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Brugada syndrome (BrS), is a primary electrical disorder predisposing affected individuals

to sudden cardiac death via the development of ventricular tachycardia and fibrillation

(VT/VF). Originally, BrS was linked to mutations in the SCN5A, which encodes for the

cardiac Na+ channel. To date, variants in 19 genes have been implicated in this condition,

with 11, 5, 3, and 1 genes affecting the Na+, K+, Ca2+, and funny currents, respectively.

Diagnosis of BrS is based on ECG criteria of coved- or saddle-shaped ST segment

elevation and/or T-wave inversion with or without drug challenge. Three hypotheses

based on abnormal depolarization, abnormal repolarization, and current-load-mismatch

have been put forward to explain the electrophysiological mechanisms responsible for

BrS. Evidence from computational modeling, pre-clinical, and clinical studies illustrates

that molecular abnormalities found in BrS lead to alterations in excitation wavelength (λ),

which ultimately elevates arrhythmic risk. A major challenge for clinicians in managing

this condition is the difficulty in predicting the subset of patients who will suffer from

life-threatening VT/VF. Several repolarization risk markers have been used thus far, but

these neglect the contributions of conduction abnormalities in the form of slowing and

dispersion. Indices incorporating both repolarization and conduction and based on the

concept of λ have recently been proposed. These may have better predictive values than

the existing markers.

Keywords: arrhythmia, Brugada syndrome, sodium channel, repolarization, depolarization, risk stratification

INTRODUCTION

The syndrome of right bundle branch block with ST segment elevation was first described by the
Italian physicians, Drs Nava, Martini and Thiene, in 1989 (Martini et al., 1989). The term Brugada
syndrome (BrS) was later introduced to describe a hereditary condition involving idiopathic
ventricular tachycardia, ventricular fibrillation (VT/VF) and sudden cardiac death (SCD) in
structurally normal hearts (Brugada and Brugada, 1992). Traditionally, BrS has been linked to loss-
of-function mutations in the SCN5A gene, which encodes for the cardiac Na+ channel. Although
SCN5A is the commonest affected gene, its mutations are only implicated in approximately a fifth
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of patients. In some pedigrees, affected members did not have
mutations in this gene (Probst et al., 2009). Over the past
decades, variants in 19 genes that affect the Na+, K+, Ca2+,
and funny currents have been implicated. However, caution
must be taken when interpreting such genetic variants, as these
do not always contribute significantly to the BrS phenotype
(Le Scouarnec et al., 2015). Other than BrS, Scn5a mutations
have been associated with sick sinus syndrome (SSS; Benson
et al., 2003), progressive cardiac conduction defect (PCCD, or
Lenègre disease; Schott et al., 1999; Tan et al., 2001; Probst
et al., 2003) and idiopathic VF without BrS findings (Akai et al.,
2000). They can also lead to overlap disorders (Remme et al.,
2008). For example, the p.Y1449C mutation was associated with
conduction disease, Brugada syndrome and atrial flutter (Hothi
et al., 2015). The differing disease phenotypes can partly be
explained by the biophysical effects of the mutated Scn5a gene
product (Liu et al., 2014). The same mutation can affect members
of different families, or even members of the same family,
differently, suggesting that other factors modify the behavior of
the sodium channels.

BrS was initially estimated to account for 12% of the cases
of SCD in the general population (Brugada and Brugada, 1992).
However, recent epidemiological studies have demonstrated that
its prevalence is much lower. Thus, in Southeast Asians, who
are more predisposed to BrS than other ethnicities, only 0.1%
showed a Brugada pattern (Ng et al., 2012). In Chinese subjects,
the overall prevalence of BrS pattern was 3.3%, with 0.08% due
to Type 1 BrS, and the remaining contributions from Types
2 and 3 (Juang et al., 2015). In Denmark, a low prevalence
of BrS was found, at 0.001% (Holst et al., 2012). BrS has a
male preponderance, affecting men four times more frequently
than women and also affecting younger adults than infants or
children (Nademanee et al., 1997). BrS can present with SCD
(aborted or otherwise), syncope, palpitations or agonal breathing,
leading them to undergo further investigation. Precipitating
factors include increased vagal tone, fever, and other drugs such
as tricyclic antidepressants and alcohol (Madeira et al., 2015;
Achaiah and Andrews, 2016).

Aside from VT, BrS is associated with pre-excitation
syndromes such as Wolff-Parkinson-White syndrome
(Eckardt et al., 2001), and supraventricular tachycardia such
as atrioventricular nodal reentrant tachycardia, atrial flutter or
atrial fibrillation (Bordachar et al., 2004). Sinus node dysfunction
in the form of prolonged sinoatrial node recovery time (Morita
et al., 2004) has been observed in BrS. Conduction abnormalities
such as reduced conduction velocity (CV) from the sinoatrial
node to the atria or through the atria, and blocks such as atrial
standstill are also observed (Takehara et al., 2004; Tse et al.,
2016b).

Diagnosis of BrS is based on a Type 1 electrocardiographic
(ECG) pattern of a coved-shaped ST segment elevation (STE)
≥2mm and negative T-wave in the right precordial leads with
or without drug challenge using a class I anti-arrhythmic agent
such as flecainide (Priori et al., 2013). BrS can also be diagnosed
when a type 2 (saddleback morphology, defined as a J-wave
amplitude ≥2mm but STE ≥1mm) or type 3 (STE <1 mm
with either a coved or saddleback morphology) ECG pattern

is converted to type 1 by drug challenge. Clinical findings,
such as agonal respiration during sleep, history of ventricular
tachycardia or fibrillation (VT/VF), inducible VT/VF observed
during an electrophysiological study (EPS) and family history
of SCD or Type 1 (coved-type) ECG were part of the original
diagnostic criteria, but have now been excluded in the latest
consensus criteria (Priori et al., 2013). Some investigators have
emphasized that having a Brugada pattern on the ECG should
not automatically equate to a clinical diagnosis of BrS, especially
in asymptomatic individuals without clinical signs or symptoms
(Martini, 2016). Indeed, there are concerns that over-diagnosis
may occur if this is based only on ECG criteria (Viskin et al.,
2015). However, others pointed out that those with a Type 1 BrS
ECG, even if only it is drug-induced, have a low but nevertheless
elevated risk of sudden death compared to the general population
and therefore patients should be aware of it (Andorin and Probst,
2016). A recent consensus conference report put forward the
Shanghai BrS Score, where patients receive points for (i) ECG, (ii)
clinical findings, (iii) family history and (iv) genetic results, and
are stratified into non-diagnostic, possible or probable/definite
BrS (Antzelevitch et al., 2016). The standard placement of ECG
leads in the fourth intercostal spaces may not be sufficiently
sensitive to detect the presence of BrS ECG patterns, as only
mild ST segment elevation was observed (Shimizu et al., 2000).
By contrast, the ST segment elevation is more pronounced when
the leads are placed in the second intercostal spaces, in keeping
with the arrhythmia origins in the right ventricular outflow tract
(Curcio et al., 2016; Kumar and Kalman, 2016).

Traditionally, BrS was thought to be a Mendelian disease,
having an autosomal dominant inheritance with incomplete
penetrance (Sicouri et al., 2012), but this has been refuted
(Gourraud et al., 2016). The genotype-phenotype correlation
is poor; a recent study examined co-segregation of SCN5A
mutations amongst large genotyped families, demonstrating that
some affected familymembers did not carry the familial mutation
(Probst et al., 2009). This suggests other mutations in other
genes are responsible for BrS (Marian, 2009; Roden, 2010).
Moreover, some putatively pathogenic genetic variants do not
manifest clinically as abnormal phenotype (Van Driest et al.,
2016). Therefore, caution must be taken in notifying patients of
these incidental findings, which may not be clinically significant.

DIFFERENTIAL DIAGNOSIS: J-WAVE
SYNDROMES AND OTHER CAUSES OF
BRUGADA PATTERN

J-wave syndrome is a term encompassing both BrS and early
repolarization syndrome (ERS; Shinde et al., 2007; Antzelevitch
et al., 2011; Wang et al., 2011). The letter “J” refers to the
junctional point between the QRS and ST segment, representing
the intersection between end of ventricular depolarization and
onset of ventricular repolarization. Early repolarization was first
described in 1951 (Grant et al., 1951). It has been defined
as prominent or elevated J-point with notching or slurring of
distal part of R wave in at least two contiguous leads (Mehta
et al., 1999; Klatsky et al., 2003). Although traditionally seen as
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a benign finding (Mehta and Jain, 1995), early repolarization
has subsequently been associated with a higher risk of SCD
(Haïssaguerre et al., 2008; Rosso et al., 2008, 2012). The
estimated prevalence of ERS is around 1 to 13% of the general
population and associated with 15 to 70% of idiopathic VF cases
(Haïssaguerre et al., 2008; Derval et al., 2011; Haruta et al., 2011).
ERS has been reported to have an autosomal dominant origin
with incomplete penetrance (Noseworthy et al., 2011; Nunn et al.,
2011; Reinhard et al., 2011).

A group of heterogeneous conditions induce a Brugada
ECG pattern, including “metabolism conditions, mechanical
compression, myocardial ischaemia, pulmonary embolism,
myocardial, and pericardial disease, ECG modulations and
miscellaneous conditions” (Dendramis, 2016; Enriquez et al.,
2016; Gottschalk et al., 2016). These must be distinguished from
true BrS as these are potential reversible causes and do not
necessitate invasive treatments such as implantable cardioverter-
defibrillator (ICD) insertion.

ELECTROPHYSIOLOGICAL MECHANISMS
UNDERLYING ARRHYTHMOGENESIS IN
BRUGADA SYNDROME

The Na+ channel consists of one α subunit (SCN5A) and one
or two β subunits (SCN1B, SCN2B, SCN3B). Loss-of-function
mutations in Scn5a have been associated with BrS (Chen et al.,
1998), sick sinus syndrome (SSS; Benson et al., 2003), progressive
cardiac conduction defect (PCCD, or Lenègre disease; Schott
et al., 1999; Tan et al., 2001; Probst et al., 2003) and overlap
disorders between these conditions (Remme et al., 2008). By
contrast, gain-of-function Scn5a mutations are observed in long
QT syndrome type 3 (Wang et al., 1995). BrS and LQTS
share many similarities, existing in congenital or acquired forms
(Havakuk and Viskin, 2016).

BrS has been associated with reduced INa and loss-of-function
mutations in Scn5a. The latter can lead to impaired trafficking to
the cell membrane, reduced expression and expression of non-
functional proteins (Bezzina et al., 1999; Dumaine et al., 1999;
Akai et al., 2000; Kyndt et al., 2001; Valdivia et al., 2004; Amin
et al., 2005). Gating of Na+ channels can also be altered such
as delayed activation, premature inactivation, enhanced slow
inactivation and slower recovery from inactivation (Akai et al.,
2000; Amin et al., 2005). Although the commonest mutations of
BrS have been localized to SCN5a, accounting for 25% of cases
(Probst et al., 2010), other genes have also been implicated. These
include the different Na+ channel subunits, e.g., SCN5A, SCN1B,
SCN2B, or SCN3B (Watanabe et al., 2008; Hu et al., 2009; Riuró
et al., 2013; Ricci et al., 2014). Recently, SCN10A, a neuronal
sodium channel gene, was proposed to be a putative causative
gene in a large fraction of BrS cases (Hu et al., 2014a). Reduced
INa can also arise from mutations in genes encoding for glycerol-
3-phosphate dehydrogenase 1-like (GPD1-L) protein (London
et al., 2007), MOG1 (Kattygnarath et al., 2011), sarcolemmal
membrane-associated protein (SLMAP) (Ishikawa et al., 2012),
the desmosomal component plakophilin-2 (Cerrone et al., 2014),
FGF2 (fibroblast growth factor homologous factor-1) (Hennessey

et al., 2013) and the transcriptional factor HEY2 (Bezzina et al.,
2013; Boukens et al., 2013).

BrS can involve reduced ICa (Antzelevitch et al., 2007). LTCC
consists of 4 protein subunits α1 (CACNA1C), β2 (CACNB2), α2
(CACNA2D), and δ (CACNA2D). Loss-of-function mutations in
these genes can lead to abnormal trafficking, reduced expression
or function of the LTCC, similar to the Na+ channel mutations
(Antzelevitch et al., 2007; Burashnikov et al., 2010). However, a
difference is that BrS secondary to loss-of-function of LTCCs are
associated with shortened QT intervals, as opposed to classical
BrS in which the QT interval is not normally altered. BrS has
also been associated with gain-of-function mutations in genes
encoding for proteins that constitute or modulate the different
K+ channels. These include KCNE3, KCND3, and SEMA3A
(semaphorin, an endogenous K+ channel inhibitor) responsible
for Ito (Delpón et al., 2008; Giudicessi et al., 2011, 2012; Ohno
et al., 2011; Nakajima et al., 2012; Boczek et al., 2014), KCNJ8
and ABCC9 (encoding for SUR2A, the ATP-binding cassette
transporter for the KATP channel) determining IK,ATP (Medeiros-
Domingo et al., 2010; Hu et al., 2014b) and KCNH2 encoding
for IKr (Wang et al., 2014). Most recently, dysfunction in the
KCNAB2, which encodes the voltage-gated K+ channel β2-
subunit, was associated with increased Ito activity and identified
as a putative gene involved in BrS (Portero et al., 2016). Finally,
loss-of-function mutations in HCN4 leading to decreased If and
gain- or loss-of-function mutations in the transient receptor
potential melastatin protein 4 gene (TRPM4) have also been
implicated in BrS (Ueda et al., 2009; Liu et al., 2013).

To explain how these molecular changes lead to the BrS
phenotype, the depolarization, repolarization, and current-to-
load mismatch hypotheses have been proposed, as summarized
in Figure 1 (Nishii et al., 2010;Wilde et al., 2010; Tse et al., 2016i).
Even some 37 years before Martini and colleagues described their
syndrome of right bundle branch block, ST segment elevation
and sudden death (Nava et al., 1988; Martini et al., 1989), delayed
depolarization was thought to underlie ECG changes in a healthy
male patient simulating acute myocardial infarction (Osher and
Wolff, 1953). Regarding the electrophysiological abnormalities
observed in this case, they wrote: “due to prolongation of
the depolarization process by right bundle block or possibly
focal block with delayed activation of a portion of the right
ventricle: unusually early onset of repolarization may also play
a role”. Since then, the relative contributions of depolarization
vs. repolarization have been intensively studied in pre-clinical
models (Antzelevitch et al., 2005, 2007; Antzelevitch, 2008;
Schweizer et al., 2014). More recently, a third hypothesis based
on electrotonic current posits that current-to-load mismatch in
the RV and RVOT subepicardium is responsible for ST segment
elevation in BrS (Hoogendijk et al., 2010).

Depolarization Hypothesis
The depolarization theory proposes that slower upstroke of phase
0 and the consequent reduction in conduction velocity (CV)
of the APs are responsible for arrhythmogenesis. The seminal
work by Martini and colleagues found that patients suffering
from RBBB and ST segment elevation also had fibrosis of the
right ventricle and the conduction system (Martini et al., 1989).
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FIGURE 1 | Molecular and electrophysiological mechanisms underlying

arrhythmogenesis in Brugada syndrome.

Indeed, targeted disruption of Scn5a (Scn5a+/−), Scn5a1798insD/+

and SCN5aG1408R mice demonstrate reduced CV associated with
interstitial fibrosis (Leoni et al., 2010; Boukens et al., 2013;
Schweizer et al., 2014). Scn5a+/− mice also show progressive
conduction defects that are suggestive of Lenègre disease (Royer
et al., 2005). Na+ channels were assumed to be distinct from
gap junctions, which are found predominantly at the ends of
cardiomyocytes formediating intercellular conduction. However,
they were later shown to co-localize with gap junctions at the
intercalated disks (Cohen, 1996). Indeed, the macrostructure
connexome has been coined to describe an interacting network
of Na+ channels, desomosomal components and gap junctions
(Rhett and Gourdie, 2012; Rhett et al., 2013; Agullo-Pascual
et al., 2014; Veeraraghavan et al., 2014a,b; Veeraraghavan et al.,
2015; George et al., 2015). Autopsy findings support the idea that
components of the connexome are not independent of each other,
by demonstrating increased myocardial fibrosis from collagen
deposition and reduced gap junction expression in the RVOT
of hearts from BrS patients (Campuzano and Brugada, 2015;
Nademanee et al., 2015).

Mouse hearts with plakophilin-2 missense mutations showed
a phenotype that is consistent with arrhythmogenic right
ventricular dysplasia (ARVD; Cruz et al., 2015). BrS subjects
possessing PKP2 mutations have a reduced number of Na+

channels at the intercalated disk (Agullo-Pascual et al., 2014;
Cerrone and Delmar, 2014; Cerrone et al., 2014; Campuzano
et al., 2016). Although ARVD and BrS have been considered
to be different disorders, both affect primarily the RV and may
represent opposite ends of the same disease spectrum, with
decreasing degree of structural abnormalities fromARVD toward

BrS (Peters, 2014, 2015). Both ARVD and BrS can be therefore
considered as diseases of the connexome.

Together, Scn5a models of BrS demonstrate that these
conduction disturbances and structural abnormalities are greater
in the RV compared to the LV. These are in keeping with
clinical findings of delayed depolarization in the RV outflow
tract demonstrated using electroanatomical mapping (Nagase
et al., 2002; Tukkie et al., 2004; Coronel et al., 2005; Postema
et al., 2008, 2010; Lambiase et al., 2009; Nademanee et al., 2011;
Ten Sande et al., 2015). Most recently, a panoramic ventricular
mapping study in humans showed electrogram prolongation and
fractionation, reflecting reduced CV and increased CV dispersion
(Zhang et al., 2015). Furthermore, catheter ablation of the RVOT
led to resolution of the BrS ECG pattern, and prevention of
spontaneous and provoked VT/VF episodes, thereby supporting
the depolarization hypothesis (Nademanee et al., 2011; Brugada
et al., 2015). However, abnormal depolarization may be less
relevant in BrS pathogenic variants in which the INa is
not affected. For example, mutations leading to reduced ICa
or increased IK would not be expected to influence the
AP upstroke but rather shortens the plateau phase of AP
repolarization.

Repolarization Hypothesis
The repolarization theory states that differential APD shortening
across the myocardial wall is primarily responsible for the
BrS phenotype. Loss-of-function Scn5a mutations can have
opposing effects on the fast and slow inactivation of Na+

channels with distinct effects on repolarization (Veldkamp et al.,
2000). Evidence in support of the repolarization hypothesis for
BrS has been derived from experiments performed in animal
models (Di Diego and Antzelevitch, 2003; Antzelevitch and
Oliva, 2006; Antzelevitch, 2006; Tsuboi and Antzelevitch, 2006;
Sicouri et al., 2012). Data from mouse Scn5a+/− hearts on
repolarization durations have been inconsistent (Stokoe et al.,
2007; Martin et al., 2010, 2011a,b), which has been discussed
by editorials elsewhere (Tse et al., 2016f,h,i). Experiments
derived from arterially perfused, canine wedge preparations
have provided much insights into the mechanisms by which
reduced inward currents contributes to heterogeneities in
repolarization and in turn reentry (Yan and Antzelevitch, 1999;
Antzelevitch, 2001; Fish and Antzelevitch, 2004, 2008). A greater
degree of shortening is observed in the epicardium with high
Ito (particularly in the RVOT epicardium) compared to the
endocardium with low Ito. Therefore, epicardial APs, but not
endocardial APs, lose their dome shape morphology. During
phase 1 of the AP, the outward shift of ionic current balance
leads to failure of LTCC activation, which also contributes
to the loss of the AP dome. Originally, phase 2 reentry was
hypothesized to involve electrotonic coupling between these
cardiac regions, which permits propagation of the AP dome from
endocardial regions where it is maintained to epicardial regions
where it is abolished, thereby producing an extrasystole (Yan
and Antzelevitch, 1999). Recent work has suggested that such
phase 2 reentry is due to heterogeneity in early repolarization
in the sub-epicardial layer (Maoz et al., 2014). This can then
serve to initiate arrhythmia, and sustain reentry by a circus-type
mechanism (Lukas and Antzelevitch, 1996). Steep and reversal
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of repolarization gradients lead to the ST segment elevation and
T-wave inversion, respectively, in the ECG.

However, the above data from wedge preparations on
abnormal repolarization must be recognized with some caution,
as no significant transmural differences in repolarization
durations were found in the clinical setting (Coronel et al.,
2005). The ion currents that apparently mediate the propagation
of action potential domes across the myocardium can also
equilibrate action potential morphology, thereby reducing
transmural differences in repolarization time. Nevertheless,
increased Tpeak − Tend, a marker of global dispersion of
repolarization, have been found in BrS patients compared to
healthy subjects (Morita et al., 2008; Sangawa et al., 2009;
Karim Talib et al., 2012; Maury et al., 2015). Moreover, using
non-invasive ECG imaging, abnormal substrates in the form
of conduction slowing, delayed epicardial repolarization and
increased spatial gradients of repolarization have been identified
in the right ventricular outflow tract (Zhang et al., 2015).
The findings of this study suggest that abnormal repolarization
causes ST segment elevation, whereas abnormal depolarization
is responsible for the arrhythmic phenotype observed in BrS
(Zhang et al., 2015). For BrS patients in whom ICa is reduced or
IK is increased, abnormal repolarization is likely to be important
in generating or sustaining VT/VF. Indeed, subjects with loss-of-
function Ca2+ channel mutations have shortened QT intervals,
which may support arrhythmias by a reentrant mechanism
(Antzelevitch et al., 2007).

Abnormal restitution has long been recognized as a key
determinant of arrhythmogenicity in arrhythmic disorders such
as long QT and Brugada syndromes (Nishii et al., 2010; Osadchii
et al., 2010; Osadchii, 2012a,b, 2013; Tse et al., 2016c,e).
Restitution describes the dependence of a parameter on the
previous diastolic interval (DI) (Nolasco andDahlen, 1968; Franz
et al., 1983; Tse et al., 2016g). Increased restitution gradients are
associated with arrhythmogenesis, likely via the development of
APD alternans, which manifest as T-wave alternans on the ECG
(Pastore et al., 1999). APD alternans can produce steep gradients
in repolarization and refractoriness, unidirectional conduction
block and reentry (Tse et al., 2016a).

However, restitution analysis alone underestimates the extent
of APD alternans (Matthews et al., 2012) and may not reliably
predict arrhythmogenicity (Tse et al., 2016g). This may be due
to restitution-independent mechanisms in the generation of
alternans (Wu and Patwardhan, 2006; Jing and Patwardhan,
2012), such as divergence of ERP fromAPD (Tse et al., 2016c,d,e).
APD alternans have been demonstrated in a canine model of BrS
(Morita et al., 2006). T-wave alternans have also been in Brugada
subjects, lending support to the hypothesis that repolarization
abnormalities play a role in arrhythmogenesis (Nishizaki et al.,
2005; Uchimura-Makita et al., 2014; Sakamoto et al., 2016).

Current-Load-Mismatch,
Depolarization-Repolarization Balance And
Excitation Wavelength (λ)
A third mechanism involves current-to-load mismatch in the
right ventricle (Hoogendijk et al., 2010). This may occur at sites
with structural abnormalities, where the myocardial tissue is

interspersed with collagen or adipose tissue (Ten Sande et al.,
2015). In a preclinical study, ajmaline-mediated sodium channel
blockade led to conduction block and excitatory failure, which
were associated with ST segment elevation in the pseudo-ECG
recordings (Hoogendijk et al., 2011). Computational modeling
work demonstrated that the balance between inward and
outward currents could affect excitation and the ST segment
elevation in concert (Hoogendijk et al., 2011). Thus, either
reduced Ito or increased ICa could compensate for the reduced
sodium current, in turn reducing the degree of ST segment
elevation. Such preclinical findings are consistent with human
data (Hoogendijk et al., 2010). In an explanted human heart,
only failure of local excitation, but not delayed activation
or early repolarization, correlated with ST segment elevation
(Hoogendijk et al., 2010).

In patients with Brugada syndrome, structural abnormalities
are indeed observed in the RV and RVOT, which would
increase current-load mismatch and excitation failure
(Coronel et al., 2005; Frustaci et al., 2005; Catalano et al.,
2009). In a recent clinical study, a cohort of BrS patients
underwent activation mapping procedures, which showed that
electrogram fractionation together with conduction delay and
electrocardiographic ST segment elevation were likely due to
structural abnormalities in the sub-epicardial region of the
right ventricle and right ventricular outflow tract (Ten Sande
et al., 2015). It was suggested that current-to-load mismatches
at discontinuities can cause conduction block. It should be
recognized that abnormal depolarization does not act in
isolation, but act in concert with discontinuous conduction to
produce arrhythmias in BrS (Postema et al., 2008). This notion
is consistent with the observations that BrS patients develop
ventricular arrhythmias in their thirties, when interstitial fibrosis
is more evident (Coronel et al., 2005; Schweizer et al., 2014;
Nademanee et al., 2015). It also interacts with action potential
repolarization and recovery to determine the excitation (λ) given
by CV × ERP. Decreased λ has been associated with increased
likelihood of reentrant arrhythmias not only in pre-clinical
animal models, but also in BrS patients (Robyns et al., 2016; Tse,
in press; Tse and Yan, in press).

CONCLUDING REMARKS

In conclusion, an increasing number of genes have been
implicated in the pathogenesis of BrS. The genotype-phenotype
correlation for many of these variants are poorly characterized.
The commonest gene affected, SCN5A, is only implicated
in approximately a fifth of patients. In some pedigrees,
affected members did not have mutations in this gene (Probst
et al., 2009). On genetic diseases, Marian wrote that “by
definition the causal mutation cannot be absent in family
members with the phenotype” (Marian, 2009). Therefore, other
causal genes remain to be discovered. The use of animal
models will be crucial in elucidating the electrophysiological
mechanisms of arrhythmogenesis in these cases. Stem cell derived
cardiomyocytes can be used to construct monolayers or organoid
chambers (Kong et al., 2010; Weng et al., 2014), which can serve
as useful platforms for disease modeling, high-throughput drug
screening and cardiotoxicity testing (Li, 2012; Lui et al., 2012;
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Chow et al., 2013). Future studies will be needed to improve risk
stratification strategies to determine the subset of patients with
Brugada syndrome requiring ICD insertion.
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