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Predicting the vibration response of complex nonlinear structures is a significant chal-
lenge: the response may involve many modes of the structure; nonlinearity precludes the
use of efficient techniques developed for linear systems; and there is often uncertainty
associated with the nonlinear law, even to the extent that its functional form is not always

problem in a novel way. The method exploits the fact that nonlinearities are often spa-
tially localised, and seeks the best- and worst-case system response with respect to a
chosen metric by regarding the internal nonlinear force as an independent excitation to
the underlying linear system. Constraints are used to capture what is thought to be known
about the nonlinearity without needing to specify a particular law. This paper focuses on
the case of systems with a single point nonlinearity but with arbitrarily complex under-
lying linear dynamics, driven by a sinusoidal force excitation. Semi-analytic upper and
lower bounds are proposed for root-mean-square response metrics subject to constraints
which specify that the nonlinearity should be a combination of (A) passive,
(B) displacement-limited, and / or (C) force-saturating. The concept of ‘equivalent linear
bounds’ is also introduced for cases where the response metric is thought to be dominated
by the same frequency as the input. The bounds corresponding to a passive and
displacement-limited nonlinearity are compared with Monte Carlo experimental and
numerical results from an impacting beam test rig. The bounds corresponding to a passive
and force-saturating nonlinearity are compared with numerical results for a friction-
damped beam. The global upper and lower bounds are satisfied for all input frequencies
but are generally found to be rather conservative. The ‘equivalent linear bounds’ show
remarkably good agreement for predicting the range of root-mean-square velocity
responses. Finally, the principle of Maximum Entropy is used to estimate the response
distributions, which was found to give surprisingly good agreement with experimental
and numerical data.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

There is a need for efficient and pragmatic tools that can predict the vibration response of complex nonlinear structures,
for example in the contexts of turbine blades with frictional contacts [1]; oilwell drilling dynamics [2]; vehicle brake squeal
[3]; ‘buzz, squeak and rattle’ problems in the automotive industry [4]; mooring line dynamics [5]; or stringed musical
instruments [6]. The presence of nonlinearity precludes direct application of efficient linear methods for predicting the
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system response, and full time-domain simulations can be computationally intensive. In addition, nonlinear interaction laws
are often highly uncertain to the extent that even the functional form of the law may not be known, for example friction
contact laws [7].

For many examples of system the nonlinearities are spatially localised. The system dynamics can then be described in
terms of the (few) degrees of freedom associated with the nonlinearity while still efficiently accounting for the linear
dynamics of the coupled system. This property is commonly utilised with time-domain integration of Finite Element models
(e.g. [8]), coupling impulse response functions to nonlinearity (e.g. [8–11]), and with the Harmonic Balance Method (e.g.
[12]). This enables systems with local nonlinearities to be simulated more efficiently, but accounting for uncertainty can still
be computationally demanding.

There is a large and growing body of literature investigating methods for predicting the effects of uncertainties in
structural dynamics: helpful special issues include [13–15]. The approaches can be categorised according to the type of
uncertainty to which they apply with main classifications including parametric/non-parametric; probabilistic/non-prob-
abilistic; or epistemic/aleatory types of uncertainty. Some interesting discussion of these and other classifications can be
found in [16,17], but for the purposes of this article the main distinction is made between parametric and non-parametric
uncertainties. Parametric uncertainty descriptions are applicable to systems where the governing equations are known but
whose specific parameter values are not precisely defined (with uncertainty specified by bounds, fuzzy numbers, or
probability density functions). Non-parametric uncertainty descriptions are needed when there are unknowns associated
with the governing equations of the system (sometimes referred to as ‘model uncertainty’, see [17]).

There are two challenges common to methods that tackle parametric uncertainty: they require multiple simulations to
be carried out to predict the response of the system for different choices of system parameters; and the functional form of
the governing equations of the system needs to be specified. There are methods emerging that begin to tackle the first issue.
For example, in the context of probabilistic uncertainties Peherstorfer et al. [18] use importance sampling together with a
combination of surrogate models and high fidelity models to obtain an efficient estimate of the response statistics. That
there is a need for this kind of multi-resolution algorithm itself highlights the difficulty, and there is still a need for multiple
simulations of a high resolution model. Fuzzy arithmetic is another method applicable to non-probabilistic types of
uncertainty, but as described by Moens and Hanss [19] the efficiency of fuzzy arithmetic methods is still limited by the
number of simulations needed to estimate response bounds for different levels of uncertainty membership. This is because
the response bounds are found by optimisation, or for the upper bound ‘anti-optimisation’: in other words numerical
optimisation is used to search the admissible set of parameters for the extreme responses. For both of these example
methods the governing system equations need to be pre-specified as ‘knowns’ and parametric uncertainty methods
intrinsically cannot account for ‘model’ uncertainty.

These challenges make non-parametric methods appealing: unfortunately their domain of applicability is often narrow
and/or a great deal of care is needed when interpreting the results. For example Statistical Energy Analysis (SEA) enables
effective prediction of the steady-state mean response and its variance for linear systems at high frequency [20], i.e. when
there is significant modal overlap. The method has successfully been combined with deterministic Finite Element modelling,
effectively extending its applicability to low- and mid-frequencies [21]. It remains a challenge to model nonlinear systems
and only a few attempts have been made to extend SEA to nonlinear systems, e.g. [22]. Another interesting non-parametric
approach is using random matrices and the principle of Maximum Entropy, or ‘entropy optimisation’ [23]. In this approach
the system matrices (mass, stiffness and damping) are taken to be uncertain, with their mean represented by deterministic
values and probability density function assigned using Maximum Entropy. Response distributions can then be calculated
efficiently for linear systems. One challenge with this approach is the difficulty of interpretation: the admissible set of
system matrices is not necessarily constrained by physical arguments. For example, the ensemble of possible uncertainties
can include systems where remote parts of the system are directly coupled, leading to non-physical results [17]. In itself this
is not a failing of Maximum Entropy, rather that the approach does not readily lend itself to including physical constraints. In
addition, this approach is mainly focused on uncertainty associated with the underlying linear system rather than nonlinear
interactions.

The non-parametric randommatrix method has been extended to some examples of nonlinear systems, e.g. [24,25]. Ritto
et al. [25] consider the nonlinear dynamics of an oilwell drillstring, with particular emphasis on developing a non-
parametric description of the uncertain nonlinear bit–rock interaction. The approach uses a random matrix to represent the
nonlinear interaction law: constraints are applied to the randommatrix such that it satisfies three key properties: it must be
positive-definite (power is always dissipated); its expectation is chosen to represent the deterministic ‘mean’ model; and it
is not a singular matrix. The probability density function for the random matrix used for simulations is taken to have the
Maximum Entropy distribution resulting from these constraints. However, in order to obtain a stochastic prediction it is
necessary to solve the stochastic system equations for many realisations of the randommatrix. In addition, there is a need to
specify a ‘dispersion parameter’ that represents the degree of uncertainty. Finally the constraints on the randommatrix itself
are only loosely based on physical arguments: power dissipation and the notion of a mean model.

This paper presents a new approach for predicting the response of complex structures when uncertainty is associated
with local nonlinear interactions, by using a non-parametric approach combined with the concept of anti-optimisation to
obtain response bounds. The approach also draws on Maximum Entropy as a way to estimate response distributions.
The novelty of the approach described in this paper is that analytic (or semi-analytic) bounds and the distribution of the
response are estimated without needing to solve for a nonlinear response.
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This paper builds on previous studies [26,27] which used numerical optimisation to obtain the ‘worst’ response, subject
to constraints derived from physical arguments. This study takes a new approach and extends the work presented in [28],
with the aim of seeking semi-analytic response bounds subject to a minimal set of constraints. The scope of this paper is
limited to sinusoidal excitation of systems which have a single point discrete nonlinearity that is uncertain, and for which
the linear dynamics may be complex (i.e. systems with many modes). Extensions to multiple discrete nonlinearities are the
subject of ongoing research.

The goals of this paper are to:
� propose semi-analytic response bounds for complex systems with spatially local and uncertain nonlinearities;
� test whether the resulting bounds give useful predictions that are not overly conservative;
� attempt to estimate the response distribution; and to apply the approach to academic case studies representing common

kinds of nonlinearity.

The adaptation of the anti-optimisation framework is described in Section 2. Hypothesised global response bounds are
derived in Section 3, and the concept of ‘equivalent linear bounds’ is introduced in Section 4. Global lower bounds are
derived in Section 5. The bounds are generalised to relax several assumptions in Section 6. The results are then applied to
two specific test cases: an impacting beam (Section 7) and a friction-damped beam (Section 8). For both test cases the
principle of Maximum Entropy is also used to estimate the response distribution.
2. Framework for predicting response bounds

The framework is conceptually straightforward: replace the actual nonlinearity with an external excitation source whose
objective is to maximise the response, subject to constraints that capture some properties of the original nonlinear system.
This approach can be formulated as an optimisation problem: the key advantage over other methods is that by replacing the
nonlinearity with an external excitation source, it is only necessary to evaluate the linear system response when seeking
response bounds. The approach differs from a traditional parametric interval analysis because rather than placing bounds on
model parameters, constraints (or bounds) are placed on higher level properties of the nonlinearity such as power input,
response displacement, or maximum force. The framework requires a specification of three components: a representation of
the underlying system dynamics; an output response metric for which bounds are sought; and high-level constraints that
describe general properties of the nonlinearity. These components and the resulting optimisation problem are presented in
the following sections.

2.1. System representation

Consider a general linear system with a single localised nonlinearity, illustrated by the feedback diagram in Fig. 1. The
underlying linear system can be characterised by a matrix of impulse response functions dðtÞ. This linear system is subject to
a total input force fðtÞ, so that the output states are given by yðtÞ ¼ dðtÞ�fðtÞ (where n denotes convolution). The total input
force f is composed of the external input force fi and an internal nonlinear force fnl, such that f ¼ f iþfnl.

This paper tackles the case of a general linear system with a purely sinusoidal input force at Site (1) and with a single
point nonlinearity at Site (2). It is initially assumed that the two sites are distinct: the collocated case is considered in
Section 6.1. The spatially discretised input force vector can be arranged so that f i ¼ ½ f 1ðtÞ 0 0 …�T and the nonlinear internal
force vector arranged so that fnl ¼ ½0 f 2ðtÞ 0 …�T . Choosing a sinusoidal input at frequency ωa gives f 1ðtÞ ¼ real F1aeiωat

� �
where F1a may be a complex amplitude, with the subscript ‘a’ associated with the input frequency ωa.

2.2. Response metric

A response metric M needs to be defined that captures an output of interest. This choice defines the quantity whose
bounds and distribution are sought. The particular choice of response metric depends on what is of most interest for a given
application: in this study, the metric is taken to be the steady-state root-mean-squared (RMS) displacement, velocity and
Fig. 1. A general linear system with a single localised nonlinearity.
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acceleration at Site (1) where the input is applied:

M¼ 1
T

Z tþT

t

dαy1
dtα

� �2

dt

( )1
2

; α¼ 0;1;2 (1)

where α¼ 0;1;2 defines whether the chosen metric is displacement, velocity or acceleration respectively. The time window
t to tþT is taken to encompass the steady-state response. RMS quantities are commonly used measures of vibration
amplitude, so this represents a widely applicable choice of metric.

2.3. Constraints on the nonlinearity

The nonlinear force is the result of a localised nonlinearity which would normally be viewed as a nonlinear function of
one output state ynl, illustrated by the dashed line in Fig. 1. In the proposed approach, the nonlinear force fnl will be
considered to be an external input force and general properties of the nonlinearity will be represented by either equality or
inequality constraints. This allows an ensemble of nonlinearities to be defined in a flexible way, without having to specify its
functional form.

The choice of constraints depends on what is assumed to be known about the nonlinearity. As more information is
known, more constraints can be imposed and the predicted bound becomes less conservative (as demonstrated in [26]).
Some choices of constraints for particular applications can lead to discontinuous constraint functions that require
numerically challenging optimisation to find solutions (e.g. [27]). The aim of this paper is to find semi-analytic bounds for
common kinds of nonlinearity: this requires finding numerically convenient choices that also have a clear physical basis.
With this in mind, three properties of common nonlinearities will be considered: (A) passive, i.e. the nonlinearity cannot
add energy to the system; (B) displacement limited; and/or (C) force limited. These choices are motivated by: ‘impacting’,
‘buzzing’ or ‘rattling’ system, i.e. structures with a local, passive, displacement-limited nonlinearity (AþB); and friction-
damped systems, i.e. structures with a local, passive, force-saturating nonlinearity (AþC).

More formally, the constraint functions hðfnl; ynlÞ ¼ ½hA hB hC �T must satisfy hðfnl; ynlÞr0 and have been chosen as follows:

hA ¼
1
T

Z tþT

t
_y2 f 2 dt average powerð Þ

hB ¼ y2
�� ���ymax ðdisplacementÞ

hC ¼ f 2
�� ��� fmax ðforceÞ: (2)

where hA is a constraint on the average power input from the nonlinearity, hB is the displacement-limit, and hC is the force
saturation constraint. The time window t to tþT is taken to encompass the steady-state response, ymax is the largest amplitude
displacement (e.g. from a clearance nonlinearity), and fmax is the saturating force (e.g. from a frictional nonlinearity). The reason
that average power is chosen for the constraint hA, rather than instantaneous power, is that passive nonlinearities can readily be
envisaged that have non-trivial reactive components. Note that no equality constraints are used for the present study.

The physical origin of the passive constraint hA is clear: in many cases the presence of nonlinearity does not add energy
to the system, e.g. friction dampers; gears with backlash; fluid damping; or nonlinearity from structural joints. The dis-
placement constraint hB also has a clear physical basis: when systems have a gap or clearance (such as oilwell drillstrings
within a borehole), then the response is limited to be within the clearance. This constraint is harder to define in practise, as
when the clearance is reached then there will be some finite stiffness associated with the contact and the nominal clearance
can be exceeded. Nevertheless, the mindset of this constraint is pragmatic and assumes that the contact stiffness is rea-
sonably large such that the clearance represents a practical limit. The force saturation constraint hC is based on typical
friction behaviour, where friction forces tend to saturate for a given normal preload. This limit can be hard to identify
precisely, as friction characterisation is challenging [29], but the constraint nevertheless represents a pragmatic property
based on typical frictional behaviour.

2.4. General optimisation problem

The problem to be solved can written as a standard optimisation problem:

maximise:
fnl

Mðfnl; f iÞ

subject to: hðfnl; ynlÞr0; (3)

where M is the response metric and h is the vector of inequality constraint functions. The specific choices for the present
study are defined in Eqs. (1) and (2). The input force f i is assumed to be known. The degrees of freedom for the optimisation
could either be taken as the nonlinear force fnlðtÞ or the associated state ynlðtÞ.

The solution to this optimisation problem can be sought using ‘black-box’ toolboxes available with standard software
packages such as Matlab. This style of analysis has been investigated in previous studies [26,27]. However, the goal of this
paper is to explore whether response metrics and constraints can be chosen that allow semi-analytic solutions to be found
that still give useful predictions.
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3. Global upper bounds on system response

The global solution is sought to the optimisation problem defined in Eq. (3), with response metric from Eq. (1), subject to
the constraints defined by Eq. (2). The three constraints will be considered independently: in each case the upper bound
response must occur when the constraint is active, and when pairs of constraints are considered together then the response
bound is simply given by the more restrictive bound. This approach seeks fundamental bounds on the response of a
structure given bounds on general properties of the nonlinearity: this is distinct from a traditional interval analysis which
seeks bounds given possible intervals of system parameters.

3.1. Passive nonlinearity

It is hypothesised that the upper bound response for a passive nonlinearity is obtained if the force f2 extracts the
maximum possible power from the excitation frequency ωa and injects it into another frequency ωb which has the max-
imum gain G from input power Pin to response metric M:

G ωbð Þ ¼max
ω

MðωÞ
PinðωÞ: (4)

This is based on the result that for a finite available power, the maximum response occurs when it is applied at a single
‘optimal’ frequency (see Appendix A).

Therefore, the nonlinear force f 2ðtÞ has two frequency components: one at the input frequency ωa and the other at the
injection frequency ωb:

f 2ðtÞ ¼ real F2aðωaÞeiωat
n o

þreal F2bðωbÞeiωbt
n o

; (5)

where F2a and F2b are the complex amplitudes of the input and injection components respectively. This abbreviated notation
will be used for the subsequent analysis, where the subscript a or b denotes the corresponding frequency component of the
complex amplitude.

The underlying linear system dynamics can be represented as a frequency response function matrix relating the dis-
placements and forces at Sites (1) and (2):

Y1ðωÞ
Y2ðωÞ

" #
¼

D11ðωÞ D12ðωÞ
D21ðωÞ D22ðωÞ

" #
F1ðωÞ
F2ðωÞ

" #
: (6)

The maximum energy is extracted at Site (2) when F2a is equivalent to an impedance match (see Appendix B). This is
achieved when:

F2a ¼ �1
Z
iωaY2a; (7)

with Z ¼ ðiωaD22aÞ� and ð�Þ� denotes complex conjugate. Following the abbreviated notation Y2a is the ωa component of the
complex amplitude of displacement at Site (2). Physically this would correspond to the nonlinearity presenting an impe-
dance match that optimally absorbs incoming wave energy. From Eq. (6) this leads to:

F2a ¼
� iωaD21aF1a

2 real iωaD22a
� � (8)

which gives the peak power extracted in a cycle:

Ph ¼
iωaD21aF1a
�� ��2

4 real iωaD22a
� �: (9)

The average power is half this value and it is taken that the nonlinearity construes to use all of it to excite a new frequency
ωb. Therefore the peak power at this new frequency is also Ph, which can be written in terms of the injected frequency ωb:

Ph ¼ real iωbD22b F2b
�� ��2n o

: (10)

The aim is to choose ωb to give the largest gain from injected power to RMS displacement (α¼0), velocity (α¼1) or
acceleration (α¼2):

G¼max
ωb

1ffiffiffi
2

p ðiωbÞαY1b

Ph

����
����: (11)

Now because F1b ¼ 0, then Y1b ¼D12bF2b (from Eq. (6)). Combining this with Eq. (9) and rearranging to separate ωa and ωb
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terms gives:

ðiωbÞαY1b

Ph

����
����¼ A ωað ÞB ωbð Þ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
real iωaD22a

� �q
iωaD21aF1a
�� ��

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ωa terms

ðiωbÞαD12b
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
real iωbD22b

� �q
0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ωb terms

: (12)

The worst-case frequency ωb can be found by maximising BðωbÞ, which can be found by evaluating the function for a high
resolution vector of frequencies and finding the maximum.

The worst-case input force F2b is found by combining Eqs. (9) and (10):

F2b
�� ��2 ¼ iωaD21aF1a

�� ��2
4 real iωaD22a

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ωa terms

1
real iωbD22b

� � !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ωb terms

(13)

Finally the upper bound is given by:

MA ¼
iωa
�� ��αffiffiffi

2
p Y1aj jþ iωb

�� ��αffiffiffi
2

p Y1b
�� ��

¼ iωa
�� ��αffiffiffi

2
p D11a�

iωaD
2
12a

2 real iωaD22a
� � !

F1a

�����
�����þ iωb

�� ��αffiffiffi
2

p D12b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ph

real iωbD22b
� �s�����

����� (14)

Note that the response makes no assumption of the periodicity of the response: the choice of ωb is free. Therefore the
scope of this bound is very general and is an estimate of the global limit on the metric M for any passive nonlinear system
coupled at Site (2). The metric is taken to be an average property of a system under steady-state conditions, which could be
periodic, quasi-periodic, or even chaotic.

3.2. Displacement-limited nonlinearity

It is hypothesised that the upper bound response for a displacement-limiting nonlinearity is obtained when the con-
straint is fully active, i.e. when the response y2ðtÞ is a square wave of amplitude ymax and with a fundamental frequency that
causes the maximum response at Site (1). To achieve this requires choosing the force f 2ðtÞ to have a frequency component at
the driving frequency ωa which pins the system at Site (2) (i.e. cancels the response due to the input force at Site 1), and a
harmonic series of frequency components with fundamental frequency ωb:

f 2ðtÞ ¼ real F2aðωaÞeiωat
n o

þ
X1
n ¼ 1

real F2nbðnωbÞeinωbt
n o

: (15)

The coefficients F2nbðnωbÞ of the harmonic series can be chosen such that the displacement y2ðtÞ at Site (2) is a square wave:

y2 tð Þ ¼
X1
n ¼ 1

n ¼ odd

real Y2nbðnωbÞeinωbt
n o

; (16)

where

Y2nb ¼
4
nπ

ymax: (17)

The upper bound response occurs when the fundamental frequency ωb of the square wave is chosen to maximise the
response metric. It is straightforward to compute the response metric for a square wave displacement input over a range of
fundamental frequencies and find the maximum gain from the square wave amplitude to the response metric.

For the system to be pinned at Site (2), then Y2a ¼ 0 (where Y2a is the complex amplitude of the ωa contribution of y2).
From Eq. (6) this gives:

F2a ¼ �D21a

D22a
F1a; (18)

with corresponding response at Site (1):

Y1a ¼
D11aD22a�D12aD21a

D22a
F1a: (19)

The worst-case RMS response at Site (1) is given by:

MB ¼
iωa
�� ��αffiffiffi

2
p D11aD22a�D12aD21a

D22a
F1a

����
����þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n ¼ 1

n ¼ odd

inωb

�� ��αffiffiffi
2

p D12nb

D22nb

����
����Y2nb

 !2
vuuut (20)
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with Y2nb given by Eq. (17). It is interesting to note that the coefficients scale according to Y2nbp1=n and the frequency-
averaged function D12=D22 is constant (for a sufficiently broad frequency average). Therefore this upper bound only con-
verges when α¼0, i.e. when the response metric is RMS displacement. In other words, just imposing a displacement
constraint does not impose an upper bound on the output RMS velocity or acceleration.

3.3. Force-saturating nonlinearity

It is hypothesised that the upper bound response for a force-saturating nonlinearity is obtained when the constraint is
fully active, i.e. by assuming that the force f 2ðtÞ is a square wave of amplitude fmax. This can be expressed as a Fourier Series
with fundamental frequency ωb:

f 2 tð Þ ¼
X1
n ¼ 1

n ¼ odd

real F2nbðnωbÞeinωbt
n o

: (21)

with coefficients given by

F2nb ¼
4
nπ

fmax: (22)

The upper bound response occurs when the fundamental frequency of the square wave ωb is chosen to maximise the
response metric. It is straightforward to compute the response metric for a square wave input force over a range of fun-
damental frequencies and find the maximum gain from the square wave amplitude to the response metric.

Therefore the upper bound RMS response at Site (1) is given by:

MC ¼
iωa
�� ��αffiffiffi

2
p D11aF1aj jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
n ¼ 1

n ¼ odd

inωb

�� ��αffiffiffi
2

p D12nbF2nb
�� �� !2

vuuut (23)

with F2nb given by Eq. (22). The coefficients scale according to F2nbp1=n and the frequency-averaged function D12nbp1=n2.
Therefore this upper bound converges for all α¼0,1,2, i.e. when the response metric is RMS displacement, velocity or
acceleration. It is interesting that a force-saturating nonlinearity gives upper bounds for a broader set of metrics and is
numerically better conditioned than a displacement-limiting nonlinearity. This is consistent with intuition: a constraint on
displacement places no bound on its derivatives, while a constraint on force necessarily limits the resulting accelerations.
4. Equivalent linear upper bounds on system response

It is hypothesised that the bounds above are global solutions to the optimisation problem of Eq. (3): maximising the RMS
response subject to energy, displacement or force constraints. As will be seen in Sections 7 and 8, these bounds can lead to
overly conservative upper bound predictions. Therefore this section considers ‘equivalent linear bounds’: adding the con-
straint that the nonlinear force only has a component at the same frequency as the input frequency ωa. This might seem a
severe restriction, but it is directly analogous to the ‘Describing Function’ approach, i.e. the Harmonic Balance method with
only the fundamental frequency retained (e.g. [30]). It is often a valid assumption for displacement or velocity response to
input force, rather than the acceleration response, as there is a natural roll-off with frequency for these output metrics.
However, it is not expected to be valid for acceleration output metrics which are high-frequency weighted. The same is
expected to hold for the equivalent linear bounds: with useful upper bound predictions expected for displacement- or
velocity-based metrics, but not for acceleration-based metrics. The distinction between these equivalent linear bounds and
the describing function approach is that the equivalent linear bound effectively identifies a ‘worst case’ describing function
as a function of frequency which need not represent a physical system.

4.1. Passive nonlinearity

The worst-case passive linear response is readily derived by assuming that a passive linear system is coupled at Site
(2) with compliance C such that F2a ¼ �Y2a=C. The magnitude of the response Y1aj j is given by:

Y1aj j ¼ D11a�
D12aD21a

CþD22a

� �
F1a

����
����

r D11aj jþ D12aD21a

CþD22a

����
����

� �
F1aj j: (24)

The maximum right-hand side of the inequality occurs when CþD22aj j is minimised. Both the underlying linear system and
the coupled system are passive, so imag D22af gr0 and imag Cf gr0. Therefore the maximum response occurs when
C ¼ �real D22af gþ0i. In other words, the worst-case coupled compliance acts to ensure a resonance condition by adding
either stiffness (real Cf g40) or mass (real Cf go0).



T. Butlin / Journal of Sound and Vibration 384 (2016) 227–252234
Therefore, the equivalent linear upper bound is:

M0
A ¼

iωa
�� ��αffiffiffi

2
p D11aj jþ D12aD21a

imag D22af g

����
����

� �
F1aj j; (25)

recalling that α¼0,1,2 corresponds to RMS displacement, velocity or acceleration.
As noted above, this bound does not constrain the sign of real Cf g. Yet it may well be known that the nonlinearity is

stiffness-based, only allowing compressive forces that oppose displacement, such that real Cf gZ0. This modifies the
equivalent linear bound to:

M00
A ¼

iωa
�� ��αffiffiffi

2
p D11aj jþ D12aD21a

D22a

����
����

� �
F1aj j if real D22af gZ0

iωa
�� ��αffiffiffi

2
p D11aj jþ D12aD21a

imag D22af g

����
����

� �
F1aj j otherwise

8>>>><
>>>>:

(26)

4.2. Displacement-limited nonlinearity

If the displacement at Site (2) has amplitude ymax, then from Eq. (6) the force F2a is given by:

F2a ¼
ymaxeiθ�D21aF1a

D22a
(27)

where θ is the phase of the displacement response and is not specified.
The magnitude of the response at Site (1) is then given by:

Y1j j ¼ D11aD22a�D12aD21a

D22a

� �
F1aþ

D12a

D22a
ymaxe

iθ
����

���� (28)

and so the equivalent linear upper bound is:

M0
B ¼

iωa
�� ��αffiffiffi

2
p D11aD22a�D12aD21a

D22a

� �
F1a

����
����þ D12a

D22a

����
����ymax

	 

(29)

If the nonlinearity is constrained to be compressive, then the nonlinear force can only oppose displacement and can be
expressed in terms of a compliance such that F2a ¼ �Y2a=C, with real Cf gZ0. The amplitude of the response at Site (1) is
given by Eq. (24), duplicated here for clarity:

Y1aj jr D11aj jþ D12aD21a

CþD22a

����
����

� �
F1aj j:

The bound for the systemwith combined displacement and compression constraints is non-trivial. Therefore, in the interest
of finding semi-analytic bounds the compression constraint is considered in isolation (though the actual bound for the
combined constraints could readily be found by optimisation for the complex value of the compliance C). If real D22af gZ0,
the maximum response amplitude occurs when real Cf g ¼ 0 and imag Cf g ¼ � imag D22af g. If real D22af gr0 then the response
is unbounded as C ¼ �D22a. Therefore the worst-case displacement-limited response allowing only compressive compliance
is given by:

M
00
B ¼min M

0
B;Mcomp

n o
(30)

where M
0
B is given by Eq. (29), and:

Mcomp ¼
iωa
�� ��αffiffiffi

2
p D11aj jþ D12aD21a

real D22af g

����
����

� �
F1aj j if real D22af gZ0

1 otherwise

8><
>: (31)

4.3. Force-saturating nonlinearity

From Eq. (6), the complex amplitude of the response at Site (1) to input forces F1a and F2a is given by:

Y1a ¼D11aF1aþD12aF2a: (32)

Constraining the nonlinear force such that F2aj jr f max gives:

Y1aj j ¼ D11aF1aþD12aF2aj j (33)

Y1aj jr D11aF1aj jþ D12aF2aj j (34)

Y1aj jr D11aF1aj jþ D12aj j fmax (35)
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Therefore the equivalent linear upper bound response for a force-saturating nonlinearity is given by:

M
0
C ¼

iωa
�� ��αffiffiffi

2
p D11aF1aj jþ D12aj j fmax

� �
(36)
5. Global lower bounds on system response

The above analysis seeks the ‘worst-case’ response subject to three common constraints. It is straightforward to reverse
the question and seek the lower bound ‘best-case’ response. This can be useful when determining whether or not it is even
possible to achieve a design specification. The lower bound response can answer questions such as: can a passive (or
otherwise constrained) system attached at a particular location ever reduce vibration levels below some threshold?; or
where do I need to attach a passive system so that it becomes possible to reduce vibration to acceptable levels? Then further
thought is needed as to how to actually approach this limit. It also gives insight into what may be causing a high lower-
bound by identifying which type of constraint is active.

In principle, the global lower bound response is significantly more straightforward than the upper bounds as the non-
linear force that yields the smallest response can only have a frequency contribution at the same frequency as the input. This
is because any other frequency contributions can only increase an RMS-based response metric. The bounds for the passive,
displacement-limited and force-saturating cases are presented in the following sections.

5.1. Passive nonlinearity

To find the best-case passive linear response it is easiest to begin by using the inverse form of Eq. (6):

F1ðωÞ
F2ðωÞ

" #
¼

K11ðωÞ K12ðωÞ
K21ðωÞ K22ðωÞ

" #
Y1ðωÞ
Y2ðωÞ

" #
: (37)

where K¼D�1. The force F1 at Site (1) is given by:

F1a ¼ K11aY1aþK12aY2a: (38)

The best-case passive linear response is readily derived by assuming that a passive linear system is coupled at Site (2) with
compliance CðωÞ such that F2a ¼ �Y2a=C. The magnitude of the force F1aj j is given by:

F1aj j ¼ K11a�
K12aK21a

1=CþK22a

� �
Y1a

����
����

r K11aj jþ K12aK21a

1=CþK22a

����
����

� �
Y1aj j: (39)

The best-case response can be framed as finding the maximum input force required for a given displacement. The maximum
right-hand side of the inequality occurs when 1=CþK22a

�� �� is minimised. Both the underlying linear system and the coupled
system are passive, so imag K22af gZ0 (because K is the inverse of D) and imag Cf gr0. Therefore the maximum force occurs
when 1=C ¼ �real K22af gþ0i. In other words, the best-case coupled compliance acts to ensure an anti-resonance condition
by adding either stiffness (real Cf g40) or mass (real Cf go0). This is somewhat counterintuitive: it may have been expected
that the best case response occurred when the added compliance absorbed most energy, but this does not yield the
minimum response at a single point location.

Therefore, the global (and linear) best-case passive response is:

mA ¼
iωa
�� ��αffiffiffi

2
p K11aj jþ K12aK21a

imag K22af g

����
����

� ��1

F1aj j (40)

This bound does not constrain the sign of real Cf g. Yet it may well be known that the nonlinearity is stiffness-based, only
allowing compressive forces that oppose displacement, such that real Cf gZ0. This modifies the best-case linear response to:

M0
A ¼

iωa
�� ��αffiffiffi

2
p K11aj jþ K12aK21a

K22a

����
����

� ��1

F1aj j if real K22af gZ0

iωa
�� ��αffiffiffi

2
p K11aj jþ K12aK21a

imag K22af g

����
����

� ��1

F1aj j otherwise

8>>>><
>>>>:

(41)

5.2. Displacement-limited nonlinearity

The force F1 at Site (1) is given by Eq. (37):

F1a ¼ K11aY1aþK12aY2a: (42)
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When Y2a is limited to ymax, then the upper bound force is given by:

F1aj jr K11aY1aj jþ K12aj jymax: (43)

Therefore the best-case response is given by:

mB ¼max 0;
iωa
�� ��αffiffiffi

2
p F1aj j� K12aj jymax

K11aj j

� �( )
: (44)

Note that if F1aj jr K12aj jymax then it is possible for the nonlinear force to pin the system at Site (1) without violating the
displacement constraint.

5.3. Force-saturating nonlinearity

Eliminating Y2 from Eq. (37) gives:

F1a ¼
K11aK22a�K12aK21a

K22a
Y1aþ

K12a

K22a
F2a: (45)

The best-case response is found when F1a is maximised for a given displacement Y1a:

F1aj jr K11aK22a�K12aK21a

K22a
Y1a

����
����þ K12a

K22a

����
����fmax: (46)

This gives the best-case response:

mC ¼max 0;
iωa
�� ��αffiffiffi

2
p K22a

K11aK22a�K12aK21a

����
����

( )
F1aj j� K12a

K22a

����
����fmax

� �
: (47)

Note that if F1aj jr K12a
K22a

��� ���fmax then it is possible for the nonlinear force to pin the system at Site (1) without violating the force
constraint.
6. Generalisation to different cases

The analysis above assumes that the input force and nonlinearity are located at different sites on the structure; and that
the nonlinearity is ‘grounded’, acting between one degree of freedom and a fixed reference point. A discussion of the effect
of relaxing these assumptions follows.

6.1. Collocated input force and nonlinearity

If the input force at Site (1) and the nonlinear force at Site (2) are at the same location, then the response is given by:

Y1 ¼ Y2 ¼DðωÞ F1þF2ð Þ: (48)

where DðωÞ ¼DijðωÞ. Following through the same working as Section 3, it is reassuring that the global bounds presented for
the passive, displacement or force constraints are all still valid. Note that defining DðωÞ ¼DijðωÞ causes some terms to
simplify, most notably the displacement-limited bound from Eq. (20) becomes:

MB;collocated ¼
1ffiffiffi
2

p
X1
n ¼ 1

n ¼ odd

ðinωbÞαY2nb
�� ��; (49)

where Y2nb were the coefficients for a square wave. Recalling from Section 3.2 that this sum only converges when α¼0 gives
the trivial result that:

MB;collocated ¼ ymax: (50)

More care is needed to find the equivalent linear bound for the passive constraint when the input and nonlinearity are
collocated. The bound M0

A above is not invalid, but is unnecessarily conservative. Let F2 ¼ �Y1=C with passive compliance
such that imag Cf gr0. Substituting into Eq. (48) gives:

Y1 ¼
D

1þD=C
F1 (51)

Therefore the maximum response is given when 1þD=C is at a minimum under the constraint imag Cf gr0. By a geometric
argument, the minimum occurs when the complex phasor D is orthogonal to 1þD=C, which can be expressed:

1þD=C
� ��Dþ 1þD=C

� �
D� ¼ 0: (52)
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Rearranging gives the solution:

C ¼ � Dj j2
real Df g: (53)

Substituting into Eq. (51) gives the equivalent linear passive collocated bound:

M
0
B;collocated ¼

iωαY1
�� ��ffiffiffi

2
p ¼ jiωjαffiffiffi

2
p Dj j2

imag Df g F1j j: (54)

The equivalent linear bounds for the displacement and force constraints are unchanged when assuming collocation.

6.2. Nonlinearity between a pair of degrees of freedom

It is often the case that a single nonlinearity occurs between a specific pair of degrees of freedom of a structure, or
connecting two structures. Assume that a nonlinearity acts between a pair of degrees of freedom at Sites (2) and (3): the
frequency-domain displacement vector Y and nonlinear force vector Fnl can be defined to be Y¼ ½Y1 Y2 Y3 Y4 …�T and
Fnl ¼ ½0 F2 F3 0 …�T . As before, the dynamics of the underlying linear system can be written in the frequency domain in
terms of a frequency response matrix:

YðωÞ ¼DðωÞFðωÞ (55)

If the nonlinear interface is intrinsically massless then F2 ¼ �F3, and a new variable defining the relative displacement can
be defined: Y

0
2 ¼ Y2�Y3. This allows a row and column of the frequency response matrix to be eliminated, giving a reduced

frequency response matrix D0 with a nonlinearity associated with a single degree of freedom Y
0
2. This allows the analysis

above to be carried out exactly as before.
7. Application to an example test structure I: impacting beam

The bounds derived above are now applied to an example test structure. The purpose of this study is to explore how
effective the bounds are for predicting the behaviour of a system, rather than to identify artificial cases that attempt to
approach or exceed the predicted bounds. Two common kinds of system are investigated: structures involving impact
(passive, displacement-limited nonlinearity), and friction-damped structures (passive, force-saturating nonlinearity). The
focus of this section is on a system involving impact, and forms the main comparative study. Section 8 presents a shorter
summary of the equivalent comparisons for a friction-damped structure.

For both test cases the underlying linear system chosen for study is a free–free beam and is based on an experimental
test rig illustrated in Fig. 2 and Fig. 3. This represents a ‘complex’ (i.e. multi-mode) linear system which can be coupled to a
spatially localised nonlinearity with adjustable properties that can be investigated numerically and experimentally.

The nonlinearity for the impacting beam consisted of a pair of end-stops with an adjustable gap and contact material.
This allowed an ensemble of data to be collected for different ‘uncertain’ contact properties. This system can also be
simulated numerically to explore regions of the parameter space beyond practical limits imposed by the test rig. The
Fig. 2. Sketch of the experimental ‘free–free’ beam with a locally nonlinear end-stop.



Fig. 3. Photographs of the experimental ‘free–free’ beamwith a locally nonlinear end-stop: (left) magnet and coil providing the input force with no contact
between the coil and magnet; (middle) isolated suspension to reduce boundary condition nonlinearity; and (right) end-stop nonlinearity.
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data collected from this impacting beam experiment is compared with predicted response bounds using the passive,
displacement-limited constraints.

7.1. Experimental test rig

The beam was suspended by string rather than clamped in order to minimise boundary nonlinearity: clamping typically
introduces frictional and contact nonlinearity. The strings were connected to the beam at the nodes of the first ‘free–free’
mode of vibration, which are asymmetric due to additional mass at Site (1), as discussed below. The strings were mounted
to the beam via rubber isolation to prevent the taught string from making intermittent contact with the beam under
dynamic loads. The length of the beam is L¼1 m, the width w¼40 mm and the thickness for most of the length was
d¼3 mm. A cylindrical neodymium rod magnet (10�30 mm) was mounted onto the beam at Site (1) (x1¼0.005 m), which
together with a coil (RS: 357–766) clamped to the bench provided the driving force. The magnet was viewed as part of the
system dynamics of the beam, and there was no contact between the magnet and the coil. This arrangement was found to be
particularly effective at producing a linear excitation with a large throw: single frequency input force driving the beam to a
peak–peak displacement of around 10 mm with the largest harmonic in the coil current less than 40 dB below the fun-
damental frequency, and the largest harmonic in the acceleration response of the linear beam generally less than 40–60 dB
below the fundamental frequency.

The beam was made thicker at the driving location (Site 1) such that d¼10 mm for the first 40 mm of the beam's length.
The intention was to create a mounting platform for the magnet and accelerometer (B&K Type 4369) such that the curvature
of the beam at their interface was negligible under dynamic loads, in order to minimise nonlinear effects associated with
their attachment. The additional mass of the mounting platform, magnet and accelerometer breaks the symmetry of mode
shapes of the beam.

Deliberate nonlinearity was introduced at Site (2) (x2¼0.995 m) in the form of a pair of end-stops. Hemispherical pins of
either rubber or polycarbonate were used at the contact point, which were mounted on force transducers clamped to a
heavy base. The nominal clearance was imposed using feeler gauges in the range 0.05–2 mm. The material choice and gap
variation enabled a Monte Carlo study with adjustable contact parameters, in order to generate an ensemble of data for
comparison with predictions.

7.2. Nonlinear test method

Each experimental test consisted of a sinusoidal input force at a fixed frequency for 10 s which was usually sufficient for a
satisfactory steady-state to be reached. The amplitude of the input force was smoothly ramped up over 0.5 s in order to
reduce starting transients. In addition, each test was repeated with and without an initial Gaussian pulse (band-limited to
100 Hz) that guaranteed the initiation of contact at Site (2) with the end-stops: it was observed that intermittent contact
could sometimes be sustained even when the purely linear system response was insufficient to initiate contact. Frequencies
were selected at random from a uniform distribution in the range 0.1–100 Hz.

For a given frequency, the test was repeated at increasing amplitude levels. The maximum amplitude in the sequence
was chosen based on the free–free response to limit the peak displacement of the beam at Site (1) to 5 mm (based on the
measured transfer function D11). Some tests nevertheless resulted in larger amplitudes due to the nonlinearity and the beam
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occasionally impacted the excitation coil. In these cases, the data was discarded and a sequence at a new frequency was
initiated. The test rig was mounted on a wooden bench which was affected by people walking past: an accelerometer on the
floor detected when this occurred and repeated the test case as appropriate. A total of approximately 21,000 tests were
carried out that were not affected by passers-by or coil impacts.

A quick check of the response spectra revealed that impacts with rubber end-stops excited a 40 dB bandwidth of
approximately 700 Hz and polycarbonate end-stops excited approximately 5 kHz. These bandwidths were case-dependent
but this provides an approximate guide. The experiments with rubber were logged using a sampling rate of fs¼10 kHz, and
for polycarbonate end-stops fs¼30 kHz.

Several metrics were extracted from each experiment, including the root-mean-square (RMS) displacement, velocity and
acceleration of the beam at Sites (1) and (2). The RMS velocity and displacement were obtained by high-pass filtering the
accelerometer signal using a third-order Butterworth filter with low frequency cutoff at 10 Hz; integrating once or twice for
velocity or displacement; and then subtracting the mean from the chosen steady-state time window. The accuracy was
confirmed by independent measurements with a laser vibrometer (not available for all tests). The metrics were computed
using the final second of data before the input force was ramped down: in most cases this represented a reasonably good
approximation to a steady state. A summary of the data is shown in Fig. 5: each polygon encompasses a cloud of data points
which are shaded according to the excitation amplitude, with dark shades corresponding to low amplitudes.

7.3. Numerical model

The linear dynamics of the beam can be represented as a transfer function matrix relating the displacements YðωÞ and
forces FðωÞ at Sites (1) and (2) according to Eq. (6), repeated for convenience:

Y1ðωÞ
Y2ðωÞ

" #
¼

D11ðωÞ D12ðωÞ
D21ðωÞ D22ðωÞ

" #
F1ðωÞ
F2ðωÞ

" #
:

with variables defined in Fig. 2. Note that Y2 and F2 are taken to be collocated: the offset shown in Fig. 2 is approximately
5 mm and is to prevent the accelerometer itself from coming into contact with the end-stops.

These transfer functions have been measured and mathematically fitted using standard modal analysis procedures (e.g.
[31]). By way of example, the driving point velocity transfer function at Site (2) is shown in Fig. 4(a) and (b) in the frequency
ranges 0–100 Hz and 0–5 kHz respectively. The frequency range 0–100 Hz was the same range as used for excitation during
the nonlinear tests (described in the next section). The solid line shows the measured transfer function and the dashed line
is the modal fit: the peaks were used for the fitting algorithm hence anti-resonance troughs do not match as well. The three
first bending modes are visible at 13 Hz, 38 Hz and 76 Hz. The two rigid body swinging modes are at very similar frequencies
around 0.8 Hz. The transfer functions were measured using a small instrumented impulse hammer and modal parameters
were estimated for the first 72 modes: a good fit was obtained up to 2.5 kHz (19 modes) and an increasingly approximate fit
was obtained up to 16 kHz.

The equations of motion for the beam can be written in modal coordinates. For the nth mode:

€qnðtÞþdiag 2ωnζn
� �

_qnðtÞþdiag ω2
n

� �
qnðtÞ ¼ΦT

nfðtÞ (56)

where qn is the modal contribution of the nth mode, dots denote differentiation with respect to time, ωn is the natural
frequency, ζn is the damping factor, ΦT

n is a row vector of the spatially discretised mode shape, and f is a column vector of
the spatially discretised forces. Recall that the force vector is ordered such that f ¼ ½ f 1 f 2 0 0…�T , i.e. with the input force at
Fig. 4. Measured (solid) and fitted (dashed) driving point transfer functions G22: (a) 0–100 Hz and (b) 0–5 kHz.



Fig. 5. Summary of experimental data: polygons encompass steady-state RMS velocity data points and are shaded according to input force amplitude (dark
corresponds to low amplitudes).
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Site (1) and the nonlinearity at Site (2). The nonlinear force f2 is a function of the spatial coordinate y2, which is straight-
forward to reconstruct during time-domain simulations using y2 ¼Φð2ÞqðtÞ where Φð2Þ is a row vector of all the mode shape
contributions to the y2 degree of freedom. Numerical integration was carried out using Matlab's built-in ode45 algorithm.

Experimental results indicated that impacts with polycarbonate excited modes up to 5 kHz, requiring 31 modes. The
computation time for a single 10 s nonlinear simulation was approximately 15 min: too slow for Monte Carlo simulations. As
a trade-off all modes up to 1 kHz were included, requiring 12 modes and giving average computation times of approxi-
mately 2 min per simulation. The modal properties (Φð1;2Þ, ωn, and ζn) at y1 and y2 were taken directly from modal fitting of
the experimentally measured transfer functions.

For the impacting beam simulations, the nonlinear law was taken to be a spring in parallel with a viscous damper:

f 2ðtÞ ¼
max 0; k0 y2

�� ���ymax
� �p�c0 _y2

n o
y2o�y0

0 y2
�� ��oy0

min 0; �k0 y2
�� ���ymax
� �p�c0 _y2

n o
y24y0

8>>>><
>>>>:

(57)

where k0 is the stiffness coefficient, p is the exponent of the assumed power-law dependence of the contact (a linear spring
corresponds to p¼1 and Hertzian contact theory corresponds to p¼1.5), c0 is the viscous damping coefficient, and y0 is the
clearance. The ‘min’ and ‘max’ functions are necessary to ensure that the nonlinear force only acts in compression. To
improve equivalence with experimental results, the stiffness coefficient k0 was based on an effective linear contact stiffness
kc, such that for any power-law dependence p the contact force at depth yref would always be equivalent:

k0y
p
ref ¼ kcyref ; (58)

giving

k0 ¼ kcy
1�p
ref : (59)

The reference depth was taken to be yref ¼ 0:1 mm, and the linearised contact stiffness identified from the experimental
results was found to be in the range kc ¼ ½104;106�. The lower and higher values corresponded to rubber and polycarbonate
end-stops respectively.

A numerical Monte Carlo study was carried out, varying the nonlinear contact parameters using a uniform distribution
over the following ranges: 103okco106 N m�1, 1opo1:5, and 0oy0o1�3 m. The input force was sinusoidal with
amplitude F1a ¼ 0:625;1:25;2:5;5;10 N. The maximum force applied in the experiments was 2.5 N so this choice deliber-
ately overlapped and extended the range that was possible experimentally.

7.4. Results and comparisons

A summary of the experimental data is shown in Fig. 6. Approximately 21,000 data-points were obtained, which are
summarised by polygons generated using Matlab's ‘boundary’ function. Each data-polygon represents a collection of
experimentally identified steady-state RMS velocities plotted against input frequency, and the polygons are shaded
according to excitation amplitude with dark shades for small amplitudes. If the system were linear and without uncertainty
then the responses at a given frequency should span one decade, corresponding to the range of input force amplitudes



Fig. 6. Experimental data associated with the smallest experimental input force amplitude (shaded polygon) together with the predicted linear system
response for a ‘free–free’ beam (solid line) or a ‘free–pinned’ beam (dashed line): (a) RMS displacement; (b) RMS velocity; and (c) RMS acceleration.
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spanning one decade. This is true for much of the input frequency range, perhaps suggesting a weakly nonlinear system.
However, near 10 Hz, 25–40 Hz and 60–80 Hz the behaviour is more clearly nonlinear as the response spans two or more
decades. These frequencies correspond to anti-resonances of the beam and demonstrate bistable behaviour: at these fre-
quencies a smooth starting transient means that contact is not initiated and the beam follows the linear ‘free–free’ response,
but when an initial Gaussian pulse is applied then contact is initiated and sustained. In addition, it can be seen that some
peaks diminish with increasing input force amplitude, while others become more significant: the clearest example is the
peak at 75 Hz which becomes much less significant as input force increases, while a peak at 65 Hz becomes steadily more
obvious. The shift in dominance of these peaks occurs as the beam transitions from behaving more like a ‘free–free’ beam at
low input force amplitudes, to a ‘free–pinned’ beam at high input force amplitudes.

Fig. 6 shows the data corresponding to just the lowest amplitude input force for (a) RMS displacement; (b) RMS velocity;
and (c) RMS acceleration. Also shown in these plots are the two limiting cases of the predicted linear ‘free–free’ or ‘free–
pinned’ beam as labelled in the figure. At first glance the labels appear to be the wrong way round: adding a constraint
should raise the corresponding resonant frequencies. In fact each pinned mode does correspond to the lower free mode, and
the first significant peak in the pinned response comes from the low frequency rigid body modes. It is interesting that in
Fig. 6(a) and (b) many of the features of the experimental data are captured remarkably well by either the free–free or free–
pinned predictions, suggesting that the system is ‘weakly’ nonlinear. In contrast Fig. 6(c) suggests that the system is very
strongly nonlinear as the linear predictions under-predict most of the experimental data by an order of magnitude. These
features can be understood in terms of the significance of harmonics contributions to the RMS metric: the RMS acceleration
weights high frequency contributions that are excited by impacts more strongly than the RMS velocity or displacement.

The numerical simulations can be compared with the experimental results by filtering the data for a given input force
amplitude. An exact comparison is not possible because the input force amplitude for the experimental tests was scaled at a
given frequency according to the predicted linear response (for practical considerations to avoid damage to the test rig);
while the numerical simulations used a constant force across all frequencies and allowed larger input forces. Nevertheless
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comparisons are possible using F0 ¼ 0:62570:2 N and F0 ¼ 1:2570:2 N. Fig. 7 shows the comparison of the RMS accel-
eration data for these two cases: the experimental results are summarised using a boundary polygon, while the numerical
simulations are plotted as crosses. It is clear that there is broadly good agreement: most of the data falls within overlapping
regions, and both high amplitude peaks and anti-resonant troughs appear at similar frequencies. The most significant
discrepancies in both (a) and (b) occur for input frequencies of 80–100 Hz, and is perhaps due to only including modes
below 1 kHz in the numerical simulations, while impacts actually excited modes up to around 5 kHz: these high frequency
modes may contribute significantly to the RMS acceleration response for this range of input frequencies.

The good agreement obtained between experiment and simulation allows either set of data to be compared with the
predicted bounds. Fig. 8 shows the predicted global bounds compared with experimental and numerical results. Fig. 8
(a) and (b) shows RMS displacement; (c) and (d) RMS velocity; and (e) and (f) RMS acceleration. The plots on the left (a), (c),
and (e) show results for F0¼0.625 N, and plots on the right (b), (d), and (f) show results for F0¼10 N. Both experimental and
numerical data are shown for the lower input force amplitude (a), (c), and (e), but experimental data was not obtained for
the higher input force so only numerical results are shown in (b), (d), and (f). The construction lines for the independent
bounds are shown as thinner lines, while the limiting bounds are shown in bold. The construction lines have not been
individually labelled to avoid clutter, but they can be identified as follows: bounds that slowly vary with frequency cor-
respond to the passive constraint; lower bounds that take the shape of a typical transfer function curve and upper bounds
that are mostly horizontal both correspond to the displacement constraint; and lower bounds that appear over short fre-
quency ranges as an ‘n’ shape correspond to the compression constraint.

The upper bounds in Fig. 8 are based on Eqs. (14) (passive bound) and (20) (displacement bound). The lower bounds are
based on Eqs. (41) (passive bound) and (44) (displacement bound).

There are a number of interesting features of these comparisons. The global upper bounds for RMS displacement shown
in Fig. 8(a) and (b) are both limited by the displacement constraint: this is because the passive constraint allows an
unbounded displacement as an arbitrarily large static load could be applied without inputting any power to the system. It is
clear that these bounds are extremely conservative: for most of the range of input frequencies the bound is nearly two
decades larger than the experimental or simulated worst case responses. However, the bound is nearly reached at specific
frequencies: 9 Hz in (a) and 9, 32, 67 Hz in (b). It is notable that at these frequencies the bound also shows a small feature,
indicating that something interesting occurs here. So even though the bounds are very conservative, they nevertheless
contain some useful information regarding the system response. It is also interesting that in (a) and especially in (b) the
lower bound is extremely close to the upper bound at 9 Hz, indicating that a high amplitude response is guaranteed at this
frequency. This prediction does not depend on detailed knowledge about the particular law associated with the nonlinearity
and is true for any passive, displacement-limited compressive nonlinearity.

Fig. 8(c) and (d) shows the RMS velocity comparisons. Again the predicted bounds are often two decades larger than
actual worst-cases, except at particular input frequencies (e.g. 9 Hz). Fig. 8(e) and (f) shows the RMS acceleration com-
parisons. The upper bound response for this metric is less conservative: generally one decade larger than the simulated or
experimental worst cases. It is interesting that in (e) the experimental RMS accelerations are much more scattered than the
numerical simulations predict: this may be due to the high frequency modes above 1 kHz that have been neglected in the
model. Nevertheless the upper bound does seem to closely encompass these experimental data points.
Fig. 7. Comparison of experimental results (shaded polygon) with numerical simulations (crosses) for (a) F0¼0.625 N and (b) F0¼1.25 N.



Fig. 8. Comparison of predicted global bounds (solid lines) with experimental results (shaded polygon) and numerical simulations (crosses) for (a, b) RMS
displacement; (c, d) RMS velocity; and (e, f) RMS acceleration, with (a, c, e) F0¼0.625 N; and (b, d, f) F0¼10 N.
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It is reassuring that both the global lower and upper bounds are not exceeded by any of the numerical simulation data
points, even though they are sometimes closely tracked, and that very few experimental data points exceed the bounds. The
experimental discrepancies are due to differences in position of the anti-resonances which are sensitive to the modal fitting
procedure. Also the bounds are based on including system modes below 1 kHz, but as mentioned earlier the impacting
nonlinearity excites modes up to 5 kHz.



Fig. 9. Comparison of predicted equivalent linear bounds (solid lines) with experimental results (shaded polygon) and numerical simulations (crosses)
with RMS velocity: (a) F0¼0.625 N and (b) F0¼10 N.

Fig. 10. Comparison of predicted equivalent linear bounds (solid lines) with experimental results (shaded polygon) for RMS displacement: (a) F0¼0.625 N
and (b) F0¼1.25 N.
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7.5. Equivalent linear bounds

It was observed in Section 7.4 that key features of the RMS velocity response could be predicted using either the ‘free–
free’ or ‘free–pinned’ linear response of the beam. This suggests that the RMS velocity is dominated by the frequency
contribution at the drive frequency, with other harmonics being less significant. This metric is a strong candidate for
applying the ‘equivalent linear bounds’ as derived in Section 4.

Fig. 9(a) shows the linear bounds on RMS velocity compared with both experimental results (shaded polygons) and
numerical simulations (crosses) for an input force amplitude of F0¼0.625 N. Fig. 9(b) shows the same comparison using a
higher input force of F0¼10 N, but without experimental data as this was beyond the practical range. Note that the linearity
assumption only affects the upper bound: the global lower bound only requires finding the best case linear response (see
Section 5). The upper bounds in Fig. 9 are based on Eqs. (26) (passive bound) and (30) (displacement bound).

From Fig. 9 it is striking that for both input force amplitudes the linear bound encompasses the ensemble of experimental
and numerical data: it is not an overly conservative bound and captures many key features of the data. The level of
agreement is particularly apparent for (b) where both upper and lower bounds closely encompass the ensemble of data
across the frequency range. It also gives good agreement in (a) despite being somewhat conservative in the range of input
frequencies 40–70 Hz.

These ‘equivalent-linear’ bounds appear to be a very useful tool when the response is dominated by the input driving
force. They are less useful for the RMS displacement and RMS acceleration data, which are significantly affected by sub- and
super-harmonics respectively. However, to eliminate artificial drift from integrating accelerometer signals the experimental
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RMS displacement data was high-pass filtered which removed the very low frequency response. This had the effect that the
resulting RMS filtered displacement response was in fact dominated by the input frequency. Fig. 10 shows the comparison
between the equivalent linear bounds and the experimental data (but not the simulation data) which shows that the
equivalent linear bound is useful for predicting the ensemble of experimental RMS displacement data.

The original global bounds are so conservative because they allow extreme transfer of energy from the input frequency to
another frequency (or combination of frequencies). In practice it would be hard to design a system that actually does this,
though that is not the purpose of finding global bounds. The modified bounds are so much better because it is much closer
to what actually happens in this case: most energy remains at the input frequency and the nonlinearity is encapsulated by
the way in which the equivalent linear impedance satisfies energy and displacement constraints.

7.6. Estimating confidence bounds using Maximum Entropy

Identifying bounds is useful for quantifying the possible range of responses, and for identifying features of interest such
as input frequencies that are guaranteed to result in a large response. The bounds derived above also give insight into the
relevant physical processes that govern the response: whether that is the available power that can be transferred to other
frequencies, or the gap between end-stops. It is also desirable to estimate something about the probability distribution of
responses across an ensemble. This information is not available from constraints alone, and the factors that govern the
distribution of outputs is both complicated and unknown. However, it is possible to ask: is there a rational choice of dis-
tribution that is only based on the information contained by the constraints without introducing any additional assump-
tions? One possible answer is to apply the principle of Maximum Entropy [32].

This section makes an initial attempt to see whether Maximum Entropy could yield useful predictions, but a full
treatment is beyond the scope of this paper. It is recognised that there are philosophical and practical challenges, but these
are beyond the scope of this study and are the subject of ongoing work.

The Maximum Entropy principle for a continuous set of variables seeks to maximise the ‘information entropy’ H:

H p;mð Þ ¼ �
Z
R
p xð ÞlogpðxÞ

mðxÞdx (60)

where p(x) is the probability density function that is sought, R is the region of admissible values of x, and m(x) is a ‘measure
function’ that is required to satisfy invariance of H under a change of variables x-f ðxÞ. If only bounds on x are known then
the Maximum Entropy probability distribution is pðxÞ ¼mðxÞ. This is problematic because it effectively necessitates defining
m(x), which is a probability density function that describes ‘complete ignorance’. By the principle of indifference [32] it is
natural to take m(x) to be a uniform distribution. This is not to claim that it is a correct or unique choice of distribution, only
that it is a suitable choice that results from knowledge only of the bounds. The difficulty is that x can be parameterised in
different ways, with uniform distributions on those parameters mapping to non-uniform distributions for other para-
meterisations. In this section a first choice is made for m on pragmatic grounds as a first exploration of whether the general
approach has value, and a rigorous analysis is left for future work.

It is easiest to apply Maximum Entropy to the equivalent linear force F2a subject to the constraints on energy, dis-
placement, and compression. These constraints lead to an admissible region of values for the complex variable F2a, which
can also be mapped to an admissible region for Y2a using Eq. (6) with a given input force F1a. The complex variable Y2a is
most readily parameterised in terms of magnitude and phase, or real and imaginary parts. The measure function mðY2aÞ is
chosen to be uniform over the admissible set of real and imaginary parts of Y2a as these are dimensionally consistent (rather
than uniform over magnitude and phase). Therefore the Maximum Entropy distribution is a uniform distribution for Y2a
over a region determined by the constraints. The choice of using F2a or Y2a is arbitrary as a uniform distribution for Y2a maps
to a uniform distribution for F2a.

The most straightforward way to carry out calculations is to generate a uniform grid of possible values for real Y2af g and
imag Y2af g, then retain only those points that satisfy the imposed constraints (passivity, displacement, and compression).
More efficient schemes could be envisaged but as long as the number of points that remains is ‘enough’ to obtain an
estimate of the probability density function, then this is deemed sufficient for the present study. One might ask why a
uniform grid rather than randomised sampling from a uniform distribution: both methods were tested and found to give
converging results for a large number of samples, but the uniform grid approach converged with fewer samples
(approximately 104 samples gave smooth estimates for the 10, 50 and 90 percentiles of the Maximum Entropy distribution).
Despite this high number of samples needed, the computation is still highly efficient because it involves calculating the
linear response to external input forces. The total computation time for 104 samples over 103 input frequencies in the range
0–100 Hz was approximately 10 s.

In order to generate an efficient grid of values, bounds for the maximum value of jY2aj are needed so that the grid
resolution is reasonable after applying the constraints. This is achieved by applying the same principles as in Section 4. For
passivity:

Y2aj jr D�
22aD21a

imag D22af gF1a
����

����; (61)



Fig. 11. Comparison of Maximum Entropy distribution (solid lines at 0, 10, 50, 90 and 100 percentiles) with experimental results (shaded polygon) and
numerical simulations (crosses) for RMS velocity: (a) F0¼0.625 N and (b) F0¼10 N.

Fig. 12. Comparison of Maximum Entropy distribution (solid lines at 0, 10, 50, 90 and 100 percentiles) with experimental results (shaded polygon) and
numerical simulations (crosses) for RMS velocity using F0¼0.625 N. Additional data points (blue crosses) have been included which represent a different
distribution of contact stiffnesses (see text for details). (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)
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for displacement:

Y2aj jrymax; (62)

and for compression, when real D22a40f g:

Y2aj jr D�
22aD21a

real D22af gF1a
����

����; (63)

Fig. 11 shows the computed Maximum Entropy percentiles as a function of frequency (solid lines for 10, 50 and 90
percentiles) compared with the experimental data (shaded polygons) and numerical simulations (crosses) with (a)
F0¼0.625 N and (b) F0¼10 N. The equivalent linear bounds from Fig. 9 are also shown as grey lines, and the Maximum
Entropy percentiles all fall within those bounds as expected: in fact one could view the bounds as the 0 and 100 percentiles
of the Maximum Entropy solution.

It should be noted that the discrepancies between Maximum Entropy and numerical data in Fig. 11(a) do not invalidate
the use of Maximum Entropy. It has been commented by Jaynes [32] that Maximum Entropy gives a logically self-consistent
subjective description of uncertainty: it cannot be validated or invalidated by comparison with data obtained by randomised
experiments. In particular, Jaynes notes that ‘…the principle of maximum entropy is most useful to us in just those cases
where it fails to predict the correct experimental results.’



Fig. 13. Comparison of relative standard deviation σrel of numerical simulations, experimental results and Maximum Entropy estimate for F0¼0.625 N. The
results correspond to Fig. 11(a).
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The difference between Maximum Entropy and the experimental or simulated data is simply because insufficient data
has been used as an input to Maximum Entropy. In other words the experimental and simulated ensembles of data do not
span the whole set of uncertainties described by either the bounds (Fig. 9(a)) or Maximum Entropy (Fig. 11(a)). What
additional information is needed to constrain the predicted bounds or Maximum Entropy solution? Or conversely what
additional uncertainty needs to be included in the simulation to ‘fill in the gaps’? The most likely candidate is the dis-
tribution of nonlinear stiffness values used in the Monte Carlo experiment and numerical simulations: only two materials
were used for the end-stops (rubber and polycarbonate) and their effective stiffnesses were used for numerical simulation. A
linear (rather than logarithmic) distribution for kc was used so only 10 percent of simulations used values in the range
103okco105 while 90 percent of simulations were in the range 105okco106. In addition, the rubber end-stop in the
experimental tests was only used for the larger clearances. Reconstructing the response from a Maximum Entropy solution
shows that high amplitude response in the 40–60 Hz range occurs when 103okco105, and only when the clearance is
sufficiently small that these are the effective stiffness values for the nonlinearity.

Fig. 12 shows the results of a few additional numerical simulations which use a logarithmic distribution for kc in the
range 103okco105. It can be seen that these results do indeed begin to fill the ‘gap’. The new simulations also introduce
features in the response above 80 Hz that raise additional questions: however these are left for another study.

It can be seen from Fig. 11 that the Maximum Entropy distribution matches the data extremely well in (b) and less well in
(a). This was also true for the equivalent linear bound predictions, but what makes the Maximum Entropy solution inter-
esting is that it gives some indication of the predicted spread of data. Fig. 13 shows the relative standard deviation σrel

(defined as the standard deviation divided by the mean) as a function of equally spaced frequency bands for the numerical
simulations, experimental results, and Maximum Entropy distribution for the low amplitude input force corresponding to
Fig. 11. Even though the mean response differs from the experimental and numerical data, the predicted variation is still in
reasonably good agreement.
8. Application to an example test structure II: friction-damped beam

The bounds are now applied to a friction-damped structure to test the usefulness of the passive and force-saturating
bounds. The results are somewhat similar, so this section presents a deliberately shorter summary. Experimental tests were
not carried out with a friction damper, but numerical simulations were carried out using the same suspended ‘free–free’
beam, in this case coupled at Site (2) to an ensemble of ‘uncertain’ friction laws.

For the nonlinear time-domain simulations, the nonlinear law was taken to be a continuous approximation to Coulomb's
law (based on [33]):

f 2 ¼N0 μstanh
_y2

β1

� �
� μs�μd

� �
tanh

_y2

β2

� � �
; (64)

where μs is approximately the static coefficient of friction, μd is the high-velocity asymptote of the dynamic coefficient of
friction, β1 governs the sharpness of transition when the direction of sliding is reversed, and β2 governs the sharpness of
transition from static to dynamic friction limits. For the purposes of demonstrating the applicability of the bounds to
friction-damped systems it is not necessary to know whether or not this law is a good approximation to reality: rather it



Fig. 14. Steady-state RMS velocity from numerical simulations (crosses) of the friction-damped beam for an input force amplitude of F1¼1.25 N compared
with: (a) global upper and lower bounds (solid lines); (b) equivalent linear upper and lower bounds (solid lines); and (c) Maximum Entropy distribution
(solid lines at 0, 10, 50, 90 and 100 percentiles) with equivalent linear upper and lower bounds.
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demonstrates typical features of friction in a numerically convenient form. The equations of motion (Eqs. (56) and (64)) can
be written in first-order form and solved using the Matlab function ode45.

A numerical Monte Carlo study was carried out, varying the nonlinear contact parameters using a uniform distribution
over the following ranges: 0:1oμsN0o1, 0:5oμd=μso1, 10�3oβ1o10�2 ms�1, and 1oβ2=β1o10. The input force was
sinusoidal with amplitudes F1a ¼ 0:625;1:25;2:5;5, and 10 N.

8.1. Results and comparisons

Fig. 14 shows a summary sequence of plots comparing the predicted bounds with numerical simulations for the RMS
velocity with an input force of F1¼1.25 N. This input force is chosen as a representative case, and is of the same order of
magnitude as the maximum friction force in the simulations (Fmax ¼ 1 N). The numerical simulations are compared with
(a) the global upper and lower bounds (solid lines) together with construction lines corresponding to the independent
constraints; (b) the equivalent linear bounds; and (c) the Maximum Entropy distribution 10, 50, and 90 percentiles together
with the linear bounds from (b).

It is reassuring that the numerical solutions are fully bounded by the global bounds in Fig. 14(a), albeit the upper bound is
again rather conservative at most frequencies. Nevertheless the upper bound is approached near resonant frequencies and
both upper and lower bounds give some indication of frequencies of particular interest. In (b) it can be seen that the
equivalent linear bound gives an extremely tight bound compared with the simulations, indicating that the RMS velocity is
dominated by the same frequency as the input. This turned out to be true for the RMS acceleration and displacement for
most simulations (not shown), indicating that the friction-damped system is more weakly nonlinear than the impacting
beam. The Maximum Entropy distribution in (c) gives a very good match to the data in terms of both the average response
(50 percentile) and the distribution (10 and 90 percentiles). Some details in the response features are not predicted by
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Maximum Entropy, for example the small peaks near 35 Hz and 70 Hz, but they are adequately encompassed by the pre-
dicted variability. This level of agreement is consistent across the input force amplitudes tested for cases with both large and
small variability in the response. It is surprising that Maximum Entropy seems to perform so well: it is a subjective measure
of uncertainty, so comparisons with ensembles of simulations would not necessarily be expected to yield a close match. The
good level of agreement suggests that perhaps the simulations are in some sense ‘random enough’, and there may be
potential for Maximum Entropy to be a useful tool in broader classes of systems with ‘sufficiently uncertain’ nonlinearities.
This is speculative and is left for further investigation.
9. Conclusions

This paper presents a novel approach for predicting steady-state response metrics for complex multi-degree of freedom
systems with a single nonlinearity. The approach considers the nonlinear internal force as an independent excitation, and
defines an optimisation (or ‘anti-optimisation’) problem that seeks the best or worst case with respect to an output metric of
interest for the system (e.g. root-mean-square velocity). The ‘nonlinear’ force is subject to constraints that describe what is
known about the nonlinearity (e.g. that it is passive). Semi-analytic upper and lower bounds can be found by careful choice
of the output response metric and nonlinearity constraints.

The output metrics considered were the root-mean-square displacement, velocity and acceleration. The constraints
defining the nonlinearity were chosen to be a combination of (A) passive; (B) displacement-limited; and (C) force-
saturating. Semi-analytic bounds were derived for each constraint independently, and these bounds can be combined
depending on the kind of nonlinearity. Under some conditions bounds could be derived for nonlinearities that were con-
strained to be compressive (i.e. force opposing displacement).

The bounds were compared with results from experimental and numerical tests. The experimental test rig consisted of a
suspended beam, driven sinusoidally at one end with a double end-stop nonlinearity at the other. A Monte Carlo experiment
was carried out by varying the nonlinear contact properties, generating an ensemble of approximately 21,000 tests. A
numerical model was developed based on the same underlying linear system and with similarly variable contact properties.
An equivalent numerical Monte Carlo experiment was also carried out, and the steady-state metrics were found to be in
very good agreement with the experimental results.

The bounds associated with a passive and displacement-limited nonlinearity were compared with the impacting beam
experimental and numerical results. The global upper and lower bounds encompassed all numerical data points and nearly
all experimental data points. The global bounds were found to be generally very conservative compared with results from
the specific impacting beam test system. Nevertheless they could still be useful, revealing frequencies of high amplitude
response or identifying frequencies of interest.

It was found that the RMS velocity metric from the impacting beam results appeared to be dominated by the input
excitation frequency. This led to the development of ‘equivalent linear bounds’: constraining the nonlinear force to be at the
same frequency as the input frequency. The linear bounds were much less conservative than the global bounds, and gave
excellent agreement with the steady-state RMS velocity data from experiment and simulations. This approach is directly
analogous to the ‘Describing Function’ approach (or Harmonic Balance Method with just the fundamental frequency
retained) and would be expected to be valid under similar conditions, i.e. when the response metric is dominated by the
excitation frequency.

A numerical experiment was carried out using the same underlying linear system (the suspended beam), but with a
frictional nonlinearity. Monte Carlo simulation results were compared with bounds corresponding to the passive and force-
saturating constraints. Again the global bounds were in agreement but were generally rather conservative, and the
equivalent linear bounds gave excellent agreement.

The principle of Maximum Entropy was used for both test systems to predict the response distribution associated with
the equivalent linear bounds. For the impacting beam the predicted average and variability in the response gave good
agreement with experimental and numerical results, particularly for high input force amplitudes. At low input force
amplitudes, the Maximum Entropy solution differed significantly from the data: this revealed that the ensemble of non-
linearities encompassed by Maximum Entropy was much broader than encompassed by the numerical and experimental
tests, demonstrating that care is needed when interpreting Maximum Entropy predictions. The Maximum Entropy dis-
tribution for the friction-damped system gave excellent agreement across all metrics considered and for all input force
amplitudes simulated.

The results obtained show that the simple constraints and metrics considered in this paper can yield useful predictions of
the response of a complex system with a single, uncertain and harsh nonlinearity. Generalisation to systems with multiple
nonlinearities is left for future work.
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Appendix A

This appendix proves that for a finite available power, the largest response occurs when it is used to excite the system at
a single ‘optimal’ frequency (see Section 3.1). For clarity of notation, the input force at Site (1) is set to zero.

The average available power is denoted PT. Assume that a force is applied at Site (2) which is the sum of a number of
harmonic terms at different frequencies ωn:

f 2ðtÞ ¼
X
n
real F2neiωnt

n o
; (65)

giving a response at Site (1) with the same set of frequencies:

y1ðtÞ ¼
X
n
real Y1neiωnt

n o
: (66)

where

Y1n ¼D12nF2n (67)

The average power input by each component of the force is given by:

P2n ¼
1
2
real iωnY2nF

�
2n

� �¼ 1
2
F2nj j2real iωnD22n

� �
(68)

and the total power must satisfy

PT ¼
X
n
P2n (69)

The output mean squared response is given by:

y21;rms ¼
1
2

X
n

Y1nj j2 ¼ 1
2

X
n

D12nF2nj j2: (70)

Combining with Eq. (68) gives:

y21;rms ¼
X
n

D12nj j2 P2n

real iωnD22n
� � (71)

We are seeking the distribution of P2n that should be allocated to each frequency F2n that maximises the response, subject to
Eq. (69). The mean squared response is a linear function of P2n, so the solution occurs at a vertex of the constraint from
Eq. (69). Therefore the maximum response must occur when all energy is used to excite the system at the frequency for
which the function

g ωð Þ ¼ D12nj j2
real iωnD22n

� � (72)

is a maximum. The RMS displacement is also maximised by this strategy as it is just the square root of Eq. (71). This result
has been shown for the RMS displacement, but is not affected if the output response is chosen to be RMS velocity or
acceleration.

Note that while this is the maximum response for a fixed available power, it may be that when the input force f1 is
included then under some circumstances a larger overall response could be obtained by not extracting all of the available
power. Further investigation of specific scenarios that break the bounds are beyond the scope of the present study which
seeks practical estimates of the response bounds.
Appendix B

This appendix proves the impedance matching condition for maximum power absorption discussed in Section 3.1.
The average power input P2 at Site (2) is given by:

P2 ¼
1
2
real iωU2F

�
2

� �
(73)

where F2 is the complex amplitude of the sinusoidal force input and U2 is the complex displacement amplitude. The



T. Butlin / Journal of Sound and Vibration 384 (2016) 227–252 251
response U2 is given by:

U2 ¼D21F1þD22F2: (74)

Writing real and imaginary parts separately, let F2 ¼ FRþ iFI , so that:

P2 ¼
1
2
real iω D21F1þD22F2ð ÞF�2

� �
¼ 1
2
real iωD21F1 FR� iFIð Þþ iωD22 F2RþF2I

� �n o
¼ 1
2

real iωD21F1
� �

FRþ imag iωD21F1
� �

FIþreal iωD22
� �

F2RþF2I
� �h i

(75)

This is maximised when

∂P2

∂FR
¼ 1
2
real iωD21F1

� �þ2 real iωD22
� �

FR
� �¼ 0; (76)

giving

FR ¼
�real iωD21F1

� �
2 real iωD22

� � (77)

and

∂P2

∂FI
¼ 1
2
imag iωD21F1

� �þ2 real iωD22
� �

FI
� �¼ 0; (78)

giving

FI ¼
� imag iωD21F1

� �
2 real iωD22

� � : (79)

Combining these such that F2 ¼ FRþ iFI gives:

F2 ¼
� iωD21F1

2 real iωD22
� �: (80)

To show that this is equivalent to an impedance match, let F2 ¼ � iωU2=ðiωD22Þ�. This gives:

F2 ¼ � iωU2

ðiωD22Þ�
¼ iωD21F1þ iωD22F2

ðiωD22Þ�
: (81)

Rearranging for F2 gives:

F2 ¼
� iωD21F1

iωD22þðiωD22Þ�
¼ � iωD21F1
2 real iωD22

� � (82)

which is the same result as Eq. (80).
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