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Abstract 

 

In this work, all ink-jet printed (IJP) low-voltage organic field-effect transistors (OFETs) on 

flexible substrate are reported. The OFETs use IJP silver (Ag) for source/drain/gate electrodes, 

poly(4-vinylphenol) (PVP) for gate dielectric, 6,13-bis(triisopropylsilylethynyl)-pentacene 

(TIPS-pentacene) blended with polystyrene (PS) as the semiconducting layer and CYTOP for 

encapsulation layer. All the printing processes were carried out in ambient air environment using a 

single laboratory ink-jet printer Dimatix DMP-2831. The all IJP device presents state-of-the-art 

performance with low operation voltage down to 3 V, small subthreshold swing (SS) of 0.155 V/decade, 

mobility of 0.26 cm
2
V

-1
s

-1
, threshold voltage (Vth) of -0.17 V and on/off ratio of 3.1×10

5
, along with a 

yield of 62.5%. Through interface engineering and proper process optimization, this work demonstrates 

a promising low-voltage all IJP device platform for low-cost flexible printed electronics.  
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1. Introduction  

Solution processed organic field-effect transistors (OFETs) have received considerable attention, 

owing to their attractive features of low-cost printable processes [1]-[2], superior intrinsic mechanical 

flexibility [3], and sustainable performance improvement [4]. These fascinating features of OFETs 

make them perfect candidates for applications as sensors [5], radio frequency identification (RFID) tags 

[6], smart memories [7], point-of-care diagnostic systems [8], flexible display backplanes [9] and 

wearable systems [10]. In the past few decades, apart from developing high mobility organic 

semiconductors [11], significant efforts focused on developing low-cost solution-based processes for 

OFETs [12]-[14], with ink-jet printing as one of the most promising candidates. Its merits include 

drop-on-demand direct patterning, non-contact mode, material saving and good compatibility with large 

area flexible substrates [15], all of which are highly desirable for low-cost and high-throughput 

electronics [16]-[19]. To further reduce the cost and improve the efficiency for OFETs’ manufacturing, 

an all ink-jet printed (IJP) OFET device platform is highly very much in demand. Up to now, there have 

been very few publications on all IJP-OFETs [20]-[23]. Most demonstrate high operating voltage of 

typically a few tens of volts, which would be a bottleneck for most mobile or wearable applications 

where the electronics have to be powered with battery or AC field. Therefore, reducing the operating 

voltage of all IJP-OFETs has become a key challenge.  

To reduce the operating voltage, we can increase the gate dielectric capacitance per unit area (Ci) 

[24] and/or reduce the semiconductor/dielectric interface trap density (NSS) [25]. The larger Ci can be 

achieved by ultrathin or high-k gate dielectric. However, a thin gate dielectric can result in large gate 

leakage and a high-k gate dielectric would suffer from the interface dipole disorder [26], neither of 

which are compatible in all IJP-OFETs. For an all IJP-OFET, a bottom-gate bottom-contact (BGBC) 

device architecture is preferred [20]-[23], which prints source/drain electrodes on the dielectric layer 

rather than the process-sensitive semiconductor layer. In previous work, it has been shown that a 

reduced NSS can be achieved with BGBC device architecture by using a blend of small molecule 

organic semiconductor and polymer binder [25][27]-[30]. Such an approach would be more compatible 

with ink-jet printing processes, which provides more flexibility on the dielectric thickness and dielectric 

constant (k) of the gate insulator. In addition, a higher mobility of IJP TIPS-pentacene OFET can be 

also achieved by blending with insulating polymer [31]. 

In this work, we adopt the approach of reducing NSS and show that it is effective. Based on a small 

molecule organic semiconductor blended with polymer dielectric material system, combining with 

careful process optimization, a low-voltage (< 3 V) all IJP-OFETs on flexible polyethylene naphthalate 

(PEN) substrate is reported. This work shows the first time through interface engineering and proper 

process optimization, all IJP low-voltage OFETs on flexible substrate can be achieved in ambient air 

lab environment. 

 

2. Experimental 
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(a)                                 (b) 

Fig. 1 (a) Schematic diagram of the all IJP-OFETs. (b) Chemical structure of the used materials.  
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        (a)                      (b)                      (c)                     (d) 

Fig. 2 Controlling voltage waveform for the ink-jet printing process and photograph of the ink-jetted drops from nozzle 

for (a) Ag, (b) PVP, (c) TIPS-pentacene/PS and (d) CYTOP. 

 

The device structure of the all IJP-OFETs and the chemical structure of the used materials are 

shown in Fig. 1 (a) and (b), respectively. The BGBC devices were fabricated on a 125-μm-thick PEN 

substrate from DuPont. The size of the PEN was 4 cm  4 cm. The Ag ink (jet-600C) was supplied by 

Hisense Electronics, Kunshan, China, and the CYTOP (CTL-809M) and its solvent (CT-Solv. 180) 

were provided by Asahi Glass. All other chemicals were purchased from Sigma-Aldrich. The 

poly(4-vinylphenol) (PVP) was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at a 

concentration of 80 mg/mL. Subsequently, the cross-linking reagent poly(melamine-co-formaldehyde) 

(PMF) was mixed into the solution at a mass ratio of 1:2 to PVP. The mixed solution was then used as 

ink for the dielectric layer. We used a cross-linkable PVP dielectric as it has been proven to be a 

suitable gate dielectric for ink-jet printing process, and frequently used in the all IJP-OFETs [20]-[23]. 

The ink of semiconductor layer was prepared by mixing 6,13-bis(triisopropylsilylethynyl)-pentacene 

(TIPS-pentacene) and polystyrene (PS) at 10 mg/mL concentration of solids in toluene (3:1 ratio by 

volume). The blended material system (TIPS-pentacene/PS) appears to reduce NSS [25]. The CYTOP 

was diluted with a mass ratio of 1:3 to the CYTOP solvent (CT-Solv. 180), and then used as the ink for 

the encapsulation layer. By careful optimization of the controlling voltage waveform, nice ink-jetted 

drops out of the nozzle were achieved, as shown in Fig. 2. During the printing, the temperature of the 

cartridge for Ag, PVP, TIPS-pentacene/PS and CYTOP were 45
°
C, 35

°
C, 40

°
C and 50

°
C, respectively. 

The ink-jetted drops shown in Fig. 2 were the prerequisite for device fabrication. All the ink-jet printing 

processes were conducted with Dimatix DMP-2831 with 10 pL cartridges. The DMP-11610 cartridge was 

used for Ag ink, and DMPLCP-11610 cartridges were used for the other inks.  
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(a)                                   (b) 

Fig. 3 (a) Photograph of fabricated flexible sample. (b) Polarized optical micrograph of the fabricated device.  

 

The Ag gate electrode was printed onto the PEN substrate at a drop space (DS) of 50 μm. The drop 

frequency (DF) and the drop height (DH) from the cartridge nozzle to the top surface of the substrate 

were 5 kHz and 1 mm, respectively. In all the ink-jet printing processes, the temperature of the printer 

plate was kept at 30
°
C. The IJP-Ag was annealed at 150

°
C for 15 min to form conductive electrodes. 

Then the sample was treated by ultraviolet/ozone (UV/O3) for 6 min before printing the PVP dielectric. 

To avoid the interaction between neighboring PVP lines, a single PVP line was used to cover the whole 

Ag gate electrode by reducing the DS. The DS, DF and DH for all-printed PVP were 5 μm, 5 kHz and 1 

mm, respectively. The PVP dielectric layer was cross-linked at 150
°
C for 120 min. For the subsequent 

the source/drain electrode formation, the Ag ink was printed on PVP surface with the same jetting and 

annealing parameters as the gate electrode. The channel width (W) and length (L) were 1200 μm and 

40 μm, respectively. The surfaces of the source/drain electrodes were then treated by immersing the 

samples into a 7.5 × 10
-3

 mol/L solution of perfluorobenzenethiol (PFBT) in ethanol for 3 min and then 

rinsed with ethanol. The PFBT surface treated Ag electrodes were shown to be able to form good 

contacts with p-type organic semiconductors [32]. The semiconductor layer was then printed with a DS 

of 5 μm, a DF of 2 kHz and a DH of 1 mm, followed by an annealing process at 100
°
C for 30 min. 

Finally, the CYTOP ink was printed as the encapsulation layer. The DS, DF and DH for CYTOP were 5 

μm, 2 kHz and 1 mm, respectively. After the process of printing the encapsulation layer, the sample 

was heated at 100
°
C for 30 min before measurements. The photograph of the sample and the polarized 

optical micrograph of the device are shown in Fig. 3 (a) and (b), respectively.  

In this work, all the printing processes and measurement were carried out in a non-cleanroom, 

ambient-air environment. The electrical properties of the devices were characterized with a Keithley 

4200 Semiconductor Characterization System. The surface roughness of the PVP film was recorded 

with a Veeco EnviroScope atomic force microscope. The thickness was measured with a Dektak 

surface profilometer. The wetting property of PVP surface was characterized by a video contact-angle 

analyzer SL200B. The polarized optical micrographs were taken with a Nikon Eclipse ME600. The 

UV/O3 treatment was carried out with a Bioforce Nanosciences Procleaner 220.  

 



5 

 

3. Results and discussions 
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                             (a)                                  (b) 

Fig. 4 (a) Optical micrograph of the device with IJP-PVP dielectric on Ag gate electrode. (b) Measured atomic force 

micrograph (AFM) image of the PVP film. Measured toluene contact angle of the film is shown in inset.  

 

As shown in Fig. 4 (a), the single IJP-PVP line covers the whole Ag gate electrode, which is 

thought to be beneficial for a smooth surface of dielectric to avoid possible interaction between 

neighboring PVP lines. The measured atomic force micrograph (AFM) image of the PVP film is shown 

in Fig. 4 (b). It shows a very smooth surface with a root mean square (RMS) roughness of about 0.3 nm. 

The smooth surface is very important for forming a high quality semiconductor/dielectric interface. 

Meanwhile, the strong wetting property of the semiconductor solvent (toluene in this work) on the PVP 

surface is also essential in bottom-gate OFETs [33], as shown in the inset of Fig. 4 (b). Through careful 

interface engineering, a high-quality semiconductor/dielectric interface is obtained, which is 

prerequisite to reduce NSS.  
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                       (a)                                     (b) 

Fig. 5 (a) Measured capacitance as a function of frequency and (b) leakage current density as a function of voltage for 

the IJP-PVP dielectric. Optical micrograph and schematic diagram of the test structure Ag/PVP/Ag are shown in the 

insets of (a) and (b), respectively. 

 

The capacitance as a function of frequency for IJP-PVP dielectric is presented in Fig. 5 (a). The Ci 

is measured to be 37.0 nF/cm
2
 at a frequency of 1 kHz. The measured thickness is 103 nm yielding a 

dielectric constant k of 4.3 at 1 kHz. The leakage current density is shown in Fig. 5 (b), with a value of 
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2.3  10
-7

 A/cm
2
 at a bias voltage of 10 V. The optical micrograph and schematic diagram of the test 

structure are shown as insets in Fig. 5 (a) and (b), respectively.  

 

1 0 -1 -2 -3
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

|I
D
|1

/2
 (

1
0

-3
A

1
/2
)

|I
D
,I

G
| 
(A

)

V
GS

 (V)

0.0

0.2

0.4

0.6

0.8

1.0

 

V
DS

 = -3 V

 

0 -1 -2 -3

0.0

-0.5

-1.0

0 V

-1 V

-2 V

I D
 (

A

)

V
DS

 (V)

V
GS

 = -3 V

 

 

 

(a)                                        (b) 

Fig. 6 Measured electrical characteristics of the fabricated OFETs: (a) transfer characteristics (ID-VGS) and (b) output 

characteristics (ID-VDS). 

 

Figure 6 shows the measured transfer (ID-VGS) and output (ID-VDS) electrical characteristics of the 

fabricated OFETs. The device presents a threshold voltage (Vth) of -0.17 V, mobility of 0.26 cm
2
V

-1
s

-1
, 

an on/off ratio of 10
5
-10

6
 with a small subthreshold swing (SS) of 0.155 V/decade. The Vth value was 

estimated through a linear fit of the square root of ID versus VGS plot with its intercept on the x-axis as 

illustrated in Fig. 6 (a). The mobility was calculated by fitting the plot of the square root of ID versus 

VGS using the following equation: 

                   2i
D GS th

W
( )

2L

C
I V V


                            (1) 

where μ is the mobility, L the channel length, W the channel width and Ci the gate dielectric 

capacitance per unit area. To the best of our knowledge, this is the first report of low operating voltage 

for an all IJP-OFET is achieved. 

The required voltage swing to switch OFETs is highly dependent on the subthreshold swing (SS), 

which can be described as [34]: 

                  SS

i

2
T

ln10 1B

q

q Nk
SS

C

 
    

 

                     (2) 

where kB is Boltzman’s constant, T the absolute temperature, NSS the semiconductor/dielectric interface 

trap density, q the elementary charge, and Ci the gate dielectric capacitance per unit area. According to 

equation (2), since kBT/q is a constant, the required operating voltage for the OFET depends on both the 

Ci and NSS. A larger Ci and a lower NSS are preferred for low-voltage operation.  
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Table 1 Comparison of substrate, Ci, mobility, Vth, highest on/off ratio, operation voltage, SS and NSS for this work and 

other reported all IJP-OFETs. 

Work Substrate Ci 

(nF/cm
2
) 

Mobility 

(cm
2
V

-1
s

-1
) 

Vth Highest 

On/off Ratio 

Operation 

Voltage (V) 

SS 

(V/decade) 

NSS 

(eV
-1

cm
-2

) 

[20] Polyarylate 3.8 0.02 -1.2 10
4
 60 2.52 9.8010

11
 

[21] PEN 2.4 0.02 -14.0 1.210
2
 30 N/A N/A 

[22] Wafer 33.8 0.01 -1.5 1.410
3
 40 4.28 1.5010

13
 

[23] PEN 5.3 0.00025 -3.5 2.010
2
 30 N/A N/A 

Our work PEN 37.0 0.26 -0.17 3.110
5
 3 0.155 3.7010

11
 

N/A: Not available.  

 

A systematic comparison of extracted device parameters for devices in this work and all 

IJP-OFETs reported in the literature is shown in Tab. 1. It can be seen that that the overall performance 

of the devices reported here is very promising. The value of NSS is calculated to be 3.70  10
11

 

eV
-1

cm
-2

, which is also the lowest value reported for all IJP-OFETs. We believe that the reduced NSS 

and larger Ci as listed in Tab. 1 are the main reasons for the reduced operating voltage of our OFETs.  

In earlier reports on all IJP-OFETs [20]-[23], thick dielectrics were usually used to avoid dielectric 

breakdown, which yield a small Ci. Meanwhile, the small-molecule-only semiconductor system used in 

these papers [20]-[23] suffers from a relatively high NSS due to the poor crystallization control during 

the ink-jet printing process. As a result, the operating voltages tend to be very high (>30V). Meanwhile 

reports have demonstrated that a blend of small molecule organic semiconductor and polymer binder is 

useful to reduce the NSS [25][27]-[30], due to the better semiconductor crystallization induced by 

vertical phase separation [35]. The different solubility parameters between small molecule organic 

semiconductor and polymer binder is responsible for the vertical phase separation [35]-[36]. This 

approach for low-voltage operation is more compatible with low-cost printing processes, since there is 

less strict requirement on the value of Ci. Moreover, the low-voltage operating property also decreases 

the likelihood of dielectric breakdown by virtue of lower gate electric field, thus providing a much 

wider process window of IJP dielectrics. These attributes open up the possibility of realizing 

low-voltage all IJP-OFETs by reducing the interface state density. To make this approach effective, a 

smooth surface and proper wetting property of the dielectric are very important. In this work, the strong 

wetting property of the PVP dielectric shown in the inset of Fig. 4 (b), is consistent with earlier reports 

[20]-[23]. Moreover, the smooth surface of the PVP dielectric is achieved through the method of 

single-line printing with a small DS, as shown in Fig. 4 (b). A smooth surface is important for low 

voltage operation since surface/interface roughness hinder charge transport through additional 

scattering and by increasing defect states at the interface. 

Finally, the transfer characteristics of 50 OFETs are shown in Fig. 7 (a). The devices are classified 

as failures when the on/off ratio is lower than 500. The yield is 62.5% (i.e. 50 out of 80 functional) for 

the all IJP-OFETs over 4 cm  4 cm size flexible substrate. The histograms of the extracted mobility, 

on/off ratio, Vth and SS for the 50 OFETs are also shown in Fig. 7. The low on/off ratio of the failed 

devices is attributed to the printing misalignment, and also the gate leakage. The yield can be improved 

by using an industry-standard ink-jet printer and a thicker gate dielectric in the future work. 

Considering that all processes were carried out in a non-cleanroom ambient-air environment using a 

single Dimatix DMP-2831, the results shown are very encouraging.  
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                                   (d)                             (e) 

Fig. 7 (a) Measured transfer characteristics of 50 all IJP-OFETs over the 4 cm  4 cm size flexible substrate. Histograms 

of 50 all IJP-OFETs over the 4 cm  4 cm size flexible substrate: (b) mobility, (c) on/off ratio, (d) threshold voltage and 

(e) subthreshold swing. 
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4. Conclusion 

With proper device architecture, material selection and process optimization, this work 

demonstrates that low-voltage OFETs can be achieved using low-cost printing processes. The approach 

of reducing the interface state density at the semiconductor/gate dielectric interface proved to be 

effective in reducing the OTFTs operating voltage. Since all the processes were carried out in 

non-cleanroom ambient-air environment using a single laboratory printer (Dimatix DMP-2831), and 

not exceeding a process temperature of 150
°
C, this work would open a new route for development of 

commercially viable printed OFET technology platform for low-cost, low-power, flexible electronics.  
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