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Abstract 
Many assumptions about the way cells behave are based on analyses of 

populations.  However, it is now widely recognized that even apparently pure 

populations can display a remarkable level of heterogeneity.  This is particularly true 

in stem cell biology where it hinders our understanding of normal development and 

the development of strategies for regenerative medicine. Over the past decade 

technologies facilitating gene expression analysis at the single cell level have 

become widespread, providing access to rare cell populations and insights into 

population structure and function. Here we review the contributions of single cell 

biology to understanding stem cell differentiation so far, both as a new methodology 

for defining cell types and a tool for understanding the complexities of cellular 

decision-making. 

 



Introduction 
Embryonic development and multilineage differentiation require that diversity be 

generated from individual cells, whether the zygote or adult stem cells. While the cell 

populations produced by these processes show stereotypical behaviours with 

regards to stability and potential that are vital to normal development and 

homeostasis, there is now recognized to be huge variation in populations at the 

cellular level [1,2]. For example, embryonic stem cells (ESCs) are heterogeneous 

and prone to differentiation in conventional serum and Lif culture conditions, but are 

transcriptionally and phenotypically more homogeneous in the ‘ground state’ 2i and 

Lif conditions and stably self renew [3,4]. With the current drive to understand and 

mimic cell fate decisions in culture for regenerative medicine, it is vital to understand 

how diversity arises, what causal role or effect heterogeneity has in differentiation 

and whether it can be modulated to produce phenotypically pure populations.  

 

Heterogeneity can be due to the presence of multiple cell subpopulations, 

asynchrony in cell cycle progression [5], or stochasticity in molecular processes 

including transcriptional bursting [6]. This has great implications for the extrapolation 

of population studies to individual cells as changes in population gene expression 

can correspond to changes in individuals or to a change in the cellular composition of 

a tissue (Figure 1). Therefore strategies to analyse individual cells have great 

promise in increasing our understanding of stem cell biology.  Furthermore, stem 

cells are often rare populations and not amenable to conventional studies requiring 

millions of cells. Single cell studies therefore facilitate molecular analyses of 

previously intractable cells.  

 

Historically, attempts to study single cells have been based on imaging or flow 

cytometry, limiting the number of parameters that can be investigated. Two key 

developments over the last decade have opened up the era of single cell biology, 

most notably in the case of transcriptomics: the introduction of many –omics 

technologies and their reduction to the single cell level [7], and the use of 

microfluidics to miniaturise and parallelise procedures [8–10]. It is now possible to 

assay the entire transcriptome of individual cells, and although there are still 

technical challenges - the low efficiency (5-25%) of reverse transcription means that 

lowly expressed genes may not be captured [11] - it is usually possible to obtain 

biologically meaningful information for several thousand genes per cell depending on 

cell type and sequencing depth [11–13].  

 



Here we will explore the lessons learned from single cell transcriptomics regarding 

the nature of cellular decision-making and the function of heterogeneity, and how 

single cell transcriptomics is redefining lineages. We will not cover the technical 

aspects of experimental design and analysis, which are reviewed elsewhere [13–18]. 

 

Towards an atlas of cell fate 
Homing in on HSCs 

Since the discovery of the haematopoietic stem cell [19], decades of work have gone 

into identifying this rare population and the hierarchy through which it produces the 

diverse mature cell types of the blood system [20,21]. Key to this process has been 

prospective isolation of cell types using antibody staining and FACS, and their 

characterization with functional assays. Not surprisingly given the promiscuity of 

many surface markers, most populations remain impure with at best 50% of cells 

immunophenotypically defined as HSCs exhibiting true HSC activity in 

transplantation assays [22,23]. 

 

Trying to distinguish between transcriptional noise and HSC subpopulations, 

Glotzbach et al., [24] identified nine genes that differed between CD34lo cells 

(enriched for HSC activity) and CD34high progenitor cells.  They identified a cluster of 

CD34lo cells that was also found in HSCs sorted using another strategy, but was 

underrepresented in CD34high cells, potentially representing part of the transcriptional 

program of true HSCs.  However, analyzing so few genes provides little insight into 

the regulation of HSCs, and this study offered no means for isolating these cells. 

 

To enrich for HSCs, Wilson et al., [12] collected single cells using four common 

immunophenotypes for mouse HSCs (Figure 2A). They identified the molecular 

overlap (termed ‘MolO’ cells) between the four populations using 48 genes analysed 

by single cell quantitative real-time PCR (sc-qRT-PCR), specifically identifying a 

region in the 48-dimensional space where the frequency of cells of each sorting 

strategy matched the percentage that read out as HSCs in transplantation assays.  

The authors used index sorting – where the fluorescence data relating to each cell is 

retained – to associate the MolO gene expression profile with a refined 

CD150+CD48-Sca1highEPCRhigh surface profile that further enriched HSCs to 67% of 

the sorted population.  Additional whole transcriptome analysis using single cell RNA 

sequencing (scRNA-seq) identified a cell cycle signature consistent with quiescent 

HSCs [12].  While clearly of specific interest to the haematopoietic community, this 



strategy can be applied to other systems to identify potential new stem cell markers 

for functional testing. 

 

Re-routing myelopoiesis 

The origins of each haematopoietic lineage are also a source of continued debate. 

The traditional hierarchical model of binary fate choices between alternative lineages 

(Figure 1C) [25,26] has been called into question with reports that the common 

myeloid progenitor (CMP) is not a bipotent progenitor but a heterogeneous mixture of 

different lineage progenitors [27], and that the megakaryocyte-erythroid lineage 

differentiates directly from the HSC rather than through the CMP [28]. 

 

A large-scale single cell qRT-PCR study of multiple adult haematopoietic populations 

showed that the CMP could be subdivided by expression of CD55 [29]. Prospective 

isolation and transplantation of CD55+ and CD55- populations identified 

megakaryocyte-erythroid and myeloid biases in lineage output respectively, in line 

with the transcriptomic data. Further upstream, high levels of CD150 in HSCs, 

already shown to enrich for long-term HSC activity [23], correlated with a 

megakaryocyte-erythroid gene signature [29], in line with the early emergence of 

platelet-primed progenitors [28]. 

 

scRNA-seq has been used to dissect myelopoiesis further.  Massively parallel single 

cell RNA-seq (MARS-seq) was developed to sequence tens of thousands of cells at 

low coverage, with only 200-1,500 mRNA molecules detected per cell, but provided 

enough information to define dendritic cell types [30]. The same method has since 

been applied to the whole haematopoietic stem/progenitor compartment [31]. 

Expression of CD34 and FcgR – used to separate the CMP from its supposed 

progeny, the megakaryocyte-erythroid (MEP) and granulocyte-monocyte (GMP) 

progenitors – was also recorded by index sorting. Analysis of nearly 3,000 cells 

identified 19 myeloid clusters which could be associated with particular lineages and 

differentiation stages based on the expression of key markers, but which did not 

cleanly segregate into the CMP, MEP and GMP gates conventionally used for sorting 

(Figure 2B).   

 

The myeloid compartment has already been further subdivided by flow cytometry 

[32], so it would be interesting to see how the clusters identified by Paul et al., fit 

within this more refined view of myelopoiesis. Nevertheless, the hierarchy proposed 

between clusters was consistent with early lineage commitment rather than the 



existence of multipotent progenitors (Figure 2C), which agrees with recent barcoding-

based lineage tracing experiments in native haematopoiesis [33,34]. 

 

Lineage decomposition in solid tissues 

Despite these ongoing debates, haematopoiesis remains the best-characterized 

stem cell system.  Analysis of lineages and cellular potential has been harder in non-

haematopoietic tissues where cells are more difficult to access and assays less well 

developed.  Here, the value of scRNA-seq for non-biased lineage decomposition and 

marker identification is clear. 

  

A similar approach to myelopoiesis was taken in the intestine, where single cells from 

intestinal organoids – in vitro 3D cultures originating from single stem/progenitor cells 

that recapitulate normal intestinal structures – were sequenced to investigate the 

cellular composition of the tissue [35]. Although the cell numbers were relatively 

small compared to the haematopoietic studies, the authors developed a new 

computational tool, RaceID, to identify rare cell types, even where they make up as 

few as 1 cell in the population, by identifying cells that express ‘outlier’ genes above 

levels expected based on population noise. Using this tool, Reg4 was identified and 

validated as a new marker to enrich for enteroendocrine cells, and sequencing of 

Reg4+ cells identified several cellular subtypes not previously known to exist in the 

small intestine, with implications for understanding the endocrine control of digestion 

[35]. The authors also used RaceID on sequenced Lgr5+ cells from organoids and 

primary mouse samples to contribute to the ongoing debate as to whether the Lgr5+ 

stem cell pool is heterogeneous, but could not detect subpopulations [35]. Given the 

current noisy nature of scRNA-seq, RaceID is unlikely to be accurate when faced 

with lowly-expressed genes which are more prone to dropout. Indeed, the screen of 

whole organoids failed to identify a stem cell cluster, likely because of the low 

expression of Lgr5, but this should improve with sequencing quality.  

 

It is often impossible to know a priori how many cells will be required to identify 

particular populations, so being able to capture all cells of a tissue rather than a 

subset would be beneficial. However, with conventional methods this either requires 

a sacrifice in sequencing depth for each cell to enable more to be analysed, or 

makes experiments prohibitively expensive for many researchers. Similar to MARS-

seq, another study sought to investigate the level of sequencing depth required to 

accurately classify cells [36]. Down-sampling indicated that 50,000 sequencing reads 

per cell are required to distinguish disparate cell types including blood, neural and 



epidermal cells [36], compared with the 20,000 indicated by MARS-seq [30]. The 

authors went on to examine primary neural cells, as understanding development and 

neurodevelopmental disorders is hindered by the variety of cell types present in the 

developing brain. Down-sampling to as few as 5,000 reads per cell was still sufficient 

to coarsely cluster cells, although using a greater fraction of the data allowed for the 

identification of many putative markers and indicated that cells could be classified on 

the basis of cell cycle and the activity of signaling pathways, as well as by cell type 

[36]. 

 

Two recent technologies, Drop-seq [37] and inDrop [38], provide increased 

throughput at a lower cost by capturing thousands of individual cells in parallel in 

nanolitre-volume droplets.  Each droplet functions as a microscopic reaction chamber 

for library preparation, with barcoded cell libraries later highly multiplexed for 

sequencing. Drop-seq was used to interrogate nearly 45,000 mouse retinal cells, 

identifying 39 transcriptionally-distinct clusters down to 50 cells in size, including 

known and new populations [37]. 

 

scRNA-seq has recently been used to identify lineages and lineage relationships in 

several other tissues, including the lung [39], otocyst [40] and during cardiogenesis 

[41]. A lot may therefore be learned by stepping away from conventional surface 

marker-based assays and transplantation models towards single cell profiling of 

whole native tissues, even where we consider a lineage to be well-defined. Droplet-

based technologies will greatly facilitate this process [37,38] and commercial 

platforms are beginning to emerge.  However, prospective isolation will still be 

required to demonstrate the functionality of each cell type [12,31]. It will also be 

important to move beyond providing an atlas of cell types to understanding how the 

differences between them arise. Comparing the results of mutations or disease 

models to wild type cells is already providing insights into the roles of individual 

genes [31,42] and  comparing populations such as induced HSCs [29,43] and ESCs 

grown in different conditions [44] to their in vivo counterparts has helped improve 

experimental strategies. 

  

Lessons in lineage segregation 
While morphological and immunophenotypic differences allow us to isolate 

populations, the events that segregate them may happen many generations 

previously without any morphological indications, making it difficult to define and 

capture decision points. One of the earliest single cell transcriptomic studies 



analysed individual cells from the mouse zygote through to the 64 cell blastocyst by 

sc-qRT-PCR [45].  This identified inverse correlations between Sox2 and Id2, and 

Fgf4 and Fgfr2, indicative of the lineage decisions between trophectoderm and inner 

cell mass, and epiblast and primitive endoderm (PE), respectively, earlier than they 

can be morphologically distinguished. These findings are consistent with the 

blockade of Fgf signaling employed by 2i and Lif ESC culture conditions [3,46], and 

blocking Fgf signaling in morulae resulted in a down-regulation of PE and up-

regulation of epiblast markers [45]. A subsequent study of Fgf4-/- embryos indicated 

that the Fgf pathway functions to reinforce expression patterns resulting from earlier 

heterogeneity, leading to lineage segregation [47], although the cause of such 

heterogeneity and the early differences identified by Guo et al., [45] is unresolved. 

Although mammalian embryos are remarkably plastic and can survive the removal of 

cells at a very early stage, for example for preimplantation genetic diagnosis, several 

recent studies have reported differences in gene expression of sister blastomeres in 

2- and 4-cell stage mouse embryos that can be related to lineage choice rather than 

noise [48–50]. A bias in the contribution of blastomeres at the 4 cell stage to different 

lineages has also been observed by lineage tracing [51], so understanding how 

these early differences arise will be a key issue. 

 

Recent studies using scRNA-seq have indicated that there is reasonable 

conservation between gene modules expressed in very early mouse and human 

embryos (1-8 cells) [52,53].  There are some differences in timing and specificity, 

including for major pathways such as Tgfβ, which was shown to play a key role in 

maintaining the pluripotent epiblast in humans only [54]. Studies have also 

highlighted significant differences between hESCs and human epiblast cells [52,54], 

although this is reduced in more recent attempts to achieve ‘ground state’ 

pluripotency in hESCs [54]. These studies suggest that the differences found could 

help to identify pathways, particularly Wnt and Fgf, that could be modulated to 

obtained cell lines more representative of the in vivo pluripotent state. 

 

Hierarchical and stochastic stages of commitment and reprogramming 
One of the earliest attempts at single cell gene expression analysis suggested that 

HSCs promiscuously express lineage-affiliated genes, termed ‘lineage priming’, prior 

to differentiation [55]. A number of studies have subsequently investigated lineage 

commitment and suggest that the early stages are stochastic, with the 

heterogeneous expression of lineage-affiliated genes eventually swaying the balance 



from self-renewal to differentiation before a lineage programme becomes irreversibly 

activated.   

 

In the haematopoietic EML cell line, levels of the surface marker Sca-1 were shown 

to correlate with lineage potential, and cells could reversibly move between 

subpopulations [56].  However, the potential of individual cells across the distribution 

of Sca-1 expression was never formally tested. In a follow up study using sc-qRT-

PCR [57], the erythroid-biased Sca-1lo population was further divided on the basis of 

expression of key erythroid regulator Gata1. This correlated with differentiation 

capacity but not self renewal [57], arguing that the two programs are separate and 

that self-renewing cells cannot significantly sample lineage programs without 

committing. However, the newly committed Gata1+ cells were transcriptionally more 

similar to the uncommitted progenitors than mature erythroid cells, with substantially 

more heterogeneity in expression. Coupled with further computational modeling, this 

work suggests that while cells ultimately activate the same lineage-specific 

transcriptional programme, the early stages are stochastic and offer multiple routes 

into differentiation [57,58]. 

 

Heterogeneity of Nanog expression in ESCs [59], among other factors [60,61], has 

also been linked to differentiation bias, while ESCs can be maintained without Nanog 

but are more prone to differentiation [59]. Following transient Nanog depletion, the 

pluripotency network is stable enough to be rescued by Nanog re-expression for 3 

days, before irreversibly breaking down during differentiation [62]. Sc-qRT-PCR 

analysis of a number of genes indicated that the early changes after Nanog depletion 

are stochastic, with no subpopulations of cells identified.  As Nanog is involved in 

many feedback loops in ESCs, the authors proposed that Nanog fluctuations cause 

transitions between a feedback-rich pluripotent state, and states with less feedback 

that are prone to differentiation [62]. The use of InDrops to study ESC heterogeneity 

and the first stages of differentiation additionally suggested that fluctuations in the 

expression of pluripotency regulators are weakly coupled within cells, but a strong 

differentiation stimulus such as loss of LIF results in a more coherent lineage 

programme [38], as in erythroid cells [57]. This early-stochastic and late-hierarchical 

pattern also holds true in reprogramming, where single cell analysis indicated that a 

coherent transcriptional programme only develops after activation of Sox2, and that 

the early stochasticity accounts for low reprogramming efficiency [63]. 

 



Several studies have attempted to formalize gene expression changes between cells 

to generate gene regulatory networks that explain self-renewal and differentiation. 

Network inference from population studies has been hindered by having few samples 

relative to the number of genes studied, and due to the asynchrony of cells within 

those samples. Methods are now improving thanks to the thousands of cells that can 

be analysed using single cell methods. Using correlation between genes in 600 cells 

across multiple haematopoietic stem/progenitor populations, we identified a triad of 

transcription factors (TFs), including Gata2, that seems to act in regulating exit from 

the stem cell compartment, with the connectivity validated by ChIP-seq and 

transcriptional assays [64]. Other single cell studies have also highlighted the 

importance of Gata2 in early stages of HSC differentiation [29,57,58]. Using a more 

sophisticated synthesis approach we built a boolean network for early 

haematopoietic development in the embryo that provided a number of hypotheses 

about gene regulation and allowed us to test the function of each gene in the network 

[65].  

 

Recreating developmental trajectories using pseudotemporal ordering 
A great drawback of current scRNA-seq technologies is the loss of spatiotemporal 

information associated with cells, an important consideration given the highly ordered 

structure of tissues and the information passed between cells both through physical 

contact and paracrine signaling. Several unsupervised approaches have recently 

been suggested for reconstructing cellular ‘pseudotime’ by ordering cells according 

to similarities in their transcriptomes and finding the longest continuous path through 

the data, with no prior knowledge required of expected gene expression patterns.  

 

Monocle was introduced for the analysis of skeletal myoblasts in culture, where it 

identified clusters of genes with different kinetics [66], and has subsequently been 

used to study olfactory receptor development [16] and to compare neuronal 

development in human neocortex and cerebral organoids [67]. Wanderlust was 

developed for single cell mass cytometry analysis of protein expression in 

differentiating B cells [68], but is also applicable to scRNA-seq. We used diffusion 

maps to order 4,000 cells from the earliest stages of blood development in the 

gastrulating mouse embryo and were able to capture the bifurcation of blood and 

endothelium from mesoderm [65,69]. Where real-time information is lacking, the 

pseudotemporal ordering of otherwise asynchronous snapshots of cells therefore 

allows for greater resolution in understanding the order of gene expression and 

therefore the regulatory relationships between genes. 



 
Conclusions 
The era of single cell biology is upon us, requiring new methods and interdisciplinary 

collaborations, and a new way of thinking about biological problems [70,71]. In 

particular, the use of single cell technology as a new method to explore lineage 

structure seems set to continue with the potential to catalogue the entire human 

body. The continued decrease in sequencing cost and increase in multiplexing, 

particularly with droplet-based technologies, will also make the technology available 

to a wider circle of researchers and topics.  

 

While the promise is great, there are many challenges still to be faced, not least in 

improving RNA capture and processing and distinguishing biological variation from 

technical noise. Methods such as SmartSeq2 span whole transcripts and can 

therefore be used to discover novel isoforms and splicing, but provide relative 

transcript abundances [72]. Conversely, MARS-seq [30] and droplet technologies 

[37,38] incorporate unique molecular identifiers into each transcript to enable 

transcript counting and reduce technical noise, but as a result only provide 

information about the ends of transcripts while the parallelization prevents phenotypic 

information such as surface marker expression from being recorded for each cell. 

Further, the lower depth of sequencing typical with these techniques sacrifices 

information about lowly expressed genes, which can include key regulatory factors 

such as TFs. There is necessarily a trade off between the number of cells that can be 

analysed and the sequencing depth per cell, and researchers must carefully evaluate 

their needs when designing experiments to select the most appropriate sequencing 

method for the information required [14,13]. 

  

A deeper biological understanding will also require analysis of other aspects of gene 

regulation and function. Accordingly, methods are emerging to study other molecules 

and modifications at single cell resolution, from proteins [73] and DNA methylation 

[74], to protein-DNA interactions [75,76] and chromosome looping [77].  It’s also 

possible to study DNA and RNA [78] or methylation and transcription [79] within the 

same cell, so single cell systems biology is on the horizon. Spatial context cannot be 

ignored, and methods are appearing for sequencing in situ [80] and for building 

tissue maps from in situ hybridization images [81,82] and by sequencing small 

populations of cells from multiple tissue sites [83], against which single cell 

transcriptomes can be mapped. Likewise, live imaging provides a temporal context 

completely unavailable to transcriptomics technologies [84], but is limited in the 



number of genes or proteins that can be studied simultaneously. Mapping 

transcriptomic data against live imaging information could, like arrangement in 

pseudotime, help to bring order to snapshot data to discover the underlying patterns. 

These ideas are methodologically challenging, both for experimentalists and 

computational biologists. A strong, continued relationship between the two is 

therefore fundamental for the continued success of single cell biology. 
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Figure legends: 
Figure 1: More than the sum of its parts. A) While a population-level approach 

may indicate that all cells express the same level of three genes (left), single cell 

analysis shows a wide range of expression patterns.  This has great implications for 

understanding behavior and regulatory interactions between genes.  Modified from 

[85].  B) A change in expression of a gene in response to a stimulus can occur due to 

a change in expression within individual cells (due to a change in regulation; top 

right) or due to a change in the composition of a population (bottom right), for 

example with the selective proliferation of one cell subset at the expense of another. 

Modified from [86]. 

 
Figure 2: Redefining haematopoiesis. A) Wilson et al., [12] performed qRT-PCR 

for a set of known stem cell regulators in single cells of four HSC populations 

prospectively isolated based on published immunophenotypes.  A region was 

identified in which all four populations overlapped and was associated with a 

particular immunophenotype (red box on FACS plot) within the HSC gate (blue box 

on FACS plot). Subsequent transplantation of these ‘MolO’ cells into mice indicated 

that they are enriched for HSC activity compared with previous protocols. B) Paul et 

al., [31] used MARS-seq to profile the transcriptomes of ~2,700 cells of the mouse 

progenitor compartment.  They identified 19 cell clusters showing varying degrees of 

overlap with the MEP, GMP and CMP compartments previously defined.  Each 

cluster was associated with a particular lineage based on the expression of key 

markers and TFs. Heatmap from [31]. C) The conventional haematopoietic hierarchy 

(left) in which HSCs give rise to mature cell types through a hierarchy of multipotent 

progenitors.  A novel hierarchy (right) has been proposed as a result of work by Paul 

et al., [31] and others in which only the earliest cells are multipotent, with lineage 

restriction occurring earlier during differentiation. 
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