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Abstract 19 

The environmental evaluation of food waste prevention is considered a 20 

challenging task due to the globalised nature of the food supply chain and the 21 

limitations of existing evaluation tools. The most significant of these is the rebound 22 

effect: the associated environmental burdens of substitutive consumption that arises 23 

as a result of economic savings made from food waste prevention. This study 24 

introduces a holistic approach to addressing these challenges, with a focus on 25 

greenhouse gas (GHG) emissions from household food waste in the UK. It uses a 26 

hybrid life-cycle assessment model coupled with a highly detailed multi-regional 27 

environmentally extended input output analysis to capture environmental impacts 28 

across the global food supply chain. The study also takes into consideration the 29 

rebound effect, which was modeled using a linear specification of an almost ideal 30 

demand system. 31 

The study finds that food waste prevention could lead to substantial reductions in 32 

GHG emissions in the order of 706 to 896 kg CO2-eq. per tonne of food waste, with 33 

most of these savings (78%) occurring as a result of avoided food production 34 

overseas. The rebound effect may however reduce such GHG savings by up to 80%. 35 

These findings provide a deeper insight into our understanding of the environmental 36 

impacts of food waste prevention: the study demonstrates the need to adopt a 37 

holistic approach when developing food waste prevention policies in order to 38 

mitigate the rebound effect and highlight the importance of increasing efficiency 39 

across the global food supply chain, particularly in developing countries. 40 

 41 

Words count: 229 42 

 43 



4 
 

1 Introduction 44 

One third of food produced across the globe is thrown away uneaten, and this waste 45 

has a large associated environmental burden (IMechE, 2013). Food waste is 46 

responsible for 3.3 Bt-CO2-eq. yr-1, rendering it equivalent to the world’s third largest 47 

emitter of carbon after the economies of China and USA (FAO, 2013). In order to 48 

reduce the environmental impact of food waste, the food waste hierarchy has been 49 

adopted in various forms across different countries, providing guidelines on which 50 

disposal technologies are most preferable (Papargyropoulou et al., 2014). 51 

Food waste prevention, situated at the top of the food waste hierarchy, is 52 

considered to be the most environmentally favorable management option 53 

(Papargyropoulou et al., 2014). According to a study published by the European 54 

Commission, approximately 44Mt CO2-eq. yr-1 could be avoided by the introduction 55 

of  a 20% food waste reduction target (EC, 2014). This finding supports the 56 

conclusions of other studies that have highlighted the significant environmental 57 

benefits of avoiding food waste (Bernstad and Andersson, 2015; Gentil et al., 2011; 58 

Martinez-Sanchez, 2016). Nevertheless, reported results are subject to a high level of 59 

uncertainty; the reported greenhouse gas (GHG) emissions savings vary widely, 60 

ranging from 800 to 4400 kg CO2-eq. per tonne of food waste (Bernstad and 61 

Cánovas, 2015). These variations in literature arise largely due to methodological 62 

choices: most studies rely entirely on life cycle assessment approaches, do not 63 

consider food imports, and ignore rebound effects. We discuss these three 64 

methodological challenges before introducing a new holistic modeling approach to 65 

addressing them. 66 

Firstly, the majority of studies adopt a conventional process-based Life Cycle 67 

Assessment (LCA) approach (Table 1). Excluding Martinez-Sanchez et al's study 68 

(2016), all of the reviewed studies adopt a bottom-up LCA approach, and hence 69 

inherit the widely-discussed limitations of LCA such as system boundary cut-offs, 70 

data inconsistencies, study-specific scenarios and assumptions (Bernstad and la Cour 71 

Jansen, 2012; Laurent et al., 2014a, 2014b). These limitations, coupled with the 72 

multi-faceted nature of food waste, make the environmental evaluation of food 73 
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waste prevention practices an arduous task. LCA-based studies are generally 74 

product-specific and do not consider variations within the same food category due 75 

to differences in the source of food products (e.g., imported vs locally produced), 76 

food production systems (e.g., wild caught vs aquaculture fish), and the quality of 77 

food products (e.g., conventional vs organic) (Audsley et al., 2009; Bernstad and 78 

Cánovas, 2015; Chapagain and James, 2011). 79 

Table 1  Quantitative studies evaluating the environmental benefit of food 80 
waste prevention. 81 

Study Country Assessment method 
International 

trade included? 
Rebound effect 

included? 

Bernstad and Andersson (2015) Sweden Consequentional LCA Y N 
Chapagain and James (2011) UK LCA N N 
Matsuda et al. (2012) Denmark LCA N N 
Gentil et al. (2011) Denmark LCA N N 
Venkat (2011) USA LCA N N 
Audsley et al. (2009) UK LCA N N 
Martinez-Sanchez et al. (2016) Denmark Life cycle costing N Y 

The second challenge in modeling food waste prevention lies in the globalization 82 

of the food supply chain. For example, 48% of the UK’s food supply in 2008 was 83 

imported from abroad, and these imports accounted for 67% of food-related GHG 84 

emissions (Ruiter et al., 2016). It is hence vital to account for the source of food 85 

products when estimating environmental benefits associated with food waste 86 

prevention. Excluding Bernstad and Andersson's study (2015), all of the studies 87 

reviewed assume food production occurs domestically or regionally (Audsley et al., 88 

2009; Martinez-Sanchez, 2016; Matsuda et al., 2012; Venkat, 2011). 89 

The final factor that results in substantial variation in estimates of the benefits of 90 

reducing food waste is the inclusion, or lack of inclusion, of the rebound effect: the 91 

avoidance of food waste in households leads to increased effective income which 92 

subsequently results in expenditure on alternative products and services 93 

(Binswanger, 2001; Brookes, 1990; Khazzoom, 1980). That is to say, when 94 

households avoid food waste, they consequently have more money available that 95 

may then be spent on other products and services. As this additional expenditure 96 

generates additional GHG emissions, the environmental benefits of reducing food 97 

waste can be partially or completely offset. If the economic savings were to be spent 98 

on carbon-intensive goods or services (e.g. air travel or domestic heating), it is even 99 
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plausible for food waste prevention to create higher environmental burdens than if 100 

the food waste had not been wasted to begin with (Martinez-Sanchez, 2016). 101 

To summarise, conventional approaches used to estimate the environmental 102 

benefits of food waste prevention provide only limited insight, in a world where food 103 

is internationally traded and financial savings made from waste avoidance often lead 104 

to rebound consumer spending. In order to combat these limitations, this study 105 

outlines a holistic approach to quantifying the environmental benefits of food waste 106 

prevention. To counter the limitations of conventional bottom-up LCAs, a hybrid LCA 107 

approach is used, combining conventional process-based LCA and a top-down input-108 

output-based approach. Secondly, the flow of goods and services throughout the 109 

global supply chain was modeled using an economic and multi-regional input output 110 

method. Finally, the rebound effect was modeled using an econometric-based 111 

marginal expenditure model. The United Kingdom was used as a case study. 112 

2 Methodology 113 

Three scenarios for the environmental benefits of food waste prevention were 114 

evaluated: a baseline scenario and two food waste prevention scenarios (Figure 1). 115 

i. Baseline-scenario: 1 tonne of food is wasted and sent to be processed in an 116 

anaerobic digestion (AD) plant. Anaerobic digestion was selected because it is 117 

the food waste treatment technology most currently most favoured in the UK 118 

(Evangelisti et al., 2014; Salemdeeb and Al-Tabbaa, 2015); 119 

ii. A partial-reduction scenario: a 60% reduction in food waste, with the 120 

remaining fraction of food waste (400kg) being sent to an AD plant; and 121 

iii. A total-reduction scenario: 77% of food waste is prevented and 23% (230kg) 122 

is sent to an AD plant. 123 

The two food waste prevention scenarios are based on figures from the Waste 124 

and Resources Action Programme (WRAP), which estimate that 60% of household 125 

food waste in the UK is avoidable whilst a further 17% has the potential to be 126 

avoided (WRAP, 2013). The remaining 23% of food waste is unavoidable (e.g. egg 127 

shells and tea bags) and thus undergoes a conventional disposal route. 128 
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Our study adopts a green-consumption approach: households which reduce food 129 

waste are assumed to have reduced food purchases, rather than increased 130 

consumption. In order to model the environmental benefits of avoiding food waste, 131 

we follow Gentil et al.’s approach in considering the quantity of avoided food waste 132 

as a virtual waste flow (Gentil et al., 2011). Food waste prevention scenarios 133 

therefore also include knock-on savings from food waste avoidance, including 134 

avoided household food-related activities (e.g. grocery shopping, storage and 135 

preparation). To model these household activities, we used estimates from the 136 

literature: shopping is accountable for 70 kg CO2-eq. per tonne food and the GHG 137 

burden associated with home storage and preparation is 420kg CO2-eq. per tonne 138 

(Brook Lyndhurst, 2008; Pretty et al., 2005). This study additionally takes into 139 

account the rebound effect and investigates how the economic savings from food 140 

waste prevention activities (the purchase of less food products) may be spent on 141 

other activities and consequently reduce the net environmental benefits of food 142 

waste prevention (Section 2.3). 143 

This study includes one environmental indicator, greenhouse gas emissions. 144 

These are aggregated and presented as a single mid-point impact category (i.e., 145 

climate change). The global warming potential metric is used to convert greenhouse 146 

gases to equivalent amounts of CO2 on a time horizon of 100 years (IPCC, 2007). 147 

<INSERT Figure 1 here> 148 

2.1 Hybrid life cycle assessment: anaerobic digestion 149 

The environmental impacts of the baseline scenario and the unavoided fraction of 150 

food waste in other scenarios (i.e., 40% of food waste in the partial-reduction and 151 

23% in the total-reduction scenarios) were modeled using a hybrid-LCA waste-152 

related model. First introduced by Salemdeeb and Al-Tabbaa (2015), the hybrid LCA 153 

model combines conventional process-based LCA and a top-down input-output 154 

analysis in order to reduce truncation error and achieve system completeness, a lack 155 

of which is a common limitation associated with conventional LCA tools (Laurent et 156 

al., 2014b). 157 
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Life cycle inventory data and technical parameters related to the AD technology 158 

are based on Salemdeeb and his colleagues’ study that evaluated the environmental 159 

impacts of household food waste management in the UK, including AD (2016) . Food 160 

waste collection and transportation are included in the assessment whilst food 161 

waste packaging is excluded due to its insignificant impact (Bernstad and Andersson, 162 

2015; Lebersorger and Schneider, 2011). 163 

2.2 An environmentally extended multi-regional input output analysis: food 164 

waste prevention 165 

Input-Output (IO) analysis is a top-down approach to modelling the complex 166 

interdependencies of industries within an economy (Leontief, 1936). IO tables are 167 

widely applied to link economic sectors with producers and customers to understand 168 

the interactions and impacts of economic activities (Leontief, 1951a, 1951b; Miller 169 

and Blair, 2009). Exiobase V2 is a high-resolution database used for the Multi-170 

Regional Input-Output (MRIO) model in this study (Wood et al., 2015). The database 171 

provides data at an unprecedented level of consistent detail in terms of sectors, 172 

products, emissions and resources and covers 43 countries, which together account 173 

for approximately 89% of global gross domestic product and 80-90 % of the trade 174 

flow by value within Europe (Stadler et al., 2014; Tukker et al., 2014). 175 

In order to integrate the monetary value of potential savings made by preventing 176 

food waste with the Exiobase database, the following steps were taken: (i) food 177 

prices, listed in Table 2, were converted from the British pound (£) to Euro (€) using 178 

the purchasing power parity index (World Bank, 2015); [ii] the data was then 179 

adjusted to the Exiobase base year (i.e. 2007) in order to take into account inflation 180 

using the UK consumer price index (ONS, 2013); [iii] the data reported in purchase 181 

prices was then converted into basic prices using a conversion ratio in order to 182 

respect margins, taxes and subsidies on products (Appendix A); [iv] a concordance 183 

matrix was used to map monetary data onto the Exiobase’s structure format 184 

(Appendix B); and [v] the data was disaggregated to account for food imports by 185 

using existing food import weighting coefficients from Exiobase (Appendix C ). 186 
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Table 2  The functional unit of the study: 1 tonne of UK household food waste 187 
(with an approximate economic value of GB £1870) disaggregated into three stream 188 
categories (i.e. unavoidable, possibly avoidable and avoidable). The functional unit is 189 
presented below using both physical (kg) and monetary (GB£) units (WRAP, 2013). 190 

Food Type 

Food waste 

Unavoidable Possibly avoidable Avoidable 

Quantity(kg) EV (£ )1 Quantity (kg) EV (£ ) 1 
Quantity 
(kg) EV (£)1 

Fresh vegetables and salads 39.2 41.7 87.5 95.0 127.1 135.1 

Drink 41.5 41.5 0.0 0.0 58.5 58.5 

Fresh fruit 82.7 83.8 3.1 3.1 54.9 54.3 

Meat and fish 31.4 115.6 10.4 38.2 47.1 173.5 

Bakery 0.2 0.2 17.3 26.5 70.6 108.5 

Dairy and eggs 9.3 15.0 0.2 0.3 63.9 107.1 

Meals (home-made and pre-prepared) 0.2 0.7 0.2 0.7 69.0 329.6 

Processed vegetables and salad 0.2 0.4 0.2 0.4 28.2 80.0 

Cake and desserts 0.2 0.6 0.2 0.6 25.1 89.5 

Staple foods 0.2 0.4 0.2 0.4 23.5 54.9 

Condiments, sauces, herbs & spices 0.2 0.7 0.3 1.5 22.0 102.0 

Oil and fat 0.2 0.1 8.2 6.2 3.1 2.4 

Confectionery and snacks 0.2 1.0 0.2 1.0 9.6 63.3 

Processed fruit 0.2 1.4 0.2 1.4 3.3 29.8 

Other 0.2 0.0 59.6 4.4 1.7 0.1 

Total2 205.7 303.4 187.4 179.8 607.8 1388.5 
1 Economic value based on the year 2012 
2 Figures might not sum due to rounding. 

2.3 Modelling the rebound effect 191 

The microeconomic rebound effect consists of a direct and indirect effect: the direct 192 

effect is related to the additional demand for the product that has been subject to 193 

an efficiency improvement (i.e. additional demand for some categories of food, 194 

where the efficiency improvement is an increase in the ratio between the food 195 

purchased and consumed), whereas the indirect effect refers to the additional 196 

demand in all other consumption categories (Font Vivanco et al., 2016). The rebound 197 

effect was quantified using a single re-spending model in which all consumption 198 

categories were treated equally (Murray, 2013). This approach achieves 199 

methodological consistency at the expense of differentiation between the direct and 200 

the indirect effect (for examples of the latter, see the works of Freire-González 201 

(2011), Thomas and Azevedo (2013) and Font Vivanco and van der Voet (2014)).We 202 

specifically estimate how freed effective income (FEI) was spent by calculating the 203 

marginal budget shares (MBS) for each consumption category i. The MBS were 204 
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calculated using a linear specification of an Almost Ideal Demand System (AIDS), a 205 

demand system model developed by (Deaton and Muellbauer, 1980) with properties 206 

that makes it preferable to competing models (Chitnis and Sorrell, 2015; Deaton and 207 

Muellbauer, 1980). For instance, compared with other approaches based on 208 

expenditure elasticities or Engel curves (Chitnis et al., 2013, 2014; Font Vivanco et 209 

al., 2014; Murray, 2013), the AIDS allows for a more accurate estimation of the pure 210 

income effect (changes in expenditure due to changes in effective income), as the 211 

substitution effect (changes in expenditure due to changes in relative prices) is 212 

corrected by means of a price index. In a budget share (w) form, the AIDS model for 213 

the ith consumption category and a given time period t is expressed as: 214 

𝑤𝑡
𝑖 = 𝛼𝑖 + ∑ 𝛾𝑠

𝑖

𝑗=1,...,𝑛

ln 𝑝𝑡
𝑠 + 𝛽𝑖 ln (

𝑥𝑡
𝑠

𝑃𝑡
)           (1) 

where n is the number of consumption categories, x is total expenditures, P is 215 

defined here as the Stone’s price index, p is the price of a given category and α, β 216 

and γ are the unknown parameters. The Stone’s price index is defined as: 217 

ln 𝑃𝑡 = ∑ 𝑤𝑡
𝑠 ln 𝑝𝑡

𝑠

𝑗

        (2) 

Additionally, and in order to comply with consumer demand theory, three 218 

constraints are imposed: adding-up, homogeneity and symmetry (Deaton and 219 

Muellbauer, 1980). The microeconomic rebound effect in demand units (rd) is 220 

defined as: 221 

𝑟𝑑 = ∑ 𝑠 ∗ 𝑤𝑖         (3)

𝑗

 

where s is the total economic savings. 222 

Data on the final consumption expenditure of households and price indices for 223 

Classification of Individual Consumption According to Purpose (COICOP) 3 digit 224 

categories for the UK and the period 2004-2013 were obtained from Eurostat 225 

(2016a, 2016b). In order to harmonise product categories reported by the COICOP 3 226 
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digit (i) and Exiobase databases (j), we used the approach from Koning and Xingyu, 227 

(2016), which derives transformation tables describing how COICOP categories are 228 

distributed over Exiobase categories. We specifically used household expenditure 229 

data to give weights to cases where a given COICOP category is distributed over 230 

multiple Exiobase categories. The marginal budget shares of UK household 231 

expenditure are listed in Appendix H in both Exiobase and COICOP formats. 232 

The modelling of the rebound effect entails a high level of uncertainty. When 233 

people save money from purchasing less food, it is difficult to determine exactly how 234 

they will spend this surplus. We therefore modeled five scenarios of rebound 235 

spending, listed in Table 3, that were developed based on a literature review 236 

(Appendix D). The first scenario, the behavior-as-usual scenario (R-1), is based on the 237 

methodology discussed above to allocate free effective income to all consumption 238 

categories. 239 

Two sub-scenarios were also considered to investigate the level of uncertainty in 240 

MBS estimates. In these scenarios, the re-spend of the FEI is limited to Major 241 

Consumption Categories (MCC), a list of 25 expenditure categories which together 242 

constitute more than 88% of spending (i.e., categories with the highest MBS, see 243 

Table H.3). This approach has been applied in order to obtain more conservative and 244 

realistic results than those founded in previous modeling approaches which assume 245 

that the FEI is re-spent on services with the highest or lowest GHG-intensities, 246 

regardless of the EFI value (e.g., Martinez-Sanchez et al. 2016). In the major 247 

spending-high scenario (R-1A), FEI spending occurs within the 15 categories of MCCs 248 

with the highest GHG intensities while FEI is re-allocated to the 15 categories of 249 

MCCs with the highest MBS in the major spending-low scenario (R-1B). Appendix I 250 

lists the 15 categories considered in both scenarios. 251 

The second part of the sensitivity analysis is based on the observation made by 252 

WRAP, that people tend to spend 50% of FEI on the purchase of higher quality food 253 

products (WRAP, 2014). Examples of food up-trade include buying locally-produced 254 

organic agricultural products, higher-quality meat or switching between food types 255 

(e.g., more meat, less staples or more beef, less chicken). Therefore, we also include 256 
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up-trade scenarios that investigate the impact of re-spending 50% of FEI on 257 

purchasing quality oriented food products whilst the remaining 50% of the FEI is 258 

spent based on the MBS of the behavior-as-usual scenario. As GHG-intensities can 259 

vary largely between quality oriented and conventional food products (Appendix E), 260 

we consider two sub-scenarios: (i) Scenario (R-2A) where GHG intensities remain the 261 

same for both conventional and quality oriented products, and (ii) Scenario (R-2B) 262 

where GHG intensities are updated to reflect the variation between quality oriented 263 

and conventional food products; Updated GHG coefficients are provided in Appendix 264 

G. 265 

Table 3  Rebound effect scenarios considered in this study. 266 
Scenario Description  

Behaviour-as-usual (R-1) 

A reference scenario that assumes the re-spend occurs in line with the 
methodology discussed in section 2.3. The marginal budget shares 
(MBS) for each consumption category are listed in Appendix H, in both 
Exiobase and COICOP formats. 

Major spending-high scenario: GHG 
based (scenario R-1A) 

This scenario allocates the re-spend to 15 major consumption 
categories1 with the highest CO2 intensities. MBS were recalculated 
based on the original weight of MBS values (Appendix I). 

Major spending-low scenario: 
expenditure based (scenario R-1B) 

This senario redistributes the re-spend on 15 major consumption 
categories1 of the highest MBS. MBS were recalculated based on the 
original weight of MBS values (Appendix I). 

Up-trade scenario: un-updated 
Exiobase GHG intensities (R-2A) 

This scenario assumes that 50% of the re-spend occurs in food-product 
categories while the remaining 50% follows the same distribution 
patters on the behaviour-as-usual scenario. 

Up-trade scenario: Updated GHG 
intensities (R-2B) 

This scenario uses updated GHG intensities to investigate the variation 
as a result of purchasing quality oriented products (Scenario R-2A). 
Conversion factors are derived from literature (Appendix E). 

1 Major consumption categories is a list, presented in Table H.3, of 25 consumption cateogires where more than 
88% the re-spend occur (i.e., categories with the highest MBS).  

3 Results and discussion 267 

Reducing food waste leads to substantial GHG savings: 706 and 896 kg CO2-eq. per 268 

tonne food waste for the partial and total reduction scenarios respectively. This is a 269 

5-12 times larger greenhouse gas saving than if all food waste were used for 270 

bioenergy production (AD, the baseline scenario). Table 4 presents a detailed 271 

analysis of the study results; it provides estimates of the environmental benefits 272 

associated with the prevention of avoidable food waste and the management of an 273 

unavoided fraction of food waste, and shows that the rebound effect may offset 274 

these benefits by up to 59% (Section 3.2). 275 
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Table 4  GHG emissions from food waste management as total food waste (kg 276 
CO2-eq. per tonne food waste) divided on streams and rebound effect. Negative 277 
values are overall GHG savings. 278 

 

Food waste 
treatment (AD) 

Food waste 
prevention 

Rebound 
effect (RE)

1
 Total

1
 

RE Reduction 
rate (%)

2
 

Baseline scenario -89 0 0 -89 NA 
Partial-reduction 
scenario -36 -1138 467 (290-685) -706 (-483 to -878) 25-59 
Total-reduction 
scenario -19 -1419 542 (335-795) -896(-635 to -1095) 23-56 
1Range in brackets 

2The reduction in GHG savings due to the inclusion of rebound spending. 

Hotspot analysis, depicted in Figure 2, shows that most of the reported 279 

environmental benefits are due to the avoidance of food production: 83.5% for the 280 

partial reduction scenario and 76% for the total reduction scenario. These findings 281 

confirm the results of other studies which recognise the importance of savings made 282 

in the production stage (Bernstad and Andersson, 2015; Gentil et al., 2011; Martinez-283 

Sanchez et al., 2016). GHG savings from avoided food production are estimated in all 284 

industries across the entire supply chain, from fertilizers to iron and steel inputs 285 

(Table 5). Most of the savings result from avoided fertiliser and energy use; N-286 

fertiliser production and coal-based electricity generation contribute to the overall 287 

reduction by 25% and 20% respectively. 288 

< INSERT Figure 2 here> 289 

Table 5  Hotspot analysis for GHG savings from the avoided production of 290 
food, as food waste is reduced. Categories reported are Exiobase Industrial 291 
categories 292 

Industrial sector Weight (%) 

N-fertiliser 25 

Electricity (coal) 20 

Vegetables, fruit, nuts 6 

Electricity (gas) 5 

Crude petroleum and services related to crude oil extraction 5 

P- and other fertiliser 3 

Basic iron and steel 3 

Steam and hot water supply services 2 

Chemicals 2 

Cereal grains 2 

Others 25 
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The second largest contributor to GHG savings is food-related household activities 293 

(e.g., grocery shopping transportation, food storage and preparation). These 294 

activities contribute to GHG reductions by 16.5% and 24% for the partial-reduction 295 

and total-reduction scenarios respectively. These estimations are based on limited 296 

estimates in literature and are only indicative; the greenhouse gas footprint of food-297 

related household activities is likely to vary substantially. Gruber et al. (2014), for 298 

example, estimate that between 0.7 - and 2.1 MJ of electricity is needed to cook 1 kg 299 

of rice or potatoes, depending on individual household behaviour. 300 

Overall, the combination of GHG savings in food production and related 301 

household activities leads to a large potential GHG reduction, ranging from 1138-302 

1419 kg CO2-eq. per tonne of food waste prevented (Table 4). However, these 303 

benefits are reduced by 23-59% due to the impact of the rebound effect, which 304 

reduces GHG reductions by between 483 and 1095 kg CO2-eq. per tonne of food 305 

waste. This study quantitatively confirms the significant impact of the rebound effect 306 

in reducing environmental benefits associated with food waste prevention 307 

(Druckman et al., 2011; Martinez-Sanchez et al., 2016). A further discussion 308 

regarding the impact of the rebound effect and the sensitivity of our results is 309 

covered in section 3.4. 310 

With regards to the baseline-scenario where 1 tonne of food is wasted and sent 311 

for anaerobic digestion, -89 kg CO2-eq. is the net-environmental benefit associated 312 

with the treatment of 1 tonne of food waste. The analysis results confirm those of 313 

other studies and identify energy recovery and the use of digestate as processes 314 

with the highest contribution to these savings (Bernstad Saraiva Schott et al., 2016). 315 

Energy recovery and digestate lead to GHG reductions of 185.5 and 4.6 kg CO2-eq. 316 

per tonne of food waste respectively. Contrastingly, the main environmental 317 

burdens for AD arise from the digestion process and the use of auxiliary materials 318 

required to operate the facility (Salemdeeb et al., 2016), whilst food waste collection 319 

and transportation has a less significant impact: 11 kg CO2-eq. per tonne of food 320 

waste. A hot spot analysis of the baseline-scenario is presented in appendix F. 321 
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3.1 The role of the MRIO model 322 

The GHG savings made from the reduction of food waste occur across the 323 

international supply chain (Figure 3) with only 22% of these savings occurring within 324 

UK borders (Table b in Figure 3). This relatively low percentage is attributed to the 325 

UK’s dependency on food imports, as well as the reasonably efficient food 326 

production systems and low-carbon energy sources of the country. Our results echo 327 

results reported in literature and conclude that the majority of the UK food basket’s 328 

GHG emissions occur abroad (Ruiter et al., 2016), in part due to lower GHG 329 

efficiencies in agriculture of developing nations. Whilst only 6.5% of financial savings 330 

made from waste avoidance comes from food produced in India, for example, this is 331 

equivalent to a 17.5% reduction in food-related GHG emissions (Table b in Figure 3). 332 

In this case, the rice products category is the largest contributor to these savings 333 

which are made across various industry groups in India, such as coal-based electricity 334 

(50%), N-fertiliser (18%), P-fertiliser (4%) and the paddy rice sector (9%). 335 

< INSERT Figure 3 here> 336 

The MRIO approach allows an unprecedented resolution of analysis, including 337 

differentiating impacts per food group as well as per country. In the case of sugar, 338 

more than half of the GHG savings occur in Brazil and France, the leading suppliers of 339 

sugar to the UK (Figure 4); 37% of sugar cane being imported from Brazil and 21% of 340 

sugar beet being imported from France (Baker and Morgan, 2012). 341 

< INSERT Figure 4 here> 342 

Despite the analytical strengths of the MRIO method in modelling the global 343 

supply chain, the adoption of such an approach is subject to a major limitation. 344 

MRIO models use average national data and therefore neglect variation in impacts 345 

associated with products aggregated into the same industrial category (for example, 346 

this study allocated an average GHG intensity for all dairy products in each country). 347 

This shortcoming could in future be addressed by integrating the MRIO model with 348 

the World Food LCA database - a comprehensive and international inventory 349 

database of 200 food life cycle assessments (Nemecek et al., 2015). The expanded 350 
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MRIO model would then combine the advantages of IO analysis to cover the global 351 

food supply chain and the advantage of process-based LCA to use up-to-date and 352 

high-resolution environmental intensities. 353 

Another possible limitation is associated with the approach adopted to convert 354 

economic benefits of food waste prevention from purchase prices into basic prices 355 

(the format of data in Exiobase). Conversion factors used in this study are derived 356 

from the 2010 UK Supply and Use table by deducting both distributors' trading 357 

margins and allowing fewer subsidies on products from purchase prices (ONS, 2012). 358 

Therefore, the accuracy of conversion factors depends on the quality of the data and 359 

methodology used to compile the 2010 UK Supply and Use table. In addition and due 360 

to the high level of aggregation in the Supply and Use table, an assumption was 361 

made to allocate the same conversion factor into similar food categories: vegetables 362 

and fruits, bakery and cakes, and meals and staple food (Appendix A). 363 

3.2 Rebound effect 364 

Results of the sensitivity analysis show a high level of uncertainty associated with the 365 

rebound effect, with the reduction in GHG savings ranging from 23-59% (Table 4 and 366 

error bars in Figure 5a). The upper limit (R-1A), representing the major spending-367 

high scenario, is a result of re-spending savings on GHG-intensive categories such as 368 

wholesale trade, motor gasoline, petroleum and air transport services. The lower 369 

limit, representing the major spending-low scenario (R-1B), is a result of re-spending 370 

the freed effective income on less GHG intensive categories such as education 371 

services, real estate services and communication services. 372 

The second part of the sensitivity analysis investigated the effect of switching 373 

from conventional to quality-oriented food products (Up-trade scenarios, see Table 3 374 

and Figure 5b). The use of the same Exiobase GHG intensities (scenario R-2A) results 375 

in a small increase (3.5%). The low increase estimated in scenario R-2A could be 376 

explained by two factors: 50% of the re-spending occurs in food product categories 377 

that are considered low-GHG categories (Druckman et al., 2011), and the assumption 378 

that GHG intensities of quality oriented products increase in the same way as paying 379 
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a higher price per functional unit (Girod and de Haan, 2010; Vringer and Blok, 1996). 380 

For example, if the price of a quality-oriented product is twice that of its 381 

conventional counterpart, then the environmental burden associated with it would 382 

double. 383 

The final sensitivity analysis scenario takes into account variations in GHG-384 

intensities between quality oriented and conventional food products as discussed in 385 

Appendix D&G. Since up-traded goods often have a higher GHG intensity, we find 386 

that switching to quality-oriented products increases the size of the rebound effect 387 

by 19.5% and, consequently, reduces food waste prevention benefits (Figure 5b). 388 

Examples of higher impact and higher value products include organic products, 389 

(which have lower yields than conventional products) boneless meat, (which 390 

requires additional energy input in the food production process) and the use of 391 

premium packaging. 392 

< INSERT Figure 5 here> 393 

Several peer-reviewed studies have investigated the impact of the rebound effect 394 

in food waste prevention activities or a similar context (Alfredsson, 2004; Druckman 395 

et al., 2011; Martinez-Sanchez et al., 2016). Martinez-Sanchez and her colleagues 396 

took an environmental life-cycle costing approach to evaluating the impact of the 397 

rebound effect in food waste prevention activities in Denmark. Their study also 398 

found a large rebound effect – in fact much larger than that of our study (1528-4367 399 

kg CO2-eq. per tonne of food waste; 2-5 times higher than results reported in this 400 

study). Their findings suggest that the rebound effect could even exceed the GHG 401 

savings from avoiding food waste, a phenomenon known as “backfire”, where 402 

reducing food waste might actually increase GHG emissions. The large difference 403 

between our estimates and theirs is attributable to various factors: (i) Martinez-404 

Sanchez et al. use a highly aggregated economic model, combining all industrial 405 

sectors into 9 categories; (ii) Consumer expenditure surveys are used in Martinez-406 

Sanchez’s study to allocate savings from consumption categories; and (iii) Martinez-407 

Sanchez et al. investigate extreme scenarios for the rebound effect, including 408 

allocating 100% of the respend to the sector with the highest environmental impact, 409 
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namely “Household use, Hygiene”. Sectorial aggregation is a known source of bias in 410 

the input-output literature (Moran and Wood, 2014; Su et al., 2010), and our results 411 

may indicate that higher disaggregation leads to lower overall GHG emissions for our 412 

case study. Our model of the rebound effect also combines expenditure and cross-413 

price elasticity (section 2.3), which may lend more weight to low GHG-intensive 414 

consumption categories compared to simpler models. Finally, our sensitivity analysis 415 

for the rebound effect is constrained so that it more closely resembles current 416 

household spending. Despite these differences, the potentially large rebound effect 417 

reported here as well as in similar studies reveals the limitation of behavioural 418 

interventions, such as reducing food waste to reduce greenhouse gas emissions 419 

(Martinez-Sanchez et al., 2016). To reduce rebound effects and deliver effective GHG 420 

savings, behavioural change must be coupled with economy-wide reductions in GHG 421 

intensity (Alfredsson, 2004; Druckman et al., 2011; David Font Vivanco et al., 2016). 422 

3.3 Comparison with previous studies 423 

The results of this study agree with main conclusion of other studies: food waste 424 

prevention lead to substantial reductions in GHG. Nevertheless, the magnitude of 425 

GHG reduction reported in this study is less than those reported in the literature as 426 

shown in Figure (6). Differences arise primarily due to the aggregated nature of the 427 

method (as discussed above, see section 3.1). In addition, the study scenarios take 428 

into consideration the unavoided fraction of food waste (40% in the partial reduction 429 

scenario and 23% in the total reduction scenarios) which is sent to anaerobic 430 

digestion, leading to lower GHG reductions than if we had assumed that the total 431 

functional unit (1 tonne of food waste) was preventable. More importantly (as 432 

discussed in Section 3.2), the inclusion of the rebound effect has also contributed 433 

significantly to the reduction in reported results: 25-59% for the partial-reduction 434 

scenario and 23-56 for the total-reduction scenario. 435 

< INSERT Figure 6 here> 436 
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4 Conclusions 437 

This paper presents a holistic model of food waste prevention, combining 438 

conventional process-based LCA and top-down input-output-based approaches that 439 

include GHG emissions in the international supply chain and the rebound effect. We 440 

find that GHG savings range from 700-888 kg CO2-eq. per tonne of food waste. These 441 

emissions are relatively lower than others reported in the literature, partly due to 442 

the inclusion of the rebound effect, which reduces GHG benefits by up to 59%. 443 

Overall, our findings indicate that the environmental benefits associated with food 444 

waste prevention interventions, such as the “love food hate waste” campaign in the 445 

UK (WRAP, 2013), could be partially undermined by rebound spending. Efforts to 446 

reduce the impact of food waste must explicitly consider rebound effects as 447 

ultimately, to effectively deliver GHG reductions, behavioural change, such as food 448 

waste reduction, must be coupled with reductions in GHG emissions across the 449 

economy. 450 

Furthermore, this study provides the first comprehensive assessment of food 451 

waste prevention that includes impacts associated with food imports. It highlights 452 

the importance of adopting a top-down, multi-disciplinary, and system-wide 453 

approach in order to deal with the complexity of the food supply chain that extends 454 

beyond geographical borders and across various industries. The findings of this 455 

research have provided a further insight into our understanding of the 456 

environmental impacts of globalised food production, particularly in developing 457 

countries. 458 
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Figures Captions 655 

Figure 1 Conceptual diagram of the system investigated in this study. Post-primary 656 
production stage includes the processing of primary food products, the distribution 657 
and retailing of final products whilst primary production consists of processes 658 
required to produce primary food products and transport them to a regional 659 
distribution centre. A graphical representation of the system boundary for the AD 660 
technology is provided in Appendix F. 661 

 662 

Figure 2 Hotspot analysis of GHG savings from food waste prevention. Triangles 663 
show the overall avoided GHG emissions.  664 

 665 

Figure 3 Preventing food waste in UK households leads to GHG savings 666 
internationally, due to savings made throughout the UK’s global food supply chain. 667 
Countries shaded in grey have no data available. A detailed contribution analysis of 668 
GHG emissions, disaggregated by industrial sectors and geographical sources, is 669 
provided in Appendix J. 670 

 671 

Figure 4 Sources of GHG savings for the avoidance of sugar waste, both from sugar 672 
beet and sugar cane. Countries shaded in grey have no data available. A detailed 673 
contribution analysis of GHG emissions, disaggregated by industrial sectors and 674 
geographical sources, is provided in Appendix J. 675 
 676 

 677 

Figure 5 Uncertainty in estimates for the rebound effect. The left two bars (a) show 678 
the GHG savings assuming that the respend occurs in line with current budget shares 679 
(R-1), i.e. behavior-as-usual. The error bars represent the estimates for the GHG 680 
savings when spending is assumed to shift across the top 25 consumption categories 681 
(scenario R-1A, upper limit & scenario R-1B, lower limit). The bars to the right show 682 
(b) the estimated GHG savings, assuming that some of the respend is spent “trading 683 
up” to higher quality goods (scenarios R-2A and R-2B). 684 

 685 

Figure 6 A comparison of the different estimates of GHG savings from avoiding one 686 
tonne of food waste. The error bars illustrate the ranges reported in each study.  687 
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