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Summary	31 
Many	species	of	cold-blooded	animals	experience	substantial	and	rapid	fluctuations	in	body	32 
temperature.	Because	biological	processes	are	differentially	temperature-dependent,	it	is	33 
difficult	to	understand	how	physiological	processes	in	such	animals	can	be	temperature-robust.		34 
[1-8].	Experiments	have	shown	that	core	neural	circuits	such	as	the	pyloric	circuit	of	the	crab	35 

Stomatogastric	Ganglion	(STG)	exhibit	robust	neural	activity	in	spite	of	large	(20	°C)	temperature	36 
fluctuations	[3,	5,	7,	8].	This	robustness	is	surprising	because	the	temperature	dependencies	of	37 
ionic	currents	in	the	STG	are	not	tuned	[7].	This	is	apparently	paradoxical	because:	a)	each	38 
neuron	has	many	different	kinds	of	ion	channels	with	different	temperature	dependencies	(Q10s)	39 
that	interact	in	a	highly	nonlinear	way	to	produce	firing	patterns;	b)	across	animals	there	is	40 
substantial	variability	in	conductance	densities	that	nonetheless	produce	almost	identical	firing	41 
properties.	The	high	variability	in	conductance	densities	in	these	neurons	[9,	10]	appears	to	42 
contradict	the	possibility	that	robustness	is	achieved	through	precise	tuning	of	key	temperature-43 
dependent	processes.	In	this	paper	we	develop	a	theoretical	explanation	for	how	temperature	44 
robustness	can	emerge	from	a	simple	regulatory	control	mechanism	that	is	compatible	with	45 
highly	variable	conductance	densities	[11-13].	The	resulting	model	suggests	a	general	46 
mechanism	for	how	nervous	systems	and	excitable	tissues	can	exploit	degenerate	relationships	47 
among	temperature-sensitive	processes	to	achieve	robust	function.	48 
	49 
Results	50 

Temperature	sensitivity	of	physiological	processes	such	voltage-dependent	ion	channel	51 
gating	are	described	by	an	approximate,	empirical	measure,	the	Q10,	defined	as	the	fold-change	52 
per	10	°C	from	some	reference	temperature:	53 

𝑅!
𝑅ref

= 𝑄!"(!!!ref) !"     (1)	

Here	𝑅! 	is	the	rate	(or	magnitude)	of	the	process	at	temperature	𝑇	and	𝑅ref	is	the	reference	54 
value	at	temperature	𝑇ref.		A	Q10	of	1.0	therefore	means	that	a	process	is	temperature-55 
independent.	Experimentally,	Q10s	for	single-channel	conductance	tend	to	lie	in	the	range	of	1.2-56 
1.5.	On	the	other	hand,	Q10s	for	ion	channel	gating	or	inactivation	are	typically	in	the	range	2.0	–	57 
4.0	[14],	meaning	that	the	rate	of	channel	opening,	for	example,	can	speed	up	more	than	two-58 
fold	per	10	°C	increase.	59 
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Activity	in	single	neurons	and	circuits	results	from	the	interaction	of	many	nonlinear	60 
voltage-gated	conductances,	and	is	therefore	generically	very	sensitive	to	changes	in	kinetic	61 
properties	of	conductances	[4].	This	is	evident	in	warm-blooded	homeotherms	such	as	humans,	62 
where	changes	in	brain	temperature	of	only	a	few	degrees	can	result	in	seizures,	loss	of	63 
consciousness	or	death.	Figure	1A	illustrates	temperature	sensitivity	in	model	pacemaker	64 
neurons	that	have	been	assigned	random	Q10s	over	a	realistic	range	(2	-	4).	Each	neuron	has	the	65 
same	set	of	8	conductances	with	fixed	densities.	At	the	reference	temperature	(10	°C)	the	66 
neurons	show	identical	bursting	activity	(green	traces	in	Figure	1A).	However,	this	activity	is	67 
severely	disrupted	as	temperature	is	varied	from	5-25	°C,	with	each	different	assignment	of	Q10s	68 
causing	qualitatively	different	changes.	In	contrast,	the	biological	data	reproduced	in	Figure	1B	69 
shows	temperature	robust	pacemaker	activity	in	isolated	PD	cells	of	the	STG	[3].	Notably,	the	70 
duty	cycle	of	these	neurons	(the	percentage	of	time	the	neuron	is	firing	during	a	burst	cycle),	71 
which	is	important	for	coordinating	relative	muscle	contraction	timing,	is	tightly	preserved	even	72 
though	the	cycle	frequency	increases	with	temperature.	Pacemaker	duty	cycle	robustness,	in	73 
concert	with	synaptic	and	intrinsic	mechanisms	of	the	follower	cells	[7],	allows	temperature	74 
compensation	of	phase	relationships	in	the	wider	circuit.	75 

Together	with	other	studies	[7,	15]	the	extreme	sensitivity	of	the	models	in	Figure	1A	76 
shows	that	temperature	robust	behavior	is	not	expected	for	ion	channel	Q10s	selected	from	a	77 
biologically	realistic	range.	Therefore,	some	tuning	of	either	the	Q10s	or	the	channel	densities	78 
must	occur	in	temperature-robust	biological	systems.	It	is	conceivable	that	ion	channel	Q10s	can	79 
be	tuned	on	an	evolutionary	timescale	or	on	short	timescales	as	a	result	of	protein	modification.	80 
On	the	other	hand,	channel	densities	are	known	to	be	under	regulatory	control	[11-13]	and	81 
biological	data	show	that	conductance	expression	is	highly	variable	in	neurons,	including	the	82 
pacemaker	cells	of	the	STG	(Figure	1C).	This	is	consistent	with	theoretical	studies	that	show	83 
there	are	many	possible	combinations	of	neuronal	parameters	consistent	with	a	given	type	of	84 
activity	[16-20],	suggesting	that	neurons	can	somehow	find	entire	families	of	temperature	85 
robust	combinations	of	channel	densities.	86 

	87 
Temperature	robustness	via	channel	density	regulation	88 

Consider	a	physiological	property,	𝑃,	of	a	neuron	–	this	could	be	spike	frequency,	burst	89 
duty	cycle	or	any	other	relevant	property.	Temperature	robustness	of	𝑃	arises	when	the	90 
derivative	of	𝑃	with	respect	to	temperature,	𝑇,	is	close	to	zero	over	some	temperature	range:	91 
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𝑑𝑃
𝑑𝑇

≈ 0	

For	convenience	we	restrict	attention	to	a	single	compartment	neuron	model	with	fixed	92 
capacitance.	In	this	case,	all	physiological	properties	depend	on	the	dynamics	of	the	ionic	93 
currents	in	the	cell.	We	can	thus	write	the	temperature	dependence	of	𝑃	in	terms	of	the	94 
temperature-dependence	of	each	current,	𝐼!,	using	the	chain	rule	[2,	21,	22]:	95 

𝑑𝑃
𝑑𝑇

=
𝑑𝑃
𝑑𝐼!

𝑑𝐼!
𝑑𝑇

!

	

The	contribution	of	each	current,	𝐼!,	to	𝑃	is	weighted	by	the	corresponding	channel	density,	𝑔!.	96 
Thus,	97 

𝑑𝑃
𝑑𝑇

= 𝑔!
𝑑𝑃
𝑑𝑥!

𝑑𝑥!
𝑑𝑇

!

					(2)	

where	𝑥! 	is	the	unit	current	due	to	each	channel	type	(so	that	𝐼! = 𝑔!𝑥!.)	Informally,	this	98 
relationship	can	be	summarized	as:	99 

temperature	dependence
of	property	𝑃 = expression	level	of

current	𝑖 × change	in	𝑃	due	to	temperature
dependence	of	current	𝑖

all	currents

	

Within	some	range	of	the	𝑔!,	each	current	affects	membrane	potential	dynamics	to	either	100 
increase	or	decrease	property	𝑃	(or	it	has	no	effect,	in	which	case	it	is	irrelevant).	Therefore,	the	101 
𝑑𝑃 𝑑𝑥! 	terms	in	(2)	are	either	positive	or	negative.	The	𝑑𝑥! 𝑑𝑇	terms	depend	only	on	the	Q10	s	102 
corresponding	to	current	𝑖,	which	are	always	positive	and	monotonic.	Re-writing	equation	(2)	103 
and	setting	𝑑𝑃 𝑑𝑇 = 0,	gives:	104 

0 = 𝑔!
𝑑𝑃
𝑑𝑥!

𝑑𝑥!
𝑑𝑇

−
!!!

!!!

𝑔!
𝑑𝑃
𝑑𝑥!

𝑑𝑥!
𝑑𝑇

!

!!!!!!!

					(3)	

Here	we	have	split	the	currents	according	to	whether	𝑑𝑃 𝑑𝑥! 	is	positive	or	negative.	For	a	large	105 
number,	𝑛,	of	different	conductances	with	a	mixture	of	positive	and	negative	contributions	(1	<	106 
k	<	n),	condition	(3)	is	easily	satisfied	at	a	single	temperature	by	solving	for	𝑔!.	If,	in	addition,	the	107 
𝑑𝑃 𝑑𝑥! 	terms	are	sufficiently	smooth,	𝑃	will	be	approximately	temperature	invariant	over	an	108 
extended	temperature	range.	Most	importantly,	if	(3)	is	satisfied	for	one	set	of	conductance	109 
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densities,	 𝑔! ,	then	linearly	scaled	densities	 𝛼𝑔! 	also	satisfy	(3),	where	𝛼	is	a	scaling	factor.	110 
This	shows	that	a	single		temperature	robust	solution	can	extend	to	entire	families	of	111 
temperature-robust	solutions	with	linearly	correlated	conductance	densities.	112 

Intuitively,	the	above	argument	says	that	temperature	robustness	is	achieved	when	the	113 
temperature	dependencies	of	multiple	processes	that	negatively	and	positively	affect	𝑃	114 
approximately	cancel.	This	approximate	cancelling	has	been	called	‘antagonistic	balance’	[2,	22].	115 
The	important	point	to	take	from	equation	(2)	is	that	the	weighting	of	each	contribution	to	116 
overall	temperature	dependence	is	controlled	by	conductance	density,	equivalently,	the	117 
expression	levels	of	channel	proteins	in	a	biological	neuron.	Clearly,	non-permissive	situations	118 
can	exist,	for	example	if	a	property	depends	on	only	one	gating	variable	of	a	temperature	119 
sensitive	conductance.	120 

Equation	(3)	says	that	if	a	property	is	influenced	positively	and	negatively	by	multiple	121 
temperature-sensitive	currents,	then	temperature	robustness	can	be	achieved	by	controlling	122 
conductance	densities	alone.	Furthermore,	whenever	such	solutions	exist,	linearly	correlated	123 
temperature-robust	sets	of	conductances	will	also	exist.	In	neurons	that	express	many	types	of	124 
conductance,	there	will	generally	be	many	positive	and	negative	contributions	to	a	given	125 
property,	making	equation	(3)	easier	to	satisfy.	Together,	this	shows	that	regulation	that	gives	126 
linearly	correlated	conductances	can	be	sufficient	for	temperature	robustness.	127 

Existence	of	temperature	robust	channel	density	configurations	in	models	with	mismatched	Q10s	128 

We	examined	the	temperature	robustness	of	duty	cycle	(fraction	of	cycle	period	that	the	neuron	129 
is	active)	in	model	bursting	pacemaker	neurons.	Duty	cycle	is	important	for	coordinating	130 
rhythms	in	central	pattern	generating	circuits,	such	as	in	the	pyloric	circuit	of	the	STG.	131 
Moreover,	temperature	robustness	of	this	property	is	far	from	trivial	to	achieve,	as	Figure	1A	132 
illustrates.	133 

To	provide	an	initial	set	of	candidate	models,	we	randomly	sampled	conductance	densities	as	134 
well	as	Q10s	in	a	single	compartment	conductance	based	model	(Figure	2A).	For	each	sample,	all	135 
of	the	voltage-dependent	gating	variables	as	well	as	the	unitary	conductances	and	calcium	136 
dynamics	were	assigned	random	Q10	values	over	a	realistic	range.	Q10s	for	each	gating	variable	137 
were	randomised	uniformly	in	the	range	(1<	Q10	<4)	and	unitary	conductances	in	the	range	(1<	138 
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Q10	<	1.5).	As	expected,	most	(94%)	of	the	116,400	models	we	sampled	failed	to	maintain	139 
bursting	activity	over	a	temperature	range	(5-25	°C).	140 

However,	among	the	7013	models	that	did	maintain	bursting	activity	across	temperature,	560	141 
(0.5%)	of	the	models	maintained	duty	cycle	within	a	5%	range.	The	distribution	of	duty	cycle	142 
variation	in	all	models	over	5-25	°C	is	shown	in	Figure	2B,	along	with	the	distribution	of	variation	143 
in	cycle	period.	Notably,	period	is	less	temperature-robust	than	duty	cycle	in	these	models.	144 
Biologically,	most	neurons	and	neural	circuits,	including	those	found	in	the	pyloric	circuit	exhibit	145 
increases	in	frequency	of	bursting	or	spiking	as	temperature	increases	[6-8].	Interestingly,	the	146 
distribution	in	duty	cycle	total	variation	peaks	at	10.5%,	very	close	to	the	biologically	observed	147 
value	of	13%	in	isolated	pacemaker	neurons	of	the	crab	pyloric	rhythm	[3].	Thus,	in	a	neuron	148 
with	only	8	conductances	it	is	relatively	easy	to	find	combinations	of	Q10s	and	conductance	149 
densities	that	are	temperature	robust.	150 

Which	conductance	parameters	contribute	to	duty	cycle	robustness?	Figure	2C	shows	151 
histograms	of	Q10	values	for	which	temperature	robust	bursting	(top	panel)	and	temperature	152 
robust	duty	cycle	(bottom	panel)	exist.	Permissible	Q10s	for	bursting	are	broadly	distributed,	153 
indicating	that	individual	Q10	values	are	relatively	unimportant.	Some	Q10s	(colored	red)	show	154 
detectable	deviations	from	uniform	distributions,	indicating	that	bursting	is	sensitive	to	the	155 
corresponding	kinetic	parameter.	These	distributions	did	not	alter	markedly	when	we	selected	156 
parameter	sets	with	robust	duty	cycles	(Fig	2C,	lower	panel),	except	for	the	calcium-dependent	157 
potassium	conductance,	(gKCa),	which	favored	lower	Q10	values.	Therefore,	in	this	model,	many	158 
combinations	of	conductances	can	offset	temperature-dependent	deviations	in	kinetics	as	159 
expected	from	the	previous	analysis	(Equation	3).	As	reported	previously	[15],	there	was	no	160 
obvious	correlation	among	the	parameters	of	robust	models	(data	not	shown).	161 

Although	many	sets	of	conductance	densities	give	rise	to	temperature	robust	duty	cycle,	these	162 
represent	a	small	fraction	of	densities	that	give	temperature	robustness	of	a	bursting	rhythm	to	163 
begin	with,	which	in	turn	occupy	a	small	volume	of	all	feasible	conductance	densities.	Moreover,	164 
it	is	clear	that	a	smaller	fraction	still	(solutions	toward	the	left-hand	region	of	the	shaded	region	165 
of	Figure	2B)	have	temperature	robust	period	as	well	as	duty	cycle.	In	this	sample,	only	two	166 
parameter	sets	can	maintain	both	properties	within	10%.	Thus,	robustness	to	one	property	167 
imposes	a	strong	constraint	on	the	ability	to	be	robust	to	additional	properties.	168 
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Activity-dependent	channel	regulation	can	generate	temperature	robust	neuronal	properties	169 

The	fixed	conductance	densities	of	the	models	in	Figure	2	allowed	us	to	construct	models	that	170 
regulate	their	conductances	using	activity-dependent	feedback.	We	recently	showed	[11,	12]	171 
how	a	simple	model	of	gene	regulation	can	be	coupled	to	a	single,	global	activity	sensor,	such	as	172 
a	putative	calcium-activated	pathway	depicted	in	Figure	3A.	Briefly,	the	expression	rates	of	each	173 
gene,	𝑚!,	is	proportional	to	the	deviation	of	calcium	concentration,	[Ca],	from	an	equilibrium	174 
value,	Ca!":	175 

𝑑𝑚!

𝑑𝑡
= 𝐾!(Ca!" − [Ca])             (4)	

The	origin	of	Ca!" 	is	discussed	extensively	in	[11]	and	arises	when	one	considers	the	interaction	176 

between	calcium-dependent	processes	that	interact	to	control	gene	expression.	Together,	Ca!",	177 

and	the	expression	rate	constants,	𝐾!,	constitute	a	regulation	parameter	set	for	a	model,	which	178 
is	assumed	to	be	fixed	for	a	particular	cell	type	[11,	12].	For	example,	cells	with	a	constitutively	179 
repressed	channel	gene	would	have	a	correspondingly	low	expression	rate.	We	note	that	these	180 
rates	are	very	slow	relative	to	spikes	and	calcium	oscillations,	so	these	equations	effectively	181 
average	out	calcium	concentration.	Channel	densities	in	the	model	evolve	in	proportion	to	the	182 
expression	levels	of	the	corresponding	genes:	183 

𝑑𝑔!
𝑑𝑡

= 𝐴(𝑚! − 𝑔!)            	(5)	

where	𝐴	is	some	constant	representing	channel	turnover	rate.	From	random	initial	conditions,	184 
the	model	settles	to	a	steady-state	(ss)	in	which	the	channel	genes,	and	thus	channel	density,	185 
are	linearly	correlated,	as	can	be	seen	by	integrating	equations	(4-5)	and	calculating	the	186 
approximate	ratios	of	the	steady	state	densities,	𝑔!!!:	187 

𝑔!!!/𝑔!!! ≈ 𝐾!/𝐾!             	(6)	

further	analysis	in	[11,	12]	shows	further	that	this	model	converges.	188 

Equation	(6)	provides	a	way	to	estimate	regulation	parameters	from	fixed	models.	We	used	the	189 
subpopulation	of	560	fixed	models	in	Figure	2	that	maintained	duty	cycle	within	5%	to	derive	190 
initial	guesses	for	the	𝐾! 	and	the	average	calcium	concentration,	Ca!".	191 
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Equation	(6)	is	approximate	due	to	nonlinearities	between	steady-state	average	calcium	and	192 
conductance	density	[11].	We	thus	sampled	regulation	parameters	in	a	neighborhood	and	193 
subjected	the	resulting	self	regulating	models	to	temperature	perturbations	(400	samples	for	194 
each	of	the	560	candidate	parameter	sets,	235,600	in	total).	In	this	sample,	models	are	not	only	195 
required	to	maintain	duty	cycle	within	a	5%	range	over	5-25	°C,	they	must	also,	by	necessity,	196 
maintain	average	calcium	concentration	as	temperature	changes.	A	fraction	(<1%;	2098	197 
parameter	sets)	satisfied	these	criteria	and	generated	self-regulating	duty	cycle-robust	neurons.	198 

Figure	3B	shows	the	initial	and	steady-state	conductances	of	an	example	self-regulating	model	199 
and	its	corresponding	set	of	assigned	Q10	values.	Multiple	runs	of	the	model	generates	a	200 
population	of	cells	with	variable	underlying	conductances	that	are	linearly	correlated	[12],	as	201 
predicted	by	quation	(6).		These	correlations	recapitulate	direct	measurements	of	mRNA	202 
expression	and	conductance	densities	in	identified	neurons	of	the	STG	[9,	10,	13,	23]	(Figure	1C).	203 

Figure	3C	shows	membrane	potential	traces	during	acute	temperature	ramps,	for	five	different	204 
neurons	indicated	in	Figure	3B	(color	coded).	Figure	3D	quantifies	duty	cycle	robustness	with	205 
respect	to	temperature	in	this	population	of	cells.	Scaled	membrane	potential	traces	of	the	top	206 
cell	in	Figure	3C	are	shown	in	Figure	3E.	The	action	potential	waveform	in	the	scale	traces	207 
deviates	with	temperature,	indicating	temperature	induced	changes	in	the	gating	kinetics	of	the	208 
underlying	conductances,	which	is	to	be	expected	given	the	substantial	mismatch	among	the	209 
underlying	Q10s	(Figure	3B).	Nonetheless,	this	set	of	regulation	parameters,	along	with	the	other	210 
2098	parameter	sets,	drives	conductance	densities	toward	regions	of	parameter	space	where	211 
temperature	effects	are	balanced	to	maintain	duty	cycle.	212 

Discussion	213 

While	many	sets	of	conductances	and	Q10s	are	temperature	robust	over	some	range,	these	214 
represent	a	very	small	fraction	of	a	random	sampling	of	parameter	space.		Indeed,	the	215 
conductance	densities	of	successful	self-regulating	models	form	a	very	specific	slice	through	216 
parameter	space.		The	general	form	of	the	model	we	present	here	demonstrates	how	a	simple,	217 
biologically	plausible	control	rule	can	allow	neurons	to	land	in	these	spaces	of	“good	solutions”	218 
where	temperature	compensation	occurs	automatically.		The	signature	of	this	control	rule	is	219 
found	in	the	tight	correlations	in	channel	expression	that	is	seen	experimentally	in	temperature	220 
robust	neurons.	We	speculate	that	over	evolutionary	timescales,	the	gene	sequences	and	221 
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resulting	enzymatic	interactions	that	control	gene	expression	have	been	shaped	to	make	some	222 
organisms,	tissues	and	cells	acutely	temperature	robust	by	similarly	constraining	the	underlying	223 
regulatory	balance	of	multiple	temperature-dependent	components.	Although	we	have	focused	224 
on	the	context	of	rhythmic	neuronal	activity	that	is	observed	to	be	robust	in	crustaceans,	the	225 
principle	of	how	multiple,	degenerate	temperature-dependent	processes	can	be	co-regulated	to	226 
ensure	robustness	likely	generalizes.	For	example,	many	species	of	cold-blooded	homeotherms	227 
need	to	be	robust	to	acute	temperature	fluctuations	in	the	nervous	system	so	as	to	maintain	228 
thermal	homeostasis	through	the	behaviors	they	employ	that	demonstrate	their	temperature	229 
preferences	[24].	Even	commonly	used	warm-blooded	model	organisms,	such	as	rodents,	230 
exhibit	remarkably	robust	nervous	system	function	in	the	face	of	large	temperature	fluctuations	231 
[25].		What	remains	an	open	question	is	how	robustness	to	one	perturbation,	in	this	case	232 
temperature,	can	coexist	with	robustness	to	other	environmental	challenges,	each	of	which	will	233 
potentially	impose	a	new	constraint	on	the	available	parameters,	and	thus	on	the	regulatory	234 
mechanisms	themselves.	235 

	236 
Experimental	Procedures	237 

Single	compartment	pacemaker	model	neurons	were	constructed	using	channel	kinetics	238 
described	in	[12].	The	models	had	7	voltage-dependent	conductances:	fast	sodium	(NaV),	239 
transient	and	slow	calcium	(CaT,	CaS),	A-type	potassium	(KA),	calcium-activated	potassium	240 
(KCa),	delayed	rectified	potassium	(Kdr),	hyperpolarization-activated	mixed	cation	(Ih)	and	a	241 
leak.	Calcium	dynamics	has	a	first	order	decay	as	described	in	[12].	242 

Temperature	dependence	was	modeled	in	the	time-constants	of	the	channel	gating	variables,	243 
the	maximal	conductance	and	the	time-constant	of	calcium	buffering.	For	example,	for	a	244 
conductance	𝑔	with	gating	variables,	𝑚	and	ℎ,	we	have	standard	kinetic	equations	𝑔 = 𝑔𝑚!ℎ!;		245 

𝜏!𝑚 = 𝑚!(𝑉) −𝑚;	𝜏!ℎ = ℎ!(𝑉) − ℎ,	where	𝑔	is	maximal	conductance,	𝑝, 𝑞	are	gating	246 
exponents,	𝜏!	are	gating	time	constants,	𝑥!(𝑉)	are	steady-state	voltage	dependencies	and	𝑉	is	247 
membrane	potential.	The	temperature	dependence	is	modeled	as	𝑔 = 𝑅!(𝑇)𝑔𝑚!ℎ! 	and	248 

𝑅!(𝑇)!!𝜏!𝑚 = 𝑚!(𝑉) −𝑚,	(with	the	same	form	for		ℎ),	where	𝑇	is	temperature	(in	Kelvin)	249 

and	𝑅! 𝑇 = 𝑄!",!(!!!ref) !".	In	the	case	of	calcium	buffering,	the	corresponding	equation	is	250 

𝑅Ca 𝑇 !!𝜏Ca Ca = 0.94𝐼Ca − Ca + 0.05.	The	coefficient	of	0.94	(in	units	of	µM	nF	/	pA)	is	a	251 
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geometric	factor	converting	calcium	current	to	concentration	assuming	the	cell	is	approximated	252 

as	a	cylinder	of	50	µm	in	diameter	and	400	µm	long	and	the	steady-state	value	of	0.05	(in	µm)	253 
corresponds	to	approximate	resting	cytosolic	calcium	concentration	[12].	254 

Models	that	use	calcium	dependent	channel	regulation	(Figure	3)	are	exactly	as	described	255 
previously	[12].	Regulation	parameters	were	chosen	as	described	in	the	main	text.	The	256 
conductance	densities,	regulation	parameters	and	𝑄!"	values	for	all	simulations	are	given	in	257 
table	S1	in	the	supplemental	data.	Duty	cycle	measurements	were	made	using	a	spike	threshold	258 
of	-10mV.	Simulation	code	is	available	at	https://github.com/marderlab/oleary_marder_2016	259 
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Figure	Legends	342 
	343 
Figure	1:	Temperature	robust	neural	activity	is	non-trivial	but	observed	biologically	in	neurons	344 
with	highly	variable	conductance	expression	345 
(A)	Three	example	model	neurons	with	identical	conductance	densities	and	randomly	assigned	346 
Q10s	for	all	kinetic	parameters	(values	and	ranges	in	Supplemental	Table	S1).	Conductance	347 
densities	were	chosen	to	produce	bursting	pacemaker	activity	at	the	reference	temperature	348 
(green	traces).	All	models	are	subjected	to	an	identical	acute	temperature	ramp	between	5	and	349 

10	°C	and	between	10	and	25	°C	(blue	traces);	temperature	ramp	is	shown	on	the	same	350 
timescale	(red	trace).	(B)	Example	traces	of	a	pharmacologically	isolated	PD	pacemaker	cell	in	351 
the	STG,	subjected	to	acute	changes	in	temperature,	reproduced	from	[2].	Scale	bar	spans	-75	to	352 
-25	mV	(vertical)	and	1	second	(horizontal).	(Right)	summary	measurements	of	PD	duty	cycle	as	353 
a	function	of	temperature	across	12	different	preparations	[1].	(C)	Single-cell	ion	channel	gene	354 
expression	data	from	PD	pacemaker	neurons,	reproduced	from	[9].	Units	are	mRNA	copy	355 
numbers	from	single	cell	real-time	PCR,	normalized	to	ribosomal	RNA.	Blue	lines	are	linear	fits	356 
where	significant	correlations	were	found.	357 
	358 
Figure	2:	Many	sets	of	conductance	densities	can	produce	temperature	robust	neurons	with	359 
mismatched	Q10s.	360 
(A)	Strategy	for	sampling	temperature-robust	combinations	of	channel	densities	and	Q10s.	Both	361 
channel	densities	and	Q10s	were	randomly	assigned	to	116,400	single	compartment	models,	362 
which	were	then	screened	to	find	temperature	robust	pacemaking	activity	by	measuring	duty	363 
cycle	and	burst	period	during	acute	temperature	ramps	(parameters	in	Supplemental	Table	S1).	364 

(B)	Total	variation	in	cycle	period	and	duty	cycle	over	the	temperature	range	5	–	25	°C	for	all	365 
7013	models	that	maintained	bursting	across	temperature.	Total	variation	is	defined	as	the	366 
difference	between	maximum	and	minimum	cycle	period/duty	cycle	across	the	temperature	367 
range.	Marginal	distributions	of	period	variation	and	duty	cycle	variation	are	shown	to	the	top	368 
and	right	of	the	plots.	Yellow	shaded	region	shows	the	subset	of	models	that	maintained	duty	369 
cycle	within	5%	over	the	temperature	range.	(C)	(Top	panel)	Histograms	of	Q10s	for	all	channel	370 
gating	variables	and	maximal	conductances,	and	for	calcium	buffering	time-constant	and	Q10.	371 
For	maximal	conductances,	the	horizontal	axis	ranges	from	1.0	to	1.5.	For	calcium	buffer	time-372 
constant	the	range	is	20-100	ms.	For	all	other	Q10	histograms	the	range	is	1.0	to	4.0.	373 
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Distributions	that	deviate	substantially	from	the	original	uniform	sampling	distribution	are	374 
shaded	red	(Kolmogorov-Smirnov	statistic	>	0.1.)	Conductance	abbreviations:	NaV	=	fast	sodium,	375 
CaT	=	transient	calcium,	CaS	=	slow	calcium,	KA	=	A-type	potassium,	KCa	=	calcium-activated	376 
potasium,	Kdr	=	delayer	rectifier	potassium,	Ih	=	hyperpolarization-activated	mixed	cation	377 
conductance.	(Bottom	panel)	as	for	Top	panel,	but	for	the	subset	of	560	models	that	maintained	378 
duty	cycle	within	5%,	as	depicted	in	yellow	shaded	region	of	(B).	379 
	380 
Figure	3.	An	example	of	a	self-regulating	population	of	model	neurons	that	establish	381 
temperature-robust	sets	of	conductance	densities	382 
(A)	Cartoon	of	the	conductance	regulation	model	used	in	this	paper.	Calcium	concentration	383 
directly	modulates	the	expression	rates	of	all	conductances	densities	by	altering	the	rate	of	384 
production	of	a	channel	intermediate	(‘mRNA’)	on	an	appropriately	slow	timescale	(orders	of	385 
magnitude	slower	than	fluctuations	in	calcium	due	to	spikes	and	membrane	potential	386 
oscillations).	(Lower	panel)	Example	traces	showing	convergence	of	the	model.	Scale	bar:	50	mV	387 
(vertical),	500	ms	(horizontal).	See	ref	[11]	for	full	model	details.	(B)	(Left	panel)	Random	initial	388 
conductance	densities	in	25	model	neurons.	(Middle	panel)	Steady-state	conductance	densities	389 
in	the	same	25	model	neurons	in	the	left	panel	following	convergence	under	the	control	of	one	390 
example	parameter	set	from	the	2028	parameter	sets	that	produced	temperature-robust	self-391 
regulating	neurons.	(Right	panel)	Q10	values	of	the	conductances	in	the	model	neurons	in	the	left	392 
and	middle	panels.	(C)	Acute	temperature	ramps	in	five	example	model	neurons	selected	from	393 
the	steady-state	population	in	(B).	(D)	Quantification	of	duty	cycle	in	the	five	example	neurons	in	394 
(C)	as	a	function	of	temperature.	(E)	Time-stretched	membrane	potential	traces	from	the	blue	395 
model	neuron	in	(C).	396 
	397 
Supplemental	Information	398 
	399 
Table	S1.	Conductance	parameters	for	simulations	400 

Conductance	densities	(in	µS/nF)	and	Q10	range	for	model	neurons	in	Figure	1	and	ranges	for	401 
models	sampled	in	Figure	2.	402 
	 	403 
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