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Abstract

The shallow water model with anisotropic porosity conceptually takes

into account the unresolved subgrid-scale features, e.g. microtopography or

buildings. This enables computationally efficient simulations that can be

run on coarser grids, whereas reasonable accuracy is maintained via the in-

troduction of porosity. This article presents a novel numerical model for

the depth-averaged equations with anisotropic porosity. The porosity is cal-

culated using the probability mass function of the subgrid-scale features in

each cell and updated in each time step. The model is tested in a one-

dimensional theoretical benchmark before being evaluated against measure-

ments and high-resolution predictions in three case studies: a dam-break

over a triangular bottom sill, a dam-break through an idealized city and a

rainfall-runoff event in an idealized urban catchment. The physical processes

could be approximated relatively well with the anisotropic porosity shallow
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water model. The computational resolution influences the porosities calcu-

lated at the cell edges and therefore has a large influence on the quality of the

solution. The computational time decreased significantly, on average three

orders of magnitude, in comparison to the classical high-resolution shallow

water model simulation.

Keywords:

porous shallow water equations, anisotropic porosity, finite volume method,

case studies

1. Introduction1

In shallow water modeling of river hydraulics [1, 2], urban flooding [3,2

4], urban runoff [5, 6, 7] and rainfall-runoff on natural environments [8, 9,3

10, 11], the topographical features have a large influence on the numerical4

results. The availability of digital elevation data has increased significantly5

due to recent improvements in surveying technology, notably laser scanning6

and light detection and ranging (LIDAR) technologies, which provide high-7

resolution data sets at relatively low cost [12, 13]. However, mainly due to8

computational constraints, incorporating these data sets into shallow water9

models is challenging [14, 15]. The difficulty arises from multiple scales in the10

physical processes. For example, in a small natural catchment with a scale11

of around a square kilometer, local depressions and microtopography with12

horizontal scales less than a square meter influence the flow field significantly13

[16, 17, 18]. Similarly, in urban flood models the city may spread up to14

several hundred square kilometers but the flood flow can be diverted, slowed15

down or completely blocked by man-made structures, e.g. buildings, bridges16
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or walls, whose characteristic scale are in meters. In order to accurately17

capture the effect of microtopography or buildings, they have to be included18

in the discretization. Due to the co-existence of multiple scales, this leads19

to extremely large computational mesh, which requires large data storage,20

large number of operations per time step, small time step size and thus large21

computational effort. In fact, the computational cost is inversely proportional22

to the third power of the cell size [19]. Therefore, practical applications have23

to compromise between spatial accuracy and computational efficiency [20]24

and are often carried out on super-computers [21].25

For super-computers, high-performance parallel computation methods on26

shared or distributed memory have been developed in literature [22] and very27

recently graphic processing units have been exploited for scientific computa-28

tion, e.g. [20, 23, 21].29

A different approach to speed up simulations is to conceptually account30

for small scale ground variations without explicitly discretizing them [14].31

This allows to run the simulations on coarser meshes. In this context, the32

shallow water equations with porosity have been initially developed by Defina33

[24, 25] to account for microtopography in partially inundated cells. Here, a34

single porosity is assigned to each cell, which represents the fraction of the35

cell that contributes to the flow. The porosity is calculated by a distribution36

function, which returns the porosity depending on the water depth in the cell.37

The distribution function is defined for the whole domain. In [11], Defina’s38

porous shallow water equations are applied to coupled simulations of surface39

and subsurface flows in natural catchments.40

The porosity concept was also applied to urban flood modeling by Her-41
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vouet [26] to account for buildings. Significant contribution to the porosity42

concept in the context of urban flood modeling was made by Guinot and43

Soares-Frazão [27, 28, 29]. Because the buildings in urban flood models are44

usually not fully submerged during the flood event, the area available for the45

flow stays constant during the simulation. Consequently, most porous urban46

flood models assign a constant porosity to each cell which only depends on47

the fraction of the cell occupied by buildings. An exception is the urban flood48

model presented in [30], wherein the authors calculate the inundated area of49

each cell according to the water elevation and use it in the mass balance.50

Although the authors do not explicitly use porosity terms, the model in [30]51

is essentially equivalent to a single porosity model with a depth-dependent52

porosity. The same strategy for porosity calculation is followed in this work.53

Further studies regarding the shallow water equations with single porosity in54

the context of urban flooding were carried out in [31, 32, 33, 28, 34]. Single55

porosity shallow water models can not differentiate between spatial direc-56

tions. The flow in all directions is governed by the same porosity. However,57

buildings in urban flood models usually have a directionality which leads to58

preferential flow paths of the water. Therefore, Sanders et al. [35] introduced59

the anisotropic porosity shallow water model, wherein a volumetric porosity60

inside the cell is defined to account for the fraction of the cell available for61

water. In addition an areal porosity is assigned to each cell edge which de-62

scribes the conveyance there (Sanders’ model). The equations were derived63

using the integral form of the shallow water equations, thus these equations64

can be solved only by a finite volume method. Sanders’ model was further65

investigated in [36, 19, 37]. In [38] a modified version of Sanders’ model that66
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allows full submergence of unresolved topographic features by introducing a67

mutual dependency between water depth and porosity is derived.68

This article presents a numerical model to solve the equations derived69

in [38] on Cartesian grids. The main difference from Sanders’ model is that70

submergence of unresolved topography leads to a different formulation of the71

porosities depending on the water depth in the cell. The main contribution72

of this work is the discussion on discretizing the porosity terms in the cell73

and at the edge and the illustration of the model’s behaviour via detailed74

case studies. In the present model, each cell and each edge are automatically75

assigned an individual porosity that depends on the water depth and the76

underlying topography. Thus, the model is automatically adjusted based on77

the computational mesh. The model performance is investigated in a theo-78

retical test case. Then, case studies of laboratory experiments are presented79

to further investigate the model’s behaviour.80

2. Governing equations81

The two-dimensional shallow water equations with anisotropic porosity82

can be written in integral-differential form as:83

∂

∂t

∫
Ω

iqdΩ +

∮
∂Ω

iFndr =

∫
Ω

isdΩ +

∮
∂Ω∗

s∗dr∗ (1)

Here, Ω is the total base area of the control volume, ∂Ω is the boundary of the84

control volume, r is the path along the boundary ∂Ω, ∂Ω∗ is the boundary85

between the fluid and the solid inside the control volume and r∗ is the path86

along this boundary (cf. [35, 9]). i is the so-called phase function, defined87
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as:88

i (x, y) =

1, η (x, y) > zb (x, y)

0, else

(2)

η is the water elevation, zb is the bottom elevation, q is the vector of conserved89

variables, s is the source term vector, F is the flux vector and n = [nx, ny]
T

90

is the normal vector of the boundary, with nx and ny are the components of91

the normal vector in x- and y-directions of the Cartesian coordinate system,92

respectively. Figure 1 illustrates the phase function, η and zb. The vectors q93

and s are expressed as:94

q =


h

qx

qy

 , s =


ir

sb,x + sf,x

sb,y + sf,y

 (3)

Here, h = η − zb stands for water depth, qx and qy are the unit discharges95

in x- and y-directions, respectively. ir is the mass source term, e.g. rainfall96

intensity; sb,x, sb,y are the bed slope source terms in x- and y-directions,97

respectively which account for variations in bottom, sf,x, sf,y are the friction98

source terms in x- and y-directions, respectively:99

sb,x = −gh∂zb
∂x

, sb,y = −gh∂zb
∂y

, (4)

100

sf,x = −cfqx
√
q2
x + q2

y

h2
, sf,y = −cfqy

√
q2
x + q2

y

h2
(5)

cf is the Chézy roughness coefficient, which can be expressed via Manning’s101

law:102

cf = gn2h−1/3 (6)
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n is Manning’s roughness coefficient and g is the gravitational acceleration.103

The flux vector is often split into its x- and y-component:104

Fn = fnx + gny (7)

f and g are defined as:105

f =


qx

uqx + 0.5gh2

uqy

 , g =


qy

vqx

vqy + 0.5gh2

 (8)

Here, u and v are the velocities in x- and y-directions, respectively. Finally,106

s∗ is the source vector accounting for fluid pressure along the interface ∂Ω∗.107

The calculation of s∗ is non-trivial and will be addressed in the next section.108

3. Numerical model109

3.1. Finite volume formulation of the equations110

The integral-differential form of the shallow water equations can be solved111

with the finite volume method. However, the phase function i can not be112

evaluated explicitly in the finite volume cell, because the bottom elevation113

inside the cell is not resolved. Therefore, the integral terms on the left hand114

side of Equation 1 have to be calculated with the concept of porosity.115

In [38], the volumetric porosity is defined as:116

φ =

∫
Ω
i (η − zb) dΩ∫

Ω
(η − z0) dΩ

(9)

The areal porosity is calculated as:117

ψ =

∮
∂Ω
i (η − zb) dr∮

∂Ω
(η − z0) dr

(10)
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Here, z0 is the elevation of the lowest point inside the control volume with118

regard to a datum. Both are illustrated in Figure 1. Evaluating the integral119

terms leads to modified flux and storage vectors [38]. Rewriting the line120

integral as a sum over the finite volume edges transforms Equation 1 to:121

∂

∂t
(φΩq̄) +

∑
k

ψkrkF̂knk =

∫
Ω

isdΩ +

∮
∂Ω∗

s∗dr (11)

k is the index of the path integral and rk is the length of the integration122

path. The storage vector q in Equation 3 is rewritten as:123

q̄ =


(η̄ − z0)

ū (η̄ − z0)

v̄ (η̄ − z0)

 (12)

The bar over a variable indicates volume-averaged variables which are con-124

stant within the cell:125

η̄ =

∫
Ω
iηdΩ∫

Ω
idΩ

, v̄ =

∫
Ω
ihvdΩ∫

Ω
ihdΩ

(13)

If i = 0 over the whole control volume, the averaging is not carried out and126

the volume-averaged variables are taken to be η̄ = 0 and v̄ = 0. The flux127

vector in Equation 3 is rewritten as:128

F̂n =


û (η̂ − z0)nx + v̂ (η̂ − z0)ny

ûû (η̂ − z0)nx + 0.5g (η̂ − z0)2 nx + ûv̂ (η̂ − z0)ny

v̂û (η̂ − z0)nx + v̂v̂ (η̂ − z0)ny + 0.5g (η̂ − z0)2 ny

 (14)

The circumflex over a variable indicates area-averaged variables at the edge:129

ĥ =

∫
r
ihdr∫
r
idr

, η̂ =

∫
r
iηdr∫
r
idr

, v̂ =

∫
r
ihvdr∫
r
ihdr

(15)

As before, if i = 0 over the whole edge the averaging is not carried out and130

all variables are taken to be nil. Then, Equation 11 can be solved with a131

suitable time integration method.132
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3.2. Porosity computation133

In order to calculate the porosities, the Probability Mass Function (PMF)134

of the unresolved bottom elevation inside the cell is calculated in the pre-135

processing step. The PMF is defined as the probability density function with136

discrete variables and can be computed by sampling the bottom elevation137

at a resolution much higher than the computational mesh. This assumes138

that the bottom elevation data is resolved at the finer resolution than the139

computational mesh resolution. The PMF is calculated for each cell and140

each edge seperately. In the context of this work, the PMF value of a certain141

elevation corresponds to the fraction of area below this elevation over the142

total area of the cell or the fraction of length of the edge below the specified143

elevation over the total length. Then, for any given water elevation η̄, the144

volumetric porosity φ can be calculated as:145

φ (η̄) =
1

η̄Ω

N∑
i

min (0, η̄ − zb,i) PMF (zb,i) Ωi (16)

Here, i is the index of bottom elevation zb,i. PMF (zb,i) is the value of the146

PMF evaluated at zb,i. In the present numerical model, the class index in-147

creases as the bottom elevation increases, i.e. the lowest bottom elevation148

corresponds to the smallest class index and the highest bottom elevation cor-149

responds to the largest class index. N denotes the total number of classes.150

Similarly, the areal porosity ψ at one edge is computed as:151

ψ (η̂) =
1

η̂∆k

N∑
i

min (0, η̂ − zb,i) PMF (zb,i) ∆ki (17)

∆k is the length of the edge. The PMF for the edge is sampled from the152

subgrid cells adjacent to the edge under consideration. Because the adjacent153
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neighbour cell also contributes to the porosity of the edge. The samples at154

the edges are modified as:155 z
L
b,i = zRb,i, if zLb,i < zRb,i

zRb,i = zLb,i, if zLb,i > zRb,i

(18)

Here, the superscripts L and R denote the left and right sides of the edge,156

respectively. The idea is to take clustering effects and cell blockage which157

have been reported in [39, 40] into account. The PMF is computed for158

each cell and edge once in the pre-processing step and is stored. Once the159

PMF is obtained, the mesh used for sampling is discarded and therefore the160

information of the high-resolution bottom elevation is not available anymore.161

The bottom elevation of each computational cell is set at the lowest value162

found from the high-resolution mesh. Additionally, the elevation at each163

edge is stored and used in the subsequent computation. The porosities are164

updated at the beginning of each time step according to Equations 16 and165

17. It is noted that in Equation 16 and 17 each sample is weighted equally.166

This assumes that each sample represents an equal amount of area. This167

is easy to assume for either square-shaped or rectangular-shaped grid cells168

if the subgrid-scale elevations are evenly distributed. For a triangular cell,169

evenly distributed subgrid-scale bottom elevations would not represent equal170

areas and the equations must be further modified to account for this. One171

approach would be to perform a Voronoi-tessellation in each cell to calculate172

weights for each sample. In this study, only structured grids with square-173

shaped cells are used.174
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3.2.1. Choice of water elevation for areal porosity calculation175

The areal porosity at the edge is calculated according to the water eleva-176

tion at the edge. Because the edge is an interface between two neighbouring177

cells, a choice between two water elevations has to be made to calculate the178

areal porosity, namely the water elevation at the left η̂L and the water eleva-179

tion at the right η̂R of the edge. In this work, the upstream water elevation180

is chosen for porosity calculation. For example, if the case illustrated in Fig-181

ure 2 is considered, the areal porosity ψ will be computed according to the182

water elevation on the left side of the edge η̂L. In Figure 2, ẑb is the bottom183

elevation at the edge. The calculation of ẑb is discussed in the next section184

(Section 3.3).185

3.3. Flux computation186

The numerical scheme is a Godunov-type explicit finite volume scheme187

with second order MUSCL reconstruction [41]. Values at cell center are188

linearly extrapolated to the edges, whereby the slope of the extrapolation189

function is limited by a min-mod slope limiter [42]. The reconstructed values190

are used to calculate the numerical fluxes over the cell edge by solving the191

Riemann problem at the edge using a Harten, Lax and van Leer approximate192

Riemann solver with the contact wave restored (HLLC) [43]. As suggested193

in [44], only η̂, q̂ and ĥ are extrapolated. At wet-dry interfaces, the MUSCL194

reconstruction is omitted to ensure numerical stability [3, 45, 46].195

The reconstruction of the bottom elevation at the edge differs slightly196

from most reconstructions, e.g. [44, 45]. In a first step, the bottom elevation197

11



at the edge zrecb,i is calculated as198

zrecb,i = η̂i − ĥi. (19)

In an additional second step the difference between the lowest bed elevation199

at the edge and the bottom elevation of the cell is calculated:200

∆zi = zedge
b − zcell

b,i (20)

zedge
b refers to the lowest elevation at the edge and zcell

b,i refers to the bottom201

elevation of the cell on the left or right side of the edge (cf. Figure 2). Then,202

∆zi is added to zrecb,i :203

ẑb,i = zrecb,i + ∆zi (21)

The reconstruction carried out for the left and right side of the edge gives η̂L,204

q̂L, ĥL, ẑb,L, η̂R, q̂R, ĥR, ẑb,R. Hereinafter, the cell on the left side of the edge205

is assumed to be the cell under consideration. Then, the non-negative water206

depth reconstruction [44] is carried out as follows: The bottom elevation at207

the edge is defined as:208

ẑb = max (ẑb,L, ẑb,R) (22)

Water elevation on the left side of the edge and the bottom elevation at the209

edge are compared and the lower value is set as the new bottom elevation.210

ẑb = min (ẑb, η̂L) (23)

Water depths are reconstructed as:211

ĥR = max (0, η̂R − ẑb)−max (0, ẑb,R − ẑb) , ĥL = η̂L − ẑb (24)
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The vector of velocities at the left and right sides of the edge (v̂i = [ûi, v̂i]
T )212

are calculated as:213

v̂i =

0, ĥi < ε

q̂i/ĥi, ĥi ≥ ε

(25)

ε is a threshold to avoid division by 0 and further indicates whether a cell is214

considered wet or dry. In this work it is chosen ε = 10−6 m. Finally, ĥL, v̂L,215

ĥR and v̂R are used by the HLLC Riemann solver to compute the flux over216

the edge.217

3.4. Source term computation218

3.4.1. Bed slope and friction source term computation219

In Equation 1, three source terms have to be numerically solved: the220

bed slope source term, the friction source term and the solid-fluid interfacial221

pressure source term. The first two source terms occur as a result of depth-222

averaging and can be found also in the classical two-dimensional shallow223

water equations. The last term results from the ground unevenness not224

resolved by the computational mesh and is discussed in [35, 9].225

The bed slope source term can be written as226

sb =


0

sb,x

sb,y

 (26)

where the definitions of the terms are given in Equation 4. In [47], the227

divergence form for bed slope is presented, which transforms the bed slope228

source term within the cell into a flux term over its edges:229 ∫
Ω

isbdΩ =

∮
∂Ω

iFbndr (27)
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The integral is evaluated and the line integral is approximated by the alge-230

braic expression:231 ∮
∂Ω

iFbndr =
∑
k

ψkrkF̂bnk (28)

Hou et al. [45] propose an extension of this approach to higher order accu-232

racy by dividing the integral over the cell into integrals over subcells. This233

allows non-linear variations of bed elevation, which is suitable for the model234

presented in this work because separate bottom elevations are defined at the235

cell edges. The vector of bed slope flux at edge k is written as:236

Fb,knk =


0

−0.5nxg
(
hk + h̄

)
(ẑb,k − z̄b)

−0.5nyg
(
hk + h̄

)
(ẑb,k − z̄b)

 (29)

Using Equation 10, the evaluation of the integral in Equation 28 over edge k237

in x-direction gives:238 ∫
∂Ωk

−0.5inxg
(
hk + h̄

)
(ẑb,k − z̄b) dr

= −0.5g (ẑb,k − z̄b)
∫
∂Ωk

g
(
ihk + ih̄

)
dr

= −0.5g (ẑb,k − z̄b)
(
ψk (η̂k − z0) rk +

∫
∂Ωk

ih̄dr

)
(30)

The latter integral in Equation 30 is approximated with:239 ∫
∂Ωk

ih̄dr ≈ ψkh̄rk (31)

The evaluation of the integral in y-direction is similar. Then, the evaluated240
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bottom slope flux vector F̂b,knk over the edge k can be written as:241

F̂b,knk =


0

−0.5nxg
(
η̂k − z0 + h̄

)
(ẑb,k − z̄b)

−0.5nyg
(
η̂k − z0 + h̄

)
(ẑb,k − z̄b)

 (32)

For the friction source term, the standard expression of the friction source242

vector as introduced in Equation 5 is used. The term is discretized in a point243

implicit way as shown in [10].244

3.4.2. Solid-fluid interfacial pressure source term computation245

The solid-fluid interfacial pressure source term treatment follows the mod-246

eling concept in [35]. The term is split into a stationary and non-stationary247

part:248 ∮
∂Ω∗

s∗dr =

∮
∂Ω∗

s∗stdr +

∫
Ω

is∗nsdΩ (33)

The stationary part balances the pressure and flux terms as the flow converges249

to a stationary state and the non-stationary part results from the water250

elevation fluctuation inside the computational cell that can not be resolved251

[35]. The non-stationary term s∗ns is integrated over the cell. In [35, 9], this252

term follows a generalized drag law proposed in [48]:253

s∗ns =


0

cDū
√
ū2 + v̄2

cDū
√
ū2 + v̄2

 (34)

cD is the dimensionless drag coefficient, which is calculated with:254

cD = 0.5 c0
Da ·min

(
h, zmax

b − zmin
b

)
(35)

15



The parameter a represents the projected width of the obstruction facing the255

flow per unit planform area and depends on the angle of attack and width of256

the obstacle [35]. c0
D is a reference drag coefficient obtained by calibration,257

and a is a modification coefficient. In theory, it is possible to determine a258

exactly from the geometry data and calibrate only c0
D, yet this is not done259

in this work. Instead, the model is calibrated using the product c0
D · a. The260

reason for this is that calculating the angle of attack for the value of a during261

the simulation is not trivial. In addition, the value of c0
D depends on the262

Reynolds number and the shape of the obstacle. In [48, 35], it is suggested263

that the value of a should be estimated in a predictor step and then updated264

in a corrector step based on the flow values of the predictor step. This265

approach is not followed in this work, because it requires extra knowledge266

of the subgrid-scale obstacles beyond the porosity function, i.e. information267

about the shape and the directionality of the obstacles have to be stored.268

An additional challenge is that the values of a and c0
D depend on the water269

depth in the cell, as the geometry of the obstacles might vary in the vertical270

direction. The full assessment of the present approach requires additional271

research. Additionally, the value c0
D · a is assumed constant over the whole272

domain, because the cases investigated are relatively simple. However, each273

cell could also be assigned a separate c0
D · a. This would allow a better274

representation of the heterogeneity in the domain, but the drawback is that275

the model calibration becomes very complicated and requires large quantities276

of data. This further suggests that a more precise definition of both a and c0
D277

is required. Overall, the calculation of the non-stationary term needs further278

research.279
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The stationary part of the interfacial pressure source term is essential,280

as it well-balances the scheme. Here, the vector of the stationary interfacial281

pressure source term is derived by evaluating the C-property of the scheme.282

This leads to the same formulation as in [35]:283 ∮
∂Ω∗

s∗stdr =
∑
k

ψkF̂∗,knkrk, (36)

with:284

F̂∗,k =


0

0.5h̄2nk,x

0.5h̄2nk,y

 (37)

The proof of C-property is trivial and omitted for sake of brevity.285

3.5. Time integration286

A two-stage total variation diminishing Runge-Kutta method [49] is used.287

The values at next time step n + 1 are calculated in two stages. The first288

stage is289

φ̃n+1q̃n+1 = φnqn −∆t
∑
k

ψn
k F̂

n
tot,krknk + ∆tφn(sn + s∗,nns )Ω, (38)

and the final value is then calculated as290

φn+1qn+1 =

0.5

(
φnqn + φ̃n+1q̃n+1 −∆t

∑
k

ψn
k

˜̂
Fn+1

tot,krknk + ∆tφ̃n+1(s̃n+1 + s∗,n+1
ns )Ω

)
.

(39)

Here, F̂tot,k = F̂k − F̂b,k − F̂∗,k. The first term of the vector φn+1qn+1, i.e.291

φn+1 (η̄ − z0)n+1 expresses the volume of water inside the cell. In order to292
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determine the individual value of φn+1 and q̄n+1, a corresponding water depth293

has to be calculated. In literature, tabulated values are used to map water294

volume to a certain water elevation [50]. In this work, the exact values of φn+1
295

and (η̄ − z0)n+1 are calculated from the water volume in an iterative way.296

Once (η̄ − z0)n+1 is calculated, φn+1, qx and qy can be determined. Using297

an iterative solution significantly increases the computational cost. In the298

current model implementation, the evaluation of porosities, i.e. Equations299

16 and 17, turns out to be the most expensive part of the code, taking up to300

15% of the total CPU time. It is important to note that this is not the one-off301

evaluation of porosity, but all evaluations summed up. The reason for the302

high cost is that, due to their dependency on water depth, the porosity values303

have to be evaluated several times for different water depths during one time304

step. Equation 16 is solved at the beginning of the time step in each cell.305

During MUSCL reconstruction Equation 17 is solved at each edge. Then,306

Equation 16 is solved repeatedly during the iterative procedure to determine307

the new water depth and porosity in the next time step. For a two-stage308

Runge-Kutta method all these calculations have to be carried out twice in309

each time step.310

A more efficient, approximate solution for this problem is presented in311

[40]. However, in our opinion the calculation of the water depth should have312

very high accuracy, so the mass conservation is strictly satisfied.313

The presented scheme is of explicit nature and therefore its stability is re-314

stricted by the Courant-Friedrichs-Lewy criterion (CFL), although the theo-315

retical analyses of the stability constraint are very complicated for the present316
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equations. The CFL criteria given in [35] is317

Cr = ψλ∆r
∆t

φΩ
≤ 1, (40)

where λ = |unx + vny| +
√
gh is the largest wavespeed at the cell edge.318

Numerical experiments show that Equation 40 degenerates the time step in319

cases with small porosity such that in the worst case the simulation comes320

to a halt.321

In this work, the CFL number is heuristically calculated as322

Cr =

(
|v|+

√
gh
)

∆t

∆x
. (41)

For the presented cases, Cr < 0.3 gives satisfactory results.323

3.6. Boundary conditions324

Boundary conditions are imposed on the boundary edge of the cell accord-325

ing to the theory of characteristics proposed in [51]. State variables at the326

boundary edge can be computed using Riemann invariants. The porosities327

are mirrored from the cell inside the domain.328

4. Computational examples329

Kim et al. [52] noted three types of errors of the porous shallow water330

model: (1) structural model errors, (2) scale errors and (3) porosity model331

errors. Errors of type 1 refer to the limitations of the mathematical model332

concept of the shallow water equations and are defined by the difference be-333

tween measurement and high-resolution model (HR) results. Errors of type334

2 are associated with the lack of sufficient grid resolution. In [52] it is sug-335

gested to study the difference between HR model results and the HR model336
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results which have been averaged over each porosity model grid cell (CR,337

standing for coarse-resolution). Errors of type 3 are the errors introduced338

by the porosity concept and are defined as the difference between the poros-339

ity model results (AP, standing for anisotropic porosity) and the CR model340

results.341

Following the studies presented in [52], the errors are computed using an342

L1-norm:343

L1 =
1

N

N∑
j=1

|w1,j − w2,j| (42)

Here, N is the number of points compared, w stands for a variable, e.g. h or344

q, w1,j and w2,j are results of two different models and j is the point index.345

The AP model is first calibrated by minimizing the L1-norm in a manual346

calibration process. In a second step the fine calibration is automated using347

the SciPy library [53]. In the following examples, the errors of type 1, 2 and348

3 as well as the differences between HR model and AP model, and AP model349

and measurement data are presented.350

The classical shallow water model used for obtaining the reference results351

is the model presented in [10]. All simulations are run in parallel with 8352

threads of an Intel R© CoreTM i7-2600 CPU (3.40 GHz).353

All triangular meshes are generated using the mesh generator Gmsh [54].354

4.1. Idealized test case: Dam-break flow through artificial street network355

The first test case is a test case which is initially proposed in [29]. The HR356

model is used to generate the reference solution. The aim of this test case is to357

assess the sensitivity of the porosities φ and ψ to the mesh. Thus, different358

meshing strategies for the AP model are compared against each other. A359
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second objective is to test the sensitivity of the model to the proposed drag360

coefficient a · c0
D. For this purpose, the drag coefficient is varied and the361

results are compared.362

4.1.1. Domain description, initial and boundary conditions363

The computational domain is an infinitely long, frictionless street with364

periodical structures as shown in Figure 3. The initial water elevation on the365

left is ηL = 10 m and on the right side ηR = 0.25 m. The discontinuity of366

water elevation located at x = 0, which is the middle of the domain.367

The HR model is two-dimensional and uses triangular cells with a char-368

acteristic length of 1 m. The AP model is one-dimensional with a cell length369

of 40 m.370

4.1.2. Influence of different meshes and areal porosity371

The AP model is expected to be sensitive to the mesh, because the areal372

porosity ψ depends on the position of the cell edge. Two configurations are373

investigated: (1) the cell edge is located at the narrow section of the street374

network (cf. Figure 3 (bottom left)), i.e. ψ = 1/7, (2) the cell edge is located375

in the wider section of the street network (cf. Figure 3 (bottom right)), i.e.376

ψ = 1. The volumetric porosity in both cases is the same and is calculated377

to be φ = 11/14. Thus, the difference in results can be directly related to378

the different areal porosities.379

Comparison of model results at t = 50 s are plotted in Figure 4 (top).380

The AP model with ψ = 1/7 (mesh 1) produces the blockade effects of the381

structure better than the AP model with ψ = 1 (mesh 2). Because both mod-382

els do not resolve the street network explicitly, they can not reproduce the383
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local fluctuations in the water elevation. In both models, the right-traveling384

shock wave as well as the left-traveling rarefaction wave are not captured385

accurately. If the edge is placed at the narrow section of the street network386

(mesh 1), introduces correct amount of resistance to the flow. In upstream387

direction, the water depth is slightly underpredicted. While the agreement388

is not perfect, the AP model results resemble the HR model solution. If the389

edge is placed at the wide section, the model is equivalent to the isotropic390

porosity shallow water model of [27, 28]. Here, the shock and rarefaction391

waves advance too quickly, and the AP model results are completely differ-392

ent from the HR model results.393

The CR model is compared with the AP model with ψ = 1/7 in Figure 4394

(middle left) and with the AP model with ψ = 1 in Figure 4 (middle right).395

The CR model is more diffusive than the HR model. Local water depth396

fluctuations are averaged out. The AP model with ψ = 1/7 shows better397

agreement with the CR model results than the AP model with ψ = 1.398

This shows that the AP model results are very sensitive to the areal399

porosity ψ and therefore are very sensitive to the mesh. Results indicate400

that the mesh should be constructed in such way that the cell edges are401

located on the blocking structures to capture their influence. If a structure402

is located completely inside a cell, its influence on the flow is only modeled403

by the volumetric porosity which can not model its obstruction to the flow404

sufficiently.405

The right traveling shock wave in the AP model advances too slow. The406

reason for this might be that the local acceleration at narrow sections can not407

be taken into account by the AP model, which leads to an underestimation408
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of the mass and momentum fluxes.409

4.1.3. Influence of drag coefficient410

The value a · c0
D is now varied to study its influence on the AP model.411

Beginning from a · c0
D = 0, the value is increased with a step size of 0.25 m−1

412

until a · c0
D = 10 m−1. Figure 4 (bottom left) shows the AP model with413

ψ = 1/7, while Figure 4 (bottom right) shows the AP model results with414

ψ = 1. In both cases, increasing the drag coefficient improves the agreement415

until a critical value a · c0
D > 1 is exceeded. After that, the drag coefficient416

does not change the result anymore. For the AP model with ψ = 1/7, the417

value a · c0
D = 0.25 gives the best agreement. For the AP model with ψ = 1418

the agreement improves for a · c0
D > 1 but stays overall poor.419

Figure 5 compares the sensitivity of both models to the drag coefficient.420

For this purpose, ∆ is calculated as421

∆i = L1

(
AP ((ac0

D)i), AP ((ac0
D)i+1)

)
(43)

where (ac0
D)0 = 0, (ac0

D)1 = 0.25, (ac0
D)2 = 0.5, and so on, and AP (x) is422

the result of the AP model for the drag coefficient x. For a meaningful423

comparison, Figure 5 shows a normalized value obtained by dividing each ∆i424

by the maximum ∆i, i.e.425

∆n,i =
∆i

max∆i

. (44)

Figure 5 shows, that the AP model with ψ = 1/7 is less sensitive to the426

drag coefficient than the AP model with ψ = 1. This implies that the areal427

porosity effect dominates the flow such that the influence of the drag force428

on the momentum is less significant. For values ac0
D > 1, the influence of429

the increasing drag coefficient is negligible. This is because the numerical430
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scheme limits the drag force source term in such way that the flow direction431

is not reversed.432

If the areal porosities are large, the numerical flux is not limited as strictly433

and blocking effects of the obstructions are not reproduced as well as for434

smaller areal porosities. In this case, increasing the drag coefficient has larger435

influence on model results. The drag force depends only on the volumetric436

porosity, which is the same for both cases. Increasing the drag coefficient has437

a similar effect as increasing the friction coefficient and the results are similar438

to the findings by Liang et al. [6] who capture the effect of buildings to some439

extent using an increased roughness coefficient. If the areal porosities are440

small, the flow is blocked more severely at the edges and the flow velocity441

is not as high as in the unobstructed flow. Therefore, changing the value of442

a · c0
D does not effect the results as much.443

4.2. Dam-break flow over a triangular bottom sill444

Herein, the depth-dependent porosity is demonstrated by replicating a445

laboratory experiment conducted at the Université catholique de Louvain,446

Belgium, [55].447

4.2.1. Domain description, initial and boundary conditions448

The experiment was carried out in a 5.6 m long and 0.5 m width channel.449

The peak of the triangular bottom sill is located at x = 4.45 m and is 0.065 m450

high. The sill is symmetrical and has a base length of 0.9 m. The initial451

conditions and the geometry is given in Figure 6. An initial water elevation452

of ηres = 0.111 m is ponding in the reservoir before the gate is opened. The453

gate is located at x = 2.39 m. On the downstream side of the sill, water is at454
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rest with an initial water elevation of η = 0.02 m.455

The HR model uses square shaped cells with a side length of 0.01 m. It is456

noted that this test case is essentially one-dimensional. However, the domain457

was discretized in two dimensions, resulting in a mesh with 28000 cells. The458

AP model uses square shaped cells with side length of 0.4 m, which gives459

a mesh with 56 cells. The bottom of the AP model is completely flat and460

the sill is accounted for only by the porosity terms. Figure 7 (bottom right)461

shows a sideview of the AP model mesh with the HR model bed elevation462

plotted for reference.463

Measured water depth over time is available at 3 measurement gauges,464

located at x = 5.575 m (G1), x = 4.925 m (G2) and x = 3.935 m (G3). The465

locations of the gauges are given in Figure 6.466

The roughness of the channel is quantified in [55] with a Manning’s coef-467

ficient of n = 0.011 sm−1/3. This value is used both in the HR and the AP468

model.469

4.2.2. Model calibration and run time470

The AP model is calibrated by changing the value a · c0
D in Equation 35.471

Calibration is carried out manually using the CR model as reference. Good472

agreement has been achieved with a ·c0
D = 5 m−1. The HR model takes about473

4000 s to finish, while the AP model takes only 3.5 s. This corresponds to a474

speedup of about 1140.475

4.2.3. Error analysis476

Structural model errors. This test case features an obstruction that is un-477

submerged at the beginning of the simulation, completely submerged by the478
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dam-break wave in the middle of the simulation, partially submerged towards479

the end of the simulation. In Figure 7, snapshots of the HR model results480

at various times are shown. The HR model shows excellent agreement with481

the experimental results, as seen in Figure 8 (left), especially at gauge 2482

and gauge 3. The larger discrepancy at gauge 1 might be explained by the483

splashing of water in the experiment which can not be reproduced by the484

shallow water equations.485

Scale errors. Scale errors are calculated by mapping the HR model results to486

a coarser grid, which in this study is the grid of the AP model. The value at487

a low resolution cell is determined by arithmetic averaging the values over all488

the high-resolution cells lying inside the low resolution cell. The CR model489

results show very good agreement with the HR model results, as seen in490

Figure 8 (right), where the comparison at the three gauges is shown. The491

dotted lines show the maximum and minimum water depths sampled inside492

the coarse grid. It can be seen that at gauge 1 and gauge 3, the difference493

between the minimum and the maximum water depth is low. At gauge494

2, which is located just behind the sill, the deviation is high. Owing to the495

reflected waves, the flow at gauge 2 is more complex than at the other gauges.496

Consequently, here the agreement between CR model and HR model is not497

as close as at the other gauges. It is observed that the CR model introduces498

some diffusion to the results and the curves are smoother than the HR model499

results.500

Porosity model errors. The porosity model errors are assessed by comparing501

AP model results to CR model results, as shown in Figure 9 (left). The AP502

model shows good agreement with the CR model at all gauges. At gauge503
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1, which is located furthest away from the gate the predicted wave arrives a504

bit late. However, after 5 s the arrival time of the second peak is captured505

despite the slightly undershot peak water level. The third peak is captured506

accurately. After that, the AP model does not predict as much fluctuation507

as the CR model but the average water elevation does not differ much. The508

agreement at gauge 2 and gauge 3 is much better. Especially at gauge 3 all509

waves are captured with good agreement. At gauge 2, the rise of the curve510

starts correctly but the AP model overshoots the CR model at about 8 s.511

A comparison between AP model result with experimental data is shown in512

Figure 9 (right). The AP model reproduces the experimental data well.513

Summary. The L1-errors are listed in Table 1 and 2. In both tables, the514

errors are calculated as the arithmetic mean of the errors at the 3 gauges.515

Table 1 shows a summary of the cell sizes and L1-errors for HR model, CR516

model and AP model. Here, the errors are calculated using the experimental517

data as a reference. Overall, the errors are two orders of magnitude smaller518

than the initial water elevation in the reservoir (ηres = 0.111 m). The L1-519

errors for structural, scale and porosity model errors are summarised in Table520

2. All errors are in the same order of magnitude, which is one order of521

magnitude smaller than the maximum measured water depth. The porosity522

model (E3) error is the largest, followed by the structural model error (E1).523

The scale error (E2) is the smallest error. It is concluded that in this example,524

the error introduced by the coarse grid is the smallest. The mathematical525

model limitation of the shallow water equations introduces larger errors than526

the grid coarsening, but the largest error is introduced by not resolving the527

sill explicitly.528
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4.3. Dam-break flow through an idealized city529

In this computational example, results of a dam-break experiment con-530

ducted at the Université catholique de Louvain, Belgium, [56] are numerically531

reproduced.532

4.3.1. Domain description, initial and boundary conditions533

The domain is a 35.8 m long and 3.6 m wide channel with horizontal534

bed. The idealized city consists of 5 × 5 buildings, each of them being a535

square block with a side length of 0.30 m. The distance between the blocks536

is 0.10 m. The center of the building block is placed 5.95 m away from the537

gate and rotated 22.5◦ in counter-clockwise direction around its center. The538

dam-break is constructed by opening a 1 m gate, which initially seperates539

the reservoir, where water is ponding at 0.40 m, from the rest of the channel,540

where a very thin layer of 0.011 m water is reported. For further details on541

the experimental setup and employed measurement techniques, the reader is542

referred to [56]. The domain is illustrated in Figure 10 (top left), where the543

reservoir is coloured in grey.544

The computational domain only includes the reservoir and the first 16 m545

of the channel. For the duration of the simulations, t = 15.5 s, the shock546

wave does not travel further than this length. The downstream boundary is547

an open boundary and all other boundaries are closed boundaries.548

The HR model uses a triangular mesh with variable cell sizes: the reservoir549

is discretized with cells with a characteristic length of lc,1 = 0.3 m. The area550

inside the channel which is sufficiently far away from the building blocks is551

discretized with a characteristic length of lc,2 = 0.1 m. The space between552

the buildings is discretized with a characteristic length of lc,3 = 0.01 m. The553
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buildings are represented as holes in the mesh, which is a method commonly554

used in urban flood modeling [57]. Hence, the gap between two buildings555

is discretized with about 10 cells and the total cell number is 96339. The556

AP model uses square-shaped cells with side length 0.25 m, whereby the557

volumetric porosity is calculated using 125 subgrid cells, resulting in a mesh558

with 1272 cells. The HR mesh is compared to the AP model mesh in Figure559

10 (bottom). Both meshes in the region of the building block is shown in560

Figure 10 (bottom left), while in Figure 10 (bottom right) a close-up view is561

shown. A building is in general contained in 4 AP model cells. The buildings562

do not align with the cell edges. As discussed in Section 4.1, the blocking563

effect of buildings is not captured accurately if the building is positioned564

inside the cell instead of at the edge, but this is inevitable for some fron-row565

houses (cf. Figure 10 (bottom)).566

Experimental data are available at 87 measurement gauges distributed567

inside the channel [56]. The positions of these gauges are given in Figure 10568

(top right). In the discussion, results are plotted for 8 gauges, namely gauges569

3, 13, 25, 35, 40, 59, 67 and 85.570

The roughness of the channel has been estimated in [56] with a Manning’s571

coefficient of n = 0.01 sm1/3. This value is used for both the HR and the AP572

model.573

4.3.2. Model calibration and run time574

The AP model is calibrated with the value a · c0
D in the drag law, given575

in Equation 35. Calibration is carried out with regard to the CR model576

results using Brent’s algorithm for minimisation [58]. Brent’s search returns577

a · c0
D = 1.9 m−1 with a corresponding L1-error of 0.025 m. The HR model578
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simulation takes about 3000 s to finish. The AP model requires about 4 s.579

Consequently, the speedup is calculated as 750.580

4.3.3. Error analysis581

Structural model errors. The HR model makes overall an acceptable predic-582

tion of the water depth at the evaluated gauges. In Figure 11, the water583

depth calculated by the HR model at the aforementioned gauges is plotted584

together with the measured water depth. The arrival time of the wave is585

predicted correctly at all gauges, although the HR model predicts a slightly586

later arrival. Larger deviations between the results occur at the later stages587

of the simulation, where the HR model results undershoot the experimental588

data. For this test case, Soares-Frazão and Zech [56] report lower computed589

water depths as well. The deviations might partly be caused by the fric-590

tionless wall-boundaries imposed at the buildings and the wave reflections591

that can not be modeled by the shallow water equations. The model over-592

estimates the the flow velocities, leading to overall lower water depths. As593

time passes, this effect becomes more significant. Gauge 67 is located in594

front of the houses. Overall, the characteristics of the experimental data set595

are captured by the HR model, i.e. the small peak at around t = 2 s and596

the rise at around t = 4 s, however the first peak is delayed and the second597

rise at t = 4 s is too early. In general, the HR model appears to overpredict598

the steepness of the water level variations. This is especially distinct at the599

sharp rise of the HR model curve at t = 4 s in comparison to the smoother600

rise of the experimental curve. As in [56], this indicates that the entrance601

contraction can not be reproduced by the mathematical model. This is also602

indicated by the discrepancies at gauge 3, which is located at the entrance603
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of the building block. The rise of the water level is again delayed. The drop604

in water depth at around t = 6 s is not observed in the experiment. Gauge605

13, located slightly behind gauge 3, shows good agreement. Here, the front606

of the wave is captured accurately in time. The agreement at gauges 25, 35607

and 59, which are all located between the buildings, is very well.608

Gauge 40, which is also located between the buildings, shows worse agree-609

ment than the aforementioned gauges. As at gauge 3, the general shape of610

the experimental data is reproduced. Finally, at gauge 85, which is outside611

of the building block, good agreement is achieved.612

Overall, this is a challenging test case for the mathematical model. The613

angled position of the buildings that are not aligned with the flow direction614

coupled with the hydraulic jump at the entrance of the building block in-615

creases the difficulty. In addition, wave reflections and turbulent eddies are616

not accounted for in the model. Consequently, the structural model error is617

relatively high.618

Scale errors. In Figure 12, the averaged water depth is plotted against the619

HR model water depth at the four gauges. The measured water depth is620

omitted to avoid cluttering the figure. Maximum and minimum values of the621

high-resolution cells lying inside the low-resolution cell are plotted as well.622

Overall, the averaging process smooths out the HR model results. Local623

fluctuations are not captured by the CR model. It is noted that a large624

difference between the minimum and the maximum in a coarse cell indicates625

complex flows. As expected, the location of the gauge can be related to the626

complexity of the flow. Gauges 67 and 85 are located outside of the building627

block and the minimum and maximum of the values at these gauges do not628
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differ much. Conversely for the other gauges located between the buildings,629

the local fluctuation is high. In general, the difference between the minimum630

and maximum gives a good indication for the difference between HR and CR631

model. If the flow in a coarse cell is complex, there exist high differences632

between minimum and maximum water levels inside the cell. This complex633

flow can not be resolved on the scale of the CR model, thus it introduces634

an error due to scale to the CR model result. Consequently, the difference635

between HR and CR model is high at, e.g. Gauge 3, positioned at the front636

of the building block where the flow is complex, and at Gauge 40, located at637

a crossroad. In contrast, if the flow inside a coarse cell is relatively smooth,638

the loss of information due to low resolution is not that severe. This is seen,639

e.g. at Gauge 85, located outside of the building block.640

Porosity model errors. The AP model shows acceptable agreement with the641

CR model, although some gauges observe less good agreement, e.g. gauge 85642

the agreement is poor. In general, the results of the AP model are smoother643

and more “smeared” than the CR model results. In Figure 13, AP and CR644

model results are plotted for eight gauges. The AP model water depth at645

gauge 3 shows similarities to the maximum value at this gauge. Gauges 13,646

25 and 67 show good agreement. At gauge 35, the shape of the curve is647

reproduced but the AP model underestimates the water depth. Gauge 85,648

which is located behind the building block, shows the worst agreement among649

the eight presented gauges. The AP model is unable to reproduce the CR650

model result, with underestimated peak water level and delayed arrival time.651

Overall, the general properties of the AP model results, i.e. the lack of local652

and spatial fluctutations, are consistent with the findings in [52].653
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Summary. An overview of the results of this computational study is given654

in Table 3 and 4. The L1-errors in Table 3 are calculated by taking the655

measured data by averaging the L1-errors of all 87 gauges. Moreover, the656

AP model results are plotted against the measurement data in Figure 14.657

The errors are as expected: the HR model has the lowest error, the CR658

model comes second and the AP model shows the largest error. However,659

the errors have the same order of magnitude and are one order of magnitude660

smaller than the initial water depth in the reservoir (h0 = 0.4 m). Table 4661

shows the structural, scale and porosity errors E1, E2 and E3, respectively.662

The values are again averaged over 87 gauges. In this example, the error due663

to coarser cells is smaller than the structural and porosity errors. Indeed,664

the CR model results show good agreement with the HR model (cf. Figure665

12), while the difference between CR model and AP model is larger.666

4.4. Rainfall-runoff in an idealized urban catchment667

A series of experiments regarding pluvial flooding in urban catchments668

were carried out at the Universidad de A Coruna, Spain [5]. One of these669

experiments is studied in this computational example.670

4.4.1. Domain description, initial and boundary conditions671

Constant rainfall with an intensity of i = 300 mm/h is applied for 20 s672

to a 2.5 m long and 2 m wide rectangular inclined domain with a slope of673

0.05. Inside of the domain, a simplified urban district is built using 0.30 m×674

0.20 m wooden blocks as houses. The configuration of the houses is plotted675

in Figure 15 (top). The domain is initially dry. Further details regarding the676

experimental setup and more building configurations can be found in [5]. In677
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the numerical models, the outlet of the domain is an open boundary and all678

other boundaries are closed. The simulation runs for 150 s.679

The HR model discretises the domain with a triangular mesh with varying680

cell size, starting at lc,1 = 0.05 m at the boundary of the domain to lc,2 =681

0.01 m between the buildings, which are again represented as holes in the682

mesh. The resulting mesh has 62058 cells. The AP model uses square shaped683

cells with a side length of 0.125 m, which results in a mesh with 320 cells.684

The two meshes are compared in Figure 15. The whole domain is plotted in685

Figure 15 (middle) with the houses marked out as reference and in Figure686

15 (bottom) the region between houses. One building can be contained in687

approximately 6 AP model cells. Again, the alignment of the buildings does688

not match the AP model mesh cells.689

In contrast to the previous examples, no measurement data inside the690

domain is available, Cea et al. [5] measured the total discharge at the outlet691

of the domain.692

4.4.2. Model calibration and run time693

The roughness of the domain is reported in [5] in form of a Manning’s694

coefficient of 0.016 sm−1/3. The results of the HR model agree well with the695

experimental data, thus no further calibration is required. The HR simula-696

tion takes about 5340 s. The AP model uses the same roughness coefficient697

(0.016 sm−1/3) and a drag force with a·c0
D = 0.5 m−1 (determined with Brent’s698

method). In each cell, 400 subgrid-cells are used to calculate the porosity.699

The AP model simulation runs for about 43 s, which is a speedup of about700

124. The lower speedup in comparison to the first test case is because the701

stability criterion has to be set to Cr = 0.1 in this example. The numerical702
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simulation of rainfall is prone to instabilities because of small water depths703

and the presence of the mass source [59].704

4.4.3. Error analysis705

Structural model errors. The HR model shows good agreement with the ex-706

perimental data. The discharge at the outlet of the domain as calculated by707

the HR model is plotted against the measured discharge in Figure 16 (top708

left). In the first 10 s of the simulation, the model discharge overshoots the709

measured discharge. This has been also observed in [5], and is most likely710

because at the beginning of the experiment the shear stress on the thin water711

film in the domain is holding the water back. This can not be reproduced by712

the shallow water model. After the first 10 s, both hydrographs show very713

good agreement.714

Scale errors. The CR model agrees with the HR model, yet the agreement715

is not as good as in the first test case, especially at the beginning of the716

simulation. In Figure 16 (top right), the maximum and minimum values717

of the subgrid-cells are also plotted. It is seen that the peak of the curve of718

maximum values is about 3 times larger than the peak of the CR model while719

the curve of minimum values is close to zero. Generally, it can be concluded720

that the scale error underestimates the retention effect of the domain.721

Porosity model errors. The AP model results are plotted against the CR722

model results in Figure 16 (bottom left) and against the experimental results723

in Figure 16 (bottom right). The AP model results show a similar evolution724

as the CR model results. The major difference between both curves is at725

the beginning of the simulation. The AP model undershoots the CR model726
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results. Yet, as can be seen in Figure 16 (bottom right), it better matches the727

measured discharge at the end of the domain. Figure 17 shows a sensitivity728

analysis with regard to the subgrid-cell number, from which it is concluded729

that the model is sensitive to the subgrid-cell number. Apparently, a grid730

convergence test should be carried out for the subgrid-cell number for each731

simulation. The subgrid-cell number required to reach subgrid convergence732

increases if the subgrid-scale obstacles are not aligned with the edges. Yet,733

even with a small number of subgrid-cells, reasonable results can be obtained734

(cf. Figure 17).735

Model validation. In order to show that the calibrated model is valid for dif-736

ferent hydraulic conditions, the rainfall intensity is decreased to i = 180 mm/h737

and its duration is increased to 40 s. The same mesh and model parameters738

are used.739

Results are plotted in Figure 18. The HR model results are compared740

with the experimental data in Figure 18 (top left). The hydrograph of the741

HR model is very similar to the previous simulation with i = 300mm/h,742

as it overshoots the experimental data in the beginning but shows good743

agreement during the later stage of the simulation. Similarly, the CR model744

results overshoot the HR model at the beginning and undershoot it at later745

times (Figure 18 (top right). The AP model results, plotted in Figure 18746

(bottom left) shows good agreement with the CR model, only the first 20 s747

show significant discrepancy. In Figure 18 (bottom right), the AP model is748

compared to the experimental data. The agreement between the AP model749

and the experimental data is good. Comparing Figure 18 to Figure 16 shows750

that the AP model behaviour is consistent for varying hydraulic conditions.751
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The errors, summarised in Table 7 and Table 8, support that the model752

results are consistent with the first simulation. The structural error is the753

smallest, the second smallest error is the scale error and the largest error is754

the porosity error (cf. Table 8). However, if model results are compared to755

experimental results (Table 7), the AP model error is less than the CR model756

error.757

Summary. A summary is listed in Table 5. The total rainfall discharge is cal-758

culated by multiplying rainfall intensity with the area of the domain, which759

gives Qrain = 4.2 · 10−4 m3/s. The HR model error is two orders of magni-760

tude smaller than Qrain, but the CR and AP model errors are only one order761

of magnitude smaller. The errors of type 1, 2 and 3 are given in Table 6.762

The structural error (E1) is about two orders of magnitude smaller than the763

experimental results and both scale (E2) and porosity (E3) errors are about764

one order of magnitude smaller than the experimental results. Although E3765

is greater than E2, in this test case the scale error seems to be the most766

significant error and the porous model somehow negates the scale errors.767

Simulation runs with larger cells, e.g. ∆x = 0.25 m, which are not shown768

here, fail to calculate good results. The main reason is that blockage effects,769

which have a big influence on the flow field, are underestimated for too large770

cells. If the coarse cell is too large such that the building lies completely771

inside the cell, it is not taken into account for the edge porosity and thus, its772

blockage effects can not be reproduced. This model limitation might give a773

good upper bound for the size of the coarse cell: it should be possible to cap-774

ture the significant blockage effects via the edge porosities. If the coarse cell775

length is chosen too large, the subgrid obstacles can not occupy a significant776
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portion of the edge and their influence on the flow will be underestimated.777

The authors suggest to use an edge length of about the obstacle size if the778

obstacles are not arranged densely. For dense building arrays, such as the779

first example, larger cells might be chosen. It is noted that in [36], a method780

to represent this type of building blockage effects is shown which does not781

depend on edge porosities. This method requires additional pre-processing782

and is not used in this work.783

5. Conclusions784

A two-dimensional shallow water model with depth-dependent anisotropic785

porosity is tested in four test cases. The main novelty of the proposed model786

is the calculation of the porosities that depends on the water depth.787

The formulation of the porosities suggests that the model is sensitive to788

the computational mesh. The model is tested in a theoretical test case to789

assess the sensitivity of the model to different meshes and the drag coefficient790

a · c0
D. The computational mesh determines the values of the volumetric791

and the areal porosities. The areal porosities are the terms that introduce792

anisotropy to the model. It is found that the mesh has to be constructed793

such that the main obstructions are located at the cell edges. Otherwise,794

their influence on the flow diminishes significantly. The sensitivity of the drag795

coefficient is related to the areal porosities. If the flow is mainly influenced by796

obstructions that block and divert the flow, the head loss due to drag is not797

as significant. This means that in cases where the areal porosities affect the798

flow significantly, the model is less sensitive to the drag coefficient. However,799

if the obstructions are located mainly inside the cells, the drag coefficient800
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becomes a more influential parameter. In all cases, the model needs to be801

calibrated to determine the value a · c0
D.802

In three case-studies, where measured data are available, three types of803

errors are presented in L1-norm, as shown in [52]. In all cases, the porosity804

model error has the same order of magnitude as the scale error. The results805

are in agreement with the case study conducted in [52]. Good agreement has806

been achieved between the porosity model and the reference solution.807

The model was calibrated using the drag coefficient a · c0
D. Based on the808

research in [35, 9] and the current results, a value up to 10 m−1 seems rea-809

sonable. After this value, the drag coefficient does not change the simulation810

results anymore. In the investigated cases, especially the range between 0811

and 1 m−1 is found to alter the results significantly. It is noted that this812

claim is based solely on the authors’ experience.813

Using the porosity model concept allows to run simulations on signifi-814

cantly coarser grids. The speedup in all investigated cases is significant, the815

anisotropic porosity model is about three orders of magnitude faster than816

the high-resolution model. The main reason behind the speedup is of course817

the reduced cell number.818

Limitations of the presented porosity model are its mesh dependency,819

which means that different results may be obtained for the same case if dif-820

ferent meshes are used and the ambiguity of the drag coefficient approxima-821

tion. Further systematic research that addresses these issues would certainly822

improve these type of models’ accuracy and reliability.823
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Université de Liège, Belgium, for the insightful conversation about stability829

constraints of the water depth-dependent anisotropic porosity model. Fi-830

nally, gratitude is expressed to the three anonymous reviewers who helped831

to significantly improve the article.832

References833

[1] I. Özgen, S. Seemann, A. L. Candeias, H. Koch, F. Simons, R. Hinkel-834

mann, Simulation of hydraulic interaction between Icó-Mandantes bay835
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Figure 1: Definition of phase function i, water elevation η (dashed), bottom elevation zb

(black) and zero datum z0 in a vertical section through a control volume

Figure 2: Side view of two neighbouring cells for the choice of the water elevation to

calculate ψ, the cell under consideration is on the left side, water elevation is dashed line,

definitions of ∆z, n, η̂L and η̂R
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Figure 3: Idealized test case: Dam-break flow through periodic structures: Top view on

domain (not correctly scaled) [29] (top), meshing strategies (bottom)
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Figure 4: Idealized test case: Dam-break flow through periodic structures: Results for

a·c0D = 0 at t = 50 s in the whole domain (top left), detail of the results for x = [−400, 400]

(top right), CR model results for water depth compared with HR model results and AP

model with ψ = 1/7 (middle left), and AP model with ψ = 1 (middle right), CR model

results for water depth compared with AP model results for different values of c = a · c0D
at t = 50 s for ψ = 1/7 (bottom left), for ψ = 1 (bottom right)
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Figure 5: Idealized test case: Dam-break flow through periodic structures: Sensitivity of

the AP model results for different values of a · c0D at t = 50 s with ∆i = L1[AP (ac0D)i −

AP (ac0D)i+1]

Figure 6: Dam-break over triangular bottom sill: Side view on domain (not correctly

scaled) [55]
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Figure 7: Dam-break over triangular bottom sill: Snapshots at different time steps of HR

model results for water elevation and AP model mesh plotted over HR model bed elevation

(bottom right)

55



Figure 8: Dam-break over triangular bottom sill: HR model results for water depth com-

pared with experimental data [55] (left), CR model results for water depth compared with

HR model results, dotted lines denote the minimum and maximum values inside the coarse

cell (right)
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Figure 9: Dam-break over triangular bottom sill: AP model results for water depth com-

pared with CR model results (left), AP model results for water depth compared with

experimental data [55] (right)
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Figure 10: Dam-break through idealized city: Top view on domain (not correctly scaled)

[56] (top left), position of all 87 gauges (black), results are plotted for 8 gauges (indicated

by their numbers), the boundary of the building block is plotted for reference (top right),

comparison of HR model mesh (triangular) and CR and AP model mesh (square), meshing

of the building block (bottom left), mesh detail between houses (bottom right)
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Figure 11: Dam-break through idealized city: HR model results for water depth compared

with experimental data of [56]
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Figure 12: Dam-break through idealized city: CR model results for water depth compared

with HR model results, dotted lines denote the minimum and maximum values inside the

coarse cell
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Figure 13: Dam-break through idealized city: AP model results for water depth compared

with CR model results
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Figure 14: Dam-break through idealized city: AP model results for water depth compared

with experimental data of [56]
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Figure 15: Rainfall-runoff in an idealized urban catchment: Bottom elevation in the do-

main and configuration of houses (top), CR and AP model mesh of the whole domain

(middle), comparison of HR model mesh (triangular) and CR and AP model mesh (square)

between houses (bottom)
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Figure 16: Rainfall-runoff in an idealized urban catchment: HR model results for discharge

at the outlet of the domain compared with experimental data [5] (top left), CR model

results for discharge at the outlet compared with HR model results, dotted lines denote

the minimum and maximum values inside the coarse cell (top right), AP model results for

discharge at the outlet compared with CR model results (bottom left), AP model results

for discharge at the outlet compared with experimental data [5] (bottom right)

Figure 17: Rainfall-runoff in an idealized urban catchment: Sensitivity of the subgrid-cell

number on the AP model results
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Figure 18: Rainfall-runoff in an idealized urban catchment: Model validation with rainfall

intensity i = 180 mm/h, HR model results for discharge at the outlet of the domain

compared with experimental data [5] (top left), CR model results for discharge at the

outlet compared with HR model results, dotted lines denote the minimum and maximum

values inside the coarse cell (top right), AP model results for discharge at the outlet

compared with CR model results (bottom left), AP model results for discharge at the

outlet compared with experimental data [5] (bottom right)
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Model Mesh type Cell size (m) Cell nr. Time (s) L1 (m)

HR Square 0.01 28000 4000 0.0024

CR Square 0.01 28000 4000 0.0031

AP Square 0.4 56 3.5 0.0035

Table 1: Dam-break over triangular bottom sill: Summary of shallow water model for-

mulations and corresponding meshes (HR: High-resolution, CR: averaged HR model, AP:

anisotropic porosity); L1-norm is calculated with regard to the experimental results

Type L1 (m)

E1 0.0024

E2 0.0016

E3 0.0038

Table 2: Dam-break over triangular sill: Model error (E1), scale error (E2) and porosity

error (E3)
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Model Mesh type Cell size (m) Cell nr. Time (s) L1 (m)

HR Triangular 0.01 - 0.3 95975 3000 0.020

CR Triangular 0.01 - 0.3 95975 3000 0.021

AP Square 0.25 1272 4 0.026

Table 3: Dam-break through idealized city: Summary of shallow water model formulations

and corresponding meshes (HR: High-resolution, CR: averaged HR model, AP: anisotropic

porosity); L1-norm is calculated with regard to the experimental results

Type L1 (m)

E1 0.020

E2 0.018

E3 0.025

Table 4: Dam-break through idealized city: Model error (E1), scale error (E2) and porosity

error (E3)
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Model Mesh type Cell size (m) Cell nr. Time (s) L1 (m3/s)

HR Triangular 0.01 - 0.05 62058 5340 6.0 · 10−6

CR Triangular 0.01 - 0.05 62058 5340 2.4 · 10−5

AP Square 0.125 320 43 2.0 · 10−5

Table 5: Rainfall-runoff in an idealized urban catchment: Summary of shallow water model

formulations and corresponding meshes (HR: High-resolution, CR: averaged HR model,

AP: anisotropic porosity); L1-norm is calculated with regard to the experimental results

Type L1 (m3/s)

E1 6.0 · 10−6

E2 2.2 · 10−5

E3 2.4 · 10−5

Table 6: Rainfall-runoff in an idealized urban catchment: Model error (E1), scale error

(E2) and porosity error (E3)

Model Mesh type Cell size (m) Cell nr. Time (s) L1 (m3/s)

HR Triangular 0.01 - 0.05 62058 5340 1.3 · 10−5

CR Triangular 0.01 - 0.05 62058 5340 2.6 · 10−5

AP Square 0.125 320 43 1.7 · 10−5

Table 7: Rainfall-runoff in an idealized urban catchment: Validation: Summary of shallow

water model formulations and corresponding meshes (HR: High-resolution, CR: averaged

HR model, AP: anisotropic porosity); L1-norm is calculated with regard to the experi-

mental results
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Type L1 (m3/s)

E1 1.3 · 10−5

E2 2.0 · 10−5

E3 5.5 · 10−5

Table 8: Rainfall-runoff in an idealized urban catchment: Validation: Model error (E1),

scale error (E2) and porosity error (E3)
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