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Abstract   

Huntington’s disease (HD) is a progressive genetic neurodegenerative disorder characterised by 

motor and cognitive deficits, as well as sleep and circadian abnormalities. In the R6/2 mouse, a 

fragment model of HD, rest-activity rhythms controlled by the suprachiasmatic nucleus 

disintegrate completely by 4 months of age. Rhythms driven by a second circadian oscillator, the 

methamphetamine-sensitive circadian oscillator (MASCO), are disrupted even earlier, and cannot 

be induced after 2 months of age. Here, we studied the effect of the HD mutation on the expression 

of MASCO-driven rhythms in a more slowly developing, genetically relevant mouse model of 

HD, the Q175 ‘knock-in’ mouse. We induced expression of MASCO output by administering low 

dose methamphetamine (0.005%) chronically via the drinking water. We measured locomotor 

activity in constant darkness in wild-type and Q175 mice at 2 (presymptomatic), 6 (early 

symptomatic), and 12 (symptomatic) months of age. At 2 months, all mice expressed MASCO-

driven rhythms, regardless of genotype. At older ages, however, there was a progressive gene dose-

dependent deficit in MASCO output in Q175 mice. At 6 months of age, these rhythms could be 

observed in only 45% of heterozygous and 15% of homozygous mice. By 1 year of age, 90% of 

homozygous mice had an impaired MASCO output. There was also an age-dependent disruption 

of MASCO output seen in wild-type mice. The fact that the progressive deficit in MASCO-driven 

rhythms in Q175 mice is HD gene dose-dependent suggests that, whatever its role in humans, 

abnormalities in MASCO output may contribute to the HD circadian phenotype. 
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1. Introduction 

 

Huntington’s disease (HD) is an inherited neurodegenerative condition caused by an unstable 

expansion of CAG repeats in the Huntingtin (HTT) gene. The age onset of HD is inversely 

correlated to CAG repeat length (The Huntington’s Disease Collaborative Research group, 1993) 

and is similar in homozygous (HOM) and heterozygous (HET) patients, although HD progresses 

more rapidly in HOM (Squitieri et al., 2003). HD is characterised by a progressive decline in 

locomotor and cognitive functions (see Bates et al., 2015 for references). As well, abnormalities 

in circadian rhythmicity and sleep have been described in HD patients (Arnulf et al., 2008; Lazar 

et al., 2015; Morton, 2013; Morton et al., 2005; Piano et al., 2015). These are recapitulated in 

multiple HD mouse models (Fisher et al., 2016, 2013; Jeantet et al., 2013; Kantor et al., 2013; 

Kudo et al., 2011; Lebreton et al., 2015; Morton et al., 2005). The hemizygous R6/2 transgenic 

mouse is the best characterised of these models of HD (Carter et al., 1999; Mangiarini et al., 1996; 

Menalled et al., 2009; Morton et al., 2005; Pouladi et al., 2012). With a transgene carrying ~250 

CAG repeats, the R6/2 mouse has a rapid progression of disease with disruption in circadian 

behaviours at ~12 weeks and a lifespan of ~22 weeks (Wood et al., 2013). It is not known however, 

how the gene mutation causes the circadian changes that occur in the R6/2 mouse.  

Under normal physiological conditions, circadian rhythms are driven and coordinated by the 

suprachiasmatic nucleus of the hypothalamus (SCN). The SCN, however, is not the only oscillator 

that can regulate daily rhythms. For example, the methamphetamine-sensitive circadian oscillator 

(MASCO), is a putative circadian pacemaker that generates behavioural rhythms independent of 

the SCN (Honma et al., 1987, 1988). MASCO-dependent rhythms are induced by chronic low dose 

treatment of methamphetamine (MAP). When a chronic treatment with MAP is given to SCN-

intact wild-type (WT) mice placed in constant darkness (DD), a dissociation of the circadian 
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locomotor activity rhythms can occur, leading to two rhythms, one component driven by the SCN 

(~24h) and a longer one driven by the MASCO (usually >24h; Cuesta et al., 2012; Honma et al., 

1986; Tataroglu et al., 2006). The MASCO-driven rhythms are severely disrupted in R6/2 mice 

(Cuesta et al., 2012), and cannot be induced in ~95% of R6/2 mice, even at a presymptomatic age 

(2 months). Thus, MASCO output is disrupted several weeks before the locomotor circadian 

activity rhythms disintegrate (Cuesta et al., 2012). It is not clear what role the MASCO plays, if 

any, in humans. We suggest that whatever its role, since MASCO output is disrupted so early in 

R6/2 mice, this may contribute directly to the early symptoms of HD.  

Since MASCO-dependent rhythms cannot be observed in R6/2 mice, they are unsuitable for 

detailed study of disruption of MASCO output. A number of ‘knock-in’ HD mouse models exist 

that have a slower progression of disease and more faithfully recapitulate the genetic context of 

HD mutation than does the R6/2 mouse (Menalled et al., 2009; Menalled, 2005). Here we used 

one such line to study MASCO ouput in HD, the Q175 mouse. Q175 mice are a full length knock-

in model expressing a chimeric mouse/human exon 1 with a CAG repeat expansion of around 188 

(Menalled et al., 2012). HOM Q175 mice exhibit robust behavioural and molecular abnormalities 

(Menalled et al., 2012). They show locomotor hypoactivity and rotarod deficit by ~7 months of 

age and a lifespan of ~2 years. These are preceded by a decrease in striatal gene markers from ~3 

months of age. HET Q175 mice also exhibit behavioural deficits with a slower time course. Finally, 

it has recently been reported that Q175 mice have sleep and circadian deficits that recapitulate 

those seen in R6/2 mice and HD patients (Fisher et al., 2016; Loh et al., 2013), making the Q175 

mouse line particularly suitable for studying MASCO-driven rhythms. 

When we investigated circadian rhythms in Q175 mice, we found that both circadian 

rhythms driven by SCN and MASCO were disrupted in this line. As seen in R6/2 mice, induction 
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of the MASCO output in Q175 mice was impaired long before the disruption of SCN-mediated 

rest-activity rhythms was seen. Disruption of MASCO-driven rhythms in Q175 mice were 

progressive and gene dose-dependent. The disruption or absence of the MASCO-driven rhythms 

in old Q175 mice can be explained by three possibilities. First, they may not be expressed in old 

Q175 mice. Secondly, their disruption may be due to a decrease in sensitivity to methamphetamine, 

with the dose of 0.005% methamphetamine no longer sufficient to induce the MASCO-driven 

behaviour rhythm in Q175 mice. Finally, MASCO-driven rhythms may be expressed in old Q175 

mice, but their period may be shortened as aging progressed. If this is the case, therefore, they may 

be masked by the suprachiasmatic nucleus-driven rhythm, as seen in C3H mice (Tataroglu et al., 

2006). 

Our findings support the idea that disruption of MASCO output may contribute to early 

behavioural changes in Q175 mice. The HD gene dose-dependence of impairments of MASCO 

output expression is a strong indicator that abnormalities in MASCO output may contribute to the 

circadian phenotype in HD. 

 

2. Materials and methods 

2.1. Animals 

All experiments were conducted under the UK Animals (Scientific Procedures) Act 1986 with the 

approval of the University of Cambridge Animal Welfare and Ethical Review Body. WT and Q175 

mice on a C57Bl6/J background were taken from a colony established in the University of 

Cambridge. The Cambridge colony originated from founders obtained from the Jackson 

Laboratory (Bar Harbor, Maine, USA). The Q175 line carried the HD mutation in an HTT exon 1 
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‘knocked’ into the mouse huntingtin gene. Age-matched HOM, HET and WT mice were generated 

by crossing HET Q175 mice on a C57Bl/6J background. Genotyping and determination of the 

CAG repeat length was carried out on tail biopsies by Laragen (Los Angeles, USA) using 

GeneMapper. All mice models of HD have longer CAG repeat lengths (between 110 and 300 in 

the most used R6/2 mice, and 175 in the mice we used in this study) compared to human HD 

(Menalled et al., 2009). In the first experiment, we characterised rest-activity rhythms of 2 groups 

of Q175 mice, one aged 3 months at the start of testing and one aged ~19 months. The group tested 

at 3 months of age was composed of: 14 WT (7 male and 7 female mice), 16 HET (11 male and 5 

female mice) with a CAG repeat length of 180 ± 2 and 6 HOM mice (3 male and 3 female mice) 

with a CAG repeat length of 178 ± 1 for the shorter allele and 183 ± 2 for the longer allele. The 

group tested at 19 months of age was composed of 3 WT (2 male and 1 female mice), 8 HET (5 

male and 3 female mice) with a CAG repeat length of 190 ± 4 and 4 HOM (3 male and 1 female) 

mice with a CAG repeat length of 180 ± 4 for the shorter allele and 192 ± 3 for the longer allele. 

Mice were tested for 4 weeks. 

In a second experiment, we examined induction of MASCO output in a total of 74 mice (23 

WT and 27 HET and 24 HOM mice), distributed into three experimental groups by age (Groups 

1-3). Group 1 mice were treated with MAP from 2 months of age (9 to 17 weeks) for 8 weeks: 7 

WT (4 male and 3 female mice), 11 HET (3 male and 8 female mice) with a CAG repeat length of 

177 ± 3 and 6 HOM (2 male and 4 female mice) with a CAG repeat length of 162 ± 5 for the 

shorter allele and 172 ± 3 for the longer allele. Group 2 mice were treated from ~6 months (25 to 

33 weeks) of age with MAP for 8 weeks: 7 WT (3 male and 4 female mice), 7 HET (4 male and 3 

female mice) with a CAG repeat length of 176 ± 5 and 7 HOM (3 male and 4 female mice) with a 

CAG repeat length of 169 ± 7 for the shorter allele and 189 ± 7 for the longer allele. Group 3 mice 
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were treated from ~1 year of age (49 to 56 weeks) with MAP for 8 weeks: 9 WT (5 male and 4 

female mice), 9 HET (4 male and 5 female mice) with a CAG repeat length of 175 ± 2 and 11 

HOM (6 male and 5 female mice) with a CAG repeat length of 170 ± 2 for the shorter allele and 

173 ± 3 for the longer allele.  

In a third experiment, we repeated the exposure to MAP of mice from Group 1, Experiment 

2. After a period without drug of 8 weeks, the mice from this group were re-exposed to MAP for 

8 weeks at 6 months of age. 

 

2.2. Husbandry 

Mice were kept in weaning cages of up to 10 animals of same sex and mixed genotype per cage 

until the experiments started. Mice were kept in a controlled environment with 12:12 light-dark 

(LD) cycle, at a room temperature of 21°-23°C and humidity of 55% ± 10, with ad libitum access 

to dry laboratory food and water. Circadian studies were conducted with mice housed individually 

in a light-tight Scantainer ventilated cabinet (Scanbur, Denmark) with controlled humidity (55% 

± 10) and temperature (21°-23°C).  

For the first experiment, mice were placed in a 12:12 LD cycle for 7 days for habituation to 

the cabinet, then their circadian locomotor activity was monitored for 14 days in 12:12 LD cycle 

followed by 14 days in DD in order to assess the age where the circadian breakdown occurs in the 

Q175 knock-in model. 

For the second and third experiments, mice were placed for ~7 days under a 12:12 LD cycle 

for habituation. The lights were then switched off and the mice remained in DD for the rest of the 

experiment. 
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2.3. Circadian analysis  

We used passive infrared motion detectors (DS936, Bosch, Germany) placed on the top of each 

mouse cage to measure general patterns of activity continuously throughout the experiments for 

each individual mouse, and used Clocklab software (Actimetrics, Willmette, USA) to collect and 

analyse the circadian data. General activity was double plotted in actograms binned into 5-minute 

block size.  

For the analysis of the circadian parameters, the first experiment was decomposed into 2 x 2 

week periods comparing the 2 weeks in 12:12 LD cycle and the 2 weeks in DD. The second and 

third experiments were decomposed into 11 x 1 week periods that were: 1 week of pre-drug 

treatment (water), 8 weeks of MAP treatment and 2 weeks of drug withdrawal (water). 

Mice were classified into two groups, according to whether or not they were expressing one 

or two components of activity. The first group was composed of mice that did not express 

MASCO-driven rhythms and showed only an SCN component. The second group was composed 

of mice that expressed both MASCO-driven rhythms and SCN component. The rest-activity 

patterns affected by the MAP treatment varied between mice within the same group, with the 

overall pattern depending on the competition between the behavioural rhythms generated by SCN 

and MASCO. 

Period length was analysed using the actogram window in Clocklab. Activity onsets were 

manually determined for the 7 (Experiments 2-3) or 14 (Experiment 1) continuous days to be 

analysed. A least-square fits regression line was used to determine the corresponding period length. 

Duration of active period (alpha) of the SCN-driven rhythms was calculated as the difference 
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between the means of the regression lines drawn through the 7 or 14 activity onsets and 

corresponding offsets. For the occasional days where offsets of MASCO-driven rhythms were 

masking the offsets of SCN-driven rhythms, we omitted these days in the analysis. The distribution 

of the general activity during active and rest period was determined using the profile activity 

function of the software. Rest-activity ratio were calculated as the amount of activity occurring 

during the rest period as a fraction of the amount of total activity. In nocturnal animals, such as 

mice, it has been demonstrated that lower ratios reflect stronger rest-activity rhythms. Kaplan–

Meier survival curves were used to compare the timing of the expression of the MASCO-driven 

rhythms (experiment 2-3). The Chi-squared periodograms (obtained with Clocklab) were used to 

determine behavioural rhythmicity in untreated mice. For mice treated with MAP, Lomb-Scargle 

periodograms were used as they are more appropriate due to the unequally spaced time data (Ruf, 

1999) resulting from the complexity of the activity patterns caused by MAP treatment (Blum et 

al., 2014). 

 

2.4. Methamphetamine treatment to induce MASCO-driven rhythms 

Methamphetamine hydrochloride (M8750, Sigma Aldrich, UK) was administered to the mice via 

the drinking water at a low concentration (0.005% w/v) as previously described (Cuesta et al., 

2012). Water bottles were weighed every 3 to 4 days to monitor drug consumption. Mice were 

weighed once weekly throughout the MAP treatment. We monitored dehydration by pinching the 

skin over the shoulder blades of the mice (Burkholder et al., 2012). During this study, we did not 

observe any cases of dehydration. 
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2.5. Statistics 

Unless otherwise stated, all data are expressed as mean ± SEM. There was no significant sex 

difference found in any of the circadian parameters analysed, therefore, apart from data from body 

weight, all data from mice of both sex were pooled for presentation. Statistical analyses were 

performed using Statistica 19.0 software (version 12, StatSoft Inc., Tulsa, USA) or Prism 5 

(GraphPad Software Inc., San Diego, USA). Analyse of variance (ANOVA) with repeated 

measures was performed to investigate differences between groups, followed by post hoc Student 

Newman Keuls test. Kaplan–Meier survival curves were analysed using Log-rank test. The results 

were considered significant when P < 0.05. 

 

3. Results  

3.1. Disintegration of circadian rhythms is late in Q175 mice 

We first confirmed that there was an abnormal behavioural circadian phenotype in the Q175 mice. 

We characterised the locomotor circadian activity rhythm of WT, HET and HOM mice at two 

different ages in 12:12 LD cycle then in DD. Typical actograms and their corresponding 

periodograms are shown in Figures 1 and 2, at 3 and 19 months respectively. All Q175 mice tested 

at 3 months had robust rest-activity rhythms (Figs. 1A-I). At this age, there was no significant 

difference in the rest-activity ratio or period length between the three genotypes either in 12:12 

LD (24 ± 0.01 h for WT, 23.99 ± 0.01 h for HET and 24.02 ± 0.01 h for HOM mice) or in DD 

(Figs. 3A and C).  

By contrast to the 3 month old mice, in ‘elderly’ mice aged 19 months, significant differences 

were seen in both parameters (Figs. 3B, D). While all the HET mice were still rhythmic in both 
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LD and DD (Figs. 2B, E, H), half of the HOM mice showed signs of arrhythmicity (Figs. 2C, F, I; 

Fig. 3D). While the period length was similar in 12:12 LD cycle in all three genotypes (Fig. 3B), 

there was a disease-related effect on the free-running period length in DD [F(2,13) = 17; P < 0.001], 

with the period length being shorter in HOM mice than it was in WT or HET mice (P < 0.001). 

There was a significant genotype effect [F(2,13) = 7.8, P < 0.01] on the rest-activity ratio that was 

significantly increased in LD in elderly HOM mice compared to age-matched WT and HET mice 

(P < 0.01; Fig. 2D). There was no effect of genotype or age on the amplitude of the rhythms (Figs. 

3E, F). 

 

3.2. Expression of MASCO-driven rhythms is delayed or not induced in rhythmic Q175 mice  

All Q175 mice up to 1 year of age that were tested with methamphetamine exhibited SCN-

mediated circadian locomotor activity with a period length close to 24h, regardless of genotype 

(Figs. 4A-I). The only SCN deficits seen were in 2 out of 11 HOM mice that showed less robust 

rest-activity rhythm at the end of the experiment than expected, with a shortening of the free-

running SCN period (see example actogram in Fig. 4I). Not all the mice developed a MASCO-

dependent component in response to MAP (Figs. 4F, H, I). In WT mice a MASCO output was 

present in all mice at both 2 (Fig. 4A, J) and 6 months (Fig. 4D, J). By 1 year of age, however, a 

MASCO output such as that seen in Fig. 4G could be observed in only about half of the WT mice 

(Fig. 4J). In HET mice, MASCO-driven rhythms were observed in all mice at 2 months (Figs. 4B, 

K), but in fewer than 50% of mice at 6 months (Fig. 4E, K), and only in 22% of mice when treated 

at 1 year (Figs. 4H, K). In HOM mice (Figs. 4C, F, I), MASCO component was observed in all 

mice at 2 months, but only in 14 and 9% of mice at 6 and 12 months respectively (Fig. 4L). Thus, 
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MASCO-driven rhythms are progressively disrupted in an HD gene dose-dependent manner. 

Notably, expression of MASCO-driven rhythms is also age-dependent. 

 

3.3. Abnormalities in MASCO-driven rhythms are not due to decreased MAP consumption 

in Q175 mice 

The inability to induce MASCO-driven rhythms in HET and HOM mice was not due to a decreased 

consumption of MAP by these mice. There was no difference between the amount of MAP drunk 

by any group at 2 (Fig. 5A) and 6 months (Fig. 5B). At 1 year of age, HOM mice actually consumed 

significantly more MAP compared to WT and HET mice (Fig. 5C). Interestingly, although they 

consumed more MAP, HOM mice still did not develop a MASCO component. At 2 and 6 months, 

the low dose of MAP treatment did not affect the weight gain due to growth of mice of any 

genotype (Figs. 6A, B, D, E), until 1 year of age, at which time male (but not female) HOM mice 

were significantly lighter than WT mice (Figs. 6C, F). This was expected due to disease-related 

changes (Fisher et al., 2016; Menalled et al., 2012).   



13 
 

3.4. Effect of age on expression of MASCO-driven rhythms  

The timing of the MASCO component expression after commencement of MAP treatment was 

age-dependent, appearing sooner in young mice than it did in older mice (Figs. 7A-C). The time 

from beginning of treatment to appearance of MASCO-driven rhythms also depended on genotype. 

In presymptomatic mice (treated with MAP at 2 months of age), the MASCO component started 

to appear at around 1 week and was established within 4.5 weeks of the start of treatment, 

regardless of genotype (Fig. 7A). At 6 months of age, all WT mice developed the MASCO 

component between 2.5 and 4.5 weeks of treatment (Fig. 7B). By contrast, the MASCO output 

was observed either later in HET and HOM mice or did not appear at all within the 8 weeks of 

MAP treatment (Fig. 7B). A Log-rank test revealed a significant difference between start of 

MASCO-driven rhythms in WT and HET mice (P < 0.01) and between WT and HOM mice (P < 

0.001). At 1 year of age, not all the WT mice expressed the MASCO-driven rhythms, with 40% of 

the WT mice developing it within the three first weeks of MAP treatment, 20% between 3 and 6.5 

weeks (Fig. 7C) and the remaining 40% not developing a MASCO component within the 8 weeks 

of MAP treatment. Nevertheless, when a MASCO component developed in WT mice, it still 

appeared earlier than it did in HOM mice (Log-rank test, P < 0.01). The only HOM mouse (out of 

11 tested) to develop a MASCO did so during week 7 of MAP treatment. 

About a quarter of the WT mice treated with MAP expressed a MASCO component with a 

period length in the circabidian (48 hours) range (0/7 mice tested at 2, 3/7 mice tested at 6, and 3/9 

mice tested at 12 months of age; Table 1 and Figs. 8A, D and G). It was notable that during the 

whole study, only 3 Q175 mice expressed circabidian rhythms (Table 1 and Figs. 8B, C and E). 

These were one HET and one HOM mice aged 2 months (Figs. 8B and C) and one HET mouse 

aged 6 months (Fig. 8E).  
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3.5. Effect of MAP on circadian parameters in Q175 mice 

Among the other circadian parameters analysed, we confirmed that, as seen previously (Cuesta et 

al., 2012), MAP induced a significant lengthening of alpha across the 8 weeks of treatment for all 

mice in which testing started at 2 months (Supplementary Fig. 1). The lengthening of alpha caused 

by MAP declined with genotype and age (treatment effect, [F(10,640) = 99.49; P < 0.001]; treatment 

x genotype interaction, [F(20,640) = 2.32; P < 0.001]; treatment x age interaction, [F(20,640) = 4.68; P 

< 0.001]). The effects of MAP on alpha, as with period length, were reversible, disappearing 2 to 

3 days following MAP withdrawal (Supplementary Fig. 1).  

Although MAP is a stimulant drug, the low doses used here did not have a major effect on 

locomotion. Total activity did not change with MAP at either 6 months or 1 year of age (Table 2). 

MAP significantly increased the total activity only in mice tested at 2 months (in WT mice for 

weeks 1, 3-5, in HET mice for weeks 2-8 and in HOM mice for week 2). The rest-activity ratio 

was not affected by MAP treatment in any of the groups at any time, regardless of age or genotype 

(data not shown).  

 

3.6. Prior conditioning with methamphetamine delays the disruption of MASCO-driven 

rhythms in Q175 mice 

In a third experiment, mice that had been given MAP previously at 2 months were treated a second 

time at 6 months of age. Typical actograms and corresponding periodograms are shown in Fig. 9. 

All WT mice expressed a MASCO component when treated a second time (Figs. 9D, G; Table 3). 

Interestingly, the appearance of MASCO-driven rhythms occurred significantly earlier in WT mice 
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that had been pre-exposed to MAP than was seen in naïve WT mice (Log rank test, P <0.01; Fig. 

9G). The second exposure to MAP also induced the expression of the MASCO-driven rhythms 

earlier in HET mice than was seen in the naïve group (Log-rank test, P < 0.05; Figs. 9B, E, H). 

Furthermore, whereas a MASCO output was observed in only 40% of naïve HET mice, 90% of 

HET mice pre-exposed to MAP subsequently expressed a MASCO output (Fig. 9H). Finally, 

whereas only 1 of the 7 naïve HOM mice treated at 6 months expressed MASCO-driven rhythms 

(Table 3, Fig. 9I), half of the HOM mice pre-exposed to MAP at the age of 2 months displayed a 

MASCO output at 6 months, although the rhythms in these HOM mice were very unstable (Table 

3, Figs. 9F, I).  

The second exposure to MAP had a main effect on the lengthening of alpha (MAP treatment 

x duration of MAP treatment, [F(10,420) = 2.15, P < 0.05]; Supplementary Fig. 2), with an increase 

observed in pre-exposed compared to naïve WT (duration of MAP treatment: [F(1,15) = 18.75; P < 

0.001]; Supplementary Fig. 2A) and HOM mice [F(1,11) = 11.83; P < 0.01] (Supplementary Fig. 

2C). The second exposure to MAP had no effect on either total activity or rest-activity ratios (data 

not shown). 

 

4. Discussion  

Sleep and circadian disturbances are common symptoms of HD (Arnulf et al., 2008; Lazar et 

al., 2015; Morton, 2013; Morton et al., 2005; Piano et al., 2015). We showed previously that 

MASCO-driven rhythms were disrupted in the transgenic R6/2 fragment mouse model of HD 

(Cuesta et al., 2012). Here we show that this is also the case in the Q175 HD mouse. This is a line 

of mice that has a more relevant genetic context of the HD mutation than does the R6/2 mouse. 
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Our study provides the first evidence to our knowledge that the HD mutation affects circadian 

function in a gene dose-dependent manner, with the abnormalities in MASCO-driven rhythms of 

HOM Q175 mice being more pronounced and appearing earlier than they are in HET mice. It is 

already known that Q175 mice show a decline in circadian rhythms and sleep-wake cycle 

abnormalities (Fisher et al., 2016; Loh et al., 2013). Disruption of the MASCO-driven rhythms in 

Q175 mice appear before onset of other behavioural abnormalities, and many months before SCN 

circadian deficits appeared. We found a disruption in the expression of MASCO-driven rhythms 

from the age of 25 weeks in HET and HOM mice when they were still behaviourally normal. 

Others have shown that there are no locomotor deficits measurable until ~30-33 weeks, when 

rotarod and climbing deficits appeared in HOM mice (Menalled et al., 2012). Moreover, cognitive 

deficits are not present before 1 year and appear only in HOM mice (Menalled et al., 2012). 

However, morphological changes are almost certain to be already present at 25 weeks, since early 

eletrophysiological abnormalities have been reported beginning at 8 weeks (Indersmitten et al., 

2015), and a decrease in spine density of medium-sized spiny neurons is present in HET and HOM 

mice at 7 and 12 months but not at 2 months. There was no correlation between the expression of 

the MASCO-driven rhythms and the robustness of the circadian locomotor activity. That is, the 

mice with disrupted MASCO-driven rhythms were not necessarily the ones with the more 

disrupted circadian locomotor activity rhythms. Furthermore, there were some mice in which 

MASCO could not be induced that had very robust circadian rhythms (see for example, actograms 

in Figs. 4F, 9C). The deficits in MASCO output we observe add to the repertoire of abnormal 

circadian behaviours in HD mice. Disruption of MASCO-driven rhythms are thus likely to be a 

pathological component relevant to HD. 
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The expression of the MASCO-driven rhythms was affected by age, not only in the Q175 

mice, but also in WT mice. Indeed, MASCO output was disrupted in almost half of the 12 month-

old WT mice treated with MAP. It has been shown by others that aging alters SCN-driven 

behavioural circadian rhythms such as locomotor activity, drinking behaviour, sleep-wake cycle 

and body temperature in WT rodents (Valentinuzzi et al., 1997; Van Gool and Mirmiran, 1983; 

Weinert and Waterhouse, 2007; Weinert, 2010, 2000; Witting et al., 1994; Yamazaki et al., 2002). 

Moreover, ageing is also accompanied by a decrease in the amplitude of the circadian locomotor 

rhythms (Valentinuzzi et al., 1997; Weinert et al., 2000; Yamasaki et al., 2002). This might also 

contribute to the disruption in the generation of the MASCO-driven rhythms. The age-dependent 

deficit of the MASCO-driven rhythm seen in Q175 mice could be the consequence of both aging 

and HD gene-related disease progression. 

MASCO is an oscillator inducible by MAP. Since the primary action of MAP on dopaminergic 

neurons is to increase extracellular dopamine (DA), an intact dopaminergic system is likely to be 

crucial for the normal generation of the MASCO-driven rhythms. This is particularly relevant to 

HD, since aberrant dopaminergic transmission is thought to underlie many of the signs and 

symptoms of HD, especially the debilitating loss of control of movement and cognitive function 

(Bäckman and Farde, 2001; Chen et al., 2013; Guo et al., 2012; Squitieri et al., 2015; Tyebji et al., 

2015), and psychiatric disturbances (Covey et al., 2016). There is considerable evidence for 

dysfunctional dopaminergic neurotransmission in HD patients and mouse models. In HD patients, 

DA signalling is disrupted, and both striatal DA (Bernheimer et al., 1973; Kish et al., 1987), and 

D1 and D2 receptor levels (Andrews et al., 1999; Antonini et al., 1996; Ginovart et al., 1997) are 

reduced. Post-mortem analyses of HD brain also show reduced transporter binding (Bäckman et 

al., 1997; Bernheimer et al., 1973; Ginovart et al., 1997; Glass et al., 2000; Kish et al., 1987; Suzuki 
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et al., 2001) and decreased levels of tyrosine hydroxylase that is the rate-limiting enzyme in DA 

synthesis (Yohrling et al., 2003). A number of studies have demonstrated a decrease in DA and 

DA receptors in HD mice (Callahan and Abercrombie, 2015; Cha et al., 1998; Hickey et al., 2002; 

Johnson et al., 2006; Mochel et al., 2011; Ortiz et al., 2010; Pouladi et al., 2012). Particularly 

relevant to this study is that altered DA function has been documented in 12-month old Q175 mice 

(Rothe et al., 2015; Smith et al., 2014). The fact that the disruption of the MASCO-dependent 

rhythms in R6/2 mice could be partially rescued by a treatment with L-DOPA (Cuesta et al., 2012) 

is also relevant to highlight the role of DA, since L-DOPA is the precursor for DA. Together, our 

data strongly support the idea that a defective dopaminergic neurotransmission prevents the 

expression of the MASCO-driven rhythms in R6/2 mice and by extension, Q175 mice, given that 

they exhibit similar circadian and sleep disturbances as R6/2 mice.  

A study by Blum and colleagues has highlighted a possible mechanism for DA in the induction 

of MASCO-dependent rhythms that is consistent with the deficits we see in HD mice (Blum et al., 

2014). These authors proposed that MAP-induced changes in DA ultradian oscillators explain the 

generation of MASCO-driven rhythms. DA levels fluctuate in the striatum with ultradian activity 

cycles. They showed that when chronic MAP increases the tone of the DA system, the period of 

the ultradian rhythms increases to infradian (>24 h) ranges, causing them to become 

desynchronised from the SCN rhythms and producing the aberrant patterns of locomotor activity 

that are manifested as MASCO output. By contrast, lowering the tone of the DA system shortened 

the period of the ultradian rhythms. We hypothesise that, dopamine system deficits in R6/2 and 

Q175 mice could contribute to the MASCO either being absent, or the MASCO-driven rhythms 

being disrupted, by either being shorter, harder to induce, or eventually not inducible at all. 
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It seems the neural networks that give rise to the MASCO-driven rhythms can be ‘primed’ so 

it is easier to induce their expression at an age when it would normally not be possible. Only one 

(out of 7) of the naïve HOM mice treated at 6 months developed a MASCO output, but after pre-

treatment with MAP at 2 months, most HOM mice developed a MASCO output when MAP was 

given again at 6 months. At least one other study has shown a priming effect in the DA system 

(McFadden et al., 2015). In this study, rats that were self-administrating MAP for the first time 

had decreased striatal DAT and dopamine content, but this decrease was attenuated if the rats had 

prior MAP self-administration. A priming effect is also consistent with some of our 

pharmacological and behavioural studies where we showed that the neural circuitry in HD mice is 

not irreversibly damaged by the disease. For example, we have shown that drug treatment started 

presymptomatically can reverse dysregulation of clock genes expression and correct EEG 

abnormalities in R6/2 mice (Kantor et al., 2016; Pallier et al., 2007). In addition, circadian deficit 

in R6/2 mice can be delayed by bright light therapy started presymptomatically (Cuesta et al., 

2014), and cognitive dysfunction can be improved by a therapeutic management of sleep-wake 

cycles (Pallier and Morton, 2009). Finally, we showed that L-DOPA chronic therapy improves 

motor deficits, although long term L-DOPA treatment had a deleterious effect on survival (Hickey 

et al., 2002). This latter study highlights the complexity of the role of dopaminergic 

neurotransmission in HD. Whereas an increase in DA level may be beneficial at presymptomatic 

or early stages, homeostatic decreases in DA may be protective at late symptomatic stages. Thus 

the pre-symptomatic stage seems to be the optimal time window for priming neural networks in 

HD brain to delay DA-mediated behavioural deficits. Translating this to HD patients, this 

emphasises the importance of understanding the optimal window of opportunity for particular 

therapies. 
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The role, indeed the very existence, of MASCO in humans is unknown. In mice, MASCO-

driven rhythms expression requires isolation and treatment with chronic low dose of MAP for 

several weeks. It is not possible to reproduce the sort of studies performed in rodents to determine 

the existence of MASCO in humans. However, there is circumstantial evidence that a MASCO-

like phenomenon might exist. MAP consumption disrupts circadian rhythms and sleep in humans 

(Hasler et al., 2012; Kirkpatrick et al., 2009). Moreover, studies of humans in isolation deprived 

of environmental cues revealed that the rest-activity rhythms can, and do, run at circadian periods 

greater than 24h (Aschoff and Wever, 1976; Mills et al., 1974; Wever, 1979). In one of these 

studies, one subject had a rest-activity rhythm period close to 33 hours, although the rhythm of 

their bodily functions remained close to 24 hours. Depriving humans of time cues seems to 

facilitate the emergence of an oscillator whose rhythms are desynchronised from the SCN. Another 

study, reporting the case of a healthy 20-year old student, showed that this desynchronization can 

also happen when a subject is not isolated from time cues (Wirz-Justice and Pringle, 1987). The 

subject in this study had no imperative time to wake up or go to sleep. He gradually developed 

long waking periods (up to the circabidian range) similar to the free-running period manifested by 

subjects isolated from time cues. His morning hormone measures, however, stayed within the 

normal range of SCN-driven circadian values. Although rare, these cases suggest in humans the 

existence of at least two independent endogenous oscillators underlying the temporal organisation 

of physiological processes. MASCO might be one of these oscillators, allowing rest-activity cycles 

to run with long periods when times cues are not present or not powerful enough to entrain the 

SCN. It seems equally possible that if the MASCO output is disrupted, it may contribute to a 

deleterious circadian phenotype. The clearest evidence for this comes from the HD mice with 

disrupted MASCO output (this study and Cuesta et al., 2012), and HD patients with abnormal 
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circadian behaviour (Morton, 2013; Morton et al., 2005). This may also be important in other 

diseases where the dopaminergic system is disrupted, such as Parkinson’s disease (Bruguerolle 

and Simon, 2002; Mehta et al., 2008; Videnovic and Golombek, 2013), schizophrenia (Wulff et 

al., 2012), bipolar disorder (Berk et al., 2007; Harvey, 2008) and depression (Kronfeld-schor and 

Einat, 2012). These are all disorders in which alterations in rest-activity rhythms as well as motor 

and psychiatric disturbances have been reported (Jagannath et al., 2013; Videnovic et al., 2014; 

Wulff et al., 2010). In particular, aberrant sleep-wake timing with circabidian rhythms have been 

reported in schizophrenic (Wulff et al., 2009) and in manic-depressive patients (Wehr et al., 1983), 

resembling the specific rest-activity rhythms found in WT mice expressing MASCO-driven 

rhythms when chronically treated with MAP. Thus, in both psychiatric and neurodegenerative 

diseases, disruption of MASCO-driven rhythms could contribute to, or possibly even cause, the 

circadian abnormalities and resulting behavioural disturbances.  

 

5. Conclusions 

We have shown that the MASCO-driven rhythms are progressively impaired in the Q175 knock-

in mouse model of HD, before any overt disruption of the SCN-mediated circadian locomotor 

activity. Mutant huntingtin affects MASCO output in a gene dose- and age-dependent manner, 

with the deficits appearing first in HOM mice, then in HET mice and finally in aged WT mice. By 

1 year of age, ~90% of the Q175 HOM had disrupted MASCO-driven rhythms although they still 

showed circadian rhythmicity controlled by the SCN. We suggest that disruption of MASCO 

output is a marker of the defective dopaminergic neurotransmission in HD mice, and that this 

disruption could contribute to the circadian abnormalities and resulting behavioural disturbances 

in HD patients. 
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Legends to figures. 

 

Figure 1. Normal rest-activity patterns in young Q175 mice. Representative double-plotted 

actograms of wild-type (WT, A), heterozygous (HET, B) and homozygous (HOM, C) mice are 

shown from ~3 months (12 to 16 weeks) of age. Mice were placed in 12:12 light-dark (LD) for 

two weeks, followed by two weeks of constant darkness (DD). Chi-square periodograms are shown 

for LD (D- F) and DD (G- I) for WT (D, G), HET (E, H) and HOM (F, I) mice. 

 

Figure 2. Circadian rhythm disruption in old homozygous Q175 mice. Representative double-

plotted actograms of wild-type (WT, A), heterozygous (HET, B) and homozygous (HOM, C) mice 

are shown from ~19 months (82 to 86 weeks) of age. Mice were placed in 12:12 light-dark (LD) 

for two weeks, followed by two weeks of constant darkness (DD). Chi-square periodograms are 

shown for LD (D- F) and DD (G- I) for WT (D, G), HET (E, H) and HOM (F, I) mice. 

 

Figure 3. Period length and rest-activity ratio become progressively abnormal in Q175 mice. 

Graphs show period length (A, B), rest-activity ratio (C, D) and amplitude of rhythms (E, F) in 

12:12 light-dark (LD) and constant darkness (DD) for WT (black columns), HET (dashed 

columns) and HOM (white columns) mice at 3 months (A, C, E) and at 19 months of age (B, D, 

F). **P < 0.01, ***P < 0.001. Statistical differences between LD and DD are not shown. 

 

Figure 4. Expression of MASCO output declines in a gene dose- and age-dependent manner 

in Q175 mice. Representative double-plotted actograms (A-I, top panels) show general activity of 



30 
 

WT (A, D, G), HET (B, E, H) and HOM (C, F, I) mice placed in constant darkness and treated 

with 0.005% MAP for 8 weeks. Naïve mice were treated from 2 months (A- C), 6 months (D- F), 

or 12 months (G-I) of age. Note that other examples of naïve mice treated at 6 months are shown 

in Figure 9A-C. The asterisks indicate the start of the 8-week 0.005% MAP treatment. Lomb-

Scargle periodograms (A-I, bottom panels) are shown for each actogram for the time window 

indicated by the black bars at the right of the actograms. The black dashed and red dotted lines on 

the actogram (A) represent the period length of SCN- and MASCO-driven rhythms, respectively. 

Histograms show the percentage of WT (J), HET (K) and HOM (L) mice expressing MASCO-

driven rhythms within 8 weeks, where treatment starts at 2 (black columns), 6 (dashed columns) 

or 12 (white columns) months. Numbers of mice (out of the total number of mice tested) expressing 

MASCO-driven rhythms are indicated above each column. 

 

Figure 5. Disruption of MASCO output in Q175 mice are not due to decreased MAP 

consumption. Graphs show average water consumption in ml/day/gram body weight for WT 

(black symbols), HET (grey symbols) and HOM (white symbols) mice treated with MAP from 2 

(A), 6 (B) and 12 (C) months of age for 8 weeks followed by two weeks of drug withdrawal. In all 

panels, the bar above the x-axis indicates treatment with MAP (black bar) or water only (open bar). 

The asterisks and hashes indicate statistical comparison of HOM with WT mice and HOM with 

HET mice, respectively. No statistical difference was found between WT and HET mice. *P < 

0.05, #P < 0.05. 
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Figure 6. Minor changes in body weight of mice during MAP treatment. Body weight was 

measured in WT (black symbols), HET (grey symbols) and HOM (white symbols) female (A-C) 

or male (D-F) mice at 2 (A, D), 6 (B, E) or 12 (C, F) months of age. In all panels, the bar above 

the x-axis indicates treatment with MAP (black) or water (open). Comparison of bodyweight of 

HOM with WT mice is indicated by asterisks. Where error bars are not visible, they are obscured 

by the symbols. *P < 0.05, **P < 0.01, ***P < 0.001.  

 

Figure 7. Delays in timing of MASCO output expression are age- and gene dose-dependent 

in Q175 mice. Kaplan-Meier curves show cumulative percentage of mice that developed MASCO-

driven rhythms during the 8 weeks of MAP treatment for WT (black symbols), HET (grey 

symbols) and HOM (white symbols) mice treated with MAP from 2 (A), 6 (B) or 12 (C) months 

of age. **P < 0.01, ***P < 0.001. 

 

Figure 8. MAP-induced changes in rest-activity rhythms are gene dose-dependent in Q175 

mice. Scatter plots (A-I) show period lengths of the rhythms driven by MASCO (white squares) 

or SCN (black squares) for each individual mouse during the experiment for WT (A, D, G), HET 

(B, E, H) and HOM (C, F, I) mice at 2 (A-C), 6 (D-F) or 12 (G-I) months of age. The bar above 

the x-axis indicates the treatment with MAP (black) or water (open).  

 

Figure 9. Pre-conditioning with chronic MAP changes both onset and inducibility of 

MASCO output in Q175 mice. Representative double-plotted actograms (A-F, top panels) are 

shown from 6 months old WT (A, D), HET (B, E) and HOM (C, F) mice that were either naïve to 
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treatment (A-C) or pre-exposed to MAP (D-F) before start of treatment. The asterisks indicate the 

start of the 8-week 0.005% MAP treatment. Lomb-Scargle periodograms (A-I, bottom panels) are 

shown for each actogram for the time window indicated by the black bars at the right of the 

actograms. Graphs in G-I show the cumulative percentage of mice in which MASCO-driven 

rhythms were observed for each week of the experiment for WT (G), HET (H) and HOM (I) mice 

when naïve (black symbols) or pre-exposed to MAP (white symbols). *P < 0.05, **P < 0.01.   
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ABBREVIATIONS 

 

ANOVA – analysis of variance 

DA - dopamine 

DD – constant darkness 

HD – Huntington’s disease 

HET – heterozygous 

HOM – homozygous 

HTT – human Huntingtin gene 

LD – 12:12 light-dark 

MAP – methamphetamine 

MASCO – methamphetamine-sensitive circadian oscillator 

SCN – suprachiasmatic nucleus 

WT– wild-type 

 



 

Table 1. Effect of 0.005% methamphetamine on the period length of the MASCO-driven rhythms in WT, Q175 HET and Q175 HOM 

mice treated at 2, 6 or 12 months. 

 

Treatment 

period 

Genotype   Mean Period length(h) ± SEM (number of mice) 
 

 MASCO-driven rhythms (non circabidian)  MASCO-driven rhythms (circabidian) 

     2 months 6 months 12 months  2 months 6 months 12 months 

week 1 WT  24.3 ± 0.1 (7) ND ND  ND ND ND 

 HET  26.0 (1) ND ND  ND ND ND 

 HOM  ND ND ND  ND ND ND 

week 2 WT  26.3 ± 0.9 (6) 25.7 (1) 25.7 (1)  ND ND ND 

 HET  25.7 ± 0.6 (4) ND ND  ND ND ND 

 HOM  25.7 ± 0.6 (4) ND ND  ND ND ND 

week 3 WT  26.6 ± 1.1 (7) 26.6 ± 1.4 (2) 26.0 ± 1.7 (3)  ND ND ND 

 HET  26.2 ± 0.5 (8) ND ND  ND ND ND 

 HOM  26.5 ± 1 (5) ND ND  ND ND ND 

week 4 WT  26.6 ± 0.9 (7) 25.9 ± 0.7 (4) 26.1 ± 0.7 (3)  ND 48.7 (1) ND 

 HET  26.8 ± 0.5 (10) ND ND  ND ND ND 

 HOM  26.0 ± 0.2 (5) ND ND  44.4 (1) ND ND 

week 5 WT  26.5 ± 0.8 (7) 26.6 ± 0.7 (3) 26.8 (1)  ND 47.9 ± 0.6 (2) 48.0 (1) 

 HET  27.3 ± 0.6 (10) 30.0 ± 3.7 (2) ND  ND ND ND 

 HOM  25.9 ± 0.3 (5) ND ND  46.6 (1) ND ND 

week 6 WT  26.5 ± 0.7 (6) 26.9 ± 0.4 (4) 27.7 ± 1.9 (3)  ND 47.8 ± 0.6 (2) 48.0 (1) 

 HET  26.1 ± 0.5 (11) 27.3 ± 0.3 (2) 26.5 (1)  ND ND ND 

 HOM  25.3 ± 0.3 (5) 27.5 (1) ND  48.2 (1) ND ND 

week 7 WT  26.9 ± 0.79 (7) 29.4 ± 0.8 (5) 29.1 ± 1.6 (2)  ND 48.4 ± 0.3 (2) 47.7 ± 0.5 (2) 

 HET  26.3 ± 0.6 (11) 26.4 ± 0.2 (2) 26.2 ± 0.8 (3)  ND ND ND 

 HOM  26.9 ± 0.6 (5) ND ND  48.8 (1) ND ND 

week 8 WT  27.8 ± 0.9 (7) 28.9 ± 1.3 (4) 26.5 ± 3.0 (2)  ND 47.4 ± 0.2 (3) 47.5 ± 0.6 (3) 

 HET  28.3 ± 2.1 (10) 26.8 (1) 26.8 ± 0.3 (2)  48.4 (1) 47.5 (1) ND 

  HOM   26.4 ± 0.5 (5) 26.7 (1) 27.5 (1)   48.0 (1) ND ND 

*P < 0.05, **P < 0.01, ***P < 0.001.  

ND indicates that MASCO-driven rhythms are not detected in the corresponding group of mice 



 

Table 2. Effect of chronic low dose of methamphetamine on the general activity in WT, 

Q175 HET and Q175 HOM mice 
 

Treatment 

period 

Genotype Treatment  Mean Total activity counts/24 hours ± SEM (number of mice) 

    2 months 6 months 12 months 

Pre-treatment WT Water alone 3659 ± 287 (7) 3279 ± 509 (7) 2163 ± 364 (9) 

 HET  3579 ± 323 (11) 2304 ± 282 (7) 1683 ± 234 (9) 

 HOM   2528 ± 338 (6) 1910 ± 405 (7) 2079 ± 292 (11) 

MAP week 1 WT MAP 5000 ± 327 (7)* 2797 ± 393 (7) 3576 ± 372 (9) 

 HET  4640 ± 336 (11) 2358 ± 180 (7) 2524 ± 209 (9) 

 HOM   3353 ± 540 (6) 2655 ± 460 (7) 2541 ± 351 (11) 

MAP week 2 WT MAP 4667 ± 364 (7)  2420 ± 534. (7) 2708 ± 520 (9) 

 HET  4868 ± 242 (11)* 1946 ± 250 (7) 2624 ± 351 (9) 

 HOM   3963 ± 431 (6)* 2759 ± 479 (7) 2304 ± 370 (7) 

MAP week 3 WT MAP 5117 ± 506 (7)* 3940 ± 382 (7) 2936 ± 485 (9) 

 HET  5049 ± 303 (11)** 2615 ± 419 (7) 3166 ± 595 (9) 

 HOM   3870 ± 201 (6) 2917 ± 578 (7) 2435 ± 278 (11) 

MAP week 4 WT MAP 5051 ± 399 (7)* 3129 ± 490 (7) 3324 ± 359 (9) 

 HET  5332 ± 375 (11)*** 2507 ± 236 (7) 2760 ± 595 (9) 

 HOM   3506 ± 400 (6) 2271 ± 527 (7) 2292 ± 322 (11) 

MAP week 5 WT MAP 4861 ± 356 (7)*** 3368 ± 464 (7) 3290 ± 298 (9) 

 HET  4790 ± 362 (11)* 2540± 200 (7) 3028 ± 545 (9) 

 HOM   3496 ± 296 (6) 2577 ± 636 (7) 2216 ± 287 (11) 

MAP week 6 WT MAP 5312 ± 490 (7) 3012 ± 165 (7) 3826 ± 267 (9) 

 HET  5430 ± 368 (11)*** 2600 ± 264 (7) 3028 ± 477 (9) 

 HOM   3621 ± 470 (6) 2988 ± 734 (7) 2215 ± 264 (11) 

MAP week 7 WT MAP 4533 ± 391 (7)  3850 ± 376 (7) 3634 ± 283 (9) 

 HET  4997 ± 412 (11)* 2757 ± 240 (7) 3102 ± 468 (9) 

 HOM   3211 ± 380 (6) 2754 ± 598 (7) 2241 ± 329 (11) 

MAP week 8 WT MAP 4861 ± 593 (7) 3964 ± 441 (7) 3619 ± 290 (9) 

 HET  4968 ± 370 (11)* 2626 ± 301 (7) 3241 ± 513 (9) 

 HOM   3131 ± 349 (6) 2811 ± 602 (7) 2201 ± 355 (11) 

withdrawal 1 WT Water alone 2246 ± 282 (7) 2778 ± 327 (7) 2312 ± 277 (9) 

 HET  3149 ± 438 (11) 2003 ± 219 (7) 1970 ± 169 (9) 

 HOM   2145 ± 211 (6) 2182 ± 240. (7) 1924 ± 251 (11) 

withdrawal 2 WT Water alone 2237 ± 320 (7) 3061 ± 359 (7) 2305 ± 263 (9) 

 HET  2978 ± 408 (11) 2013 ± 136 (7) 2167 ± 175 (9) 

  HOM   2045 ± 221 (6) 2202 ± 345 (7) 1986 ± 270 (7) 

 

*P < 0.05, **P < 0.01, ***P < 0.001 compared to pre-treatment week 

 

 

 

 

 

 



 

Table 3. Effect of 0.005% methamphetamine on the period length of the MASCO-driven rhythms in naïve and drug pre-exposed WT, 

Q175 HET and Q175 HOM mice at the age of 6 months 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*P < 0.05, **P < 0.01, ***P < 0.001  

ND indicates that MASCO-driven rhythms are not detected in the corresponding group 

Treatment 

period 

Genotype 
Number of mice with 

MASCO output/total 

  Mean Period length(h) ± SEM (number of mice) 

 

 

 MASCO-driven rhythms 

(non circabidian)   
MASCO-driven rhythms 

(circabidian) 

    naïve  pre-exposed  naïve pre-exposed   naïve pre-exposed 

week 1 WT 0/7 1/7  ND 24.7 (1)  ND ND 

 HET 0/7 1/11  ND 24.3 (1)  ND ND 

 HOM 0/7 0/6  ND ND  ND ND 

week 2 WT 1/7 5/7  25.7 (1) 26.3 ± 0.7 (5)  ND ND 

 HET 0/7 3/11  ND 25.5 ± 0.8 (3)  ND ND 

 HOM 0/7 1/6  ND 25.3 (1)  ND ND 

week 3 WT 2/7 5/7  26.6 ± 1.4 (2) 26.7 ± 0.8 (5)  ND ND 

 HET 0/7 7/11  ND 25.9 ± 0.4 (7)  ND ND 

 HOM 0/7 1/6  ND 24.3 (1)  ND ND 

 week 4 WT 5/7 6/7  25.9 ± 0.7 (4) 26.2 ± 0.8 (5)  48.8 (1) 53.1 (1) 

 HET 0/7 7/11  ND 25.5 ± 0.4 (7)  ND ND 

  HOM 0/7 3/6  ND 26.5 ± 2.0 (3)  ND ND 

 week 5 WT 5/7 7/7  26.6 ± 0.7 (3) 28.5 ± 1.2 (6)  47.9 ± 0.6 (2) 50.7 (1) 

 HET 2/7 7/11  30.0 ± 3.7 (2) 27.1 ± 0.9 (7)  ND ND 

 HOM 0/7 2/6  ND 35.8 ± 13.0 (2)  ND ND 

week 6 WT 6/7 6/7  26.9 ± 0.4 (4) 28.2 ± 1.1 (6)  47.8 ± 0.6 (2) ND 

 HET 2/7 5/11  27.3 ± 0.3 (2) 25.2 ± 1.0 (3)  ND 46.1 ± 2.7 (2) 

 HOM 1/7 1/6  27.5 (1) 25.8 (1)  ND ND 

week 7 WT 7/7 6/7  29.4 ± 0.8 (5) 30.5 ± 4.3 (5)  48.4 ± 0.3 (2) 49.9 (1) 

 HET 2/7 9/11  26.4 ± 0.2 (2) 27.0 ± 1.2 (8)  ND 44.3 (1) 

 HOM 0/7 1/6  ND ND  ND 48.6 (1) 

week 8 WT 7/7 6/7  28.9 ± 1.3 (4) 26.9 ± 1.2 (4)  47.4 ± 0.2 (3) 54.5 ±10.1 (2) 

 HET 2/7 10/11  26.8 (1) 27.3 ± 1.4 (9)  47.5 (1) 48.5 (1) 

  HOM 1/7 3/6   26.7 (1) 27.4 (1)   ND 49.0 ± 1.3 (2) 
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