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Abstract

We analyze the dynamical behaviour of a simple, widely used model that integrates epidemiological
dynamics with disease control and economic constraint on the control resources. We consider both
the deterministic model and its stochastic counterpart. Despite its simplicity, the model exhibits
mathematically rich dynamics, including multiple stable fixed points and stable limit cycles arising
from global bifurcations. We show that the existence of the limit cycles in the deterministic model
has important consequences in modelling the range of potential effects the control can have. The
stochastic effects further interact with the deterministic dynamical structure by facilitating transitions
between different attractors of the system. The interaction is important for the predictive power of
the model and in using the model to optimize allocation when resources for control are limited. We
conclude that when studying models with constrained control, special care should be given to the
dynamical behaviour of the system and its interplay with stochastic effects.

1 Introduction

There is increasing interest in the integration of epidemiological models of control with economic consid-
erations (Klein et al. , 2007; Geoffard & Philipson, 1996). Recently, researchers have focused on models of
control with economical constraints on the control resources and used optimal control theory to provide
insights into optimal resource allocation strategies. These models range from allocation of treatment
resources (Forster & Gilligan, 2007; Goldman & Lightwood, 2002) to problems of how to divide resources
between treatment and detection efforts (Ndeffo Mbah & Gilligan, 2010). However, in the conventional
analysis the exact dynamics of the epidemiological models with constrained control have not been inves-
tigated in detail. Here by constrained control we refer to control which can be applied to some but not
necessarily all the individuals in a population due to limited resources.

In this paper, we select a simple, but widely used (Rowthorn et al. , 2009; Ndeffo Mbah & Gilligan,
2011) epidemic model with constrained control and we examine its deterministic dynamical behaviour.
We show that despite its simplicity, the model exhibits mathematically rich behaviour including stable
limit cycles and their global bifurcations. The presence of limit cycles in dynamical systems has long
been of interest in mathematical biosciences, particularly in ecology (Kaung & Freedman, 1988; Hast-
ings, 2001; Toupo & Strogatz, 2015) and epidemiology (Hethcote & Levin, 1989; Wang & Ruan, 2004;
Jin et al. , 2007). We demonstrate that the presence of limit cycles has important consequences for
modelling the impacts of control. We also show that in some parts of parameter space the model exhibits
counter-intuitive behaviour in which lower initial disease prevalence leads to a higher prevalence endemic
equilibrium. Whenever possible, we provide analytical conditions on the parameters of the model that
give rise to the particular dynamics.

We then examine the sensitivity of the dynamical behaviour when stochasticity is introduced to the
model to allow for inherent variability of the infection and recovery processes. We do this by using the
Gillespie construction (Gillespie, 1976) to model every event in the system as an exponential random
process with rates given by the deterministic model. Thus the stochastic effects we introduce are demo-
graphic in nature. We demonstrate that the existence of the limit cycles in the deterministic version of the
model strongly impacts the behaviour of the stochastic version of the model. The stochastic fluctuations
can cause transitions between different attractors of the system and in some cases can lead to extinction of
the pathogen by perturbing the system onto a limit cycle which passes close to the line of zero prevalence
in the phase space. Similar transitions between different attractors of the dynamical system
have been previously studied in systems with seasonal forcing (Keeling et al. , 2001).
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Our work also demonstrates that economical constraints on control in epidemiological models can
lead to the existence of weakly stable attractors and complex bifurcation dynamics. These in turn cause
qualitative differences between the behaviour of the deterministic model and its stochastic counterpart.
This interaction between the bifurcation dynamics and stochastic effects is important both for the pre-
dictive power of the model and in using the model to optimize resource allocation, since emergence of
the limit cycles in the deterministic model causes rapid changes in the probability of eradication in the
stochastic model. We conclude that when interpreting model predictions and especially when studying
models with constrained control, special care should be given to the dynamical behaviour of the system
and its interplay with the stochastic effects.

2 Model description

A wide range of models are used for infectious disease dynamics. Of these, many are formulated as
compartmental models (Kermack & McKendrick, 1927; May & Anderson, 1991). The compartments rep-
resent groups of hosts who share an infection status, such as being infectious or susceptible. Considering
all the hosts within one compartment as equivalent is a simplifying assumption that the transition rates
between the compartments are constant, that is the underlying stochastic process is Markovian. In this
paper, we consider a compartmental SIRS-type model with the model structure as in Figure 1.

Figure 1: The transition structure of the SIRS com-
partmental model. All the rates are per host. β is
the transmission rate and therefore βI is the rate at
which susceptible hosts get infected. µ is the rate of
recovery and transition to the recovered class. ν is
the rate at which immunity is lost and hosts rejoin
the susceptible class. Finally, σ is both the birth and
death rate, assumed to be equal.

This describes a situation in which the time for
which the hosts stay in the infected class after in-
fection is exponentially distributed with mean 1/µ.
After recovery, the recovered hosts have tempo-
rary immunity and cannot be immediately rein-
fected. This immunity lasts for an exponentially
distributed time period with mean 1/ν after which
the hosts rejoin the susceptible class. This model
structure with temporary immunity is appropri-
ate for diseases such as Malaria (Aron, 1988; Fil-
ipe et al. , 2007), Tuberculosis (Castillo-Chavez &
Feng, 1997) or Syphilis (Grassly et al. , 2004).

We assume the population size stays constant
on the time scale of the epidemic and thus the birth
rate and death rate are both equal to σ. Finally,
the rate at which a susceptible host gets infected
is βI, which assumes homogeneous mixing of the
hosts. It can be understood as an aggregate of
three terms, nC × pI × I where nC is the num-
ber of contacts of an average host per unit time,
pI is the probability of infection upon contact and
I is the proportion of infected individuals, that
is the probability that the contact is with an in-
fected individual. We include a brief overview of
the mathematical properties of the SIRS model in
the Appendix A1. The effects and effectiveness of
control can be introduced in a number of ways.
Here we consider a treatment that can be applied
to infected individuals and increases their rate of
recovery by a fixed amount η (Rowthorn et al. ,
2009; Ndeffo Mbah & Gilligan, 2011).

To model the economical or logistic constraint,
we assume that the control resources are con-
strained and no more than a proportion γ of the
hosts can be treated at any given time. We first analyse the deterministic version of the model, which
is an approximation to the mean of the full stochastic process. The deterministic model is described by
a standard set of differential equations for the proportions of susceptibles (S), infecteds (I) and removed
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(R), given by

İ = βIS − (µ+ σ)I − ηmin(I, γ) (1)

Ṙ = µI + ηmin(I, γ)− (ν + σ)R (2)

S = 1− I −R. (3)

Here min(I, γ) refers to the smaller of I and γ. We then proceed to discuss the implications the dynamics
of this model have for the stochastic behaviour. To simulate the full stochastic process, we use the
standard Gillespie algorithm (Gillespie, 1976).

3 Model analysis

In this section, we analyse the deterministic model (1-3) and present the complex dynamical behaviour
generated by the constrained treatment term. We also show how this impacts on the stochastic dynamics
of the system. To analyse the system (1-3), we calculate the fixed points and construct the bifurcation
diagrams. We only consider the case when the pathogen can invade the population in the first place, that
is the basic reproductive number (Heffernan et al. , 2005) satisfies R0 = β/(µ+ σ) > 1.

Figure 2: Bifurcation diagrams corresponding to the
different values of η. Black lines mean that the fixed
point is stable, red lines mean it is unstable. The
numerical values used are; a η = 0.3, b η = 0.65, c
η = 1, d η = 1.5 and e η = 2.3. The values of the
remaining parameters are β = 3, µ = 1, ν = 0.2 and
σ = 0.

For the analysis it is useful to also define the ’full
treatment’ basic reproductive number RT0 by

RT0 =
β

µ+ η + σ
. (4)

The above system of differential equations can
have at most four fixed points. There is always
a fixed point at (I,R) = (0, 0) denoted as A. The
point A is unstable when RT0 ≥ 1 and is stable
otherwise. When A is stable it means that the
disease can be eradicated fully if the prevalence I
drops below a certain value. In the region I < γ
there can be another fixed point B given by

IB =
(ν + σ)(1− 1/RT0 )

η + ν + µ+ σ
(5)

RB =
(µ+ η)(1− 1/RT0 )

η + ν + µ+ σ
. (6)

This fixed point is stable whenever it exists and it
exists whenever RT0 > 1 and

γ > γc ≡
(ν + σ)(1− 1/RT0 )

η + µ+ ν + σ
. (7)

This condition is simply IB < γ. In the region
I > γ there can be two further fixed points, C and
D (with IC < ID). The expressions for these fixed
points are more complicated and are given in Ap-
pendix A3. In Appendix A2, Lemma 6.1, we also
show that C is always a saddle point. To inves-
tigate the stability properties of D, note that as
γ → 0, D is the endemic equilibrium of the stan-
dard SIRS model without treatment and therefore
it must be stable (A1). The behaviour of D as γ
increases then depends on the value of η. There
are five important regions on the η axis, I, II, III,
IV resp. V, corresponding to η < η1, η ∈ (η1, η2),
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η ∈ (η2, η3), η ∈ (η3, η4) resp. η > η4 (Figure 2). The proof that the Figure 2 is exhaustive and no other
behaviour is possible, together with the analytical expressions for the critical values ηi can be found in
the Appendix A2, Theorem 6.2.

Figure 3: a The two limit cycles after they emerge
through a global bifurcation around the stable fixed
point D in region II. Green corresponds to stable,
red to unstable. Parameter values are η = 0.65,
γ = 0.04. b All four fixed points coexisting with a
stable limit cycle. The detail shows the basin of at-
traction of B whose boundary is the stable manifold
of the saddle point C. Note that the basin of attrac-
tion (grey) is very small and thus solutions are likely
to end up on the large limit cycle. The parameter val-
ues are η = 1, γ = 0.0315. c The fixed points B and
D are both stable. The behaviour is similar to that
in (b) since the stable D together with the unstable
limit cycle around it act globally as an unstable fixed
point. The parameter values are η = 1.3, γ = 0.02. d
Coexistence of two stable fixed points without a limit
cycle. Note that the trajectory starting at Y leads
to the disease-free state while that starting at X does
not, even though IY > IX and RY < RX . Thus
higher initial prevalence can lead to lower long term
prevalence or even eradication. The parameter val-
ues are η = 2.1, γ = 0.01. In all the simulations,
β = 3, µ = 1, ν = 0.2 and σ = 0.

In region I the bifurcation diagram is simple,
with D stable throughout and continuously tran-
sitioning into B at the γ = γc boundary (Fig. 2a).
When η increases into the region II, the fixed point
D loses stability at γ = γ′c before changing into B
(Fig. 2b). This has implications for the phase por-
traits, since when D is unstable there is no stable
fixed point in the system. Since the solutions are
bounded, it follows from the Poincaré-Bendixson
theorem that there must exist a stable limit cycle.
In fact, D loses stability through a Hopf bifurca-
tion which means there must have been an unsta-
ble limit cycle present in the system just before D
became unstable. We conclude that for some un-
known value or values of γ < γ′c, a stable and an
unstable limit cycles appear in the system through
global bifurcation(s). In the Figure 3a we show
an example of the phase portrait within region II
just after the two limit cycles appear in the sys-
tem. As η increases (region III, Fig. 2c), the fixed
points B and C appear through a saddle-node bi-
furcation. D loses stability through the same Hopf
bifurcation as before and consequently there are
limit cycles present. See Fig. 3b for an example
of the phase portrait when all the fixed points are
present in the system.

In region IV, γ′c > γc and so D loses stability
after B appears in the system. Therefore, for val-
ues of γ ∈ (γc, γ

′
c) two stable endemic equilibria

exist in the system. The corresponding bifurca-
tion diagram is given in Figure 2d. The dynamical
behaviour for values of η in the region IV is com-
plicated and here we give an example of a phase
portrait showing both B and D stable (Fig. 3c).
Note that the stable limit cycle in this case is large
and comes close to the I = 0 axis. This has im-
plications for the stochastic behaviour of the sys-
tem, which are discussed in the next section, since
there can be a significant probability of stochas-
tic pathogen extinction on the limit cycle due to
the very low minimal prevalence. This can hap-
pen even if the system initially starts at D, since
stochastic fluctuations can perturb it outside of
the unstable limit cycle.

Finally, region V corresponds to values of η
such that the fixed point A becomes stable, that
is the eradication of the pathogen becomes possi-
ble. This is equivalent to RT0 ≤ 1 and therefore
η4 = β − µ− σ. The bifurcation diagram is given
in Figure 2e and a phase portrait showing both
stable D and the stable disease-free equilibrium A
coexisting in Figure 3d. Note that when two stable fixed points coexist in the system, the model predicts
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Figure 4: Stochastic realizations of the model in three
different scenarios. The green curve shows the pre-
dicted deterministic behaviour, the red curve is the
average of the stochastic realizations and the blue
curve shows one of the stochastic realizations. a The
scenario from Fig. 3c. When the model is started at
the stable fixed point D, the presence of the unstable
limit cycle means that the stochastic fluctuations can
perturb it outside and onto the large stable limit cy-
cle. Once there, the pathogen is likely to go extinct
due to the low minimum prevalence on the cycle. b
The scenario from Fig. 3d. The trajectories fluctu-
ate around D, but rarely go extinct, as demonstrated
by the small downward slope of the red curve. c The
same as b only with γ increased from 0.01 to 0.011.
The emergence of the limit cycle is enough to signif-
icantly increase the probability of extinction. In all
the simulations, β = 3, µ = 1, ν = 0.2, σ = 0 and
N = 5000.

a counter-intuitive dependence of the endemic
equilibrium on the initial conditions (Fig. 3d).
Starting the system at X does not achieve eradi-
cation of the pathogen while starting it at Y does,
even though at Y the prevalence is higher and the
population resistance (R) is lower. The system
also exhibits catastrophic behaviour. When γ is
increased just above γ′c, the threshold for destabi-
lizing D, the system undergoes a rapid transition
to the disease-free equilibrium A. This has obvious
implications for optimal resource allocation.

3.1 Stochastic effects

The dynamical behaviour discussed in the previ-
ous section has profound consequences for the be-
haviour of the stochastic model. When the unsta-
ble limit cycle exists around the stable fixed point
D, stochastic fluctuations can perturb the solution
from D over the limit cycle. The system then tran-
sitions to another stable state; either a stable limit
cycle or another stable fixed point. Furthermore,
in regions III and IV, the stable limit cycles have
large amplitude and come close to the I = 0 axis.
This means that once on the stable limit cycle, the
pathogen might go extinct (Fig. 4a). The trajecto-
ries start at the fixed point D and fluctuate around
it. Eventually, they cross the unstable limit cycle
and fall onto the stable limit cycle, which leads to
large amplitude oscillations. Eventually, the tra-
jectories lead to extinction as can be seen from the
downward slope of the average (red curve). This is
in stark contrast to the deterministic model (green
curve). It shows that when even a simple economic
constraint is added, the deterministic model be-
comes inadequate by failing to capture the risk of
extinction which can be appreciable not only when
the disease prevalence is low but also in the en-
demic equilibrium where the disease prevalence is
appreciable and where the risk of extinction
would consequently be vanishing in the ab-
sence of the economic constraint.

Figures 4b and 4c illustrate how this impacts
control. In both the system starts in the stable
fixed point D. In Fig. 4b the eradication probabil-
ity is low as demonstrated by the very small down-
ward slope of the average (red curve). The effect of
increasing the resources for control, γ, by a small
amount (0.1% of the total population) is illus-
trated in Fig. 4c. A global bifurcation gives rise
to an unstable limit cycle around the fixed point
D and consequently its basin of attraction shrinks.
This significantly increases the probability of ex-
tinction, as can be seen from the steep drop in the
average. This potential benefit of slightly increas-
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ing the control resources γ would be completely hidden in the deterministic model. Thus when deciding on
the optimal value of γ under other external constraints, such as cost of the control, it is necessary to con-
sider the stochastic model. Relying on the deterministic model alone can lead to a gross underestimation
of the effects of the control.

4 Discussion

In this paper, we studied the dynamics of a simple SIRS model with treatment that increases the recovery
rate of treated individuals. We considered an economic constraint on the control resources such that only
a certain proportion γ of the population can be treated at any given time. This can correspond to a
limited amount of drug, insufficient infrastructure for administering the treatment or lack of specialised
personnel. This model structure has been considered before in the SIRS setting. Ndeffo Mbah & Gilligan
(2011) were primarily concerned with optimal allocation of drugs across two subpopulations, following
early work by Rowthorn et al. (2009) who considered an SIS model. Others have previously considered
optimal allocation of constrained resources in a single population (Forster & Gilligan, 2007; Goldman
& Lightwood, 2002; Sethi & Staats, 1978). Conventional analysis centres around continuously adjusting
the amount of resources available to optimize the overall cost, using optimal control theory (Seierstad &
Sydsaeter, 1986). However, the detailed dynamics of the SIRS model with constrained control resources
have not been investigated before. Since optimal control theory becomes mathematically intractably
complex as more subpopulations are considered, such understanding of the dynamics of the system with
constrained control is likely to be necessary for studying the more realistic problem of allocating resources
between n interconnected populations. At the same time, the non-linear dynamics of the constrained
control system turn out to be interesting in their own right in the insight they provide on the effect of
control on the inherent dynamics of the epidemic system, even without allowing for stochasticity.

We show that the system can have more than one endemic equilibrium and that the final equilibrium
state which the solutions reach depends non-trivially on the initial conditions. In particular, it is possible
for solutions with initially fewer infected hosts to end up in a higher-prevalence equilibrium.

The system also exhibits global bifurcations, as the critical parameter γ (control resources) is changed,
which gives rise to one or two limit cycles. The existence of the cycles has profound implications for
the behaviour of the stochastic counterpart of the deterministic model. Normally, stochastic solutions
initiated at a stable fixed point fluctuate around it (on time-scales shorter than exponential in N , the
number of individuals (Allen & Burgin, 2000)). However, when there is an unstable limit cycle surrounding
the fixed point, the stochastic fluctuations can perturb the solutions across the cycle. The solutions then
tend to a different stable attractor. This facilitates transitions between stable attractors which would be
much less likely in a stochastic system without the unstable limit cycle and would not be possible at all
in the deterministic system. This is of particular importance when one of the attractors in question is the
disease-free equilibrium because the combined effect of the stochastic fluctuations and the deterministic
dynamics might then facilitate disease eradication. This is a benefit of the control deployment which
would not be revealed if the detailed dynamics were not considered. Furthermore, the stable limit cycle
often comes very close to the I = 0 axis and thus may facilitate stochastic extinction of the pathogen
even if the disease-free equilibrium of the deterministic system is not stable.

We conclude that when an external constraint on the control resources is imposed, stochastic effects
together with the detailed dynamics of the system must be considered in order to understand the range of
potential effects the control may have. Neglecting this may lead to underestimation of the positive impact
of the control and therefore to wasting resources by overallocation or by incorrectly deciding not to apply
control at all. Note that most of the non-trivial dynamical behaviour is occurring close to γ = γc, which
for the parameter values considered in this paper corresponds to the ability of treating between 1% and
8% of the population simultaneously at any given time. These values are low but plausible in situations
where the proportion of individuals that can be treated is limited by the shortage of infrastructure or
personnel to administer the control. Furthermore, when designing an optimal control coverage (optimal
value of γ), selecting γ high above the critical threshold γc leads to the number of the infected individuals
in the endemic state being much smaller than the number that can be treated, that is, resources will be
wasted. This means that the optimal value of γ is expected to be close to γc and thus in the region where
the non-trivial dynamics are important.
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There are several directions in which this work could be taken forward. First is an extension of the
rigorous analysis to investigate whether the complex dynamics and the qualitative differences between the
deterministic and stochastic behaviour are present when the effects of control are modelled differently or
when disease-induced death occurs. As an example of the former, the control can be modelled
to reduce the infectiousness of the controlled individuals via hospitalization or quarantine. Further to
this, in models where qualitative differences occur between deterministic and stochastic
versions, the parameter space could be scanned in its entirety to get a measure of how
often the divergence is sufficiently large to be significant in considering the effectiveness of
control programmes. Second is to consider the practical applications of the understanding developed
in this work in the context of the problem of how to optimally allocate limited resources within a network
of n interconnected populations.

5 Appendix

5.1 A1. Dynamics of the standard SIRS model

A full description of the dynamical behaviour of the SIRS model can be found in most standard textbooks,
for example Keeling & Rohani (2008) or May & Anderson (1991). Here we list the most important
properties for convenience. The SIRS model at its most basic is described by the equations:

Ṡ = σ + νR− σS − βIS (8)

İ = βIS − (µ+ σ)I (9)

Ṙ = µI − (ν + σ)R. (10)

Here S, I and R and the proportions of the susceptible, infectious and recovered individuals respectively.
β is the transmission rate of the infection, σ is the birth rate and the death rate, which are assumed to
be equal, µ is the recovery rate and ν is the rate with which recovered individuals lose immunity and
rejoin the susceptible class.
The system has one or two equilibria. One is the disease-free equilibrium I? = 0, R? = 0 and S? = 1.
The other, whenever it exists, is an endemic equilibrium given by:

S? =
1

R0
(11)

I? =
ν + σ

ν + σ + µ

(
1− 1

R0

)
(12)

R? =
µ

ν + σ + µ

(
1− 1

R0

)
, (13)

where we have defined the so-called basic reproductive number R0 = β/(µ+ σ). The basic reproductive
number measures on average how many new infections an infectious individual will cause before recovering.
WhenR0 ≤ 1, an epidemic is impossible, the disease-free equilibrium is stable and the endemic equilibrium
does not exist. When R0 > 1, the disease-free equilibrium is unstable and the endemic equilibrium is a
stable global attractor.

5.2 A2. Proofs of the key results

Lemma 5.1. C is a saddle whenever it exists.

Proof. First, it is straightforward to find the expressions for the fixed points C and D. They are given by

IC =
χ−

√
χ2 − P

2β(µ+ ν + σ)
(14)

ID =
χ+

√
χ2 − P

2β(µ+ ν + σ)
(15)

RC,D =
µIC,D + γη

ν + σ
(16)
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where

χ = β(−γη + ν + σ)− (µ+ σ)(ν + σ) (17)

P = 4βγη(ν + σ)(µ+ ν + σ) > 0. (18)

When I > γ, the Jacobian of the system is

J(I,R) =

(
β(1−R− 2I)− (µ+ σ) −βI

µ −(ν + σ)

)
. (19)

From this we can calculate the determinant evaluated at the point (IC , RC). It is given by

det JC = −(β(1−RC − 2IC)− (µ+ σ))(ν + σ) + βµIC (20)

= (µ+ σ)(ν + σ)− β
(
ν + σ − γη − 1

β
(χ−

√
χ2 − P )

)
(21)

= −
√
χ2 − P < 0 (22)

Theorem 5.2. The bifurcation diagrams in Figure 2 cover all the possible behaviour of the fixed points.

Proof. We have discussed stability of A and B in the main text and in lemma 6.1 we proved that C is
always a saddle. To prove this theorem, we first consider what happens to D as γ increases. ID must
be a decreasing function of γ. What is its value when γ = γc? Inserting the expression for γc into the
formula for ID gives that

ID(γc) =

{
IB if η ≤ η2
η(ν+σ)

β(ν+µ+σ) > IB if η > η2.
(23)

where
η2 = −(µ+ ν + σ) +

√
(µ+ ν + σ)(β + ν). (24)

Note this is the η2 that separates regions II and III on the η axis, in Figure 2. This is the value of η
at which the transition from D to B at γ = γc becomes discontinuous. The argument presented here
constitutes a derivation of its value. Now, at γ = 0, D is stable. As γ increases, TrJD > 0 is equivalent
to γ ∈ (γ′c, γ0) where γ′c and γ0 are the roots of the corresponding quadratic equation. So D can change
its stability properties at most twice. For the purposes of the analysis here, only γ′c will be needed. It is
given by

γ′c =
1

2βη

(
µ2 + 3µ(ν + σ) + 2(ν + σ)(β + 2ν + σ)− (µ+ 2ν + 2σ)

√
(µ+ ν + σ)2 + 4(ν + σ)(β + ν)

)
.

(25)
Now we need to check when D loses stability and whether it happens for γ < γc. Solving the quadratic
inequality γ′c > γc, which, when satisfied, means that at γc, D is still stable, gives η 6∈ (η1, η3) where η1
and η3 are the roots of the corresponding quadratic equation, given by

η1 =
1

2

(
−µ− ν − σ +

√
(µ+ ν + σ)2 + 4(ν + σ)(β + ν)

)
(26)

η3 =
1

2(ν + σ)

(
−(µ+ ν + σ)(µ+ 3ν + 3σ) +

√
(µ+ ν + σ)2 + 4(ν + σ)(β + ν)

)
. (27)

These are the critical values separating the regions I and II resp. III and IV on the η axis, in the Figure
2. This means that for η < η1, D stays stable until it continuously transitions into B (see Figure 2a).
Now we are ready to consider the other cases in turn:

• The case η ∈ (η1, η2). In this case, C cannot exist because D transitions into B continuously. We
will show that it is impossible for D to lose stability and then become stable again before γ reaches
γc. To do this we consider the sign of TrJD at γ = γc, when ID(γc) = IB . This is equal to

TrJD =
η2 − (β + ν)(ν + σ) + η(µ+ ν + σ)

η + µ+ ν + σ
(28)
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Setting TrJD < 0 then gives a quadratic inequality which is satisfied if and only if η < η1. Therefore
when η ∈ (η1, η2) the only possible behaviour is such that D loses stability for some γ < γc and
then continuously transitions into B. This justifies Figure 2b.

• The case η ∈ (η2, η4). We already know that in this case, ID > IB at γ = γc. Now we will show
that this means C always appears at γ = γc. For C to exist, we must have IC > γ. This is once
again a quadratic inequality and holds whenever γ ∈ (γc, γb) where the root γb is given by

γb =
(β − µ− σ)(ν + σ)

β(η + 2(µ+ ν + σ))
. (29)

When does this interval exist? Setting γb > γc and solving for η reveals that the interval does exist
when η > η2. This proves that for η > η2, C appears at γ = γc. As γ increases further, there are
two ways C can cease to exist. Either γ reaches γb or C and D collide, which happens when χ2 = P .
Solving this quadratic equation for γ reveals that this first happens at γa given by

γa =
ν + σ

βη

(
β + µ+ 2ν + σ − 2

√
(µ+ ν + σ)(β + ν)

)
. (30)

We will now show that γb > γa which means that C and D always collide and annihilate. We want
to show that

ν + σ

βη

(
β + µ+ 2ν + σ − 2

√
(µ+ ν + σ)(β + ν)

)
<

(β − µ− σ)(ν + σ)

β(η + 2(µ+ ν + σ))
. (31)

After solving for η, this simplifies to η > (ν+µ+σ)(β+ν−η2)/η2. We have divided by η2 because
it is always positive, as can be quickly checked using the assumption β > µ + σ. Simple algebra
reveals that in fact (ν + µ + σ)(β + ν − η2)/η2 = η2 and therefore the above inequality reduces
to η > η2 which is trivially satisfied by assumption. To finish the justification of the bifurcation
diagrams in Figure 2c and 2d, we need to check that when C and D collide, D is always unstable.
To do this we need to show that γ′c < γa and a proof of this is the subject of Lemma 6.3.

• The final case, η > η4. This region corresponds to RT0 ≥ 1 and therefore η4 = β − µ − σ. Since
the disease can be eradicated, the point A is stable. The behaviour of D and C does not change
compared to the case η ∈ (η2, η4). They will be present as long as γa > 0 and for β > µ+ σ this is
always the case.

Lemma 5.3. γ′c < γa.

Proof. Consider the quantity D = 2βη(γ′c − γa). Define new variables x = β + ν and y = σ + ν and
without loss of generality, set µ = 1 (this is just a rescaling of time). Then we can write

D(x, y) = 2y
√
x(1 + y) + 1 + y − (1 + 2y)

√
1 + 2y + y(4x+ y), (32)

where x > 1 and y > 0. We will show that D is always negative. After squaring D < 0 reads

4y2x(1 + y) + (1 + y)2 + 4(1 + y)y
√
x(1 + y) < (1 + 2y)2(1 + 2y + y2 + 4xy). (33)

Separating the square root and squaring again gives

x(1 + y)3 < [(1 + y)3 + x(1 + 3y + 3y2)]2 (34)

and rearranging the terms leads to

x2(1 + 3y + 3y2)2 + (1 + y)3(1 + 6y + 6y2)x+ (1 + y)6 > 0, (35)

which is evidently satisfied. This finishes the proof.
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