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Autophagy regulates Notch degradation and
modulates stem cell development and
neurogenesis
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Autophagy is a conserved, intracellular, lysosomal degradation pathway. While mechanistic

aspects of this pathway are increasingly well defined, it remains unclear how autophagy

modulation impacts normal physiology. It is, however, becoming clear that autophagy may

play a key role in regulating developmental pathways. Here we describe for the first time how

autophagy impacts stem cell differentiation by degrading Notch1. We define a novel route

whereby this plasma membrane-resident receptor is degraded by autophagy, via uptake into

ATG16L1-positive autophagosome-precursor vesicles. We extend our findings using

a physiologically relevant mouse model with a hypomorphic mutation in Atg16L1, a crucial

autophagy gene, which shows developmental retention of early-stage cells in various tissues

where the differentiation of stem cells is retarded and thus reveal how modest changes in

autophagy can impact stem cell fate. This may have relevance for diverse disease

conditions, like Alzheimer’s Disease or Crohn’s Disease, associated with altered autophagy.
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A
utophagy is an evolutionarily conserved pathway
that delivers substrates to lysosomes for degradation.
Autophagosomes are derived from cup-shaped intracyto-

plasmic structures, called phagophores, which engulf cytoplasmic
contents when their edges extend and seal to form double-
membraned autophagosomes. Ultimately, autophagosomes fuse
with lysosomes, where the autophagic substrates are degraded1.
Phagophore formation requires PI(3)P, which is produced by
VPS34 in a complex with other proteins including Beclin-1. The
biogenesis of mammalian autophagosomes also involves two
ubiquitin-like molecules, ATG12 and LC3/ATG8 (ref. 2). In the
first of these reactions, the C-terminal glycine of ATG12 is
conjugated to ATG5. This is a ubiquitin-like conjugation
involving ATG7 as the E1-like enzyme and ATG10 as the E2-
like enzyme. The ATG12–ATG5 conjugate then forms an
800 kDa complex with ATG16L1 (ref. 3). ATG16L1 localizes to
the phagophores, and dissociates from fully formed (mature)
autophagosomes. In the second ubiquitin-like reaction, LC3 is
conjugated to phosphatidylethanolamine to form lipidated LC3-II
by ATG7 and ATG3, as the relevant E1- and E2-like enzymes,
respectively. LC3-II is specifically targeted to elongating
pre-autophagosomal structures and then remains on mature
autophagosomes until after fusion with lysosomes. Thus, the
LC3-II level corresponds to the number of autophagosomes and
autolysosomes4.

Autophagy has key roles in normal physiology and disease,
including neurodegenerative conditions, metabolic diseases and
cancer5. There has been a growing interest in the role of
autophagy in embryogenesis and development, as deletion of
various ATG genes causes overt phenotypes or lethality in
mice6–9. Furthermore, autophagy interacts with crucial develop-
mental pathways like Wnt, Sonic hedgehog, transforming growth
factor-b and fibroblast growth factor10–13. This suggests that
autophagy may regulate cell fate decisions, like differentiation and
proliferation, but the mechanisms by which autophagy exerts
directional and specific control of development have remained
elusive.

Here we tested whether autophagy regulates the Notch
pathway, which has important roles in both disease and
development. Notch signalling is crucial from embryogenesis to
adulthood14,15. It is considered to be a master regulator of neural
stem cells and neuronal development, where it is often used to
select between pre-existing developmental signals and pre-empt
cell fate decisions16. Notch receptors and ligands are both
transmembrane proteins. Maturation and activation of Notch
requires a number of proteolytic cleavage steps (Supplementary
Fig. 1a). During maturation, most Notch1 receptors are cleaved
by furin-like convertases to generate the extracellular part (Notch
extracellular domain, NECD) and the transmembrane—
intracellular part (Notch transmembrane domain, NTMD)—

which are non-covalently linked. This is referred to as the S1
cleavage, and it enables the receptor to be activated by the ligand.
At the plasma membrane, the first cleavage is at the extracellular
site (site 2/S2) located 12 amino acids before the transmembrane
domain and is mediated by ADAM-family metalloproteases. The
membrane-tethered intermediate form created is referred to as
Notch extracellular truncation. Notch extracellular truncation is
then cleaved by the g-secretase within the transmembrane
domain at sites 3 (inner plasma membrane leaflet) and 4. After
the second cleavage, the Notch intracellular domain (NICD) is
released into the cytosol and translocates into the nucleus to bind
the transcription factor CSL and its coactivator Mastermind
(Mam), which promote transcription of Notch target genes,
mainly from the Hes family14,16.

In this study, we examined whether Notch signalling is
regulated by autophagy in mammalian cells and how this occurs.
We investigated if autophagy-defective mice had Notch-depen-
dent phenotypes. In our model, autophagy regulates Notch
degradation, which correlates with the expected consequences of
Notch hyperactivity on stem cell development and neurogenesis.

Results
Autophagic activity impacts Notch signalling. Depletion of the
levels of the core autophagy proteins ATG7 and ATG16L1 by
small interfering RNA (siRNA) knockdown using Smartpools
as well as individual deconvoluted oligonucleotides, inhibits
autophagy, indicated by reduced LC3-II levels17, among other
readouts (Supplementary Fig. 1b, c). We observed that ATG7 or
ATG16L1 knockdown caused elevation of the levels of Notch1, as
well as the activated, cleaved form of Notch, NICD and the
protein levels of its target gene, Hes1 (Fig. 1a,b). Since the
canonical degradation pathway for Notch1 is via endocytosis,
it is important to note that ATG16L1 knockdown does not
impair endocytosis18. The increase in Notch1 level after KD
was rescued by overexpression of the relevant target protein
(Fig. 1c–f). Conversely, Beclin-1 overexpression, which enhances
autophagosome formation (Supplementary Fig. 2a), reduced the
levels of Notch1, NICD and Hes1 (Fig. 1a,b). Consistent with
the genetic data, Notch1, NICD and Hes1 levels were also
reduced by rapamycin or starvation, known autophagy stimuli
(Supplementary Fig. 2b,c). While the levels of Notch1 and its
downstream effectors responded to changes in autophagy, levels
of the Notch ligand, Dll1 (ref. 16), were unaltered by these genetic
manipulations (Supplementary Fig. 2d).

These results suggest that autophagy modulation is able to alter
Notch signalling. To confirm these functional effects, we used an
RBP-Jk luciferase assay, which responds to a transcription factor
downstream of Notch signalling. The pathway was significantly
inhibited by Beclin-1 overexpression but activated by ATG16L1

Figure 1 | Autophagy modulates Notch signalling pathway. (a) Representative western blot showing levels of Notch1 and its downstream effectors.

Autophagy was inhibited in HEK cells by Smartpool siRNA (KD) for ATG7 or ATG16L1 or activated by pcDNA/Beclin-Flag transfection. Scr¼ scrambled

siRNA. Actin is loading control. (b) Quantification of western blots for Notch1 and effectors, relative to actin, normalized for relevant control. *Po0.05 or

**Po0.01 by paired t-test. n¼ 3 in triplicates. Error bars¼ s.e.m. (c) Representative western blot showing effect of ATG7 Smartpool siRNA knockdown and

ATG7-wt cDNA rescue on Notch1 levels. (d) Quantification of western blots for Notch1 and ATG7, relative to actin, normalized for relevant control.

*Po0.05 or **Po0.01 by paired t-test. NS denotes not significant. n¼4. Error bars¼ s.e.m. (e) Representative western blot showing the effect of ATG16L1

Smartpool siRNA knockdown and ATG16L1 mStr rescue on Notch1 levels. (f) Quantification of western blots for Notch1 and ATG16L1/ATG16L1 mStr,

relative to actin, normalized for relevant control. *Po0.05 or **Po0.01 by paired t-test. n¼ 3. Error bars¼ s.e.m. (g,h) HEK cells were transfected with

control (scrambled) siRNA/ATG16L1 siRNA þDll1 ligands (ATG16L1KD), or pcDNA/Beclin-Flag. Notch pathway activity was measured by firefly luciferase

reporter assay with RBP-Jk coupled reporter using Renilla luciferase with constitutive promoter as control. Ratio of sample to control is shown. *Po0.05

and **Po0.01. NS denotes not significant by unpaired t-test. n¼ 3. Error bars¼ s.e.m. (i) Effect of autophagy on the nuclear translocation of NICD. Scale

bar, 20mm for images of the upper panel. Scale bar, 5 mm for all lower panel images. (j) HEK cells were treated with rapamycin/starved with HBSS, or

transfected with pcDNA/Beclin-1. Magnifications of areas in white boxes are shown in lower images and with DAPI in lower panels. Scale bar, 10mm for

upper panels. Scale bar, 5mm for bottom two rows.
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knockdown (Fig. 1g) and the magnitude of these changes was
similar to those previously described with other perturbations of
the Notch pathway19. The pathway was also inhibited under

starvation conditions (Fig. 1h). When Notch signalling is active,
NICD translocates to the nucleus and promotes the transcription
of Hes1. Consistent with the luciferase assay data, the nuclear
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Figure 2 | Autophagy regulates Notch1 degradation. (a) Effect of autophagy inhibition on degradation of Notch1 was assessed by biotinylation assay in

HEK cells treated with ATG7 siRNA (ATG7KD). The cell surface proteins were biotinylated and cells were immediately collected or incubated at 37 �C for

6 h to allow internalization and degradation. After lysis, biotinylated proteins were pulled down with streptavidin beads and the amount of biotinylated

Notch1 remaining assessed by western blot (top panel). Western blots for total Notch1 levels and actin levels in the input are shown as controls.

(b) Quantification of surface Notch1 at time point 0 h after autophagy inhibition. *Po0.05 by paired t-test. n¼ 3. Error bars¼ s.e.m. (c) Quantification of

Notch1 degradation rate. The ratio of 6 h/0 h biotinylated Notch1 level is shown for scrambled siRNA (scr) and ATG7KD samples. *Po0.05 by unpaired

t-test. n¼ 3. Error bars¼ s.e.m. (d) HEK cells were starved with HBSS (2 h) or treated with DMSO (control) /rapamycin or transfected with pcDNA or

Beclin-Flag (2 days). Cells were immunostained for Notch1 (green) and LC3 (red) and stained with DAPI (blue). The white box indicates the location of the

enlargement. The arrows show LC3 and Notch1 colocalization. Scale bar, 5 mm (e) Colocalization of Notch1 with LC3 from 2 days (starv¼ starved,

rap¼ rapamycin). Mander’s colocalization coefficient was measured using Volocity software. Unpaired t-test **Po0.01. *Po0.05. n¼ 3. Error bars¼ s.e.m.

Figure 3 | Notch1 can enter autophagosomes independently from endocytosis. (a) Autophagosomes (LC3-positive) can fuse with early endosomes

(EEA1-positive) forming amphisomes. (b) HEK cells were transfected with pEGFP-LC3 and then treated with DMSO (control) or rapamycin, immunostained

for Notch1 (red) and EEA1 (white) and DAP-stained (blue). c shows Notch1-EEA1-only colocalization, - indicates LC3-Notch1-only colocalization,

- indicates triple colocalization. Scale bar, 5 mm. (c) Quantification of vesicles positive for Notch1 and LC3, Notch1 and EEA1, or Notch1 and LC3 and EEA1,

in DMSO (Co, grey) and rapamycin (rap, black) conditions. The percentage for each relative to total counted vesicles is shown. *Po0.05, unpaired t-test.

n¼ 3. Error bars¼ s.e.m. (d) HEK cells were treated with DMSO (control) or rapamycin for 8 h. Arrows show Notch1- and EEA1-positive vesicles. White

box indicates location of enlargement shown in the three preceding images. Scale bar, 5 mm (e) Quantification of confocal images (Mander’s colocalization)

between Notch1 and EEA1 from 3d. NS denotes not significant, unpaired t-test. n¼ 3. Error bars¼ s.e.m. (f) Quantification of number of total EEA1 vesicles

in DMSO- and rapamycin-treated conditions. NS denotes not significant, unpaired t-test. n¼ 3. Error bars¼ s.e.m. (g) HEK cells were transfected with

mRFP-GFP-LC3 and stained for Notch1. - shows Notch1 colocalization with RFP- and GFP-positive structures. - shows Notch1 colocalization with

RFP-positive, GFP-negative structures. Scale bar¼ 5 mm. (h) Quantification of vesicles positive for GFP and RFP with/without Notch1, and RFP-only vesicles

with/without Notch1. Total number of vesicles is total number of (GFP and RFP)þRFP-only positive vesicles. The number of Notch1-positive or -negative

vesicles is divided by the total number of vesicles. n¼ 3. Error bars¼ s.e.m. (i) HEK cells were transfected with pEGFP-LC3 and stained against LAMP1 and

Notch1. - shows Notch1 colocalization with EGFP-LC3 and LAMP1. - shows Notch1 colocalization with LC3-positive, but LAMP1-negative structures.

Scale bar, 5 mm. (j) Quantification of vesicles positive for LC3, or LC3-LAMP1 double-positive, or LAMP1- positive vesicles with/without Notch1. Total

number of vesicles is the total number of LC3-onlyþ LC3-LAMPþ LAMP1-only positive vesicles. The number of Notch1-positive or -negative vesicles is

divided by the total number of vesicles. n¼ 3. Error bars¼ s.e.m.
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localizations of NICD and Hes1 were ablated and the overall level
of their staining decreased when cells were exposed to autophagy
inducers, rapamycin or starvation, or overexpression of Beclin-1
(Fig. 1i,j).

To identify the mechanism whereby autophagy modulation is
able to impact on Notch levels and signalling, we first considered
the role of autophagy in Notch1 degradation. We confirmed that
modulations in autophagy are able to alter Notch1 levels on the

plasma membrane where it is able to bind its ligand and be
activated. We performed biotinylation experiments at 4 �C to
label cell surface proteins and observed that ATG7 siRNA
knockdown resulted in an increase in the levels of Notch1 on the
plasma membrane (Fig. 2a,b). To test if autophagy modulated
Notch1 degradation directly we performed pulse and chase
experiments by biotin labelling the cell surface proteins then
incubating cells for 6 h at 37 �C to allow internalization and
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degradation of the labelled protein pool. The rate of cell surface
Notch1 degradation in ATG7 knockdown cells was 1/3 slower
than in the control cells (Fig. 2a,c), suggesting that autophagy is
able to directly degrade Notch1.

If Notch1 is degraded by autophagy, then it should be localized
to autophagosomes, which can be labelled with LC3. Under basal
conditions, Notch1 can clearly be seen to localize to the plasma
membrane by immunocytochemistry (Supplementary Fig. 3a).
However, Notch1 can also be observed intracellularly, where a
small fraction can be seen to colocalize with LC3 (Fig. 2d,
Supplementary Fig. 3b). When cells are exposed to autophagy
stimuli like starvation, rapamycin and Beclin-1 overexpression,
the Notch1-LC3 colocalization is increased compared with
control conditions (Fig. 2d,e). In keeping with our observation
that Dll1 levels did not change on autophagy induction, it did not
colocalize with LC3 even on autophagy stimulation
(Supplementary Fig. 3c,d). Likewise, we detected no colocaliza-
tion of NICD with LC3 under basal or autophagy-enhanced
conditions (Supplementary Fig. 3e,f). This indicates that the
decreased level of NICD observed on autophagy induction is
likely to be a consequence of Notch1 degradation, rather than
direct autophagic clearance of NICD.

Notch1 can enter autophagosomes independent from endocytosis.
As Notch1 is known to be degraded by endocytosis14, this
suggested a possible route by which Notch1 could enter the
autophagic pathway as, once formed, autophagosomes are able to
fuse with endosomes forming amphisomes20, before finally fusing
with lysosomes (Fig. 3a). Consistent with the canonical Notch
pathway, Notch1 could be seen to localize to early endosomes
(EEA1-positive vesicles), some of which were also positive for
LC3, demonstrating an intersection of these two pathways
(Fig. 3b,c, Supplementary Fig. 4a). Importantly, use of this
triple staining allowed us to more accurately assess the
localization of Notch1 in the autophagic and endocytic
pathways. Notch1 was identified in not only EEA1-positive,
LC3-negative early endosomes, and EEA1-positive, LC3-positive
amphisomes, but also in LC3-positive, EEA1-negative
autophagosomes (Fig. 3a–c, Supplementary Fig. 4a) suggesting
Notch1 is also seen in autophagosomes that may have not fused
with the endocytic pathway. Furthermore, on autophagy
induction with rapamycin, only the colocalization of Notch1
with LC3-positive, EEA1-negative structures (autophagosomes)
increased (Fig. 3b,c). Colocalization of Notch1 with EEA1-
positive structures (either LC3-positive or -negative) was not
enhanced by rapamycin treatment and total EEA1 vesicles
number was not increased (Fig. 3d–f).

To further characterise the location of Notch1 in the autophagic
pathway, we made use of tandem-tagged, mRed fluorescent
protein-green fluorescent protein-LC3 (mRFP-GFP-LC3). This
reporter is able to distinguish between autophagosomes and
autolysosomes formed after the fusion of autophagosomes with
lysosomes21, another potential intercept point for autophagy and
the canonical Notch signalling pathway. The acidity of
autolysosomes quenches GFP, so that autolysosomes are only
RFP-positive, whereas autophagosomes are double-positive. Nearly
50% of the GFP–RFP-positive autophagosomes colocalized with
Notch1, suggesting that Notch1 can also enter the autophagy
pathway before autophagosome–lysosome fusion (Fig. 3g,h,
Supplementary Fig. 4b,c). Likewise, immunostaining of cells for
Notch1 and the lysosomal marker, LAMP1, in the presence of
GFP–LC3 demonstrated that nearly half of the LC3-positive,
LAMP1-negative vesicles (representing autophagosomes before
fusion with lysosomes) colocalized with Notch1 (Fig. 3i,j,
Supplementary Fig. 4d).

Notch1 can enter autophagosomes in precursor structures.
To confirm that Notch1 can be recruited into autophagosomes
during their biogenesis before completion, we used ATG2A/B
knockdown to prevent closure of autophagosomes and halt
their final steps of formation22. We found that the number
of Notch1-LC3 double-positive structures increased after
ATG2A/B knockdown (Fig. 4a,b, Supplementary Fig. 5a). In
addition, ATG2A/B knockdown increases Notch1 levels
significantly and the elevated Notch1 level can be rescued by
ATG2A overexpression in such knockdown cells (Supplementary
Fig. 5b,c). This suggested the incorporation of Notch1 into early
autophagic structures, as a decreased colocalization would be
expected if the fusion of completed autophagosomes with
the endocytic pathway was required for the colocalization of
Notch1 with LC3. Thus, Notch1 can enter autophagosomes
during biogenesis and not only through fusion of completed
autophagosomes with Notch1-containing endosomes.

Our above data suggest that Notch1 can be taken up by
autophagosomes at early stages, in addition to via amphisomes.
Thus, we attempted to further characterise its route by
investigating its colocalization with early markers of the
autophagy pathway. Notch1 is located on the plasma membrane
and since previous studies have identified a route from the plasma
membrane to autophagosomes23, we therefore investigated
whether Notch1 could also be trafficked via this pathway. The
formation of autophagosomes depends on trafficking of
ATG16L1 and mATG9 from different clathrin-coated pits on
the plasma membrane in distinct vesicles that ultimately fuse in a
VAMP3-dependent fashion24,25.

After internalization from the plasma membrane, ATG16L1-
containing vesicles subsequently converge with mATG9-
containing vesicles, which go on to form autophagosomes24.
The R-SNARE that regulates mATG9–ATG16L1 vesicle fusion is
VAMP3 (ref. 24; Fig. 4c). Knockdown of VAMP3 inhibited
autophagy and resulted in an increase in Notch1 levels, but no
increase in Notch ligand levels, as expected (Supplementary
Fig. 5d–f). Overexpression of VAMP3 rescued the elevated
Notch1 level in these knockdown cells (Fig. 4d,e). Importantly,
the colocalization of Notch1 and LC3 was significantly decreased
by VAMP3 knockdown (Fig. 4f,g, Supplementary Fig. 5g), while
the colocalization of ATG16L1 and Notch1 was increased
(Fig. 4h,i, Supplementary Fig. 5h), and the colocalization of
mATG9 and Notch1 remained the same (Fig. 4j,k, Supplementary
Fig. 6a). These results suggest that Notch can be taken up into
early autophagic precursors by endocytosis in ATG16L1
precursor structures and not by ATG9 structures.

Notch1 can enter ATG16L1 precursors from the plasma
membrane. To further test this hypothesis, we used triple staining
of Notch1 with mATG9 and ATG16L1 to allow us to identify
which of these precursor vesicles contained Notch1 (Fig. 5a
and Supplementary Fig. 6b). Notch1 could be seen in mATG9-
positive, ATG16L1-positive pre-autophagosome structures, in
ATG16L1-positive, mATG9-negative vesicles and to a lesser
extent in mATG9-positive, ATG16L1-negative vesicles. Since
mATG9 traffics via early endosomes, known to contain Notch1, it
is possible that these Notch1-positive, mATG9-positive,
ATG16L1-negative vesicles may represent early endosomes. On
autophagy induction with rapamycin, the colocalization of
Notch1 with ATG16L1-only-positive vesicles, but not mATG9-
only-positive vesicles was significantly increased (Fig. 5a,b).
To further confirm the colocalization of Notch1 with ATG16L1,
we performed proximity ligation assays. A clear signal indicating
colocalization of Notch1 and ATG16L1 was seen under basal
conditions, and this signal was strongly enhanced when
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Figure 5 | Notch1 can enter ATG16L1 precursors from the plasma membrane. (a) HEK cells were transfected with ATG9-pEGFP (ATG9 GFP) and

pmStrawberry-ATG16L1 (ATG16L1 mStr), then treated with DMSO/rapamycin for 8 h. - shows ATG16L1-Notch1-only colocalization. Scale bar, 5 mm.

(b) Quantification of vesicles positive for Notch1 and ATG16L1 but not ATG9, Notch1 and ATG9 but not ATG16L1, or Notch1 and ATG16L1 and ATG9 in

DMSO (Co) and rapamycin (rap) conditions. The percentage positive/total counted vesicles is shown. * denotes Po 0.05 by unpaired t-test. n¼ 3. Error

bars¼ s.e.m. (c) HEK cells were starved for 2 h in HBSS or left in basal conditions and proximity ligation was performed using endogenous ATG16L1 and ms

Notch1 antibodies. Scale bar, 10mm. (d) Colocalization of Notch1 and ATG16L1 after surface internalization for 30 min. HEK cells were incubated with

Notch1 antibody on ice and then for 30 min at 37 �C to allow internalization of labelled Notch1 cell surface receptors. Arrows indicate Notch1- (Alexa 488)

and ATG16L1- (Alexa 568) double-positive structures. Scale bar, 5 mm. (e) Quantification of total Notch1-positive vesicles colocalizing with ATG16L1 and

total number of ATG16L1-positive vesicles colocalizing with Notch1. n¼ 3. Error bars¼ s.e.m. (f) HEK cells were transfected with Numb siRNA and western

blotted for Numb and actin. (g) Western blot showing effect on Notch1 level following starvation in control and Numb knockdown conditions. HEK cells

were transfected with Numb siRNA and scrambled siRNA and subsequently starved (2 h HBSS). (h) Quantification of blots from 5 g. Notch1 levels were

compared between untreated (Co) and HBSS treated (starv) following Numb KD/scrambled siRNA. NS denotes not significant and **Po0.01 by unpaired

t-test. n¼ 3. Error bars¼ s.e.m. (i) Representative western blot showing the effect of Numb knockdown on Notch1 level after Beclin-1 overexpression. HEK

cells were transfected with Numb siRNA or scrambled siRNA (scr) and subsequently transfected with pcDNA/Beclin-Flag. (j) Quantification of western

blots from 5i. The effect of pcDNA or Beclin-1 overexpression on Notch1 levels is shown in control cells (scrambled) or following knockdown of Numb

(Numb KD). *Po0.5 by unpaired t-test. n¼ 3. Error bars¼ s.e.m.
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autophagy was induced by starvation (Fig. 5c). The adaptor
required for the internalization of ATG16L1 via clathrin-coated
pits is AP2 (ref. 23). We were able to observe Notch1 localizing in

ATG16L1/AP2 double-positive structures (Supplementary
Fig. 6c), consistent with the idea that Notch1 can be inter-
nalized and trafficked to autophagosomes alongside ATG16L1.
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Notch1- and ATG16L1-positive but LC3-negative vesicles were
observed, indicating that Notch1 can enter ATG16L1 vesicles
before autophagolysosome formation (Supplementary Fig. 6d).

To further test whether Notch1 entered early autophagic
structures directly from the cell surface, we labelled plasma
membrane Notch1 using an anti-Notch1 antibody that recognizes
its extracellular domain. HEK cells were incubated with the
antibody on ice for 15 min, and then the temperature was raised
to 37 �C to allow internalization of the labelled pool of plasma
membrane Notch1. We detected colocalization of Notch1 and
endogenous ATG16L1, indicating Notch1 uptake from the
cell exterior into cytoplasmic ATG16L1 vesicles (Fig. 5d,
Supplementary Fig. 7a). A quarter of Notch1-positive vesicles
colocalized with ATG16L1 (Fig. 5e). Note that only a small
proportion of the cell surface-labelled Notch1 is in these
ATG16L1 vesicles, which would be expected since only some of
these Notch1 receptors will be internalized via this pathway, or be
within ATG16L1-positive vesicles at this timepoint. The negative
control, with Alexa 488 secondary antibody only, did not
show labelling (Supplementary Fig. 7b). Likewise, no
ATG16L1–Notch1 colocalization was seen in cells when the
Notch1 was not allowed to internalise (Supplementary Fig. 7b).

To identify the mechanism by which Notch1 may be targeted
to autophagosomes, we looked at the effect of Numb, a known
adaptor for Notch1 degradation through endocytosis26. siRNA
knockdown of Numb was able to ablate the effect of starvation
and Beclin-1 overexpression on Notch1 protein levels (Fig. 5f–j).
This suggests that Numb also acts upstream of the autophagy
pathway (see schematic diagram of Supplementary Fig. 7c) and
may be an adaptor for both autophagy and endocytosis.

Overall, our data suggest that Notch1 is degraded by autophagy
and that it is trafficked to autophagosomes from the plasma
membrane in ATG16L1-containing vesicles, as well as entering
the autophagic pathway via its endocytic route.

Notch1 in primary neurons is affected by autophagy. To test
the consequences of the regulation of Notch signalling by
autophagy, we used a mouse model with a hypomorphic
mutation in Atg16L1. This mouse has modestly impaired
autophagy, and is therefore more likely to have physiological
relevance compared with autophagy knock-outs27. While
autophagic stimulation with trehalose28, and lysosomal
inhibition with bafilomycin increased LC3-II levels in primary
neurons from wild-type mice, these effects were attenuated in
neurons from Atg16L1 hypomorph animals (Fig. 6a,b).
Consistent with the previous data, the ATG16L1 level was
reduced in the brain lysates of the Atg16L1 hyp mice compared
with wild-type mice (Supplementary Fig. 8a), the protein levels of
Notch1, NICD and Hes1 were elevated in the brain lysates of
Atg16L1 hypomorphs, compared with wild-type mice (Fig. 6c,d,
Supplementary Fig. 8b). In the Atg16L1 hypomorph mice, the
numbers of LC3 vesicles, assessed by immunostaining, were 1/3
of wild-type levels (Fig. 6e,f, Supplementary Fig. 8c). In wild-type
primary neurons, Notch1–LC3 colocalization was increased
after starvation or rapamycin treatment, whereas no obvious
Notch1–LC3 colocalization was observed in Atg16L1 hypomorph
primary neurons (Fig. 6g) and the colocalization did not increase
after starvation or rapamycin treatment (Fig. 6g).

Increased Notch1 is linked to elevated stem cell staining. Since
Notch1 is crucial in development and stem cell maintenance, we
assessed stem cell (Nestin, Pax6), progenitor (Tbr2) and neuronal
markers (Tbr1, 3b-tubulin) in wild-type and Atg16L1 hypo-
morph primary neurons29. Wild-type neurons had half the
fluorescence intensity of Nestin and Pax6 staining compared with

the Atg16L1 hypomorph neurons, while the Tbr1, Tbr2 and
3b-tub intensities were at least double in wild-type versus
hypomorph mice (Fig. 7a,b). The level of the markers were
tested by western blots and the level of Nestin and Pax6 were
significantly higher in the Atg16L1 hypomorph mice compared
with wild-type, whereas the level of the neuronal markers
Tbr1 and 3b-tubulin were significantly lower (Supplementary
Fig. 9a,b). Therefore, Atg16L1 hypomorph mice had a
significantly higher proportion of stem cells in neuronal
cultures compared with wild-type. To see whether this effect
was Notch-related, we applied the g-secretase inhibitor DAPT30,
which blocks the cleavage of Notch1 to NICD, and thus blocks
Notch signalling. The efficiency of DAPT can be assessed by the
level of NICD, which declined as DAPT concentrations were
increased (Supplementary Fig. 9c, d). Atg16L1 hypomorph
primary neurons showed an increase in the intensities of Tbr1
and 3b-tub and a decrease in the intensities of Nestin and Pax6
with increasing concentrations of DAPT (Fig. 7c–f). In concert,
increased concentrations of DAPT also caused a significant
decline of Nestin/Tbr1 and Pax6/3b-tub relative staining
intensities in the same cells (Fig. 7c–f), indicating that
inhibition of Notch signalling causes a reversion of the stem
cell phenotype and pushes cells to a more differentiated state,
which is more similar to the wild-type. The same trend was visible
in wild-type cells, when DAPT was applied (Supplementary
Fig. 9e–h). Western Blot analysis also showed significant decrease
of Nestin and Pax6 levels and increase of Tbr1 and
3b-tubulin levels after DAPT treatment in Atg16L1 hypomorph
and wild-type primary neurons (Supplementary Fig. 10). Since
the impaired differentiation of stem cells towards neurons in the
Atg16L1 hypomorph neurons can be reversed by impeding Notch
signalling, these data suggest that this stem cell phenotype is
Notch related. However, we cannot exclude contributions from
other putative pathways.

Atg16L1 hypomorph mice have developmental retention.
Next, we confirmed the stem cell phenotypes in different tissues
from mice. We observed increased NICD staining in Atg16L1
hypomorph brains compared with wild-type (Fig. 8a). The total
number of NICD-positive cells is more than double in the
Atg16hyp mice compared with wild-type (Fig. 8b). Stem cells are
mainly situated around the ventricles, in the ventricular zone, and
migrate to the outer zone to develop into neurons. The bigger the
neuronal zones are, the more differentiated a brain is31. When
E15.5 embryonic brain slices were stained with differentiation
markers, Atg16L1 hypomorph mice showed 1/3 smaller
3b-tub- and Dbx- (neuronal marker)32 positive regions around
the ventricles (Fig. 8c–e and Supplementary Fig. 11a). The
intensity of Nestin (stem cell marker) staining was stronger in
Atg16L1 hypomorph brain slices, compared with wild-type
(Fig. 8f). A direct comparison of the brains of the Atg16L1
hypomorph mice and wild-type mice shows significant changes in
the size of the ventricular zone and the cortical plate (Fig. 8g,h).
The region of stem cells, ventricular zone, is double the size in the
Atg16L1 hypomorph mice compared with the wild-type.
Consistent with our previous data, the cortical plate, the region
of mature neurons, is significantly smaller in the Atg16L1
hypomorph compared with wild-type mice (Fig. 8g,h).

Previous studies in adult mice brains have shown
that activation of Notch1 signalling inhibits proliferation
and differentiation, and that Notch1 inhibition increases
proliferation33,34. Thus, a prediction of our data is that the
Notch1 hyperactivity and impaired differentiation in the adult
hypomorph mice should decrease neurogenesis. Adult wild-type
and Atg16L1 hypomorph mice (9–11 months of age) were
injected with BrdU for 6 days to label proliferating cells. The
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number of BrdU-positive cells was significantly higher in
wild-type compared with Atg16L1 hypomorph mice (Fig. 8i,j).
Treatment with the Notch inhibitor DAPT for 6 days before
BrdU injection significantly increased the BrdU-positive cells in
both wild-type and Atg16L1 hypomorph mice (Fig. 8i,j).

Consistent with our previous results, Notch1 levels were
significantly higher in the Atg16L1 hypomorph brains
compared with wild-type (Supplementary Fig. 11b,c). Thus,
these data suggest that the increased Notch1 resulting from
defective autophagy is impairing differentiation, which is
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hypomorph (Atg16hyp) embryos counterstained with DAPI (blue). The ventricular zone (VZ) and subventricular zone (SVZ) is marked with dotted line.

Scale bar, 10mm. (b) Quantification of the number of NICD positive cells in wild-type (Wt) and Atg16L1 hypomorph (hyp) brain slices. ***Po0.001 by

unpaired t-test. n¼ 3. Error bars¼ s.e.m. (c) Quantification of the neuronal area in wild-type (Wt) and Atg16L1 hypomorph (hyp) brain slices. The 3b-tub

area was divided by the DAPI-positive area to normalize for total brain size. ***Po0.001 by unpaired t-test. n¼ 6. Error bars¼ s.e.m. (d) Effect of
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zone (SVZ), intermediate zone (IZ) and the cortical plate (CP) in wild-type and Atg16L1 hypomorph mice. The size of each region was normalized to the
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Scale bar, 50mm. (i) BrdU and DAPI immunostaining in 9–11 months wild-type and Atg16L1 hypomorph mouse brains. Scale bar, 100 mm. (j) Quantification

of BrdU-positive cells in wild-type (Wt) and Atg16L1 hypomorph (Atg16hyp) brain slices. *Po0.05 by unpaired t-test. n¼ 3. Error bars¼ s.e.m.
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known to be associated with decreased neurogenesis and cell
proliferation in adult mice33,34. Furthermore, this cell division
phenotype can be ameliorated by DAPT, suggested that it is
Notch related.

Delayed bone marrow/gut differentiation in Atg16L1
hypomorphs. Since Notch1 is widely expressed in many tissues,
we also analysed the bone marrow of the mice. Stem cell and
progenitor cells of the bone marrow are characterized by low
expression of lineage markers and they are positive for Sca1 and
c-kit. The heterogenous population of lineage-negative (linlow)
cells (marks not fully differentiated cells) show significantly
higher Notch1 staining in the Atg16L1 hypomorph in compar-
ison with the wild-type (Fig. 9a,b). In the bone marrow,
we similarly observed an increase of linlow/� Sca1þ and
c-kitþ double-positive cells (containing hematopoietic stem
cells) in the Atg16L1 hypomorph, compared with wild-type mice,
indicating that Atg16L1 hypomorph bone marrow cells contain a
higher number of less differentiated cells (Fig. 9c,d). The final
tissue we analysed was the gut. ATG16L1 is a risk allele for
Crohn’s disease27 and Notch signalling in the intestinal stem cell
population is essential for maintenance of the normal architecture
of the gut epithelium35. We, therefore, performed histological
examination of the ileum and jejunum. Transverse sections
through these two regions of the small intestine showed a striking
reduction in villus length in Atg16L1 hypomorph mice, compared
with wild-type siblings, consistent with impaired stem cell
differentiation (Fig. 10a,b). This was associated with an increase
in Hes1 antibody staining in the crypt/stem cell region of
Atg16L1 hypomorph mice, suggesting that altered Notch
signalling may underlie the observed structural changes

(Fig. 10c). In addition to Hes1, a known gut stem cell marker,
we tested another gut stem cell marker Gremlin 1 (Grem1). There
were significantly more Grem1-positive cells observed in the
Atg16L1 hypomorph jejunum crypts compared with the
wild-type (Fig. 10d,e), indicating that Notch also affects stem
cells development in the gut.

Discussion
Our study argues that autophagy regulates Notch signalling
because it is one of the degradation routes for the receptor
Notch1, which perturbation accounts for significant changes in
the signalling output. These mammalian data contrast with
two previous studies in Drosophila. The first suggested that
Drosophila ultraviolet-resistance-associated gene (UVRAG), which
is involved in both endocytosis and autophagy, regulates organ
rotation, by influencing endocytic Notch degradation and rules
out autophagy explicitly, since a number of ATG-deficient
mutants including ATG1, 6 and 7, do not display the same
loss-of-function phenotype36. The second study reported that the
Notch pathway is hyperactivated in Drosophila autophagy mutant
somatic follicle cells and, while no mechanism was defined, the
authors suggested that this may have been due to altered Notch
ligand levels37. Our findings did not confirm this hypothesis,
since we showed that autophagy up- or downregulation did not
affect Notch ligand levels.

We demonstrate a developmental retention in neurogenesis,
haematopoiesis and in the gut villi in Atg16L1 hypomorph mice,
all developmental phenomena, which are dependent on Notch1
(refs 33,38). Our data argue that this is likely due to impaired
autophagic degradation of Notch1 and thus hyperactivated Notch
signalling, as these mice have elevated levels of Notch1, NICD
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and Hes1. Importantly, the impaired differentiation of the
Atg16L1 hypomorphic neurons was rescued by a Notch
inhibitor, suggesting that these effects are Notch related.

These alterations in stem cell differentiation are likely to be
generic effects of autophagy impairment in the Atg16L1

hypomorph mice, and not specific autophagy-independent
consequences of the ATG16L1 activity, since the effects of
ATG16L1 depletion of Notch and its signalling were mimicked by
ATG7 siRNA in cell culture, and the reverse effects were seen
when autophagy was upregulated by overexpressing Beclin-1, or
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by rapamycin treatment or starvation. Futhermore, the impaired
stem cell differentiation phenotypes are unlikely to be artefactual
consequences of changes of marker expression, as we used five
markers in the neurons—stem cell (Nestin, Pax6), progenitor
(Tbr2) and neuronal markers (Tbr1, 3b-tubulin)—distinct
markers in the bone marrow and morphological assessments in
the gut. Furthermore, these are predictable consequences of
Notch hyperactivation33,35,39 and are seen in the context of
increased Notch activity in these tissues.

Our approach contrasts with previous mammalian studies that
have used autophagy null mice to demonstrate developmental
abnormalities, which have been attributed to overall impairments
of nutrient recycling40,41, as opposed to altered levels of a specific
autophagy substrate, as we have shown here. Our findings are
based on in vivo and primary neuron data in an autophagy
hypomorph model as opposed to a null mutant, and suggest that
modest alterations of autophagy are sufficient to impact on Notch
signalling and its downstream effects on stem cell differentiation,
a conclusion that would not be possible with complete null
models. Furthermore, it is possible that complete loss of
autophagy may result in different phenotypes compared with
partial impairment. For example, complete loss of the FIP200
gene that regulates autophagy leads to apoptosis and consequent
depletion of the neuronal stem cell pool42. Thus, complete loss of
autophagy genes may not cause the same phenotypes as we have
observed in the hypomorph mouse. Indeed, we would argue that
studies in a hypomorphic context have greater physiological
relevance, since the impairments of autophagy in diseases like
forms of neurodegeneration and Crohn’s disease are not
complete.

Methods
Constructs. pmStrawberry–ATG16L1 and the Beclin-Flag was described in
Cadwell et al.27 and Luo et al.43, respectively. pCMV-hATG7wt was a kind gift
from Dr Isei Tanida. siRNA-resistant ATG2A–GFP was a kind gift from
Dr. Noboro Mizushima and VAMP3-HA was a kind gift from Dr Andrew Peden.
ATG9L1–pEGFP was a kind gift from Dr Yoshinori Takahashi and pEGFP–LC3
and mRFP–GFP–LC3 were kind gifts from Tamotsu Yoshimori.

Cell culture. HEK cells were cultured in Dulbecco’s Modified Eagle’s Medium
(Life Technologies) containing 4,500 mg l� 1 glucose (Sigma-Adrich) and
supplemented with 10% FBS (Sigma-Adrich), 100 units per ml penicillin
(Sigma-Adrich), 100mg ml� 1 streptomycin (Sigma-Adrich), and 2 mM
L-glutamine (Life Technologies) at 37 �C and 5% carbon dioxide.

Transient transfection. HEK cells were plated to be 70% confluent and
transfected the following day. For one six-well plate, 2 mg (Beclin-Flag,
pcDNA) or 0.5 mg (pmStrawberry–ATG16L1, ATG9L1–pEGFP, pEGFP–LC3,
mRFP–GFP–LC3) DNA transfected with 7.5 ml TransIT-2020 (Mirus) following
the manufacturer’s protocol.

siRNA knockdown and rescue. HEK cells were plated into six-well plates to reach
80% confluency. For each well, 4 ml of 20mM On-TARGETplus SMARTpool
siRNA (ATG16L1, ATG7 Dharmacon) or deconvoluted oligos (ATG16L1, ATG7
Dharmacon) or individual-specifc siRNA (see below, Thermo Scientific) was
transfected with 5 ml Lipofectamine 2000 (Life Technologies) according to the
manufacturer’s protocol. siRNA transfection was repeated the following day. Cells
were then incubated for 24 h.

For rescue, 0.5 mg of pmStrawberry-ATG16L1, pCMV-hATG7wt, siRNA
resistant ATG2A-GFP and VAMP3-HA were transfected on day 3 with 7.5 ml
TransIT-2020 (Mirus) following the manufacturer’s protocol.

siRNA sequence. VAMP3 50-GGCAGGCGCUUCUCAAUUU-30

Atg2A 50-GCAUUCCCAGUUGUUGGAGUUCCUA-30

Atg2B 50-AGGUCUCUCUUGUCUGGCAUCUUUA-30

Luciferase assay. HEK cells were transfected with a solution (SabioSciences)
containing Notch firefly reporter and constitutively active Renilla contruct (3 ml per
plate). After 48 h incubation, the Dual-Luciferase assay (Promega) was carried out
following the manufacturer’s protocol. The firefly luciferase signal is divided by
Renilla luciferase signal to normalize for cell number.

Immunoblotting. Samples were run by SDS-PAGE and transferred to low auto-
fluorescence polyvinylidene difluoride membrane (Immobilon, FL, Millipore).
Primary antibodies were used at the concentration described below overnight at
4 �C in blocking solution (1% milk powder in PBS). Secondary antibody (IR-Dye
conjugation goat anti-mouse or -rabbit LI-COR Biosciences) was used at 1:50,000
dilution in blocking solution for 1 h. The membrane was scanned on the LI-COR
Odyssey (LI-COR Biosciences) using the Image Studio software.

Dilution of primary antibodies. 1:250: Notch1 (ab52627, Abcam), NICD
(ab8925, Abcam), Hes1(ab71559, Abcam), Dll1 (ab76655, Abcam), ATG7
(ab52472, Abcam), Numb (ab14140, Abcam)

1:1,000: LC3 (NB 100-2220, Novus), ATG16L1 (pAb PM040, MBL), Beclin
(#3738S, Cell Signalling), VAMP3 (gift from A.A. Peden)

1:2,000: Actin (A2066,Sigma-Aldrich).
Notch1 on western blot shows Notch NTMD (125 kDa). It is the form which is

cleaved during maturation at the plasma membrane. The NICD (activated Notch1)
antibody detects VLLSRKRRRQHGQC, a sequence, which is not accessible in the
uncleaved form. It is exposed after S1 cleavage. The protein is detected at 80 kDa.

Biotinylation assay. HEK cells were incubated in 0.5–1 mg ml� 1 NHS-LC-Biotin
in Biotinylation buffer (1 mM MgCl2, 2 mM CaCl2, 150 mM NaCl) for 60–90 min
with horizontal motion at 4 �C. After labelling, the plates were washed with the
quenching buffer (1 mM MgCl2, 0.1 mM CaCl2, 100 mM glycine) twice for 10 min
at 4 �C. Then the cells were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl
(pH 7.4), 5 mM EDTA, 1% Triton X-100, 0.5% deoxycholate, and 0.1% SDS,
cocktail of protease and phosphatase inhibitors) for 30 min on ice. After cen-
trifuging the lysates at 16,000g for 10 min at 4 �C, the protein concentration was
determined using the Bradford method following the protocol of the Bio-Rad assay.
10 ml of each sample was kept for input control. 50 ml of Streptavidin-agarose beads
(previously washed with PBS/RIPA) were added to each sample and incubated for
2 h at 4 �C (orbital/horizontal motion). Then the beads were washed twice with
RIPA buffer and once with PBS. Finally, 20–30 ml of 2� laemmli buffer was added
to the beads and the samples were incubated at 95 �C for 5 min.

Immunofluorescence. For immunocytochemistry, the cells were incubated in
200 nM Rapamycin (rap), 400 nM Bafilomycin A1 (baf), 100 mM Trehalose (treh)
for 8 h or starved with HBSS for 2 h (1� wash with HBSS before incubation
for 2 h).

The cells were fixed for 3 min with ice cold methanol or for 10 min with 4%
paraformaldehyde (PFA). Concentration of the primary and secondary antibodies
are described below. The mounting solution was from Molecular Probes.

Dilution of primary antibodies. 1:50: Notch1 ms (ab44986, Abcam)
1:100: Notch1 rb (ab52627, Abcam), NICD (ab8925, Abcam), Hes1 (ab71559,

Abcam), Pax6 (ab5790, Abcam), EEA1 (ab70521, Abcam), Dll1(ab76655, Abcam),
ATG16L1 (Cell Signalling)

1:200: ATG9 (ab108338, Abcam)
1:300: LC3 (clone 5F10, Nanotools)
1:500: Tbr1 (ab31940, Abcam), Tbr2 (ab23345, Abcam), Nestin (ab6142.

Abcam), 3b-tubulin (ab7751, Abcam)
1:800: AP2 (ab52222, Abcam)
The secondary antibodies Alexa 488, 568, 594 or 647 goat anti-mouse or goat

anti-rabbit were obtained from Molecular Probes and used at 1:500.
Imaging was conducted with LSM710 Zeiss confocal with 63� oil-immersion

lense. The colocalization was measured using Volocity software for Mander’s
coefficient.

Counting and quantification of vesicles. Single, double and triple positive
vesicles (stained for Notch1/LC3/ATG16L1/ATG9/EEA1) were quantified by
counting. The ratio of x-positive cells to total y-positive cells was formed.

Proximity ligation assay. HEK cells were starved for 2 h in HBSS or left in basal
state and proximity ligation assay was carried out according to the manufactorer’s
protocol (Sigma-Aldrich). Primary antibodies were used at the same concentration
and time as in the immunofluorescence.

Surface internalization assay. HEK cells were incubated on ice for 5 min and
then incubated with ms Notch1 antibody on ice for 15 min. After three PBS washes,
the cells were returned to a 37 �C incubator for 30 min. Then the cells were fixed by
adding 1:1 warm 2% PFA to the PBS. Cells were incubated for 10 min at 37 �C for
fixation and immunostaining, as described above. 1% BSA was used as the blocking
solution and the washes were carried out with 1� PBS. As a negative control, no
Notch1 antibody, but Alexa 488, was added.

Primary neuronal culture. All mouse experiments were performed under
appropriate Home Office Licences (Procedure Project Licence number: 80/2593).
For cortical cultures, embryos were harvested at E16.5. The neurons of two brains
can be distributed on one six-well plate. Wells were coated with poly-ornithine
(20 mg ml� 1). The embryos were taken out of the uterus with scissors and the
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heads were removed. Heads were washed 3–4 times in PBS/0.6% glucose, the brain
was removed and cut into two hemispheres, the meninges were carefully removed
in each semicortex and the the striatum was taken out. Then the cortex was
chopped into small pieces and transferred to 5 ml of PBS/0.6% glucose, and
homogenized by pipetting up and down through a fine glass pipette. The
suspension was left for 5 min to settle large clumps and the supernatant was
centrifuged for 5 min at 149g 4 �C. 24 ml media was added to the cell pellet and
1 ml per well was seeded. After 30 min, the media was replaced. Media was then
changed every 3 days. The cortical cells were used for experiments after 1 week of
culturing.

Brain lysates. 5-week-old wild-type BL6/BC122 or Atg16L1 hypomorph mice
(from Dr Herbert Virgin) were sacrificed. Half of the brain was homogenized in
1 ml of extraction buffer (0.5% Triton X-100, 50 mM Tris-HCl, 1� Protease
inhibitor) on ice with a glass hand-held homogenizer. The homogenate was
centrifuged for 10 min at 16,000g and 4 �C. The supernatant was recentrifuged
under the same conditions.

Umbilical cord perfusion of embryos. The embryos were taken out carefully,
without disconnecting them from the mother. 1� PBS was pumped into the
placenta of the embryo, followed by 4% PFA injection. After the blood was cleaned
out, the embryos were incubated in 4% PFA overnight.

Immunohistochemistry. Brains of 5 weeks old mice were obtained after perfusion
and sectioned in 10mm thin slices on þ P slides. Guts of same age mice were
isolated and incubated in 4% PFA overnight, following 30% sucrose incubation
before sectioning into 10 mm thin slices. After drying overnight at 37 �C and the
tissue was refixed with 4% PFA, permeabilized and blocked with 0.1% Triton-X in
3% goat serum for 1 h. The following steps follow the same protocol as for
immunofluorescence, except that the primary antibody was applied over night at
4 �C without shaking.

Dilution primary antibodies. 1:25: Notch1 (ab44986, Abcam)
1:50: BrdU (ab6326, Abcam)
1:100: NICD (ab8925, Abcam), Nestin (ab6142, Abcam)
1:250: Grem1 (SAB1301532, Sigma)
1:300: 3b-tubulin (ab31940, Abcam), Doublecortin (ab18723, Abcam)
The secondary antibodies Alexa 488, 568 goat anti-mouse or goat anti-rabbit

were obtained from Molecular Probes and used at 1:500 for 2 h.
Imaging was conducted with LSM710 Zeiss confocal with 20� air lense.

Image J quantification. For the measuring the intensity of the developmental
marker stainings in primary neurons, the fluorescence intensity was measured for
three fields from three images of one sample and the average was taken. The s.e.m.
was formed between the averages of the three independent experiments.
To determine the size of the neuronal regions in the wild-type and Atg16L1
hypomorph brain slices, the area of the 3b-tub and Dbx-positive region was
measured. The 3b-tub or Dbx positive area was divided by the DAPI-positive area
to normalize against the slice size. For the Nestin- (stem cell marker) positive brain
slices, the Nestin intensity over the whole slice was divided by the DAPI intensity
(Since Nestin staining does not mark a defined region). Five slices was included
into the measurement for each embryo. All data was analysed blinded.

DAPT drug treatment. Increasing concentrations of DAPT (Sigma) from 1 to
105 nM were added to cultures of E16.5 wild-type or Atg16L1 hypomorph primary
neurons 4 days after isolation and incubated for 2 days.

For the treatment of mice, 20 mg kg� 1 DAPT was subjected via intraperitoneal
injection once daily for 6 successive days. On day 6, the mice were also injected
with 50 mg kg� 1 BrdU and for 5 successive days with BrdU only. The mice were
perfused on day 12 and frozen sections cut. BrdU staining was carried out
according to the manufacturer’s protocol (Abcam).

Bone marrow extraction. 6 weeks old wild-type or Atg16L1 hypomorph mice
were sacrificed for bone marrow extraction. After the isolation of the femur and
tibia from the rest of the tissue, the ends of the bones were cut open and the bone
marrow was extracted by syringes containing PBS/2% FBS solution. The cells were
centrifuged at 21g at 4 �C, whereafter the supernatant was removed.

Flow cytometry. After 30 min of blocking with PBS/2%FBS solution, primary
antibodies were applied to the bone marrow cells for 45 min.

1.5:100: Sca1-phosphatidylethanolamine (122507, BioLegend), c-kit-APC-Cy7
(105825, BioLegend), Notch1 (ab52627, Abcam)

1:100: mouse HSC isolation cocktail (Stem cell technology)
Secondary antibody incubation was 15 min.
0.5:100: Streptavidin V500 (BD)
1:300: Alexa 488

Then 7AAD (life technologies) was added to the cells with a dilution of
(1:1,000). The samples were analysed with the Fortessa 4 Flow cytometer and the
graphs and statistics created with the program FlowJo.

The threshold for Notch1 was defined with the secondary staining-only
population, set for o98% of the distribution as the negative population. This
gating creates discrete valuables for the percentage of Notch1-positive cell in each
sample from six sets of experiments, each containing a pair of wild-type and
Atg16L1 hypomorph sample. The Atg16L1 hyp value was normalized against its
wild-type pair and the statistics was performed on the six sets of experiments.
For the discrete values a one-sample t-test was performed.

Statistics. Significance levels for comparisons between two groups were
determined with two-tailed t-test. *Pr0.05; **Pr0.01; ***Pr0.001. Error bars
represent s.e.m.

Full blot images. Full blot images are shown for important blots in Supplementary
Fig. 12.
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