in 
psoriatic patients. In contrast to normal skin, it is detected 
intensely in keratinocytes in psoriatic plaques (29,30). It has 
been proposed that Cx26 regulates epidermal differentiation, 
more specifically epidermal barrier acquisition. There is 
therapeutic potential in the reestablishment of skin barrier and 
inflammatory response regulation, particularly in hyperprolif‑
erative skin conditions (31).

Currently, 10 missense substitution mutations in the Cx26 
gene are known to cause KID syndrome  (32). It has been 
hypothesized that the abnormally high activity of defective 
Cx26 hemi‑channels allows leakage of cytoplasmic contents, 
and is therefore detrimental to cell survival and tissue integ‑
rity (33). Due to repeated skin fissuring and micro‑wounding, 
bacterial and fungal infections are common, thus requiring 
a combination of drugs such as emollients, barrier creams, 
topical keratolytics and anti‑microbial agents (33). Retinoic 
acid is a prospect for novel treatment in hyperkeratotic skin. It 
unexpectedly causes: i) significant Cx26 upregulation; ii) Cx43 
upregulation; and iii) increased epidermal thickness (34). Yet, 
the mechanisms by which elevated Cx26 expression results 
in beneficial therapeutic effects in KID syndrome without 
exacerbating this condition remain unknown. The precise 
underlying mechanism of action will need to be understood 
before further testing.

3. Lymphatic vessel diseases

Lymphatic vessels collect lymph from excess tissue fluid, 
return it to the blood circulation and mediate the uptake of 
lipids, including lipid‑soluble vitamins. Previous studies have 
demonstrated the variable expression of Cx37, Cx43 and Cx47 
during development of the lymphatic system, with the first two 
segregated at the downstream and upstream sides of valves 
respectively, while Cx47 was found in a subset of endothelial 
cells on the upstream of adult valves (35). It is known that 
differential expression is involved in initiating the formation 
and determining the cell polarity of the valve (36); whereas 
Cx37 and Cx43-knockout mouse models developed defective 

valves and abnormal thoracic duct formation (35). Several 
connexin gene mutations have been identified to cause both 
primary (37) and secondary lymphedema (38,39). Underlying 
mechanisms and the importance in physiological functioning 
of the lymphatic system remain unclear; however, future 
studies may provide answers to developing potential regimens 
for lymphatic diseases.

4. Inflammatory lung diseases

In the respiratory tract, connexins are found in the epithelium, 
from the airways to alveoli, with regional specific expression 
patterns (40). At the upper respiratory tract Cx26, Cx30, Cx31, 
Cx32, Cx37, Cx43 and Cx46 are found, and Cx26, Cx32, 
Cx37, Cx40, Cx43 and Cx46 are present at lower levels (41). 
Cx43 is also found extensively throughout the rest of the lung 
tissue, including smooth muscles, both alveolar epithelial cell 
types and even alveolar macrophages (41). Cx32 and Cx43 are 
both found in cultured human pulmonary artery endothelial 
cells  (42). Gap junctions contribute to mucociliary clear‑
ance, surfactant secretion and synchronization of pulmonary 
vascular smooth muscle contraction (41).

Carbenoxolone, a gap junction uncoupler, was tested in a 
mouse model of asthma, where it was found to reduce infiltra‑
tion of inflammatory cells and interleukin production, thereby 
decreasing lung inflammation (43). It acted by preventing the 
increase in interleukins 4 and 5 and eosinophils (43,44). These 
findings suggest that use of gap junction uncouplers can be 
used in nebulized form for the treatment of asthma.

In a mouse model of allergen‑induced airway inflam‑
mation, Cx37 expression levels were found to be negatively 
correlated with airway inflammation, airway responsiveness, 
and levels of Th2 cytokines (45). Cx37, Cx40 and Cx43 are 
thought to play a role in regulating vascular resistance and 
right ventricular function (46). Decreased expression of these 
connexins are implicated in the pathogenesis of pulmonary 
arterial hypertension (PAH) by increasing airway inflamma‑
tion and sensitivity (41,47).

The role of Cx40 in pulmonary vascular function was 
explored in an animal model of acute lung injury (48). During 
the course of lung injury, Cx40 expression was decreased in a 
time‑dependent manner with increased vascular permeability. 
The latter was aggravated by the gap junction uncoupler 
heptanol, which produced abnormal Ca2+ handling in smooth 
muscle cells. In Cx40-knockout mice, increased inflammation 
with induced leukocyte infiltration was observed (49). Cx40 
was found to mediate anti‑inflammatory effects by activating 
CD73, which reduced adhesion by adenosine production. 
Another study tested the hypothesis that a reduction in Cx40 
expression may limit acute lung inflammation (50). However, 
these authors found that the development of acute lung inflam‑
mation did not differ between wild‑type and Cx40-knockout 
mice.

Cx43 expression is upregulated in lung epithelium and 
vascular endothelium (51), and was found to be positively 
correlated with increased pulmonary vascular permeability in 
many disease states (41), such as acute inflammation induced 
by radiation  (52) and bacterial sepsis  (53,54). In contrast, 
decreased Cx43 expression in chronic pulmonary diseases 
such as cystic fibrosis and idiopathic pulmonary fibrosis, 
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was attributed to aberrant Cx43 transport and reduced Cx43 
mRNA levels, respectively (55,56).

Various pharmacologically active substances have been 
reported to enhance connexin expression in the lungs. 
Sildenafil, a phosphodiesterase 5  inhibitor, is a common 
agent used to treat PAH owing to its ability to vasodilate and 
suppress adverse vessel remodeling (57). Experiments in a 
mouse model of PAH suggest that it also acts to restore Cx43 
to normal levels (Fig. 1) (58). Rotigaptide, a synthetic peptide 
which acts to enhance gap junction function, is currently 
under clinical trial for preventing cardiac arrhythmias. It is 
also being investigated for its potential protective effects in 
pulmonary inflammatory diseases (41). Expression of various 
connexins in pulmonary endothelial and smooth muscle cells 
can be interfered with by using siRNA (54,59), which can 
potentially be exploited to treat pulmonary inflammatory 
diseases (41).

5. Liver injury

Hepatic gap junctions are known to play a crucial role in inter‑
cellular communication (60) and local propagation of antiviral 
immune response signaling  (61). In chronic liver disease, 
Cx32 is lost from the hepatocyte membrane by apoptosis as 
the condition progresses (62). Cx32-knockout mice exhibited 
resistance to liver cell death induced by D‑galactosamine and 
carbon tetrachloride (63), but increased predisposition to liver 
cancer (64). In contrast, Cx43 was induced in the cytoplasm 
of damaged liver cells, and a Cx43 inhibitor downregulated 
the activity of caspase‑3, a major contributor in the apop‑
totic cascade (62). The underlying mechanism is therefore 
suggested to be Cx43‑induced hepatocyte apoptosis regulated 
by GJIC. Upon Cx32 removal, injured hepatocytes may escape 
apoptosis and their persistence may pose as a risk factor in 
carcinogenesis (62). The exact mechanism remains to be eluci‑

dated; however, there is counter evidence against the notion 
that Cx43 directly induces apoptosis (65,66). In addition to 
acute liver injury, altered levels and localisation of certain 
connexins such as Cx26, Cx32, and Cx43 are associated with 
cholestasis and liver fibrosis (13).

The liver is responsible for the metabolism of drugs, which 
can often induce liver injury in a dose‑dependent manner and 
produce fulminant hepatic failure (67). Cx32 and Cx40 have 
been implicated in paracetamol‑induced liver injury (65,68,69). 
Gap junction inhibition was shown to protect against this 
injury by inhibiting cytochrome P450 enzymes and c‑jun 
N‑terminal kinase activation (70) as well as apoptotic signal‑
ling (62), thereby preventing fulminant liver failure (71).

6. Neoplastic disorders

Hepatocellular carcinoma (HCC) is associated with the pres‑
ence of Cx43 expression, while reduced Cx43 levels have been 
associated with reduced invasion, migration and metastasis 
(Fig.  2)  (72). However, several studies have demonstrated 
differing results. In one study Cx43 overexpression was noted 
in HCC and in especially rapidly growing cells with limited 
differentiation (73). In another, induced Cx43 expression in rat 
HCC cells reduced the growth rate and even led to cytoskeletal 
reorganization similar to the effects noted following treatment 
with all‑trans retinoic acid, which induces differentiation (74). 
It is unclear whether Cx43 serves as a definitive oncogene or 
tumour-suppressor gene, or that its activity depends on its 
expression level. Cx32 displays characteristics of a tumour-
suppressor gene, as its removal in rodents led to a significant 
increase in hepatocarcinogenesis (75).

Lindane (hexachlorocyclohexane) is an insecticide that is 
also used to induce carcinogenesis in pre‑clinical research. It 
induces Cx43 endocytosis through activation of extracellular 
signal‑regulated kinases and Ser368 phosphorylation, leading 

Figure 1. The mechanisms of action of sildenafil in the treatment of pulmonary inflammatory diseases.
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to GJIC uncoupling in liver and myometrial cells  (76,77). 
Oxidation of glutathione was also observed (78). This is thought 
to contribute to the promotion of neoplastic growth (77,78). 
Lindane was also found to inhibit GJIC and induce changes 
in Cx43 and ZO‑1 localisation from the membrane to the 
cytoplasmic perinuclear region  (79). Lindane can be used 
in further investigations to investigate the mechanisms of 
carcinogenesis and the involvement of connexins to identify 
therapeutic targets.

Metastatic breast cancer can be aggressive, metastasizing 
to distant organs such as the lungs, liver, bones or brain (80). 
Cx43-mutant mice have reduced Cx43 levels, extensive 
mammary gland hyperplasia but delayed onset of palpable 
tumours (81). Increased metastasis to the lungs was observed 
when compared to control mice with normal Cx43 levels. 
Cx43 therefore appears to exert protective effects. Regarding 
colon cancer, Cx43 downregulation was found in colon cancer 
cell lines and in colorectal carcinomas, and was found to be 
associated with shorter relapse‑free and overall survival (82). 
Normally, Cx43 co‑localizes with β‑catenin and negatively 
regulates the Wnt pathway, mediating apoptosis. When Cx43 
levels are reduced, apoptosis of cancer cells is lost.

Several chemotherapeutic agents have been studied for 
their anti‑neoplastic effects, in which connexin proteins 
have been implicated  (83‑85). Fucoxanthin, a carotenoid, 
was found to inhibit tumorigenesis in human cancer cells 
from colon, prostate, leukemia and cervical epithelium (86). 
At high doses it inhibits the tumour suppressor p53, thereby 
promoting apoptosis (87) and inducing cell cycle arrest (88). 
In hepatic cancer SK‑Hep‑1 cells, fucoxanthin increased Cx32 
and Cx43 expression and enhanced GJIC (84). Kaempferol, an 
antiflavonoid anticancer agent, promoted the differentiation 
of partially differentiated colon cancer cells with low Cx43 

expression. This was associated with higher levels of Cx43 and 
phosphorylation status (89).

Quinoline, a gap junction enhancer (90), inhibits protein 
kinase C (PKC). PKC normally phosphorylates Cx43, and 
interferes with the interaction between Cx43 and Nedd4, an 
E3 ubiquitin ligase. Therefore quinolone application maintains 
GJIC, thereby suppressing breast cancer cell proliferation 
and survival (91). Studies found that tumours may develop 
cisplatin‑resistance through loss of GJIC, preventing the 
drug from spreading among cancer cells (92,93). The first-
generation quinolone, PQ1, was tested in combination with 
cisplatin, and was shown to potentiate cisplatin cytotoxicity 
by a GJIC‑dependent mechanism (90). Co‑treatment with 
gap junction-enhancing agents therefore represents a possible 
approach to target drug‑resistant tumours.

12‑O‑tetradecanoylphorbol‑13‑acetate (TPA), a known 
tumour promoter, was found to activate the PKC pathway 
through mimicking diacylglycerol (94), thereby stimulating 
cell proliferation (95). It opposed the anti‑proliferative action 
of the third-generation substituted quinolone PQ15 in T47D 
breast cancer cells  (83). TPA also displayed similar coun‑
teracting effects against PQ1 in SW480 colorectal cancer 
cells (96). It was also found to induce Cx43 ubiquitination in 
IAR20 rat liver epithelial cells (97). These findings suggest 
that PQ15 acts by inhibiting TPA‑mediated phosphorylation 
of Cx43  (83), and quinolones can be versatile anticancer 
drugs (98).

All‑trans retinoic acid is a natural vitamin A derivative 
that has been widely used in the chemoprevention and chemo‑
therapy of head and neck cancers (99). In addition to its known 
mechanisms of action such as the regulation of differentiation 
and proliferation and induction of apoptosis, previous studies 
have demonstrated that it upregulated Cx43 phosphorylation 

Figure 2. Anticancer drugs and their modulation of the function of gap junctions. TPA, 12‑O‑tetradecanoylphorbol‑13‑acetate; GJIC, gap junction intercellular 
communication.
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and restored GJIC in hepatoma HepG2 (100) and oral squa‑
mous cell carcinoma cells (101). A new antitumour mechanism 
was proposed in light of the fact that ATRA restored expres‑
sion of gap junction proteins Cx32 and Cx43 and GJIC in oral 
cancer cells (101). Contradictory results have been observed in 
other cell types such as p19 embryonic carcinoma cells, human 
pluripotent teratocarcinoma cells and cutaneous squamous 
cell carcinoma SCC‑13 cells (102‑104). This was hypothesized 
to be due to variation in tissue‑specific transcriptional regula‑
tors and connexin expression distribution, leading to opposing 
cellular mechanics and outcomes (101). The exact underlying 
mechanism remains unknown and will require further studies 
before the development of novel treatment options.

Docetaxel is the first cytotoxic drug reported to demon‑
strate benefits in the treatment for advanced hormone 
refractory prostate cancer (105). However, resistance against 
docetaxel has always been a challenge, and is found in 
more than 50% of patients receiving this drug as first‑line 
therapy (106). Extensive efforts have focused on improving 
the responsiveness and overcoming resistance in metastatic 
prostate cancer (107). Cx43 expression has shown promising 
potential in its application as an adjunct agent to docetaxel. In 
PC‑3 cells, Cx43 expression downregulated Bcl‑2 expression, 
and apoptosis is associated with significantly increased sensi‑
tivity to docetaxel both in vitro and in vivo, and addition of 
non‑viral Cx43 gene therapy to conventional docetaxel treat‑
ment caused a significant increment in the tumour xenograft 
suppression effect (108). Taxels have differential cytotoxicities 
that are dependent upon the presence of functional gap junc‑
tions (109). The distribution and combination of gap junctions 
may therefore need to be taken into consideration when using 
taxols in different types of cancers. In another study, forced 
Cx43 expression enhanced prostate cancer cell sensitivity 
to TNFα (110). The presence of Cx26, another commonly 
investigated connexin, has been associated with tumour prog‑
nosis, oncogene expression, recurrence and higher tumour 
grade (111,112). Cx26 may therefore be a good candidate for 
prediction of prognosis and recurrence (111). Cx26 may also 
be involved in tumour suppression. It was demonstrated that 
Cx26 expression suppressed the growth of HeLa cells in vivo 
and in vitro, with insignificant changes in GJIC (113). Organic 
selenium compounds are Cx26 transcriptional upregulators, 
and have been evaluated in clinical trials for adenomatous 
polyp recurrence (114).

Suicide gene therapy has become an area of intense investi‑
gation in the treatment of different cancers (115). Suicide genes 
are defined as those with protein products, when expressed, 
are non‑toxic to cells, but are converted into toxic metabolites 
upon exposure to a pro‑drug. However, various suicide gene 
products may induce a bystander effect (Fig. 3). This describes 
a situation where a toxic effect, such as cell death, propagates 
from nongene-modified tumour cells to neighbouring cells. 
This is dependent on the function of gap junctions, and can 
be exploited for therapeutic use. For example, the bystander 
effect can be enhanced by treating cancer cells with both 
Cx43 and human herpes simplex virus thymidine kinase type 
(HSV‑TK) transfection, leading to cell death (116,117). Similar 
effects were noted following the replacement of Cx32 with 
Cx43 (118). By utilizing the bystander effect it may be possible 
to amplify the cytotoxicity of certain cell type‑specific 

drugs (119). The effect was however limited to cancer cells that 
were able to utilize and assemble the induced connexins into 
functional gap junctions (120). When treating prostate cancer, 
tumour cell responsiveness was significantly enhanced when 
Cx26 was applied. This bystander effect can also be utilized in 
therapies using ionizing radiation. Radiation traversed the cell 
nucleus to induce response or damage in neighboring cells, and 
nearby non‑irradiated cells showed characteristics of damages 
and responses induced by irradiation. It was then confirmed 
that Cx43 mediated GJIC that transmited radiation stress from 
the irradiated cells to the bystander cells (121). This opens up 
an opportunity for improving therapy to enhance the efficacy 
of not only chemotherapy, but also radiotherapy in cancer 
treatment. There are also other limitations to the clinical appli‑
cation, such as the fact that the lipophilicity may be too low 
to cross the blood‑brain barrier and the need to use systemi‑
cally dangerous dosages that can produce side effects such as 
cardiac conduction slowing (122), which can precipitate lethal 
arrhythmias (118,123,124).

7. Conclusion

Gap junction proteins are ubiquitously expressed with some 
tissue‑specific subtypes. Their expression patterns in different 
diseases are now better characterized. Attempts have been 
made to examine the consequences of influencing gap junc‑
tions by direct modulators or antisense technology, with 
many successes in pre‑clinical disease models. The ability 
of gap junction proteins to regulate immune responses, cell 
proliferation, migration, apoptosis and carcinogenesis makes 
them attractive therapeutic targets to halt the progression of 
inflammatory and neoplastic disorders. It may be worthwhile 
to elucidate the gap junction protein pathways to identify more 
accurate prognostic biomarkers (125). The use of pre‑clinical 
models will continue to provide a platform on which these 
investigations are conducted (126‑139), and for the develop‑
ment of novel therapeutic agents for future clinical applications 
in these disorders (136,140‑152).

Figure 3. The bystander effect. Cell death can be propagated from affected 
cells to neighboring cells via gap junctions. Reproduced from Wong 
et al (153) with permission. 
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