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� OBD ubiquitous in modern vehicles, PEMS to be regulatory requirement in Europe.
� Maps of transient fuel use, emissions recreated from real-world driving data.
� Trip-level fuel use and emissions within 5% of observed values generally.
� Per second fuel use and emissions simulated accurately.
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Air pollution problems persist in many cities throughout the world, despite drastic reductions in regu-
lated emissions of criteria pollutants from vehicles when tested on standardised driving cycles. New vehi-
cle emissions regulations in the European Union and United States require the use of OBD and portable
emissions measurement systems (PEMS) to confirm vehicles meet specified limits during on-road oper-
ation. The resultant in-use testing will yield a large amount of OBD and PEMS data across a range of vehi-
cles. If used properly, the availability of OBD and PEMS data could enable greater insight into the nature
of real-world emissions and allow detailed modelling of vehicle energy use and emissions. This paper
presents a methodology to use this data to create engine maps of fuel use and emissions of nitrous oxides
(NOx), carbon dioxide (CO2) and carbon monoxide (CO). Effective gear ratios, gearbox shift envelopes,
candidate engine maps and a set of vehicle configurations are simulated over driving cycles using the
ADVISOR powertrain simulation tool. This method is demonstrated on three vehicles – one truck and
two passenger cars – tested on a vehicle dynamometer and one driven with a PEMS. The optimum vehicle
configuration and associated maps were able to reproduce the shape and magnitude of observed fuel use
and emissions on a per second basis. In general, total simulated fuel use and emissions were within 5% of
observed values across the three test cases. The fitness of this method for other purposes was
demonstrated by creating cold start maps and isolating the performance of tailpipe emissions reduction
technologies. The potential of this work extends beyond the creation of vehicle engine maps to allow
investigations into: emissions hot spots; real-world emissions factors; and accurate air quality modelling
using simulated per second emissions from vehicles operating in over any driving cycle.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Emissions of greenhouse gases (GHG) and local air pollutants
present persistent challenges in both space and time. The mean,
global concentration of GHG must not exceed 450 ppmv by 2100
to limit temperature change to +2 �C, relative to pre-Industrial
levels. The corresponding representative concentration pathway
(RCP2.6) requires global GHG emissions to fall 40–70%, relative
to 2010 levels, by 2050 and be at or below zero by 2100 [1].
Similarly, noxious air pollution persists in urban areas despite
reductions in regulated emissions levels from combustion events
accompanying transport movements. Indeed, there were no excee-
dances of the nitrogen dioxide (NO2) annual limits in rural areas
[2].

Transportation accounted for 20% of CO2 emissions [3] and 46%
of nitrous oxide (NOx) emissions [2] in the EU-28 in 2013. Euro
standards for vehicle emissions were designed to reduce local air
pollutant emissions and is part of the broader Clean Air Policy
Package. Currently, vehicle emissions in Europe and the US are
calculated using distance-based factors under the Computer
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Nomenclature

GHG greenhouse gases
IPCC Intergovernmental Panel on Climate Change
RCP2.6 representative concentration pathway 2.6, is the IPCC

climate change mitigation scenario where radiative
forcing peaks and falls to 2.6 W/m2 by 2100

CO2 carbon dioxide
NOx nitrous oxides
EU-28 28-member European Union
COPERT Computer Programme to calculate Emissions from Road

Transport
MOVES Motor Vehicle Emission Simulator
ANN artificial neural networks

PEMS portable emissions measurements system
OBD on-board diagnostics
NEDC New European Driving Cycle
CO carbon monoxide
ADVISOR advanced vehicle simulator
EA Emissions Analytics
ANL Argonne National Laboratory
UDDS Urban Dynamometer Driving Schedule
FTP Federal Test Procedure
HWFET Highway Fuel Economy Test
ETC or FIGE European Transient Cycle, for heavy goods vehicles
SAD sum of absolute deviations

J.D.K. Bishop et al. / Applied Energy 183 (2016) 202–217 203
Programme to calculate Emissions from Road Transport (COPERT)
and Motor Vehicle Emission Simulator (MOVES), respectively.
COPERT emissions factors are based on average speed, while
MOVES uses vehicle specific power which simulates road load.
Both methods extract emissions factors from dynamometer data
gathered from a subset of vehicles, combined with activity to esti-
mate fleet-level inventories. However, the ability for COPERT and
MOVES to predict emissions accurately may be limited by the
amount of dynamometer data available on new vehicle powertrain
technologies. For example, the latest COPERT emissions factors use
data from 81 Euro V vehicles (31 petrol, 50 diesel) and 20 first gen-
eration, Euro VI vehicles (1 petrol, 19 diesel) [4], while MOVES
emissions factors are based on data from 2.3 million tests from
over 500,000 vehicles but only up to calendar year 2005 [5].

Recent analyses show that these laboratory-derived emissions
factors based on regulated driving cycles overestimate real-world
fuel economy by up to 40% [6] and underestimate emissions of
NOx by an average seven times in modern Euro VI (and equivalent
Tier 2 Bin 5 in the US) vehicles [7]. This discrepancy between reg-
ulated and real-world emissions is reflected at traffic measure-
ments stations where the highest concentrations of NO2 (and
93% of all exceedances of the legal annual limit) were observed [2].

A more accurate method for simulating emissions is available
but, until now, has lacked data for widespread use. Vehicle
dynamic simulation packages, such as the Advanced Light-Duty
Powertrain and Hybrid Analysis (ALPHA) tool [8], Autonomie [9]
and the Vehicle Energy Consumption Calculation Tool (VECTO)
[10], can predict drivetrain power requirements accurately for
any driving cycle. However, they require empirical data for the
energy use and associated emissions from the fuel-to-power con-
verter (engine). Until recently, empirically-derived engine and
emissions maps were not available in large quantities. The most
reliable method for obtaining steady-state engine maps is via
dynamometer testing which is both time consuming and expen-
sive. Therefore, many maps are not available freely in the litera-
ture, leading researchers to simulate the performance of novel
vehicle powertrains using old engine maps. Moreover, there are
limitations to using steady-state maps generated from dynamome-
ter testing in the transient conditions which characterise real-
world vehicle operation [11]. Engine dynamometer testing can be
used to create maps based on transient driving cycles. The
resulting engine maps may still yield large errors in fuel use and
emissions if the transient test cycles do not reflect real-world driv-
ing closely. Therefore, the steady-state maps available in the liter-
ature may not yield accurate results when researchers use them on
driving cycles which differ to what they were generated on.

Two main approaches are used in the literature to determine
fuel use and emissions under transient conditions. First, artificial
neural networks (ANN) have been used to simulate accurately
changes in engine operation, such as cam phasing [12], octane
number [13], fuel blends [14,15] and common rail direct injection
with various exhaust gas recirculation strategies [16]. However,
accurate results using ANN are achievable because steady-state,
dynamometer testing is used to generate the training data. More-
over, not only are ANN approaches best suited to situations where
results are steady and repeatable [17], but also the optimum net-
work architecture may vary from one dataset to another [15].
The nature of collecting data while vehicles are driving normally
introduces a number of external factors, such as weather and traf-
fic conditions, which eliminate the ability to reproduce results
robustly. Therefore, ANN may not be appropriate to generate
engine maps using data gathered while driving.

The second approach applies transient correction factors to
steady-state maps. Third and fourth order polynomials were devel-
oped in Giakoumis et al. [18,19] for each speed point of a heavy-
goods vehicle engine with respect to torque. This analytical form
was used to predict transient fuel use and emissions of nitric oxide
and soot. Exhaust temperature and emissions depend on both
instantaneous and historical engine speed and torque demands
[11]. Therefore, correction factors were developed based on the dif-
ference between exhaust temperatures for hot and cold operation
at each engine load and speed point. The development of correc-
tion factors requires a base steady-state map which is obtained
typically from dynamometer testing.

In contrast to both the regulatory and academic approaches dis-
cussed, this work presents a novel methodology to create engine
maps of real-world fuel use and emissions of both GHG and local
air pollutants based on data collected from on-board diagnostics
(OBD) and portable emissions measurement systems (PEMS) when
driving under real-world conditions. Therefore, this work could be
adopted within COPERT and MOVES, the use of which is required
by nearly every country and state in the developed world to esti-
mate emissions. PEMS have been used extensively in recent times
to understand the emissions from vehicles under real-world driv-
ing conditions. However, the on-board measurements do not pro-
vide the same quality of data as lab-based measurements on
account of variability in driving [20], ambient conditions and the
accuracy of measuring certain pollutants on the go. In most cases,
the PEMS results are analysed and compared to the Euro emissions
limits [21–24]. PEMS results have also been compared to the per-
formance of the vehicle on a chassis dynamometer under type
approval settings and the New European Driving Cycle (NEDC)
[25–27].

Regulations in the European Union [28] and United States [29]
require OBD and PEMS be used to verify in-use emissions from
heavy-duty vehicles. This approach is expected to be extended to
light duty vehicles, beginning in Europe through the Real-Driving
Emissions test [30]. The requirement of PEMS testing through an



Table 1
Physical characteristics of ANL Chevrolet Cruze, EA Volkswagen Golf and DAF CF 75
vehicles used to demonstrate methodology. Asterisks indicate ADVISOR default or
assumed values.

Attribute Chevrolet
Cruze

Volkswagen
Golf

DAF FT
CF 75

Test mass (kg) 1731 1300 20,000
Coefficient of drag, Cd 0.34 0.31 0.6⁄

Frontal area (m2) 2.1 2.2 9.7
Wheelbase (m) 2.7 2.6 8⁄

Top gear number 6 5 12
Transmission Automatic Manual Automatic
Coefficient of rolling resistance, Crr 0.009⁄ 0.009⁄ 0.0059

Max engine torque (Nm) 358 320 1275
First engine speed at max torque

(RPM1)
2000 1750 1100

Second engine speed at max torque
(RPM2)

3000 1700

Max engine power (kW) 110 110 228
Torque at max engine power (Nm) 263 300 990
Engine speed at max power (RPM1) 4000 3500 2200
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in-service conformity procedure will yield large amounts of data
across a range of vehicles. The methodology presented in this
paper is designed to exploit the large data sets which are expected
to become available from widespread PEMS testing. Developing
engine maps for each vehicle in the fleet will enable more nuanced
modelling of energy use and emissions at multiple spatial (country,
city and roadway) and temporal (year, day and second) scales.

This work presents a novel way to simulate accurately the
energy use and associated greenhouse gas and local air pollution
from engines. Our approach sits at the intersection of innovation,
research and development and its accuracy is demonstrated at
the per second and trip level. The method presented in Section 2
describes the creation of gearbox models and sets of candidate
engine maps which are tested on a range of vehicle configurations.
The optimum map for each of fuel use and emissions is the one
with the smallest sum of absolute deviations across each second
of the respective time series.

2. Method

A schematic of the method is given in Fig. 1 and comprises four
parts: the first describes how the effective gear ratio and gear shift
regime is derived from the OBD data; the second gives the proce-
dure for developing the engine maps for each output of fuel use
and emissions of NOx, carbon dioxide (CO2) and carbon monoxide
(CO); the third describes how the gearbox model and candidate
engine maps are combined with vehicle physical characteristics
in the ADVISOR powertrain simulation environment; and the
fourth investigates the sensitivity of the outputs to vehicle physical
characteristics. A seven-second, one dimension median filter was
applied to smooth engine speed, wheel speed and the outputs.

The robustness of this method is demonstrated across three
vehicles, full details of which are given in Table 1:

1. A DAF CF 75 tractor unit tested on a dynamometer as a combi-
nation vehicle under 20 t load reporting exhaust temperature,
Fig. 1. Schematic of method to create engine maps of transient fuel use and emissions. Th
vehicle modelling and transmission modelling and use the same numbering as is presen
fuel use and emissions of NOx, CO2, CO and particulates at
engine-out and the tailpipe.

2. A Volkswagen Golf diesel vehicle tested by Emissions Analytics
(EA) using a SEMTECH-DS PEMS reporting exhaust temperature,
fuel use and tailpipe emissions of NOx, CO2 and CO.

3. A 2014 Chevrolet Cruze diesel vehicle tested on a chassis
dynamometer at the Argonne National Laboratory (ANL) [31]
reporting only fuel use across a number of driving cycles with
hot and cold starts.

Data post-processing from the DAF and EA tests output data at
1 Hz. The output from the ANL test is reported at 10 Hz and inter-
polated to 1 Hz. This lower frequency aligns with the velocity-time
inputs used in the driving cycle simulation. The simulation is
assumed quasi steady-state where the engine operates in steady-
e dotted lines show which the parts of the model which correspond to engine maps,
ted in the methodology text. The dashed line encloses the full method.
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state for each second in the driving cycle. Additionally, 1 Hz time
resolution is the maximum for some of the on-board sensors.
Therefore, measuring faster transients may require more advanced
equipment and preclude the use of real-world data collection.
Returning to the lab reintroduces the challenges which this
method seeks to overcome. Additionally, modifications to the driv-
ing cycle simulation would be required to account for the finer
time steps.

2.1. Creating candidate engine maps

Steady-state engine maps of fuel use and emissions are created
when the measured values are stable at each engine speed-torque
point. Under real-world driving, a range of values will occur at the
same engine speed-torque point. However, a single value must be
used to represent the output at each point in the engine map.

The fuel use and emissions data was separated into bins to
determine a representative value at each engine speed-torque
point to develop a map. The engine speed and torque range was
divided into an equal, evenly-spaced number of bins. Data was
allocated to the bins which they were closest to. To determine
the number of bins to best represent the range of operating condi-
tions, a system optimum was sought. A small number of bins
would be expected to contain data over a large range of values.
Alternatively, a large number of bins might only have one or two
data points each. Fig. 2 illustrates the distribution of data in differ-
ent bins, using fuel use by the DAF CF 75 as an example. The mean
of the data in each bin was used.

It could not be known a priori howmany bins were necessary to
reconstruct accurately the map for each output. Therefore, a set of
candidate engine maps was produced for each output using from
22 to 102 bins. The maximum torque envelope for each engine
was constructed from the vehicle manufacturer specifications,
where possible. The envelope comprised three engine speed
points: the minimum (RPM1) and maximum (RPM2) speeds which
returned peak engine torque; and the engine speed (RPM3) where
maximum power occurred. If RPM1 was reported only, RPM2 was
set as the median of RPM1 and RPM3. The maps were created using
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Fig. 2. Probability distribution function of fuel use (g/s) by the DAF CF 75 in each
bin when the engine speed-torque map is divided into 25 bins (5 � 5). Red squares
denote the (0,0) coordinate of each bin. The x-axis in each subplot is the fuel use
and the y-axis is the probability of achieving that value. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
observed driving data only. That is, we did not extrapolate a fuel
use or emissions value for a part of engine speed-torque space
where no driving occurred. Therefore, obtaining complete maps
requires data be collected from the vehicle operating under a range
of driving conditions.

Engine maps using tailpipe emissions, such as are available
from conventional PEMS testing, internalise the effects of any
emissions reductions technologies present in the tailpipe. Maps
developed using engine-out data are independent of emissions
reductions technologies in the tailpipe.

2.2. Deriving effective gear ratios and shift procedure

The gearbox transmits power through the drivetrain by trans-
lating the torque and speed generated by the engine to a different
applied torque and speed at the wheels. Accurate conversion of
wheel speed to engine speed through the transmission and differ-
ential is essential to ensure that the simulated engine operation
aligns with the observed torque-speed points for each second of
the driving cycle. The open OBD channels may not report the gear
number corresponding to the wheel speed in each second of the
driving cycle. Similarly, the final drive ratio and wheel radius
may not be reported for all vehicles. Therefore, the transmission
encompassing the wheel radius, final drive ratio and gearbox must
be estimated.

The effective gear ratio represents the unique, combined effect
of the wheel radius, final drive ratio and gearbox and is the quo-
tient of engine speed and wheel speed. The effective ratio of each
gear can be represented as a line of fixed gradient on a wheel
speed-engine speed plot. Plotting all gears resembles a set of ‘‘fin-
gers.” The second, refined estimate of gear ratios assumed the ‘‘fin-
gers” swept an arc from first gear to top gear, with even spacing
between the gears. The tangent of the angle gave the rise and
run to calculate the gradient, corresponding to the gear ratio. Each
engine/wheel speed data point was assigned to closest gear based
on minimum absolute distance.

An engine speed-torque shift envelope was identified for each
gear using the data assigned to that gear. Such an envelope is used
to determine when the gearbox should shift up or down to keep
the engine operating in a particular speed-torque region. Minimum
speed to shift down was the maximum of the engine idle speed or
the 5th percentile of the engine speeds observed for that gear.
Maximum speed to shift up was the 95th percentile value. These
percentiles were chosen to avoid outliers which might push the
shift boundaries far from main data set. The first point in the shift
up envelope was the engine idle speed which follows better the
contours of the data in each gear.

2.3. Vehicle simulations to reconstruct emissions on a per second basis

The ANL dynamometer tests cover a range of vehicle operating
conditions, including the main Urban Dynamometer Driving
Schedule (UDDS), Federal Test Procedure (FTP), Highway Fuel
Economy Test (HWFET), high speed and aggressive US06 driving
cycles. Cold and hot starts are investigated at a range of ambient
temperatures and air conditioning loads. These driving cycles are
illustrated in Barlow et al. [32] and data was collected at 10 Hz. Full
drive schedules at 1 Hz, 10 Hz and supporting information are
available from the US Environmental Protection Agency [33]. A lin-
ear interpolation was performed on the 10 Hz ANL test data at 10-s
intervals to return a 1 Hz time series.

The DAF FT CF75 310 4 � 2 day cab tractor unit used a PR
228 kW [34], 1275 N m Euro V engine [35] and 12-speed
12AS1420 gearbox [36] and is driven on the European Transient,
or FIGE, Cycle [32,37]. The DAF CF 75 was tested under load condi-
tions to simulate a combination vehicle with overall vehicle mass
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of 20 t. The frontal area and wheelbase values given in Table 1 rep-
resent those of a typical tractor and trailer [38].

The Volkswagen Golf diesel was driven on the 80 km EA test
route west of London which comprises motorway and non-
motorway driving sections.

Models of the vehicles were developed using ADVISOR version
2003-00-r0116 on Matlab R2016b which integrated the derived
gearbox, candidate engine maps and vehicle characteristics to
reconstruct the observed outputs on a per second basis. Physical
characteristics of the vehicles were taken from manufacturer
specifications, where available. The mass of the Volkswagen Golf
lies at the high end of the range of 2012 vehicle masses recorded
across the trim levels [39]. Test mass, coefficient of drag and rolling
resistance for the ANL Chevrolet Cruze were derived from coast
down data [31]. In other cases, the ADVISOR default values were
used. Full specifications using in the modelling is given in
Table 1.

The method of extracting gear ratios internalised wheel size and
final drive ratios. Therefore, these were set to 1 in the appropriate
powertrain submodels. The routine loaded the candidate maps for
fuel use and each of the emissions for a given number of bins. The
wheel speed was loaded as the driving cycle over which the vehicle
was simulated in ADVISOR. The simulation outputs were fuel use
and emissions for each second and the distance travelled over
the driving cycle.
2.4. Sensitivity of fuel use and emissions to vehicle physical
characteristics

Engine torque was calculated as most vehicles do not report it
on the OBD channels. The ADVISOR default powertrain losses of
8% were assumed in the absence of data on losses as a function
of gear number and other variables. Therefore, the power devel-
oped at the engine shaft was 108% of that transferred to the wheel,
Tengine �xengine ¼ 1:08 �m � VSP, where: Tengine = output torque from
engine; xengine = output engine speed; m = vehicle mass; and
VSP = vehicle specific power [40], given by:

VSP ¼ v � aþ 1
2
� qair � Cd � Af

m
� v3 þ ðCrr � þ sinðhÞÞ � g � v ð1Þ

where v = wheel speed, m/s; a = acceleration, m/s2; qair = density of
air, 1.2 kg/m3; Cd = coefficient of drag; Af = frontal area, m2;
Crr = coefficient of rolling resistance; g = acceleration due to gravity,
9.81 m/s2; and h is the angle of inclination between two consecutive
data points, radians. The DAF CF 75 and ANL Chevrolet Cruze were
both tested on dynamometers with zero road grade. The engine tor-
que demand calculated for the EA Volkswagen Golf included the
change in road grade associated with real-world driving. In all cases,
no measurement of wind speed was available. Therefore, wind
speed was set to zero in all cases. Internal friction losses were not
considered.

In general, the physical characteristics relating to power loss
– coefficient of drag, frontal area and tyre rolling resistance –
are not provided in the literature and must be assumed. Accu-
rate values of both the power required at the wheel and the
gearbox are necessary for the simulated engine torque-speed
per second to be close to the observed values. Therefore, the
sensitivity of the ADVISOR outputs to the characteristics of each
vehicle was investigated. Effective drag (the product of
coefficient of drag and frontal area) and rolling resistance were
varied each by �10% in 10% increments. Test mass was varied
by �20% in 10% increments to recognise the wider range of
possible values. The sweep was conducted on all combinations
of these three characteristics which yielded 125 unique vehicle
configurations plus the base case.
2.5. Selecting the optimum vehicle configuration and engine maps

ADVISOR was run once for each vehicle configuration and sim-
ulated engine torque and speed achieved for each second saved.
This pair of vectors was compared to the observed data in corre-
sponding time steps and the Euclidean distance between each cal-
culated. The optimum configuration returned the smallest sum of
absolute deviations (SAD) which was used because it is robust to
outliers. Conversely, large differences between observed and simu-
lated data would affect the output if squared errors were used.

ADVISOR uses a two-dimensional interpolation of each fuel and
emissions map, indexed by engine torque and speed to determine
the corresponding output for each second. Therefore, a two-
dimensional interpolation of engine torque and speed was per-
formed at each second for the optimum vehicle configuration
across the set of candidate engine maps, using from 22 to 102 bins,
for each output. It was not assumed that engine maps of fuel use
and emissions should use the same number of bins. Therefore,
the optimum bin number for each output corresponded to the
timeseries with the smallest SAD between observed and simulated
values in each second using the optimum vehicle configuration.
2.6. Validating engine maps

The final aspect of the method involves validating the engine
maps on a new driving cycle. This validation was only possible
for the Chevrolet Cruze because data was available for a large num-
ber of driving cycles. Therefore, the UDDS and HWFET driving
cycles were used to create the engine maps. The Chevrolet Cruze
was simulated driving on the US06 as the validation driving cycle
using the effective gear ratios, optimum vehicle configuration and
these engine maps. Shift envelopes were re-calculated for the val-
idation data under the assumption that gear shifts will depend on
the driver’s attempts to meet the driving cycle velocity in each sec-
ond, particularly for vehicles with manual transmissions.

The method described has advantages over similar work which
tries to create engine maps from empirical data. Namely, both Fon-
taras et al. and Kousoulidou et al. filter out data considered highly
transient [23,41] and use ADVISOR to simulate their vehicles. Fon-
taras et al. used 10 bins for the fuel map, while Kousoulidou et al.
used a number of extrapolations to create their engine maps. Con-
versely, we use the optimum number for each of fuel use and indi-
vidual emissions species to maximise accuracy on a per second
basis. Moreover, the method is robust to vehicle type because it
extracts effective gear ratios and sweeps through vehicle physical
characteristics.
3. Results and discussion

The results of the method applied to the DAF CF 75, Volkswagen
Golf and Chevrolet Cruze, are presented in this order. Each results
section comprises a discussion on the gearbox development, the
selection of the optimum vehicle configuration and the optimum
engine maps. Time series of observed and simulated outputs are
presented.
3.1. DAF CF 75 as 20 t combination vehicle

Fig. 3 illustrates how the effective gear ratios were determined
using the speeds of the engine and wheels. Fig. 3a shows the initial
estimate of gear ratios based on the assumed shift points and cor-
responding speed of engine and wheel. The ‘‘fingers” in Fig. 3b
were used as the basis for fitting the lines of Fig. 3c on the assump-
tion of even spacing of angles. The shift envelopes for the DAF CF
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75 are presented by 24 lines, a shift up and shift down pair for each
of the 12 gears in Fig. 3d.

The derived gearbox was combined with the vehicle’s physical
characteristics for each of the 126 combinations of vehicle config-
urations (different physical constants) and simulated in ADVISOR.
Fig. 4a illustrates the sum of absolute deviations per second of
Euclidean distance between observed and simulated engine
torque-speed pairs across the vehicle configurations. The orange
circle corresponds to configuration 2 which returned the smallest
SAD and was chosen as the optimum configuration. The DAF CF
75 combination vehicle with this configuration had effective drag
of 4.9 m2, a glider mass of 4600 kg and rolling resistance coefficient
of 0.0053.

Fig. 4b and c shows the observed engine torque-speed scatter in
blue and the simulated output at the optimum vehicle configura-
tion in magenta. The method as described reproduces most of
the observed torque-speed points in the central cluster at engine
speeds of 100–160 rad/s. Simulated torque-speed points do not
reproduce the low speed (63 rad/s), medium to high torque
(greater than 500 N m) points. Likewise, the absence of magenta
points at low wheel speed (less than 5 m/s), high engine speed in
Fig. 4c suggests the truck skipped low gears in the simulation.
The aim of ADVISOR is to match wheel speed to the speed
demanded by the driving cycle in each second. In some cases, mul-
tiple gear options may satisfy this requirement, leading to a dis-
crepancy between simulated and observed gear choice.

Fig. 4d shows the sum over the time series of absolute devia-
tions per second for fuel use (blue) and emissions of NOx (orange),
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interpretation of the references to color in this figure legend, the reader is referred to th
CO2 (yellow) and CO (purple) across the bin numbers from 22 to
102. Green circles indicate the number of bins with the minimum
SAD for each of the outputs: 82 each for fuel use and emissions
of NOx and CO2; and 102 for CO emissions. A more sophisticated,
adaptive binning technique was investigated recognising the data
was distributed non-uniformly throughout the map. Here, the bin
width was inversely proportional to the density of the data, such
that wider bin widths were used for areas of sparse data and nar-
rower bins widths used where the data was more dense. However,
the simple approach of equal bin widths yielded more accurate
results and was used in this work.

Figs. 5 and 6 show the engine maps of fuel use and emissions for
the DAF CF 75, on instantaneous and brake specific basis, respec-
tively. These maps display an operating point corresponding to
maximum output surrounded by isocontours of constant output.
Maximum fuel use and emissions (g/s) occurred at 130–140 rad/s
and 1000–1200 N m. Multiple regions of high instantaneous and
brake specific NOx, CO2 and CO emissions are observed in addition
to the operating point of maximum emissions for each pollutant.
The blank areas represent regions of engine operation not visited
during the driving cycle. The method does not extrapolate parts
of the map for which no data exists. Therefore, the most complete
maps will be derived from data collected under driving conditions
which use the full range of engine operation.

The ETC comprises three sections which represent urban, rural
and motorway driving. Fig. 7 illustrates the accuracy of the method
at reproducing the outputs per road type. The method reproduced
well both the shape and magnitude of fuel use and associated
al
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emissions for urban and motorway driving. This implies our meth-
ods of extracting the vehicle’s physical characteristics, effective
gear ratios and transmission control are fit for purpose. In the rural
driving particularly, the method reproduced accurately the peaks
in per second fuel use and emissions. However, some dips were
not simulated as well across the various outputs because the opti-
mum number of bins for reducing SAD across the entire time series
returned higher instantaneous fuel use and emissions values at low
engine torque values. A different number of bins may have yielded
maps which simulated the dips better, but introduced greater
errors elsewhere in the time series. This method reproduced fuel
use on a per second basis more accurately than the map created
by Fontaras et al. [41]. In particular, their model does not capture
the higher frequency oscillations of fuel use due to power demand.
Kousoulidou et al. show only mean accuracy at the trip level, rather
than the accuracy at recreating per second fuel use and emissions
[23]. This method outperforms the results in Kousoulidou et al. for
CO emissions.

Fig. 8 illustrates the cumulative sum of the four outputs which
shows the discrepancy between the observed and simulated val-
ues. The simulated values underestimated fuel use and emissions
of NOx and CO2 by 1.2%, 1.8% and 1.2%, respectively. CO emissions
were overestimated by 0.43%. Deviations between fuel use and
emissions of NOx and CO2 occurred in during urban driving (the
first 600 s). The error between observed and simulated CO emis-
sions was more constant across the driving cycle.

Engine-out and tailpipe emissions data was available for the
DAF CF 75. One advantage of this data-driven methodology is that
maps can be created of emissions on either side of any after treat-
ment emissions reduction technology to isolate its effects. The
optimum number of bins for the tailpipe emissions of NOx, CO2

and CO were 82, 82 and 72, respectively, using the optimum DAF
CF 75 configuration and effective gear ratios obtained earlier.
Fig. 9 shows how these maps recreated the observed tailpipe emis-
sions accurately. The absolute error between observed and simu-
lated emissions of NOx, CO2 and CO was 1.2%, 0.56% and 7.1%,
respectively.

Fig. 10a and b shows the NOx emissions map at engine-out and
at the tailpipe, respectively. The difference of these maps isolated
the influence of any tailpipe emissions reduction technologies
and is shown in Fig. 10c. The technologies in the truck exhaust suc-
ceed in reducing peak NOx emissions by 51% from 0.3 g/s at
140 rad/s and 1100 N m to 0.15 g/s. The new tailpipe NOx peak
was 0.21 g/s at 160 rad/s and 1100 N m. However, technologies
maximise their influence by reducing emissions effectively at the
speeds and torques which the engines operate in most. Fig. 10d
shows the proportion of time spent in each part of the map. Over
the ETC, the engine spent 20% of time operating at 160 rad/s and
550 N m. The influence of exhaust after treatment technologies at
this engine operating point was to reduce NOx emissions by 48%
from 0.2 g/s to 0.11 g/s.

NOx and particulate emissions have the largest direct impacts
on human health [42–44]. This method was applied to the particle
mass data collected during the DAF CF 75 test. Cumulative partic-
ulate mass obtained using the simulation was within 1.5% of the
observed values. The largest deviation between simulated and
observed emissions occurred during rural driving (600–1200 s).
The map of particulates used 82 bins and is given in Fig. 11.
3.2. EA Volkswagen Golf

The EA Volkswagen Golf had five gears. Similar to the DAF CF
75, the estimates of the first and top gear ratios were used to deter-
mine the intermediate gears. Likewise, the shift envelopes per gear
were extracted based on the peak of the probability distribution
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function of shift speeds. The gearbox development is summarised
in Fig. B.17.

The optimum vehicle configuration corresponded to an effec-
tive drag of 0.71 m2, a test mass of 1500 kg and rolling resistance
coefficient of 0.0081. As with the DAF CF 75, the method failed to
replicate points at low engine speed and high torque. Optimum
bins for each of the outputs were: 102 for fuel use and emissions
of NOx and CO2; and 62 for CO emissions. Optimum vehicle config-
uration, observed and simulated engine torque, engine speed and
wheel speed on a per second basis and the optimum bins for each
output are illustrated in Fig. B.18. The optimum bins for each of the
outputs were used to create the corresponding maps of instanta-
neous and brake specific outputs shown in Figs. 12 and B.20,
respectively.

The EA route comprised motorway and non-motorway driving.
Fig. 13 illustrates the accuracy of the method at reproducing the
outputs on these two road types. Cumulative emissions of NOx

and CO2 were 4.1% and 0.44% lower than the observed values, as
seen in Fig. B.19 and reproduced per second driving accurately
across both motorway and non-motorway driving. Cumulative fuel
use and CO emissions were 0.26% and 1.7% higher than the
observed values. However, there was a large discrepancy between
simulated and observed CO emissions on a per second basis across
the time series.

3.3. ANL Chevrolet Cruze

The Chevrolet Cruze had six gears. The development of its gear-
box is summarised in Fig. B.21. The optimum vehicle configuration
corresponded to an effective drag of 0.64 m2, a test mass of 1731 kg
and rolling resistance coefficient of 0.0081. Optimum vehicle con-
figuration, observed and simulated engine torque, engine speed
and wheel speed on a per second basis and the optimum bins for
fuel use are illustrated in Fig. B.22.

The optimum number of bins for fuel use was 102 with corre-
sponding map shown in Fig. 14a. Here, the size of the white region
illustrates the extent of the engine torque range which is not used
in satisfying the per-second velocity of the training driving cycles.
The equivalent brake specific fuel consumption map is given in
Fig. 14c.

The method for the Chevrolet Cruze was developed on the
UDDS and HWFET driving cycles, representing urban and highway
driving, respectively. Fig. 15a and b illustrates the accuracy of the
method at reproducing the outputs per driving type. The method
reproduced well both the shape and magnitude of fuel use across
both driving types. Cumulative fuel use was 1.3% lower than the
observed value, as seen in Fig. 14b. The fuel use map was validated
by simulating the Chevrolet Cruze over the US06 driving cycle
which was a different data set from what the map was derived
from. The magnitude and shape of simulated fuel use matches
the observed values closely, as shown in Fig. 15c. At the trip level,
simulated fuel use was 6.2% higher than the measured value.

ADVISOR and other powertrain simulation tools use hot and
cold maps to predict accurately fuel use and emissions across a
range of engine temperatures. Fuel use and emissions under cold
running comprise a large proportion of the total for short trips.
Consequently, regulatory limits of emissions, such as for NOx and
particle number, may be exceeded during both dynamometer
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Fig. 16. (a) Plot of engine coolant temperature across the UDDS driving cycle with cold start. Orange circle indicates the transition from cold to hot running at 400 s. (b)
Engine map of fuel use when running cold created using the optimum bins. Black line represents the maximum torque envelope. (c) Time series of fuel use when running cold
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using cold map (blue) and hot map (orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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[45] and on-road testing [25]. The influence of cold starts may be
assessed also using physics-based models to capture the behaviour
of the processes leading to increased fuel use and emissions [46].

The method in this paper was applied to a UDDS cold start at
ambient (test cell temperature of 23 �C) using the earlier optimum
vehicle configuration (CdA = 0.64 m2, Crr = 0.0081 and test
mass = 1731 kg). New candidate maps were created based on the
cold running fuel use. The engine was considered hot when the
seven-second, one-dimensional median filter of engine coolant
temperature stabilised and is shown in Fig. 16a. The index of tran-
sition from cold to hot emissions is indicated by the orange circle,
corresponding to a engine coolant stabilisation temperature of
90 �C, which occurred after 400 s. The optimum number of bins
was 52 for fuel use when running cold and the corresponding fuel
use map is shown in Fig. 16b. Fig. 16d shows the observed fuel
(yellow) use across the cold portion of the UDDS cold start cycle.
Two simulated fuel uses are superposed: the blue time series
shows fuel use using the cold map only; and in orange, fuel use
using the hot maps created earlier. Simulated fuel use with the
cold map underestimated observed cold running values by 0.6%.
Fuel use was underestimated by 30% when the hot running map
was used from the start.

Table A.2 contains the effective gear ratios and shift envelope
positions for the three vehicles considered in this work. Table A.3
contains the optimum vehicle configurations, bin numbers for each
output and corresponding sum of absolute deviations.

4. Conclusion

Poor urban air quality persists in global cities where large pro-
portions of the population are exposed to harmful levels of pollu-
tants. Regulations to address such emissions, including from road
vehicles, are becoming more strict. However, the gap is increasing
between predicted (based on the regulatory tests) and real-world
fuel use and emissions. One way to increase the accuracy of predic-
tions is by using accurate engine maps simulated over real-world
driving cycles.

This work presents a method to create engine maps using data
gathered from OBD and PEMS while vehicles are operating in the
real-world. This work is motivated by the ubiquity of OBD in mod-
ern vehicles and the requirement by new vehicle emissions regula-
tions in Europe and the US to employ PEMS as part of in-use
conformity tests. The regulatory push to use PEMS implies a large
amount of real-world data will become available across a range of
vehicles. This work is novel because it uses OBD and PEMS data
directly. Conversely, existing methods require steady-state engine
maps, obtained from a dynamometer test in most cases, to create a
transient counterpart.

The method extracts the effective gear ratios from the OBD and
uses PEMS output to create a large set of candidate engine maps. A
sensitivity sweep of vehicle physical characteristics is used in
ADVISOR to find the optimum vehicle configuration based on the
smallest sum of Euclidean distances per second between the
observed and simulated engine torque-speed pairs per configura-
tion. Similarly, the optimum bins for fuel use and emissions corre-
spond to the smallest sum of absolute deviations per second
between observed and simulated data. The resulting maps repro-
duced accurately the shape and magnitude of fuel use and emis-
sions for the three test vehicles presented such that the
difference between simulated and observed cumulative fuel use
and emissions was less than 5% in general.

The robustness of this method was demonstrated by applying it
to both PEMS and vehicle dynamometer data, from a range of
sources and across different vehicle types. This work is also fit
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for a number of other purposes. For example, the method was
applied to the UDDS cold start test to generate a cold fuel use
engine map for the ANL Chevrolet Cruze. Additionally, the influ-
ence of emissions control technologies in the tailpipe of the DAF
CF 75 was isolated by comparing maps of NOx emissions at the out-
put of the engine and at the tailpipe.

The availability of accurate engine maps across a range of vehi-
cles can yield, including: insights into how control technologies
can be tuned to reduce emissions under real-world driving by look-
ing at hot spots in the maps; development of in-use emissions fac-
tors; identification of driving conditions corresponding to the most
significant fuel use and emissions events; and accurate air quality
modelling at the road segment level using simulated per second
emissions from vehicles operating in the urban environment.
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