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The chromosomal passenger complex (CPC)—composed of Aurora B kinase,

Borealin, Survivin and INCENP—surveys the fidelity of genome segregation

throughout cell division. The CPC has been proposed to prevent polyploidy by

controlling the final separation (known as abscission) of the two daughter cells

via regulation of the ESCRT-III CHMP4C component. The molecular details

are, however, still unclear. Using atomic force microscopy, we show that

CHMP4C binds to and remodels membranes in vitro. Borealin prevents

the association of CHMP4C with membranes, whereas Aurora B interferes

with CHMP4C’s membrane remodelling activity. Moreover, we show that

CHMP4C phosphorylation is not required for its assembly into spiral filaments

at the abscission site and that two distinctly localized pools of phosphorylated

CHMP4C exist during cytokinesis. We also characterized the CHMP4C interac-

tome in telophase cells and show that the centralspindlin complex associates

preferentially with unphosphorylated CHMP4C in cytokinesis. Our findings

indicate that gradual dephosphorylation of CHMP4C triggers a ‘relay’ mechan-

ism between the CPC and centralspindlin that regulates the timely distribution

and activation of CHMP4C for the execution of abscission.

1. Introduction
Cytokinesis is a rapid and robust process that ensures the faithful segregation of

genomic and cytoplasmic contents into the two nascent daughter cells at the end

of cell division. Failure in this final step of cell division leads to the formation of

polyploid cells and has been associated with several genetic diseases, including

cancer [1,2]. Cytokinesis progresses through a series of sequential steps orchestrated

by several proteins and protein complexes in a very precise order. After anaphase

onset, the mitotic spindle is reorganized into an array of antiparallel and interdigi-

tating microtubules, called the central spindle. The plus ends of central spindle

microtubules overlap in a region called the spindle midzone. Signals from the cen-

tral spindle and astral microtubules position the cleavage plane and trigger the

formation of an actomyosin contractile ring that drives the ingression of a cleavage

furrow [1]. Furrow ingression compacts central spindle microtubules and ultimately

forms an intercellular bridge, which contains at its centre an organelle, the midbody,

composed of several proteins and protein complexes responsible for the proper

execution and timing of abscission [3,4]. All these proteins display a very stereo-

typical arrangement at distinct regions of the midbody, which appears to be

crucial for the late stages of cytokinesis [3–6]. Various terms have been used to

describe the different regions of the midbody; in this paper, we use the terminol-

ogy of D’Avino & Capalbo [3]. In short, the midbody can be divided into two
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major regions: the ‘Flemming body’, which corresponds to the

central bulge of the midbody containing overlapping microtu-

bule plus ends and various central spindle and contractile ring

components, and the ‘midbody arms’, which represent the

regions flanking the Flemming body [3]. One protein complex

that plays a key role in the assembly and function of the mid-

body is the chromosomal passenger complex (CPC) [3,6,7].

This complex, composed of a kinase component, Aurora B,

the scaffolding subunit inner centromeric protein (INCENP),

Borealin and Survivin, also has a key role in surveying the

proper segregation of genomes throughout mitosis [8].

In early mitosis, the CPC is responsible for monitoring and

correcting the attachments of microtubules to kinetochores,

whereas later in cytokinesis it prevents the final abscission of

the two daughter cells in the presence of lagging chromatin

at the cleavage site, thereby avoiding the formation of geneti-

cally abnormal daughter cells [7,8]. The Snf7 component of

the endosomal sorting complex required for transport III

(ESCRT-III) has been identified as one the CPC’s targets in

abscission [9,10]. ESCRT proteins are evolutionarily conserved

and known for catalysing membrane fission events in several

topologically similar events such as abscission, virus budding

and the sorting of receptors into vesicles that bud into the

lumen of the endosome, creating multivesicular bodies

(MVBs) [11]. The ESCRT-III complex is the core machinery

that mediates membrane deformation and fission events

during these events [12], and Snf7 components (known as

CHMP4 proteins in humans) have been shown to form spiral

filaments that appear to remodel and constrict the membrane

in order to create the abscission site [13]. The CPC has been pro-

posed to regulate abscission timing through direct interaction

with the Snf7 components in both Drosophila and humans

[9,10]. In human cells, Borealin directly interacts with all

three CHMP4 paralogues, CHMP4A, CHMP4B and

CHMP4C, and Aurora B phosphorylates the terminal tail of

CHMP4C [9,10], a region known to regulate CHMP4C’s ability

to form polymers and associate with membranes [14]. Based on

this evidence, two different models have been proposed for the

regulation of CHMP4 proteins by the CPC. Carlton et al. [10]

proposed that Aurora B phosphorylation promotes CHMP4C

translocation to the midbody ring, where this ESCRT-III

component inhibits abscission. By contrast, we proposed

that CPC controls abscission through inhibition of CHMP4

polymerization and membrane association using two concur-

rent mechanisms: interaction of its Borealin component with

all three CHMP4 proteins and phosphorylation of CHMP4C

by Aurora B [9]. These two concomitant events could preclude

the formation of the ESCRT-III filaments essential for the for-

mation of the constriction that physically separates the two

daughter cells. In this model, CHMP4 proteins can assemble

into spiral filaments only after CPC removal from the midbody.

Overall, the CPC-mediated regulation of ESCRT-III has been

suggested to act as a surveillance mechanism that prevents

abscission in the presence of DNA at the cleavage site

[9,10,15]. However, molecular evidence in support of either

model is still lacking, and the mechanistic details of how the

CPC controls CHMP4 proteins in abscission are still unclear.

Here, we used atomic force microscopy (AFM) to show that

purified CHMP4C binds to highly curved membranes and pro-

motes the closure of membrane gaps. Interaction with Borealin

prevents the association of CHMP4C with membranes,

whereas Aurora B interferes with CHMP4C’s ability to close

membrane gaps. Furthermore, we show that two different
populations of Aurora B-phosphorylated CHMP4C exist,

with distinct localization patterns, and that Aurora B phos-

phorylation is not required for the assembly of CHMP4C

spiral filaments at the abscission site. Finally, we show that

CHMP4C interacts directly with the kinesin component of

the centralspindlin complex and that this interaction is

favoured in the absence of Aurora B phosphorylation. Our

findings support a model in which the CPC and centralspin-

dlin cooperate to regulate the activity and localization of

CHMP4C during cytokinesis.
2. Results
2.1. The ability of CHMP4C to bind to and remodel

membranes is regulated by the chromosomal
passenger complex

We previously showed that the Borealin central region (residues

110–207) interacts directly with the first 121 amino acids of

CHMP4C and that Aurora B phosphorylates this ESCRT-III sub-

unit at three serines in its C terminus: S210, S214 and S215 [9].

To investigate whether the CPC has any role in regulating the

ability of CHMP4C to associate with and remodel membranes,

we employed AFM, which has already been successfully used

to visualize the ESCRT-III machinery on supported lipid bilayers

at nanometre resolution [16]. On mica surfaces, without lipid

bilayers, CHMP4C alone was visualized as both single particles

and filaments (electronic supplementary material, figure S1a),

indicating that CHMP4C can form polymers in vitro. As Borealin

cannot be purified alone, we used in our experiments a purified

recombinant ‘CPC mini-complex’ (hereafter called mini-CPC),

composed only of Borealin, Survivin and the first 58 amino

acids of INCENP (thus lacking the phosphorylation module:

Aurora B and the INCENP activation segment) [17]. Notably,

the presence of Survivin and INCENP1–58 will not affect

our results because they both interact with the N-terminus of

Borealin [17], whereas CHMP4C binds to the Borealin central

region [9]. The mini-CPC often appeared as three-pearl strings

(electronic supplementary material, figure S1b), but when com-

bined with CHMP4C, large globular complexes were observed

and no CHMP4C filaments formed (electronic supplementary

material, figure S1c). These results indicate that binding of

CHMP4C to the mini-CPC prevents CHMP4C polymerization,

in agreement with our model [9]. On a lipid bilayer composed

of 70% L-a-phosphatidylcholine (PC), 15% 1,2-dioleoyl-sn-

glycero-phosphoethanolamine (DOPE) and 15% 1,2-dioleoyl-

sn-glycero-3-[phospho-L-serine] (DOPS), CHMP4C filaments

assembled specifically at highly curved membranes at the

edges of bilayer gaps (figure 1a–c). In addition, these filaments

appeared to promote the closure of membrane gaps over time

(figure 1d,n; see also electronic supplementary material, movie

S1). This behaviour is similar to that observed previously for

the C. elegans CHMP4B homologue [16], but in our system,

human CHMP4C did not require the presence of other ESCRT

proteins. We noted that the thickness of a plain bilayer was

measured at 4.28+0.13 nm (n¼ 5) (electronic supplementary

material, figure S2a), similar to what has been previously

reported [16], whereas the average apparent thickness of a bilayer

after incubation with CHMP4C was approximately 2 nm (elec-

tronic supplementary material, figure S2b). The decrease in the

measured thickness of the bilayer can be attributed mainly to
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Figure 1. (Overleaf.) The CPC affects the ability of CHMP4C to bind to and remodel membranes in vitro. (a) Schematic of a lipid bilayer (yellow) assembled on a mica surface
(brown). The central portion of the bilayer is flat, whereas the edges of the bilayer are highly curved. (b) Zoomed AFM image of a lipid bilayer incubated with CHMP4C. A height
bar is shown on the right. Scale bar, 20 nm. (c) Height relative to the mica surface is plotted along the dotted line shown in (b). The position of the arrowhead (at the bilayer
edge) along the line is also shown in (b), which is raised above the height of the bilayer surface, indicating the presence of protein. (d ) Sequential AFM images of the same lipid
bilayer in the presence of CHMP4C. A height bar is shown on the right. Scale bar, 200 nm. (e) Zoomed AFM image of a lipid bilayer incubated with CHMP4C þ mini-CPC. A
height bar is shown on the right. Scale bar, 50 nm. (f ) Height relative to the mica surface is plotted along the dotted line shown in (e). The position of the arrowhead (at the
bilayer edge) along the line is also shown in (e), which shows no rise at the bilayer edge, indicating no protein interaction with the bilayer but rather a concentration of protein
on the mica surface. (g) Sequential AFM images of the same lipid bilayer in the presence of CHMP4C þ mini-CPC. A height bar is shown on the right. Scale bar, 200 nm. (h)
Zoomed AFM image of a lipid bilayer incubated with CHMP4Cþ Aurora B þ ATP. A height bar is shown on the right. Scale bar, 50 nm. (i) Height relative to the mica surface is
plotted along the dotted line shown in (h). The position of the arrowhead (at the bilayer edge) along the line is also shown in (h), which is raised above the height of the bilayer
surface, indicating the presence of protein. ( j ) Sequential AFM images of the same lipid bilayer in the presence of CHMP4C þ Aurora B þ ATP. A height bar is shown on the
right. Scale bar, 200 nm. (k) Zoomed AFM image of a lipid bilayer incubated with CHMP4C and Aurora B. A height bar is shown on the right. Scale bar, 20 nm. (l ) Height relative
to the mica surface is plotted along the dotted line shown in (k). The position of the arrowhead (at the bilayer edge) along the line is also shown in (k), which is raised above the
height of the bilayer surface, indicating the presence of protein. (m) Sequential AFM images of the same supported lipid bilayer in the presence of CHMP4Cþ Aurora B. A
height bar is shown on the right. The arrows mark membrane gaps that started closing and then collapsed. Scale bar, 200 nm. (n) Variation in the percentage of the mica
surface coated with lipid bilayer in the presence of various proteins.
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the presence of protein or small lipid fragments in the membrane

gaps. Additionally, as the scanning usually continued over seve-

ral minutes and the membrane gaps began to close, there was a

progressive reduction in the measured bilayer thickness, indicat-

ing possible thinning/stretching of the bilayer. As expected, the

mini-CPC alone did not show any specific membrane association

or remodelling activity (data not shown). However, its presence

prevented the binding of CHMP4C to the edges of the bilayer

gaps and instead large globular complexes accumulated within

the gaps (figure 1e,f ). As a result, no membrane remodelling

occurred (figure 1g,n; see also electronic supplementary material,

movie S2). These results indicate that the interaction of Borealin

with CHMP4C impedes the association of this ESCRT-III com-

ponent with the membrane, exactly as predicted by our model

[9]. We then incubated CHMP4C with active recombinant

Aurora B and ATP to promote CHMP4C phosphorylation, and

then observed its behaviour on lipid bilayers. In these conditions,

CHMP4C was still able to associate with the highly curved mem-

brane at the edges of lipid bilayer gaps (figure 1h,i), but no

progressive gap closure was observed (figure 1j,n; see also elec-

tronic supplementary material, movie S3). Interestingly, after

incubating CHMP4C with Aurora B in the absence of ATP, we

observed that some membrane gaps began to close, but then col-

lapsed (figure 1m,n, arrows; see also electronic supplementary

material, movie S4). Together, these results indicate that Aurora

B phosphorylation inhibits the membrane remodelling activity

of CHMP4C, but not its association with highly curved mem-

branes. However, without its kinase activity Aurora B could

still partially interfere with CHMP4C activity, which is consist-

ent with the observation that recombinant Aurora B could pull

down CHMP4C from cell extracts [10], and with our in vitro
pull-down assays indicating that bacterially purified GST-

tagged Aurora B can interact with in vitro translated CHMP4C

(electronic supplementary material, figure S3).

2.2. Aurora B phosphorylation is not necessary for the
formation of CHMP4C spirals at the abscission site

To investigate the role of Aurora B phosphorylation on the ability

of CHMP4C to form polymers in vivo, we generated HeLa

cell lines stably expressing three different Flag-tagged

RNAi-resistant versions of CHMP4C: wild-type (WT), a non-

phosphorylatable mutant S210A and a mutant that cannot be

phosphorylated at any of these three serine residues, S210A,

S214A and S215A, dubbed ‘StripleA’. As our previous results
indicated that overexpression of all these CHMP4C proteins

caused an increase in cytokinesis failure [9], we generated several

independent monoclonal cell lines for each construct and specifi-

cally selected those that did not show a major increase in the

number of multinucleate cells (electronic supplementary

material, figure S4). All these Flag::CHMP4C proteins localized

to the Flemming body and were able to form spiral filaments at

the abscission site (figure 2a–c), indicating that preventing

phosphorylation of these residues by Aurora B did not affect

CHMP4C polymerization and its association with membranes,

in complete agreement with our findings in vitro (see §2.1).

Consistent with this, abscission was not impaired in these cell

lines (data not shown). Interestingly, we found that while

Flag::CHMP4C proteins always formed acontinuous spiral struc-

ture that extended from the midbody core to the constriction zone

(figure 2a–d), CHMP4B showed two distinct localizations, at the

Flemming body and at the constriction zone (figure 2d),

suggesting that different CHMP4 proteins might play distinct

roles during abscission.

2.3. Two populations of Aurora B-phosphorylated
CHMP4C exist with distinct localization patterns
during cytokinesis

Our previous data indicated that phosphomimetic CHMP4C

mutants did not behave differently from their phosphodead

counterparts with respect to their localization and effect

on cytokinesis [9], suggesting that they do not reflect the

localization and function of phosphorylated CHMP4C. There-

fore, to elucidate the role of CHMP4C phosphorylation by

Aurora B in cells, we generated two CHMP4C phospho-

specific antibodies: one that specifically recognized the form

phosphorylated at all three residues, S210, S214 and S215

(tri-phospho) [9], and another specific for the form phosphory-

lated only at S210 (mono-phospho). These antibodies were

extensively validated to show that they recognize only their

specific phosphorylated variant (electronic supplementary

material, figure S5) [9] and that their signals disappear after

depletion of CHMP4C (3). These phospho antibodies dis-

played different localization patterns during cytokinesis. We

found that in metaphase, the tri-phospho CHMP4C antibody

accumulated at the plus ends of kinetochore microtubules

(electronic supplementary material, figure S6). A signal was

also observed on centrosomes, but was not specific because it
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did not disappear after CHMP4C depletion (electronic sup-

plementary material, figure S6 and data not shown). After

anaphase onset, tri-phospho CHMP4C localized to the spindle

midzone in early telophase, accumulated at the midbody arms

after furrow ingression, and then disappeared in late telophase

after the ‘bow tie’ stage (figure 3a) [1,3]. This spatial and tem-

poral localization pattern during cytokinesis matches exactly

that of the CPC, and indeed, tri-phospho CHMP4C and

Aurora B perfectly co-localized during telophase (figure 3b).

By contrast, mono-phospho CHMP4C did not show any

specific staining before anaphase onset (data not shown), but

localized to the spindle midzone in early telophase and then

specifically accumulated at the Flemming body, where it per-

sisted throughout cytokinesis until abscission, even after the

CPC disappeared (figure 3d,e). Immunostaining on isolated

midbodies confirmed that tri-phospho CHMP4C accumulated

at the midbody arms, whereas mono-phospho CHMP4C

formed a ring around the Flemming body (figure 3a,d ). The

signals of the two antibodies were specific for CHMP4C

because they disappeared after its depletion (figure 3c,f ).
The perfect co-localization of tri-phospho CHMP4C with

the CPC in cytokinesis and the direct interaction between

CHMP4C and two CPC components, Borealin and Aurora B

(electronic supplementary material, figure S2) [9,10], sug-

gested that the localization of this phosphorylated variant

of CHMP4C could depend on the CPC. To investigate the

role of the CPC in CHMP4C localization in cytokinesis, we

prevented the translocation of this complex to the spindle
midzone by depleting the kinesin KIF20A/MKLP2 [18]. No

accumulation of tri-phospho CHMP4C at the midbody arms

was observed after KIF20A RNAi (figure 4a), while only a

slight reduction of the mono-phospho CHMP4C signal was

observed, which was not statistically significant (figure 4b,c).

To determine whether tri-phospho CHMP4C localization

required the whole CPC or just Aurora B, we tested if a chi-

maera composed of the microtubule binding domain of the

spindle midzone protein PRC1 coupled with an Aurora B

kinase module (dubbed Baronase and comprising a truncated

form of Aurora B and the INCENP activating region) [19] could

rescue tri-phospho CHMP4C localization after KIF20A

depletion. No accumulation of tri-phospho CHMP4C at the

midbody arms was observed after KIF20A depletion in cells

expressing the PRC1::Baronase chimaera (figure 4d), indicating

that the localization of this phosphorylated CHMP4C variant

to the midbody arms requires the whole CPC and probably

its interaction with Borealin.

Together, these results indicate that at least two distinct

populations of phosphorylated CHMP4C exist: one pool is

phosphorylated at all three serine residues (S210, S214 and

S215) at the midbody arms where Aurora B activity is high,

whereas the other is phosphorylated only at S210—the stron-

gest phosphorylation site—at the midbody ring, more distant

from Aurora B activity. In addition, they also suggest that the

localization of tri-phospho CHMP4C at the midbody arms

requires the whole CPC and that dephosphorylation at S214

and S215, rather than phosphorylation at S210, may trigger
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tri-phospho CHMP4C (red), tubulin (green) and DNA (blue). Insets show two times magnification of the midbody. Scale bars, 10 mm. At the bottom, midbodies
were purified form HeLa Kyoto cells and fixed and stained to detect tri-phospho CHMP4C (green) and tubulin (red). Scale bar, 5 mm. (b) HeLa Kyoto cells were fixed
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times magnification of the midbody. Scale bars, 10 mm. ( f ) HeLa Kyoto cells were treated with siRNAs directed against either a random sequence (control) or
CHMP4C twice at a 48 h interval and after 96 h fixed and stained to detect mono-phospho CHMP4C (red), tubulin (green) and DNA (blue). Insets show a two times
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as described [1,3].
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CHMP4C translocation to the midbody ring. It is also note-

worthy that neither of the two CHMP4C phospho-antibodies

identified the spiral-like structures observed with Flag-

tagged CHMP4C proteins, suggesting that phosphorylated

CHMP4C is not present in these spiral filaments, which have

been proposed to mediate abscission.

Our findings therefore reveal that Aurora B phosphoryl-

ation regulates CHMP4C localization, but not its ability to

polymerize and form spiral filaments at the abscission site

in cytokinesis.

2.4. The centralspindlin complex associates
preferentially with the low- and unphosphorylated
forms of CHMP4C during cytokinesis

The localization of Flag-CHMP4C and mono-phospho

CHMP4C to the Flemming body and the requirement of the

CPC only for the localization of tri-phospho CHMP4C

suggested that other factors might be involved in the dynamic
distribution of this ESCRT-III component during cytokinesis.

To examine this, we employed our HeLa cell line expressing

Flag::CHMP4C (WT) to isolate proteins that associate with

CHMP4C during cytokinesis by affinity purification coupled

with mass spectrometry (AP-MS). We isolated a total of 693

proteins that were specifically pulled down by Flag::CHMP4C,

but not by Flag alone, in HeLa cells synchronized in telophase

(figure 5a; electronic supplementary material, table S1).

Among the isolated proteins, we found, as expected, some

previously identified interactors, such as CHMP4B, ALIX

(ALG2-interacting protein X, also known as programmed cell

death 6 interacting protein, PDCD6IP), and three of the four

CPC components—Aurora B, Borealin and INCENP—but

also some novel partners, including the two components of

the centralspindlin complex, KIF23/MKLP1 and MgcRac-

GAP/RacGAP1 (figure 5b; electronic supplementary

material, table S1). Centralspindlin is known to play many

essential roles during cytokinesis [20,21], including recruit-

ing the protein Cep55 to the midbody [22], which, in turn,

has been reported to be necessary for the recruitment of

http://rsob.royalsocietypublishing.org/
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CHMP4C via the intermediate ALIX [23]. Unexpectedly, Cep55

was not identified in our AP-MS purification, although it is

possible that this was simply because of MS limitations. Con-

sistent with the AP-MS findings, we found that MKLP1 co-

localized with Flag::CHMP4C and mono-phospho CHMP4C,

but not tri-phospho CHMP4C, at the Flemming body in late

cytokinesis (figure 5c–e). Furthermore, to confirm the inter-

action between CHMP4C and centralspindlin in vivo we

performed a reciprocal pull-down experiment by transfecting

a monoclonal HeLa cell line stably expressing MKLP1::GFP

[24] with Flag::CHMP4C-WT, Flag::CHMP4C-S210A and

Flag::CHMP4C-StripleA. Immunoprecipitations using GFP

nanobodies indicated that, in synchronized telophase cells,

MKLP1::GFP pulled down Flag::CHMP4C-StripleA more effi-

ciently than the other two Flag::CHMP4C proteins (figure 5f ).

Together, these results suggest that, in telophase cells, cen-

tralspindlin associates preferentially with the low- and

unphosphorylated forms of CHMP4C.
2.5. MKLP1 binds directly to CHMP4C and is required
for its localization to the midbody

To assess whether MKLP1 could directly bind to CHMP4C,

we purified recombinant MKLP1 fragments tagged with gluta-

thione-S-transferase (GST) from bacteria and tested their

ability to pull down in vitro translated and radiolabelled

CHMP4C polypeptides (figure 6a). The N-terminal basic half
of CHMP4C, which contains the first two a-helices (aa 1–121),

was pulled down very efficiently by the MKLP1 central region

containing the coiled coil domain (aa 437–619), and less effi-

ciently by an MKLP1 polypeptide encompassing part of the

coiled coil domain and the whole tail region (aa 590–856;

figure 6b). No interaction was observed between any MKLP1

fragment and the C-terminal half of CHMP4C (figure 6b). Reci-

procal pull-down assays using GST-tagged CHMP4C fragments

confirmed a strong interaction between the N-terminal half of

CHMP4C and the C-terminal region of MKLP1 (figure 6c).

We then investigated whether MKLP1 was required for the

localization of CHMP4C during cytokinesis. Tri-phospho and

mono-phospho CHMP4C did not accumulate at the central

spindle in MKLP1 siRNA mid-telophase cells (figure 6d,e),
suggesting that centralspindlin is necessary for the localization

of CHMP4C. However, as already known, microtubules failed

to assemble into a robust and organized central spindle after

MKLP1 depletion (figure 6d,e), raising the possibility that the

absence of CHMP4C at the central spindle could be a secondary,

indirect effect. In the few MKLP1 RNAi cells that managed

to complete furrow ingression, tri-phospho CHMP4C persisted

much longer than in control cells, although it failed to form

two distinct bands (figure 6d). By contrast, in these late telophase

MKLP1 RNAi cells, mono-phospho CHMP4C was either absent

or failed to form a ring or disc-like structure, its localization

appearing similar to that of tri-phospho CHMP4C (figure 6e).
To conclude, our results indicate that MKLP1 interacts

directly with the N-terminus of CHMP4C and that this kinesin
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seems necessary for the proper localization of CHMP4C,

and in particular for the timely disappearance of tri-phospho

CHMP4C and accumulation and correct distribution of

mono-phospho CHMP4C in late cytokinesis (figure 6d,e).
3. Discussion
The identification of the CPC as a key factor in surveying

abscission in eukaryotes [15,25] and the discovery of the

ESCRT-III CHMP4 components as its possible targets in this

process [9,10] have begun to unravel some of the mechanisms

that regulate the fidelity and timing of the final separation of

the two daughter cells during cytokinesis. However, the
molecular details are still missing, and our study provides

novel crucial insights into this process.

First, our results strongly support and expand our pre-

vious model, which posited that the CPC could control the

ability of CHMP4C to polymerize and interact with mem-

branes using two concurrent mechanisms [9]. Consistent

with our hypothesis, AFM results clearly demonstrated that

the presence of a minimal CPC complex, without Aurora B,

precluded the interaction of CHMP4C with membranes,

whereas Aurora B phosphorylation interfered solely with

CHMP4C’s membrane remodelling activity (figure 1). Inter-

estingly, Aurora B could also partially inhibit CHMP4C in

the absence of its kinase activity, which adds a further level

of control of CHMP4C by the CPC.
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Second, it is noteworthy that our AFM results also prove,

for the first time, that a single CHMP4 protein has the ability

to bind to and remodel membranes in vitro in the absence of

any other ESCRT-III component (figure 1). Our result,

together with the observations that CHMP4C accumulates

at the cleavage site earlier than other CHMP4 paralogues

(figure 3) [10] and is able to assemble into a continuous

spiral structure in abscission (figure 2), highlights the unique-

ness of CHMP4C. It may also explain why this CHMP4

paralogue is the only one tightly controlled by the CPC via

Aurora B phosphorylation [9,10].

Finally, our study identifies two pools of phosphorylated

CHMP4C with distinct spatial and temporal localization pat-

terns that appear to depend on their interaction with either

the CPC or centralspindlin. Together, our data indicate

that centralspindlin in vivo associates preferentially with the

low- and unphosphorylated forms of CHMP4C, whereas

the localization of tri-phospho CHMP4C to the midbody

arms depends primarily on the CPC (figures 3–5). Based on

these results, we would like to propose that a ‘relay’ mechan-

ism between the CPC and centralspindlin could control the

translocation of CHMP4C from the midbody arms to the Flem-

ming body at the end of cytokinesis (figure 7). In this model, at

the metaphase–anaphase transition—when Aurora B activity

is high and the activity of counteracting phosphatases is

low—CHMP4C is bound to the CPC (through its interaction

with Borealin) and phosphorylated at all three serine residues

by Aurora B. During telophase, the combined increase in phos-

phatase activity and gradual degradation of the CPC would

lead to the progressive de-phosphorylation of CHMP4C,

removing first the phosphates at S214 and S215 and then at

S210. These changes would release CHMP4C from its associ-

ation with the CPC and promote its interaction with

centralspindlin, causing the translocation of this ESCRT-III

component from the midbody arms to the Flemming body,

in preparation for abscission (figure 7).

In sum, our findings indicate that CHMP4C plays an

active role in membrane deformation during abscission and

that its activity and localization are finely regulated by both

the CPC and centralspindlin. They do not support the
hypothesis that CHMP4C could act as a ‘brake’ by preventing

the assembly of a productive ESCRT-III abscission complex

[10]. However, the data reported by Carlton et al. [10], that

CHMP4C depletion induces premature abscission and

that Aurora B phosphorylation regulates CHMP4C during

abscission, are compatible with our model. Some questions,

however, remain unanswered. For example, why did mono-

phospho CHMP4C not disappear after preventing the

translocation of the CPC to the central spindle and persisted

after degradation of the CPC (figures 3 and 4)? One possi-

bility is that phosphorylation at S210 could somehow be

protected from the action of phosphatases. Alternatively,

CHMP4C could be phosphorylated at S210 also by other

kinases that have been described to target ESCRT-III subunits

in cytokinesis [26–28]. The identification of the phospha-

tase(s) that dephosphorylate CHMP4C in late cytokinesis

will be important to further confirm and clarify our model.

Recent studies have indicated that members of the PP2A

family antagonize Aurora B phosphorylation in both meta-

phase and telophase [29–31]. The catalytic (PP2CA) and

regulatory subunit A (PPP2R1A) of PP2A were identified in

our AP-MS experiment (electronic supplementary material,

table S1), thus making this phosphatase a very strong candi-

date. However, the catalytic (PPP1CA) and regulatory

(PPP1R12A) subunits of the PP1 family were also found (elec-

tronic supplementary material, table S1). As PP1 phosphatases

have also been shown to antagonize Aurora kinases [32], future

investigations are required to fully understand the role of

different phosphatases in CHMP4C regulation.

The evidence that MKLP1 interacts with the N-terminal

half of CHMP4C, which is known to be required for

CHMP4C polymerization and association with membranes

[14], suggests that MKLP1 is likely to have the same inhibitory

activity as Borealin. This raises the important question of what

could be the signal that triggers the release of CHMP4C from

MKLP1 and its assembly into the spiral filaments that promote

abscission. As a lag exists between the disappearance of the

CPC and the formation of CHMP4C spirals in normal con-

ditions (figures 3 and 4) [3,7], we speculate that other signals

probably exist in addition to the gradual degradation and
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inactivation of the CPC. A simple hypothesis could be that

CHMP4C release requires the presence of one or more factors

that are recruited to the midbody later, just before abscission.

Two such factors could be CHMP4B—which has been

described to localize to the midbody immediately before

abscission [10]—and Cep55, whose interaction with MKLP1

is inhibited by Plk1 phosphorylation until late in cytokinesis

[33]. Other proteins known to interact with CHMP4C during

cytokinesis, such as ALIX, ANCHR and Vps4 [23,34,35],

could also be involved, and future studies will be necessary

to integrate all these factors into a comprehensive mechanistic

model for ESCRT-mediated abscission.
en
Biol.6:160248
4. Material and methods
4.1. Molecular biology and protein expression
Plasmids harbouring CHMP4C non-phosphorylatable

mutants have been described previously [9]. The open reading

frame (ORF) encoding CHMP4C was amplified by PCR using

Accuprime polymerase (Invitrogen) and primers containing

attB flanking sequences for Gateway technology. The PCR

product was purified and introduced into a pDONR221 plas-

mid (Invitrogen) to generate CHMP4C entry vectors. Then, to

generate siRNAi-resistant CHMP4C WT and mutant variants,

QuikChange lightning site-directed mutagenesis kit was used

(Agilent Technologies). Expression vectors for siRNA resistant

Flag::CHMP4C-WT and mutant variants were generated,

using recombination with pCMV-Tet02-NtermMycFlag

destination vector.

For purification of recombinant CHMP4C, its full-length

ORF was cloned into a pET-His6-msfGFP cloning vector

(Addgene) as a TEV-cleavable His-tagged protein. The pET-

His6-msfGFP-CHMP4C vector wastransformed into Escherichia
coli BL21 Gold competent cells and grown at 378C in Super

Broth-medium containing ampicillin until OD600 reached

1. The culture was induced overnight at 188C with IPTG at a

final concentration of 0.35 mM. Cells were resuspended in a

lysis buffer (20 mM Tris–HCl pH 8, 750 mM NaCl, 35 mM imi-

dazole and 2 mM 2-mercaptoethanol) and lysed by sonication.

The His6-GFP::CHMP4C protein was purified by affinity

chromatography using a Ni-NTA column (GE Healthcare).

The protein-bound column was washed with lysis buffer fol-

lowed by 20 mM Tris–HCl pH 8, 1000 mM NaCl, 50 mM KCl,

10 mM MgCl2, 2 mM ATP, 35 mM imidazole and 2 mM 2-mer-

captoethanol. The protein was eluted with 20 mM Tris–HCl pH

8, 750 mM NaCl, 400 mM imidazole and 2 mM 2-mercaptoetha-

nol. The pooled eluted fractions were dialysed overnight against

20 mM Tris–HCl pH 8, 750 mM NaCl and 2 mM DTT while

cleaving with 500 mg of TEV. Concentrated protein was

loaded onto a Superdex 200 increase column (GE Healthcare)

equilibrated with 20 mM Tris–HCl pH 8, 200 mM NaCl and

2 mM DTT. The purity of the sample was analysed by 15%

SDS–PAGE stained with Coomassie blue.

A similar procedure was used to purify the CPC mini-

complex (Survivin full-length, Borealin full-length and

INCENP 1–57). Borealin was cloned as a TEV-cleavable His-

tagged protein in a pETM vector, Survivin as a 3C-cleavable

GFP-tagged protein in a pRSET vector (Thermo Fisher) and

INCENP 1–57 as an untagged protein in a pMCNcs vector.

Proteins were co-expressed in BL21 pLysS with an overnight

induction at 188C. Cells were lysed in 25 mM HEPES pH 7.5,
500 mM NaCl, 25 mM imidazole and 2 mM 2-mercaptoetha-

nol and complex purified by affinity chromatography

followed by size exclusion chromatography as above.

4.2. Atomic force microscopy
AFM imaging was performed using a Bruker dimension Fast-

Scan instrument. All imaging was conducted under fluid,

using FastScan D cantilevers (Bruker). Their resonant frequen-

cies under fluid were 110–140 kHz, and the actual scanning

frequencies were approximately 5% below the maximal reson-

ance peak. Lipid mixtures containing 70% PC, 15% DOPE and

15% DOPS were dried under nitrogen and hydrated in Biotech-

nology performance-certified water overnight. Suspensions

were probe-sonicated at an amplitude of 10 mA until the mix-

ture became transparent. Liposomes were incubated in the

presence or absence of proteins for 30 min and then placed

on freshly cleaved mica. In each case, 40 ml of the liposome mix-

ture and an equal volume of buffer (20 mM Tris, pH 8, 100 mM

NaCl and 1 mM MgCl2) were applied to the mica surface. The

mica was washed three times with the same buffer and placed

in the fluid cell of the atomic force microscope. The assembled

lipid bilayer was immersed in 150 ml of buffer, and all imaging

was performed at room temperature. AFM images were

acquired at a rate of four frames per minute and plane-fitted

to remove tilt. Each scan line was fitted to a first-order equation.

CHMP4C was phosphorylated in vitro using recombinant

Aurora B (Life Technologies). The assay contained kinase

buffer (20 mM HEPES pH 7.5, 5 mM MgCl2, 1 mM DTT,

0.1 mM cold ATP) and with or without 190 ng of recombi-

nant AuroraB (Life Technologies). Reactions were incubated

at 308C for 30 min, before incubation with lipids for a further

30 min.

4.3. Cell culture, siRNA transfection, drug treatments
and generation of stable cell lines

Cell lines stably expressing Flag alone and Flag::CHMP4C

constructs were generated by plating 2� 106 HeLa Kyoto cells

in a 100 mm culture dish and transfecting with 19 mg of the

appropriate DNA, using FuGENE HD transfection reagent

(Promega) for 48 h. Cells were subsequently washed with phos-

phate-buffered saline (PBS) and cultured in complete selective

medium containing 0.4 mg ml21 puromycin for approximately

two weeks until colonies became visible. Individual colonies

were picked, cultured under resistance and tested for expression

of the construct by western blot and immunofluorescence.

HeLa Kyoto cells expressing the PRC1::Baronase chi-

maera were a gift of F. Barr (University of Oxford) and

were maintained in DMEM (Invitrogen) containing 10%

fetal bovine serum (FBS, Sigma) and 1% penicillin/strepto-

mycin (Invitrogen) at 378C and 5% CO2. To express the

PRC1::Baronase construct, cells were treated with 1 mg ml21

doxycycline for 10 h. The MKLP1::GFP cell line was a gift

of M. Mishima (University of Warwick) [24].

For RNA interference, the following siRNAs were used:

scrambled sequence control: 50-AACGTACGCGGAATACT

TCGA-30;

CHMP4C: 50-CTCACTCAGATTGATGGCACA-30;

KIF20A/MKLP2: 50-AACCACCTATGTAATCTCATG-30;

KIF23/MKLP1: 50-GCAGUCUUCCAGGUCAUCU-30.
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Cells were transfected using lipofectamine RNAiMAX

(Invitrogen) following the manufacturer’s instructions.

4.5. Antibodies
CHMP4C phospho-specific antibodies were raised in rabbits

against synthetic CHMP4C peptides encompassing residues

206–220 (TARRSRAASSQRAEEC) and containing either a

phosphorylated serine at position S210 (TARRpSRAASSQ-

RAEEC; mono-phospho CHMP4C) or phosphorylated

serines at position S210, S214 and S215 (TARRpSRAApSpSQ-

RAEEC; triphospho CHMP4C). Sera were first eluted

through a column containing a non-phosphorylated peptide,

and then each antibody was affinity purified using the appro-

priate phosphopeptide. Peptide synthesis, conjugation, rabbit

immunizations, serum production and affinity purification

were carried out by Generon, UK.

Other antibodies used in this study were: mouse mono-

clonal anti a-tubulin (clone DM1A, Sigma, T9026), chicken

polyclonal anti-a-tubulin (Abcam, ab89984), mouse mono-

clonal anti-Flag (clone M2, Sigma, F3165), rabbit polyclonal

anti-Aurora B (Abcam, ab2254), mouse monoclonal anti-

Borealin (clone 1D11-MLB Life Science M147-3), rabbit

polyclonal anti-KIF23/MKLP1 (clone N19, Santa Cruz

Biotechnology, sc-867), rabbit polyclonal anti-CHMP4B, a

gift of Sagona & Stenmark [36]. Peroxidase- and Alexa-fluor-

conjugated secondary antibodies were purchased from Jackson

Laboratories and Thermo, respectively.

4.6. Fluorescence microscopy
HeLa cells were grown on glass coverslips (Menzel-Gläser),

fixed in ice-cold methanol for 10 min, washed three times for

10 min with PBS and incubated in blocking buffer (PBS, 0.5%

[v/v] Triton X-100 and 1% [w/v] BSA) for 1 h at RT. Coverslips

were then incubated overnight at 48C with the primary anti-

bodies, diluted in PBT (PBS, 0.1% [v/v] Triton X-100 and 1%

[w/v] BSA). The following day, coverslips were washed

twice for 5 min in PBT, incubated with secondary antibodies

diluted in PBT for 2 h at RT and then washed twice with PBT

and once with PBS. Coverslips were mounted on SuperFrost

Microscope Slides (VWR) using Vectashield Mounting

Medium containing DAPI (Vector Laboratories). Phenotypes

were scored blind and by at least two people independently.

Midbodies were purified form HeLa Kyoto cells as

described previously [6,9].

The intensity of mono-CHMP4C fluorescence at midbo-

dies was calculated using the formula: mono-CHMP4C

fluorescence ¼ (ICF2 IC)/IC, where ICF is the fluorescence

intensity at the midbodies and IC represents the background

intensity measured within an identical area inside the cyto-

plasm; more than 50 midbodies from at least three separate

experiments were analysed. p-values were calculated using

Student’s t-test.

4.7. Affinity purification and mass spectrometry
Cells (4 � 107) expressing Flag::CHMP4C WT were synchro-

nized in telophase by a thymidine-nocodazole block-and-

release procedure. They were first arrested in S phase by

adding 2 mM thymidine (Sigma-Aldrich) for 19 h, washed

twice with PBS and released for 5 h in fresh complete

medium. After release, cells were cultured for an additional
13 h in fresh complete medium containing 50 ng ml21 nocoda-

zole (Sigma-Aldrich) and then harvested by mitotic shake-off.

Mitotic cells were washed three times with PBS, released in

fresh medium for 1.5 h and incubated for a further 15 min

with the CDK1 inhibitor RO3306 (Calbiochem) at a final

concentration of 10 mM. Cells were then harvested by centrifu-

gation and frozen in liquid nitrogen. The cell pellet was

resuspended in 5 ml of extraction buffer (50 mM HEPES pH

7.5, 100 mM KAc, 150 mM NaCl, 2 mM MgCl2, 1 mM EGTA,

0.5% [v/v] NP-40, 1 mM DTT, 5% [v/v] glycerol and Roche

Complete Protease Inhibitors) and homogenized using a

high-performance disperser (Fisher). The homogenate was

clarified by centrifugation at 750g for 20 min at 48C, and the

supernatant was incubated with 200 ml of anti-Flag M2 mag-

netic beads (Sigma-Aldrich) for 2–4 h on a rotating wheel at

48C. Beads were then washed four times in 10 ml of extraction

buffer for 5 min on a rotating wheel, transferred to a new tube

and washed one more time in 10 ml of PBS. Proteins were

eluted from beads with 0.5 M NH4OH and 0.5 mM EDTA, con-

centrated, acetone precipitated and analysed by LC–MS/MS.

For the identification of CHMP4C interactors, the raw

MS data were analysed using the MASCOT search engine

(http://www.matrixscience.com). Peptides were searched

against the UniProt human sequence database, and the follow-

ing search parameters were employed: enzyme specificity was

set to trypsin, a maximum of two missed cleavages were

allowed, carbamidomethylation (Cys) was set as a fixed modi-

fication, while oxidation (Met), phosphorylation (Ser, Thr and

Tyr) and ubiquitylation (Lys) were considered as variable

modifications. Peptide and MS/MS tolerances were set to

25 parts per million (ppm) and 0.8 Da, respectively.

4.8. GFP pull-down assay
Cells stably expressing MKLP1::GFP (a gift from M. Mishima,

University of Warwick, UK) were transfected with plasmids

encoding Flag-tagged CHMP4C-WT or the two mutant var-

iants S210A and STripleA and synchronized in telophase as

described in the previous section. Cells were then collected

and stored at 2808C. The cell pellet was resuspended in

0.5 ml of extraction buffer (50 mM HEPES pH 7.5, 100 mM

KAc, 50 mM KCl, 2 mM MgCl2, 2 mM EGTA, 0.1% NP-40,

5 mM DTT, 5% glycerol and Roche Complete Protease Inhibi-

tors) and homogenized using a high-performance disperser

(Fisher). Homogenates were centrifuged at 2000 r.p.m. at 48C
in an Eppendorf 5417R centrifuge for 10 min and supernatants

transferred into new tubes. GFP-Trap-MADynabeads (25 ml;

Chromotek) was added to the supernatants and incubated

for 2 h on a rotating wheel at 48C. Beads were then washed

five times for 5 min in 0.5 ml of extraction buffer. Proteins

were eluted from beads with 0.5 ml of elution buffer (0.5 M

NH4OH and 0.5 mM EDTA pH 8.0), lyophilized and resus-

pended in Laemmli SDS–PAGE sample buffer (Sigma) and

boiled for 10 min. Proteins were separated on an SDS–PAGE

gel, transferred onto a PVDF membrane and probed to detect

GFP and Flag antibodies.

4.9. In vitro binding assay
DNA fragments coding for CHMP4C and MKLP1 fragments

were generated by PCR and cloned into pDEST15 (Thermo),

using Gateway technology to express N-terminal GST-tagged

polypeptides in E. coli. The GST-tagged products were then

http://www.matrixscience.com
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purified, using glutathione sepharose 4B according to manufac-

turer’s instruction (GE Healthcare). [35S] Methionine-labelled

CHMP4C and MKLP1 polypeptides were prepared from corre-

sponding PCR products amplified, using primers harbouring a

T7 promoter and then transcribed and translated in vitro using

the TnT T7 Quick Coupled Transcription/Translation System

(Promega) in the presence of [35S] methionine (Perkin Elmer).

The binding reaction contained 150 mM NaCl and subsequent

washes varied from 150 mM to 1 M NaCl. GST pull down

assays were carried out as described previously [37].
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