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Abstract

This paper considers inference in weakly identified moment condition models when

additional partially identifying moment inequality constraints are available. The paper

details the limiting distribution of the estimation criterion function exploiting both forms

of moment restrictions and consequently proposes a confidence set estimator for the true

parameter. The volume of the confidence set is correspondingly reduced demonstrating

the benefit of exploiting moment inequality constraints in weakly identified models.

1 Introduction

This paper considers the estimation of a dθ-vector of parameters θ0 which is the solution to the set

of moment equality restrictions

E [g(Z, θ)] = 0 at θ = θ0 (1.1)

where g(z, θ) is a dg-vector of known functions of the observation vector z and θ ∈ Θ with Θ the

parameter space. Estimators based on estimating equations of the form (1.1) are referred to as

Z-estimators (e.g. ?) and have found application in numerous fields, e.g., survival modelling with

incomplete covariate data (?) and causal inference with instrumental variables (??).

A challenging problem arises when the identifying strength of the moment conditions (1.1) for

θ0 is weak, e.g., when instrumental variables used to construct the moment indicator g(Z, θ) are

only weakly correlated with endogenous covariates. Existing inferential procedures robust to weak

identification, see inter alia ?, ?, ?, ?, share the shortcoming that confidence set estimators for θ0

are frequently too large to be of practical use. In many applications where weak identification is a

problem, however, moment inequality conditions of the form

E [m(Z, θ)] ≥ 0 at θ = θ0 (1.2)
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are often available, where m(z, θ) is a dm-vector of functions known up to θ. This is especially so

when instruments are used to overcome estimator bias induced by confounding variables, that is,

when latent variables causally affect both response and covariates.

Consider the effect of smoking on health. It has been postulated (?) that smoking is related to

health through the unobservable confounding variable, risk aversion. Thus cigarette price, being

weakly correlated with cigarette consumption and uncorrelated with risk aversion, is a possible

but weak instrument. Additional moment inequality information is available here since cigarette

consumption and unobserved risk aversion are known to be negatively correlated. A similar scenario

arises in the returns to education example of ?, where quarter of birth is proposed as a (weak)

instrument for years of schooling, and schooling and unobserved ability are known to be positively

correlated, giving rise to an additional moment inequality condition.

From a technical point of view, progress is still possible in this weak instrument setting provided

the strength of the correlation between the instrument and the endogenous regressor is not smaller

than µ/
√
n for some µ 6= 0 where n is the sample size. For this reason, data are viewed as realisations

of the triangular array {Zin, (i = 1, . . . , n), (n = 1, 2, . . .)}, and any row of the triangular array is

endowed with the corresponding expectation operator En, cf. Example 1 below.

Although moment inequalities taken in isolation typically only have partial or set identifying

power, taken together both forms of information can result in a smaller confidence set estimator

for θ0 than that based solely on the moment equality constraints. See ? and more recently ? and

? for discussions of partial identification. The concern, therefore, of this paper is the construction

of a confidence set estimator for θ0 in weakly identified models defined by (1.1) in the presence of

additional partially identifying moment inequality (1.2) constraints.

To illustrate the similarities and differences between this paper and the existing literature

consider the following example.

Example 1.

Yi = θ0Xi + ε1i, Xi = γ0,nWi + ϑ0,nε1i + ε2i, i = 1, . . . , n,

where ε1i, ε2i and Wi are mutually uncorrelated. The parameter θ0 is weakly identified if γ0,n =

En[XiWi]/En[W 2
i ] = µ/n1/2 for µ 6= 0, and ϑ0,n = En[Xiε1i]/En[ε2

1i] = ϑ0 6= 0, and partially

identified if γ0,n = 0 and ϑ0,n = ϑ0 ≥ 0. ? considers both non-weak moment equalities and

moment inequalities, i.e., γ0,n = γ0 6= 0 and ϑ0,n = ϑ0 ≥ 0, while ? considers γ0,n = γ0 6= 0

and ϑ0,n = c/n1/2 ≥ 0, where c is a constant. This paper addresses the case γ0,n = µ/n1/2 and

ϑ0,n = ϑ0 ≥ 0.

To aid clarity, the paper focuses on the special case in which no nuisance parameters are

present. For recent contributions that discuss inference in partially identified models with nuisance

parameters, see ? and ?.

The rest of the paper is organised as follows. Section 2 defines the confidence set estimator for

θ0 and establishes its properties. Section 3 discusses its implementation with Section 4 providing

an examination of the finite sample performance of the confidence set estimator.
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2 Inferential procedure

Given the sample of observations {Zin, (i = 1, . . . , n)} the interest of the paper is a nominal α-

level confidence set estimator {Ĉn(α)} for θ0 based on the continuous updating (CUE) generalized

method of moments (GMM) estimation criterion (?); cf. ?.

Let ĝn(θ) = n−1
∑n

i=1 gin(θ) and m̂n(θ) = n−1
∑n

i=1min(θ) where gin(θ) = g(Zin, θ) and

min(θ) = m(Zin, θ), (i = 1, . . . , n). The CUE GMM criterion is defined as

Q̂n(θ, t) =

(
ĝn(θ)

m̂n(θ)− t

)′
V̂ n(θ)−1

(
ĝn(θ)

m̂n(θ)− t

)
,

where

V̂ n(θ) = n−1
n∑
i=1

(
gin(θ)− ĝn(θ)

min(θ)− m̂n(θ)

)(
(gin(θ)− ĝn(θ))′, (min(θ)− m̂n(θ))′

)
,

and t ∈ Rdm+ is a dm-vector of slackness parameters reflecting the inequality moment constraints

(1.2). Minimisation with respect to t yields the profile CUE GMM criterion,

Q̂n(θ) = Q̂n(θ, t̂n(θ)) where t̂n(θ) = arginf
t∈Rdm

+

Q̂n(θ, t). (2.1)

The α-level confidence set estimator {Ĉn(α)} based on (2.1) is then defined as

Ĉn(α) =
{
θ ∈ Θ : nQ̂n(θ) ≤ q

}
, (2.2)

where q is a critical value chosen to ensure that limn→∞ Prn(θ0 ∈ Ĉn(α)) ≥ 1 − α and Prn(·) is

probability taken with respect to the joint distribution of {Zin}ni=1.

Implementation of the confidence set estimator Ĉn(α) (2.2) requires the limit distribution of

Q̂n(θ0). Let En[·] denote expectation taken with respect to the joint distribution of {Zin}ni=1.

Define gn(θ) = En [ĝn(θ)] and mn(θ) = En [m̂n(θ)] likewise. The identified set is then defined by

Θ0 = ∩∞n=1{θ ∈ Θ : mn(θ) ≥ 0} = {θ ∈ Θ : m(θ) ≥ 0} where m(θ) = limn→∞m
n(θ); cf. ?. The

following conditions are imposed.

Condition 1 (Weak Identification).

gn(θ) = kn(θ)/n1/2, (2.3)

where supθ∈Θ ‖kn(θ)− k(θ)‖ = o(1) and k(θ) = 0 if and only if θ = θ0.

Let  denote weak convergence of empirical processes. Define the empirical process

Ψ̂n(θ) = n−1/2
n∑
i=1

(
(gin(θ))− gn(θ))′, (min(θ))−mn(θ))′

)′
.

Condition 2 (Weak Convergence).
{

Ψ̂n(θ) : θ ∈ Θ0

}
 Ψ, where Ψ is a Gaussian process on Θ0

with mean zero and covariance function ∆(θ1, θ2) = EΨ(θ1)Ψ(θ2)′ at (θ1, θ2), θ1, θ2 ∈ Θ0.
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Primitive conditions for Condition 2 are given in Theorems 1.5.4 and 1.5.7 of ? requiring weak

convergence of the marginals (Ψ̂n(θ1), ..., Ψ̂n(θk)) for every finite subset θ1, ..., θk of Θ0, stochastic

equicontinuity of Ψ̂n(θ) and total boundedness of Θ0. For example, ? provide conditions on the data

generating process that guarantee Condition 2 is satisfied. In particular, ? require gin(θ) and min(θ)

to be m-dependent sequences for some fixed m ≥ 0, with the special case m = 0 corresponding to

an independent sequence, and, in addition, to be Lipschitz continuous in expectation over Θ0 with

2 + ε absolute moments for some ε > 0 uniformly over Θ0.

Let V (θ) = limn→∞Varn
[
n1/2(ĝn(θ)′, m̂n(θ)′)′

]
.

Condition 3 (Weight Matrix). The weight matrix V̂ n(θ) satisfies supθ∈Θ ‖V̂ n(θ)− V (θ)‖ = op(1)

where V (θ) is a non-stochastic strictly positive definite matrix uniformly over θ ∈ Θ. Furthermore,

supθ∈Θ ‖V̂ n(θ)‖ = Op(1) for all n ≥ 1.

Let bθ denote the number of binding moment conditions at θ ∈ Θ0. Also let b0 = bθ0 .

When the context ensures no ambiguity, the dependence of bθ on θ is suppressed. Without

loss of generality the first bθ inequality moment conditions are assumed to be binding. Parti-

tion m̂n(θ) = (m̂n
b (θ)′, m̂n

c (θ)′)′ where m̂n
b (θ) and m̂n

c (θ) respectively correspond to the binding and

non-binding inequality conditions and cθ = dm − bθ. Define

Vb(θ) = lim
n→∞

Varn

[
n1/2(ĝn(θ)′, m̂n

b (θ)′)′
]
.

Theorem 2.1. Suppose Conditions 1-3 are satisfied. Then for any constant C > 0,

lim
n→∞

Prn

{
nQ̂n(θ0) > C

}
=

b0∑
j=0

w(b0, b0 − j, Vb0(θ0))Pr
{
χ2
dg+j ≥ C

}
. (2.4)

where w(·, ·, ·) denotes, mutatis mutandis, the weight function defined in ? and ? and the χ2
dg+j ,

j = 1, . . . , b0, variates are mutually independent.

We emphasise that, though superficially similar, this result is fundamentally different from that

in ?. The weights w
(
b0, b0− j, Vb0(θ0)

)
in (2.4) differ from those in ? and ? except in special cases

because of the additional presence of the set of weak equality moment conditions (1.1). Details are

contained in a supplement available upon request. An explicit expression is only available when

dm ≤ 4; see ?. Section 3 provides details of an approximate construction for Ĉn(α).

If the moment inequality conditions (1.2) are omitted from Q̂n(θ), then, for any θ /∈ Θ0, the

probability that θ ∈ Ĉn(α) is positive asymptotically whereas Proposition 3 in ? indicates this

probability is 0 asymptotically when binding inequality conditions (1.2) are imposed. Moreover, if

only the inequality conditions are imposed θ ∈ Ĉn(α) w.p.a.1 for any θ ∈ Θ0 such that m(θ) > 0.

If the weak equality conditions (1.1) are also imposed, then for θ 6= θ0 but in Θ0 a noncentrality

parameter is present due to the presence of k(θ) which shifts the distribution of Q̂n(θ) to the

right. As a consequence there is a reduction in the probability that such a value is included in the

confidence set.

3 Practicalities
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Theorem 2.1 characterises the asymptotic distribution of the scaled criterion function nQ̂n(θ) and

provides the theoretical basis for the confidence set estimator. However, in practice, it is generally

not possible to construct the confidence set exactly since the weights in Theorem 2.1 depend on

the parameter θ0 both directly (through V (θ0)) and indirectly (through the number b0 of binding

constraints.) Except in special cases, an explicit expression for the weights is only available when

dm ≤ 4. To deal with the more general setting, two practical procedures to approximate the

confidence set estimator are now provided.

Section 4 of ? provides details of a numerical procedure based on ? to obtain critical val-

ues. The resulting confidence set is conservative (?, Corollary 1) but is satisfactory if b0 is both

small and provides a good approximation to the maximum number of binding inequality moments

(?). Thus, it may sometimes be beneficial to include only a small number of the most effective

moment inequalities. While originally proposed for moment inequalities only, the procedure is

straightforwardly extended to incorporate weak moment equalities.

The procedure due to ? selects the set of binding moment inequalities consequently reducing the

number of moment inequalities used for inference and, thus, substantially improving the empirical

coverage properties of the confidence set estimator. Let

S

((
g

m

)
, V

)
= inf

t≥0

(
g

m− t

)′
V −1

(
g

m− t

)
.

Also let C denote the set of moment selection vectors {c}, whose jth element cj ∈ {0, 1} corresponds

to whether or not the jth moment inequality is selected (see ?). The estimated moment selection

vector ĉ is then obtained as the solution to

min
c∈C

S

(
n1/2

(
ĝn(θ)

c · m̂n(θ)

)
, V̂ n(θ)

)
− |c|

√
log(n).

The dm-dimensional vector ϕ is constructed according to

ϕj =

{
0, if ĉj = 1,

∞, if ĉj = 0

The critical value is then simulated by the following steps. For each r = 1, 2, . . . , R, where R is

the number of replications, draw n i.i.d. copies of the random vector Z∗ ∼ N(0, Idg+dm). Then

compute Sr = S(Ω̂n(θ)−1/2Z∗r + (0dg , ϕ), Ω̂n(θ)) where 0dg is zero vector of dimension dg,

Ω̂n(θ) = D̂−1/2
n (θ)V̂n(θ)D̂−1/2

n and D̂n(θ) = diag(V̂ n(θ)).

Finally the critical value is estimated as

q̂AS(θ) = inf

{
q :

1

R

R∑
r=1

1{Sr ≤ q} ≥ 1− α

}
.
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4 Finite sample performance

All experiments concern the model

Yi = θXi + εi, Xi =
π1

n1/2
W1i +

π2

n1/2
W2i + νi, (i = 1, . . . , n),

where π1 and π2 are constants and W1 and W2 are each uncorrelated with both error terms ε and

ν which gives rise to the dg = 2 weak moment equalities (cf. equation (1.1))

E[(Y − θX)W1] = 0 and E[(Y − θX)W2] = 0. (4.1)

The additional variables (W3,W4) are each positively correlated with ε giving the dm = 2 moment

inequalities (cf. equation (1.2))

E[(Y − θX)W3] ≥ 0 and E[(Y − θX)W4] ≥ 0. (4.2)

In the simulations, {W1,W2,W3,W4, ε, ν} are multivariate normally distributed with all covariance

matrix entries zero except σεν = σεw3 = σεw4 = 0.25, σνw3 = 0.5, σνw4 = −0.5 and σ2
w1

=

σ2
w2

= σ2
ε = σ2

ν = σ2
w3

= σ2
w4

= 1. The Supplementary Information provides an additional set

of simulations in which the exogenous variables are drawn from the Student t distribution with 5

degrees of freedom yielding a very similar set of results. Thus, in this example, since the identified

set Θ0 = {θ ∈ Θ : m(θ) ≥ 0}, Θ0 is defined by the moment inequalities E[(Y − θX)W3] ≥ 0 and

E[(Y − θX)W4] ≥ 0 and equals [0.5, 1.5].

For each of 1000 Monte Carlo (MC) replications a confidence interval estimator Ĉn(α) is con-

structed for θ = θ0 = 1 based on the ? procedure using both the weak moment equality (cf. equation

(4.1)) and the partial moment inequality (cf. equation (4.2)) information. ? also adopts this pro-

cedure but using the partial information alone. To distinguish these approaches the notation R(P)

is adopted for the ? procedure and R(W&P) for the extension of ? incorporating the additional

weak moment equalities information. Confidence set construction based on the ? procedure is also

considered, adapted to exploit both weak and partial information, and is denotes by AS(W&P).

R(W&P) and AS(W&P) are also compared to constructions based on ? (SW(W)) and ? (K(W))

based on the weak moment equalities alone.

Table 1 compares the mean width (over MC replications) of the various confidence interval

estimators around θ0 = 1 with π1 = 1 and π2 = 2. The third and fourth columns, R(W&P) and

AS(W&P), both use the weak, (4.1), and partial, (4.2), identifying information. Their differences

arise because of the different implementations discussed above. The difference between the third and

last columns is due solely to the additional weakly identifying information used in the construction

R(W&P) over R(P), the imposition of the additional inequality conditions reducing the width of

the confidence intervals appreciably.

Table 2 presents the coverage properties of the various estimators, confirming that those based

on our approach, R(W&P) and AS(W&P), are conservative. Note that despite their greater length,

the estimators SW(W)and K(W) based solely on weakly identifying moment conditions have lower

coverage.
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n 1− α R(W&P) AS(W&P) SW(W) K(W) R (P)

100 0.9 1.943 2.041 2.526 2.770 2.226

500 0.9 1.257 1.192 2.442 2.582 1.358

1000 0.9 1.146 1.093 2.496 2.524 1.205

100 0.95 2.229 2.401 2.979 3.107 2.469

500 0.95 1.372 1.316 2.934 3.036 1.424

1000 0.95 1.217 1.167 2.955 3.030 1.251

100 0.99 2.821 3.154 3.488 3.608 3.023

500 0.99 1.590 1.543 3.488 3.553 1.602

1000 0.99 1.351 1.317 3.549 3.621 1.361

Table 1: Mean width of confidence interval around θ0 = 1: 1000 MC replications and n observations.

n 1− α R(W&P) AS(W&P) SW(W) K(W) R(P)

100 0.9 0.971 0.971 0.830 0.905 1.000

500 0.9 0.976 0.969 0.895 0.905 1.000

1000 0.9 0.974 0.967 0.916 0.914 1.000

100 0.95 0.985 0.993 0.934 0.943 1.000

500 0.95 0.985 0.981 0.946 0.951 1.000

1000 0.95 0.984 0.978 0.942 0.957 1.000

100 0.99 0.997 0.998 0.983 0.982 1.000

500 0.99 0.998 0.999 0.986 0.987 1.000

1000 0.99 0.998 0.997 0.988 0.991 1.000

Table 2: Coverage probabilities based on 1000 MC replications, n observations and H0 : θ = θ0 = 1.
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Figure 1 plots the empirical power curves for various combinations of π1 and π2; viz. {π1 =

1, π2 = 1}, {π1 = 1, π2 = 2}, {π1 = 2, π2 = 2} and {π1 = 2, π2 = 3}. In all cases θ = θ0 = 1

and the sample size is n = 1000. The SW(W) and K(W) empirical power curves are much flatter

than those of the AS(W&P), R(W&P) and R(P) procedures. Although SW(W) and K(W) have

somewhat higher power inside the identified region, the power of AS(W&P), R(W&P) and R(P)

is far greater outside the identified region. Since the moment equalities constitute only weakly

identifying information, the power of SW(W) and K(W) is expected to be relatively low across the

whole parameter space. In contrast, the information provided by the moment inequality constraints

is partially identifying and, thus, powerful for detecting a false null hypothesis since the true

θ = θ1 then lies outside the identified set, thereby violating the inequalities. Inside the identified

region, the moment inequalities are uninformative and, thus, their inclusion effectively adds noise,

explaining the lower power of AS(W&P) and R(W&P) as compared with that of SW(W) and

K(W). The AS(W&P) and R(W&P) approaches dominate R(P), emphasising the value of the

weakly identifying moment information. In particular, as the values of π1 and π2 increase, the

AS(W&P) and R(W&P) power curves lie significantly above that of R(P).
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Figure 1: Estimated power against the alternative θ = θ1∈ [0, 2] for θ0 = 1, n = 1000 and various

values of π1 and π2.
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5 Proof of Theorem 2.1

Let

v̄n(θ) = n1/2

(
ĝn(θ)− gn(θ)

m̂n(θ)−mn(θ)

)
, v̄nb (θ) = n1/2

(
ĝn(θ)− gn(θ)

m̂n
b (θ)−mn

b (θ)

)
.

where mn(θ) = (mn
b (θ)′,mn

c (θ)′)′ is partitioned conformably with m̂n(θ). By Condition 1,

nQ̂n(θ) = min
t≥0

(
v̄n(θ) +

(
n1/2gn(θ)

n1/2mn(θ)− t

))′
V̂ n(θ)−1

(
v̄n(θ) +

(
n1/2gn(θ)

n1/2mn(θ)− t

))

= min
s≥−n1/2mn(θ)

(
v̄n(θ)−

(
−kn(θ)

s

))′
V̂ n(θ)−1

(
v̄n(θ)−

(
−kn(θ)

s

))

= min
sb≥0, sc≥−n1/2mn

c (θ)

(
v̄n(θ)−

(
−kn(θ)

s

))′
V̂ n(θ)−1

(
v̄n(θ)−

(
−kn(θ)

s

))
,

where s = (s′b, s
′
c)
′ is partitioned conformably with mn(θ). Since mn

c (θ) > 0, n1/2mn
c (θ) → ∞ and

thus, invoking also Condition 3,

nQ̂n(θ)− min
sb≥0,sc∈ Rc

(
v̄n(θ)−

(
−k(θ)

s

))′
V (θ)−1

(
v̄n(θ)−

(
−k(θ)

s

))
= op(1). (5.1)

By Lemma 1 of ?

min
sb∈Rb

+,sc∈Rc

(
v̄n(θ)−

(
−k(θ)

s

))′
V (θ)−1

(
v̄n(θ)−

(
−k(θ)

s

))

= min
sb∈Rb

+

(
v̄nb (θ)−

(
−k(θ)

sb

))′
Vb(θ)

−1

(
v̄nb (θ)−

(
−k(θ)

sb

))
.

By Condition 2, v̄nb  v̄b where v̄b is a zero mean Gaussian process on Θ0, thus, for all θ ∈ Θ0

v̄b(θ) ∼ N(0, Vb(θ)). It follows that, for any θ ∈ Θ0,

nQ̂n(θ)→d min
sb∈Rb

+

(
v̄b −

(
−k(θ)

sb

))′
Vb(θ)

−1

(
v̄b −

(
−k(θ)

sb

))
= Qb(θ),

and using the results of ? based on ?,

Pr
{
Qb(θ0) ≥ C

}
=

b∑
j=0

w(b, b− j, Vb(θ0))Pr
{
χ2
dg+j ≥ C

}
.
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Supplementary material to

Improving confidence set estimation when parameters are weakly
identified

Heather Battey∗ Qiang Feng† Richard J. Smith‡

Abstract

This document contains the supplementary material to the paper “Improving confi-

dence set estimation when parameters are weakly identified”. In Appendix A we provide

additional simulations.

A Additional simulations

The data are generated in the same way as in Section 4 but with the exogenous variables W1 and

W2 each drawn independently from a Student t distribution with 5 degrees of freedom. The results

are very similar to those appearing in Section 4. We only present the results for the α = 0.05 case.

n 1− α R(W&P) AS(W&P) SW(W) K(W) R(P)

100 0.95 2.269 2.552 2.903 3.135 2.586

500 0.95 1.444 1.421 2.791 2.920 1.517

1000 0.95 1.305 1.278 2.763 2.879 1.351

Table 3: Mean width of confidence interval around θ0 = 1: 1000 MC replications and n observations.

n 1− α R(W&P) AS(W&P) SW(W) K(W) R(P)

100 0.95 0.993 0.996 0.955 0.953 1.000

500 0.95 0.993 0.989 0.952 0.954 1.000

1000 0.95 0.984 0.982 0.944 0.945 1.000

Table 4: Coverage probabilities based on 1000 MC replications, n observations and H0 : θ = θ0 = 1

when exogenous variables are generated from a Student t distribution with 5 degrees of freedom
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Figure 2: Estimated power against the alternative θ = θ1 (ranging from 0 to 2) for θ0 = 1,

n = 1000 and various values of π1 and π2. Exogenous variables generated from a t distribution

with 5 degrees of freedom.
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