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In this letter, coalescence-bouncing transitions of head-on binary droplet collisions are predicted by a novel
macroscopic model based entirely on fundamental laws of physics. By making use of the lubrication theory of
Zhang and Law [Phys. Fluids 23, 042102 (2011)], we have modified the Navier-Stokes equations to accurately
account for the rarefied nature of the interdroplet gas film. Through the disjoint pressure model, we have
incorporated the intermolecular Van der Waals forces. Our model does not use any adjustable (empirical)
parameters. It therefore encompasses an extreme range of length scales (more than 5 orders of magnitude):
from those of the external flow in excess of the droplet size (a few hundred µm) to the effective range of the
Van der Waals force around 10 nm. A state of the art moving adaptive mesh method, capable of resolving all
the relevant length scales, has been employed. Our numerical simulations are able to capture the coalescence-
bouncing and bouncing-coalescence transitions that are observed as the collision intensity increases. The
predicted transition Weber numbers for tetradecane and water droplet collisions at different pressures show
good agreement with published experimental values. Our study also sheds new light on the roles of gas
density, droplet size and mean free path in the rupture of the gas film.

Keywords: Thin film, lubrication theory, rarefiled gas dynamics, Van der Waals’ forces, disjoint pressure,
Navier-Stokes equations, Boltzmann equations, moving adaptive mesh method

Drop impact on a solid surface1–4 and droplet
collision5–8 are fascinating multi-phase flow problems.
Not only are these subjects of importance in under-
standing many natural and technological processes, they
are also interesting from the fundamental point of view.
They have been very active areas of research for the last
twenty years9–18. Currently, one of the greatest puzzles
in multiphase flows is: why does the surrounding air play
a dramatic role in determining the outcome of drop im-
pact and droplet collision? In fact, when the ambient
air pressure is reduced, two amazing phenomena have
been observed experimentally: (1) the bouncing regime of
two colliding tetradecane droplets may disappear19; (2)
the splashing of an impacting drop can be suppressed20.
The outcomes of these beautiful experiments are easy to
comprehend, yet the underlying suppression mechanism
is unknown. It is not obvious which physical property
of the air is important. We note that the air dynamic
viscosity and the surface tension coefficient do not vary
with pressure. The density, on the other hand, is af-
fected. However, as it is already 3 orders of magnitude
smaller than that of the droplet, further decreases with
the pressure seem unlikely to have a significant effect.
This work addresses the modelling of the air pressure in
the droplet collision problem. We believe that progress
made here will provide useful clues for solving the more
difficult problem of drop impact.
One of the most difficult issues in multiphase flows is

modelling the topological change of interfaces. There are
two basic types of topology change. The easier one is
filamentary break-up, where surface tension is the driv-
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ing mechanism and universal macroscopic solutions based
on continuum mechanics have been found21. In the sec-
ond type, interface merging, continuum mechanics is not
sufficient to describe the physical process. The final
stage of the interfacial dynamics involves molecular Van
der Waals forces (prevalent on scales of 10-40 nm) and
thereby also rarefied gas flow (the mean free path of air
is of order of 100 nm at 1 atm). A successful model must
incorporate these microscopic physics in order to accu-
rately predict the interface merging from first principles.
Droplet collision represents a canonical example of inter-
face merging.
We consider incompressible flows of two different

phases with density ρi and viscosity µi, where i = liq-
uid or gas. The surface tension coefficient is denoted as
σ. The flows of the phases are governed by the incom-
pressible Navier-Stokes equations22. Given that they are
assumed axisymmetric, the continuity equation reads

1

r

∂

∂r
(ru) +

∂v

∂z
= 0, (1)

and the momentum equations are

ρ
du

dt
= −

∂p

∂r
+

1

r

∂

∂r
(rτrr) +

∂

∂z
(τrz)−

2µu

r2
, (2)

ρ
dv

dt
= −

∂p

∂z
+

1

r

∂

∂r
(rτzr) +

∂

∂z
(τzz), (3)

where the notation d
dt

denotes the material derivative
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, p is the pressure, u and v the radial and

axial velocities, τrr, τrz, τzr and τzz the four components
of the stress tensor τ . The boundary condition on the in-
terface, expressing the force balance between the surface
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FIG. 1. Configuration of two head-on colliding droplets of
same size with the formation of a thin flat lubrication layer.

tension, stress and Van der Waals forces, is:

[(−pI+ τ ) · n]+
−

=

(

σκ−
AH

6πh3(x)

)

n, (4)

where [·]+
−

is the difference between the enclosed quan-
tity on the two sides of the interface, κ its local cur-
vature, and n its local unit normal, AH the Hamaker
constant and h(x) the minimum distance from point x

to the other interface. Here the Van der Waals forces are
attractive forces and are approximated by the disjoint
pressure model23,24. These forces, which are inversely
proportional to the cubic power h3, only become effec-
tive when h is order of 10 nm.
The dynamics of the collision are dominated by the

slow drainage of a flat interdroplet gas film of thickness
h(r) with dh/dr ≪ 1 (see Fig. 1). When the film thick-
ness reaches the order as the mean free path, the con-
tinuum assumption fails; the film flow is now governed
by the Boltzmann equation, instead of the Navier-Stokes
equations. A hybrid method coupling the Navier-Stokes
and Boltzmann equations is desirable but complicated.
Our aim is to develop a macroscopic model solely based

on the Navier-Stokes equation. Zhang and Law12 have
developed the first comprehensive theory for droplet col-
lisions based on 4 ordinary differential equations. They
showed that the pressure within the lubrication layer can
be expressed in a unified form for the continuum and rar-
efied flows as

pg =
3µg
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where the correction factor ∆ is a function of the Knud-

sen number Kn = λ/h (with λ the mean free path). See
Eqn. (73) in ref 13 for an explicit formula for ∆.
This result is used in the present work based on the

following observations: (1) the Boltzmann equation is
only needed in the lubrication layer; (2) the continuum
flow solution based on lubrication theory is an accurate
approximation of the Navier-Stokes equations; (3) the
rarefied flow solution in the lubrication layer only differs
from the continuum flow one by a correction factor. The
crucial step in this work is the realization that the lubri-
cation resistance force can be reproduced by solving the
Navier-Stokes using a variable (effective) viscosity such
that in the lubrication layer µ = µg/∆(Kn). The effec-
tive viscosity is about 1 order of magnitude smaller than
the macroscopic viscosity µg at Kn = 1 and decreases

as h1.1551 with the film thickness for Kn ≥ 1; the ef-
fect of rarefied gas dynamics is to reduce the lubrication
resistance force and therefore to encourage the droplet
coalescence.
This model has the elegant property that the con-

tinuum and rarefied flows are unified in a single set of
Navier-Stokes equations with a variable (effective) vis-
cosity, and the transition between the two flow regimes
is effected smoothly via the correctional factor ∆(Kn)
within the lubrication layer. Unlike Zhang and Law12,
whose droplet-collision theory includes an empirical co-
efficient that is not universal, we use no adjustable pa-
rameters.
The droplet collision involves length scales across more

than 5 orders of magnitude. It is not yet feasible to cap-
ture all these with a fixed-grid method. We have in-
stead developed a state of the art moving adaptive mesh
method. The idea of using moving mesh methods for
computing multiphase flows is an old one, dated back
to the 1980s25. We summarize here the distinct features
of our method : (1) our mesh moves with the interfaces
between different phases so that the interfaces are al-

ways lines of the mesh; (2) in our mesh each triangle
contains only one phase, no matter how thin the lubri-
cation layer is. A direct consequence is that an accurate
representation of the interfacial boundary conditions is
obtained; (3) the Navier-Stokes equations are resolved
in both phases simultaneously using a Finite Element
Method: second degree polynomials are used to approx-
imate the velocity in each triangle. In the lubrication
theory, the velocity profile in the air film is parabolic.
Therefore, our numerical method will capture the exact
solution in the lubrication layer, even with only a single
layer of elements. The reader is referred to the Supple-
mental Material [26] and refs [27–34] for the details.
Real material properties, listed in Table I, are used in

this study. The air properties in Table I are for 1 atm
pressure. The mean free path is inversely proportional to
the density. Under constant temperature, the air density
is proportional to the ambient pressure while its mean
free path is inversely proportional. The effect of the air
pressure on the viscosity and the surface tension is neg-
ligible. The relevant dimensionless numbers are

We =
ρlDU2

σ
, Ca =

µgU

σ
, λ̄ =

λ

D
,

ĀH =
AH

6πρlU2D3
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ρg
ρl

, µ̄ =
µl

µg

.

where U is the droplet relative speed andD the diameter.
On increasing the viscosity ratio µ̄l, the droplets’ defor-
mation (hence the lubrication resistance) will be reduced,
and the coalescence enhanced. Increasing ĀH increases
the van der Waals attractive force and enhances the co-
alescence too. It will be shown that the density ratio ρ̄
is unimportant in the limit ρg ≪ ρl.
It is well known that the outcome of a binary droplet

collision is nonmonotonic as the collision intensity in-
creases; for small We (soft collision), there is a transition
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TABLE I. Physical properties of the liquids and gas in the
simulation

air density 1.225 kg m−3

air viscosity 1.827 × 10−5 N s m−2

mean free path 6.9× 10−8 m
tetradecane density 762.0 kg m−3

tetradecane viscosity 2.128 × 10−3 N s m−2

tetradecane–air surface tension 2.65× 10−2 N m−1

tetradecane Hamaker constant 5.0× 10−20 J
water density 1000.0 kg m−3

water viscosity 1.00× 10−3 N s m−2

water–air surface tension 7.3× 10−2 N m−1

water Hamaker constant 3.7× 10−20 J

from coalescence to bouncing at WeS , while one from
bouncing to coalescence (at WeH) is found for large We
(hard collision). Boundaries between the various regimes
are significantly influenced by the ambient gas pressure19.
We have investigated the collision regimes for tetrade-
cane and water droplets. Two radii, R = 107.2 µm and
167.6 µm, were considered for tetradecane. The experi-
mental radius for water droplets varies between 100 µm
and 300 µm; only R = 150 µm was considered in this
study. Our predicted critical Weber numbers together
with the corresponding experimental values12,19 are sum-
marized in Table II, and show remarkably good agree-
ment.

Fig. 2 shows the collision sequence of the computed
tetradecane droplets for Weber number 9.33 at 1 atm.
The computed interface positions are superposed on the
experimental results32 to demonstrate the close corre-
spondence between the two.
A striking experimental observation is that the bounc-

ing regime disappears for tetradecane droplets when the
ambient pressure is reduced to 0.6 atm. This is confirmed
by our numerical simulations. Fig. 3 plots the minimum
gap thickness hmin as a function of time t for We = 9.33
and radius R = 167.6 µm (the length and time in this
figure and Fig. 4 are made dimensionless with character-
istic length and velocity D and U). The thick solid line
represents the data at 1 atm and the broken line that at
0.6 atm. For the latter case, the gas density is decreased
by a factor 0.6 and the mean free path increased by 5/3.

According to the lubrication theory, formula (5), the
air density plays no role at all in the lubrication force.
The gas density is already 3 orders of magnitude smaller
than the liquid, so while a change of 40% may have a
minor influence at the early stage of rapid droplet ap-
proach, it surely does not significantly affect the more
relevant slow drainage stage, and hence the outcome of
the collision. To support our assertion, we plot also in
Fig. 3 the minimum gap thickness for the case when only
the density is reduced (represented by •), and for the case
when only the mean free path is increased (represented
by ◦). The data for the former case follows closely the

FIG. 2. Bouncing collision sequence of tetradecane droplets
in 1 atm air. R = 167.6 µm, and We = 9.33. Comparison
between the experimental results of Ref. 32 and the results
from the computation (present study) represented by thick
solid lines.

1 atm curve, while that for the latter matches the 0.6 atm
curve. We conclude that the influence of the atmospheric
pressure is via the increase of the mean free path (the rar-
efied gas effect). We note that a similar influence of air
via the mean free path has been suggested by Riboux et
al35 for the splashing problem, and by Marchand et al36

for air entrainment by moving contact lines.

No droplet size effect has previously been reported.
Our calculation reveals that at 1 atm, the bouncing re-
gion is much smaller for tetradecane droplets of R =
107.2 µm than those of R = 167.6 µm. On the other
hand, this difference is much smaller at high ambient
pressure (2.4 atm). The experimental soft transition
WeS = 2.3 was reported for R = 107.2 µm while the
hard transition WeH = 12.3 for R = 167.6 µm (see
ref. 32). Our numerical WeS (between 2.4 and 2.5) for
R = 107.2 µm is very close to the experimental value
reported for the same radius. For R = 167.6 µm, our
numerical WeH (between 14.9 and 15) is also a good ap-
proximation of the experimental one (12.3).

To shed light on this observation, we consider the op-
posing effects of Ca = µg

√
We/

√
ρσD and λ̄ = λ/D.

For the same liquid and Weber number, the larger D
is , the smaller is Ca, the smaller the droplet deforma-
tion and the higher the chance of coalescence. On the
other hand, the larger D is , the smaller is λ̄, the less
the rarefied gas effect, and the less the chance of coales-
cence. To make our argument quantitative, we plot in
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TABLE II. Comparison of the predicted and experimental transition We for the collision of tetradecane (two radii) and water
droplets in air.

Tetradecane (1.0 atm) Tetradecane (0.6 atm) Tetradecane (2.4 atm)
R = 107.2 µm R = 167.6 µm R = 107.2 µm R = 167.6 µm

WeS (exp) 2.3 Not available Coalescence only Not available Not available
WeS (present) 2.3–2.4 1.1–1.2 Coalescence only 0.4–0.5 0.5-0.6
WeH (exp) Not available 12.3 Coalescence only 30.0 30.0

WeH (present) 6.2–6.3 14.9–15.0 Coalescence only 18.5–19.0 19.3–19.5
Water (1.0 atm) Water (2.7 atm) Water (8.0 atm)

WeS (exp) Coalescence only 3.0 Not available
WeS (present) Coalescence only 3.7–3.8 3.5-3.6
WeH (exp) Coalescence only 6.0 13.0

WeH (present) Coalescence only 6.5-6.6 13.0–13.5
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FIG. 3. The minimum gap thickness hmin as a function of
time t (dimensionless quantities calculated with droplet di-
amter and speed) for We = 9.33. —, conditions as Fig. 2;
– –, pressure reduced to 0.6 atm; •, density reduced, mean
free path unchanged; ◦, mean free path increased, density
unchanged.

Fig. 4 the minimum gap thickness as a function of time
for the two radii at 1 atm and 2.4 atm all with We = 2.5.
For the larger D, we observe that the minimum thick-
ness is slightly smaller at the initial stage. However, by
and large, at 1 atm, the determining factor is the dimen-
sionless mean free path; at the lowest values, the large
droplet data (•, λ̄ = 2.06× 10−4) is significantly higher.
This is because the reduction of the viscosity due to the
rarefied gas effect is much larger for the small droplets
(λ̄ = 3.22× 10−4). Finally, when the ambient pressure is
increased to 2.4 atm, both mean free paths are reduced
2.4 times (bringing them closer to the effective range of
Van der Waals forces), the rarefied gas effect is less im-
portant, and the difference is hence smaller.

This work addresses one important question: the mod-
elling of the effect of the air pressure in the droplet col-
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FIG. 4. The minimum gap thickness hmin as a function of time
t (dimensionless quantities) for We = 2.5. —, tetradecane
droplets of radius 107.2 µm at 1 atm; – – ambient pressure
increased to 2.4 atm; •, radius 167.6 µm at 1 atm; ◦, radius
167.6 µm at 2.4 atm. The two horizontal lines show values of
the dimensionless mean free paths λ̄ = λ/D at 1 atm for the
two radii (3.22 × 10−4 and 2.06× 10−4 respectively).

lision problem. A theoretical breakthrough was made
by Gopinath et al. through the introduction of com-
pressibility and non-continuum effects37,38. The Van der
Waals forces and large deformation of droplet were in-
cluded in Zhang and Law’s model12. The present work is
the first work which has successfully incorporated both
microscopic Van der Waals forces and rarefied gas effects
into the macroscopic Navier-Stokes equations. Our the-
ory is based entirely on fundamental laws of physics. It
contains no adjustable (empirical) parameters for data
fitting, and makes no assumption on the droplet shape;
the interface location is part of the solution that we
seek. The numerical implementation handles the huge
(5 orders of magnitude) length scale range of the prob-
lem via a unique state of the art moving adaptive mesh
method33. The results compare very well with experi-
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mental data12,32. Given the extreme sensitivity of the
rupture of the interdroplet gas film, the numerical bound-
aries of soft coalescence-bouncing and hard bouncing-
coalescence regimes are remarkably close to the exper-
imental ones. Our investigations have also led to new,
sometimes counter-intuitive, insights regarding the film
rupture. We found that the effect of the gas density is
minor, and the ambient pressure and the droplet size de-
termine the collision outcome through the rarefied gas
effect, which reduces the effective gas viscosity (via its
dependence on the mean free path). Future work will
attempt to incorporate additional physics, for instance,
the effect of the liquid vapor, into our theory, and to use
it to elucidate the suppression of the drop splashing, a
critical outstanding problem in the multiphase flows in
the decade.
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