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Abstract Westudy the asymptotic behaviour of the partial density function associated
to sections of a positive hermitian line bundle that vanish to a particular order along a
fixed divisor Y . Assuming the data in question is invariant under an S1-action (locally
aroundY ) we prove that this density function has a distributional asymptotic expansion
that is in fact smooth upon passing to a suitable real blow-up. Moreover we recover the
existence of the “forbidden region” R on which the density function is exponentially
small, and prove that it has an “error-function” behaviour across the boundary ∂R. As
an illustrative application, we use this to study a certain natural function that can be
associated to a divisor in a Kähler manifold.
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1 Introduction

For motivation, consider as a toy example the space of polynomials on Cd with inner
product
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(p, q) :=
∫
Cd

p(z)q(z)e−k|z|2dλ,

where k ∈ N and dλ is (2π)−d times the Lebesgue measure. For given ε > 0, let
{pα} be an orthonormal basis of polynomials that vanish to order at least εk along the
hyperplane {z1 = 0} ⊂ C

d . Then the partial density function associated to these data
is the smooth function

ρε
k (z) :=

∑
α

|pα(z)|2e−k|z|2 .

This is independent of choice of orthonormal basis, and our interest lies in its asymp-
totic behaviour as k tends to infinity. Using a basis in which the basis {pα} consists of
monomials, after straightforward calculation,

k−dρε
k = e−kx

∑
j�εk

(kx) j

j ! , x = |z1|2. (1.1)

Regarding ρε
k as a function of x , we find the asymptotic behaviour

k−dρε
k (x) ∼ 1√

2πx

∫ √
k(x−ε)

−∞
e− t2

2x dt for k � 0. (1.2)

This can be seen, for instance, through the Central Limit Theorem applied to k inde-
pendent Poisson random variables with parameter x . Thus k−dρε

k is asymptotically a
standard error-function centred at x = ε; in particular it tends to zero exponentially
fast on the set R = {x < ε}, and tends to 1 on {x > ε} as k tends to infinity.

In this paper we study the analogous partial density function associated to sections
of high powers of a positive hermitian line bundle that vanish to a particular order along
a fixed divisor. Similar density functions have found a wide range of uses, including
the study of random matrices (e.g. Shiffman–Zelditch [26], Berman [2]), in Käh-
ler geometry (e.g. Pokorny–Singer [21], Ross–Witt-Nyström [23]) and in dimension
d = 1 is closely related to the Laplacian growth (e.g. Hedenmalm-Makarov [12,13]).

In the work of Shiffman–Zelditch [26] it is shown, essentially in the toric case, that
there is a subset in which the partial density function is exponentially small (and it
is here that this is given the name “forbidden region”). Through work of Berman [1]
it is known (at least when the base is compact) that there is again an open forbidden
region R containing the divisor such that asymptotically the partial density function is
exponentially small on compact subsets of R and is equal to the usual density function
on compact subsets of the complement of R. This has been studied again in detail in
the toric case [21] but other than this rather little is known about the behaviour of the
partial density function near the boundary of R.

Our results below give an essentially complete description of the partial density
function when all the data in question are invariant under a local holomorphic S1-
action and ε is sufficiently small. Roughly speaking it states that there is a natural
way in which the partial density function has a globally defined asymptotic expansion
in powers of k1/2 whose terms depend on the curvature of the hermitian metric, all
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Asymptotics of Partial Density Functions for Divisors

of which are (in principle) computable. Moreover, by working out the leading term
we recover the existence of this forbidden region and show that the partial density
function has the same error-function behaviour across its boundary as it does in the
model case (1.2).

Before stating precise theorems we return once more to the toy example above. A
convenient way to express the existence of an asymptotic expansion is through the
semi-classical variable h̄ = k−1/2. Then to say that a function of the form k−dρε

k (x)
for x ∈ R>0 admits a smooth asymptotic expansion in powers of k1/2 is to say that
the function

ρ̂(h̄, x) := k−dρε
k (x) for h̄ = 1√

k
and k ∈ N

extends to a smooth function on R�0 ×R>0, i.e. it extends to a smooth function right
up to the boundary on which h̄ = 0. Now if ρε

k is the partial density function in (1.1)
then ρ̂ cannot extend smoothly to the entire boundary {h̄ = 0}. For as we have seen,
its leading order term in h̄ is

1√
2πx

∫ x−ε
h̄

−∞
e− t2

2x dt

which does not extend smoothly over the point (x, h̄) = (ε, 0) due to the presence
of the term ξ := x−ε

h̄ . However, we can formally circumvent this by considering ρ̂

instead as a function of ξ and h̄, at which point its smoothness is immediate. This is
made precise by an approach advocated by Melrose: we consider instead the lift of ρ̂

to the real blow-up of R�0 × R>0 at the point (0, ε) which does extend to a smooth
function across the boundary.

With this in mind we state our main results. Let X be a compact complex manifold
and L be a holomorphic line bundle with a positive smooth hermitian metric h. These
induce an L2-inner product on the space of sections H0(Lk) and if Y is a smooth
divisor in X then for ε � 0 the partial density function is defined to be

ρε
k =

∑
α

|sα,k |2hk

where {sα,k} is an L2-orthonormal basis for the space of holomorphic sections of Lk

that vanish to order at least εk along Y . When ε = 0 we denote this simply by ρk
which is the usual density function (often called the Bergman function). We suppose
that there is a neighbourhoodU of Y that admits a holomorphic S1-action on X which
is standard in local coordinates around Y . That is,

eiθ · (z, w) = (eiθ z, w) for eiθ ∈ S1 (1.3)

where Y is locally defined by z = 0. We also assume that the restrictions of all the
initial data toU (i.e. the line bundle and metric) are invariant under this action. Denote
by μ : X → R the Hamiltonian of the action, normalized so that μ−1(0) = Y , and let
v be the vector field generating the S1-action.
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Theorem 1.1 Given the above data, for sufficiently small ε, we have

ρε
k ∼

{
O(k−∞) on μ−1[0, ε),
ρk + O(k−∞) on X\μ−1[0, ε]. (1.4)

By this statementwemean that equality holds on anygiven compact subset ofμ−1[0, ε)
(respectively X\μ−1[0, ε]). Thusμ−1[0, ε) is precisely the forbidden region described
above.

Theorem 1.2 Let ρε
k be the partial density function and set

ρ̂(h̄, x) = k−dρε
k for h̄ = k−1/2.

Then ρ̂ has a distributional asymptotic expansion on X. In fact this distribution is the
push-forward by the blow-down map β of a smooth function on the real blow-up of
X × [0,∞) along μ−1(ε) × {0}. Its leading order term is given by

ρ̂(z, h̄) = 1√
2π |v(z)|2

∫ μ(z)−ε
h̄

−∞
e
− t2

2|v(z)|2 dt + O(h̄) (1.5)

for (z, h̄) such that

μ(z) − ε

h̄

is bounded.

We refer the reader Appendix 1 for a summary of this real-blowup that is denoted
[X × [0,∞);μ−1(ε) × {0}]. Roughly speaking it is obtained by replacing the sub-
manifold μ−1(ε) with a “half-cylinder” as in the following picture, and allows the use
of well-defined “polar coordinates” centered at points in μ−1(ε).

X1 = [X0;μ−1(ε) × {0}]

X0 = X × [0, 1)

Xμ−1(ε)

β
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So using again the substitution h̄ = 1/
√
k we can interpret this as the statement

that ρε

1/h̄2
is a smooth function on the half-space X × [0,∞) (or really the restriction

of such a smooth function for values of h̄ with h̄−2 a positive integer). In fact, there is
almost certainly an interpretation of density functions for all real powers of L using
Melrose’s ideas [17], which would give a natural interpretation of the (partial) density
function for all values of the semi-classical parameter h̄.

The idea of the proof is as follows. Consider first the case that X is one dimensional.
Then looking locally we are essentially interested in the case X is the unit disc with
coordinate z andY is the origin. Since all the data are S1-invariant, the set ofmonomials
zεk, zεk+1, . . . give an orthogonal set of local sections that vanish to the right order
along Y . Thus the partial density function can be calculated by summing the pointwise
norm of these functions, once they have been normalised to have unit L2-length. Using
the moment-variable (given by a Legendre transform of the potential defining the
metric) this can be done with a combination of standard techniques, namely Laplace’s
method to calculate the integrals defining the length of these functions, and then a
combination of Laplace’s method and the Euler–Maclaurin formula to expand the
resulting sum in powers of k. This gives a local formula for a quantity that ought
to be the partial density function, and one argues that this is in fact the case up to
insignificant terms.

Our real interest is the case of higher dimension. Here we argue similarly, replacing
the powers of z with powers of a choice of defining section for Y . We then use a
parameterized version of the Legendre transform to deal with the directions normal
to Y . In fact, we interpret this Legendre transform as giving a family of hermitian
metrics on certain line bundles on Y which, along with a family of volume forms
that we construct, gives a family of density functions on Y (that play the role of the
normalising of the sections z j to have unit length). Together these can be summed to
give a quantity that ought to be the partial density function, and again one proves this
is the case up to insignificant terms. Then, using essentially the same techniques as
in the one-dimensional case, we prove that it has the desired asymptotic expansion in
powers of k. We refer the reader to Sect. 5 for a more detailed summary.

Added in Proof: The reader interested in this topic should be aware of recent work of
Zelditch-Zhou [32] who have since proved similar results on the interface behaviour
of the partial density function.

2 Partial Bergman Kernels

The density function of a hermitian line bundle is the restriction to the diagonal of the
Bergman kernel, which is the reproducing kernel for the L2-projection to the space of
holomorphic sections. Here we shall discuss the simple extension of this concept in
which we impose a certain vanishing of the sections along a fixed submanifold.

2.1 Definition of Partial Bergman Kernels

We start by recalling some standard notation and terminology. Let L be a holomorphic
line bundle on a complex manifold X of dimension d, and h be a hermitian metric on
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L . Given a local holomorphic trivialization ζ of L we can write |ζ(z)|2h = e−2ϕζ (z)

for some smooth potential function ϕζ . By standard abuse of notation we let ϕ denote
this potential (even though it is not globally defined) and we confuse ϕ with the metric
h = e−ϕ . Thus hk = e−kϕ is the induced hermitian metric on Lk := L⊗k for k ∈ N. In
terms of transition functions, if ζα = λαβζβ then ϕζβ = ϕζα + log |λαβ |. From this one
can extend the notion of a potential to include the case of Q-line bundles. The abuse
of notation h = e−ϕ also leads us to use the terminology ‘ϕ is a (plurisubharmonic
potential) for L’ instead of h is a metric on L (with positive curvature).

If s is a section of L then by abuse of notation we let s also denote its local
representative in a given trivialization: thus |s(z)|ϕ = |s(z)|e−ϕ(z). The associated
curvature form1

ωϕ = ddcϕ = 1

2π
d Jdϕ = i

π
∂∂ϕ (2.1)

is awell defined (1, 1)-form and the hermitianmetric e−ϕ is said to be (strictly) positive
if ωϕ is a (strictly) positive form, which occurs if and only if ϕζ is a (strictly) plurisub-
harmonic function for all local trivializations ζ . When ϕ is strictly plurisubharmonic
we let ω[d]

ϕ = 1
d!ω

d
ϕ be the associated volume form.

The hermitian metric e−ϕ gives a pairing (·, ·)ϕ : Lz ⊗ Lz → C that is linear in the
first variable and conjugate linear in the second. The induced L2-inner product on two
smooth sections s, t of L is given by

〈s, t〉ϕ :=
∫
X
(s, t)ϕω[d]

ϕ =
∫
X
s(z)t(z)e−2ϕ(z)ω[d]

ϕ

andwe shall write ‖s‖ϕ for the corresponding L2-norm.We denote by L2
kϕ := L2

kϕ(X)

the space of sections of Lk with finite L2-norm, and let Hkϕ := Hkϕ(X) ⊂ L2
kϕ denote

the subspace of holomorphic sections.
We write L for the bundle L with the conjugate complex structure. If V,W are

auxiliary holomorphic vector bundles on X then we let (·, ·)ϕ also denote the naturally
induced pairing (L ⊗ V ) ⊗ (L ⊗ W ) → V ⊗ W and extend our other notations
accordingly.

Assume now that ϕ is a smooth strictly plurisubharmonic potential on L . Since
we will be interested in sections of Lk asymptotically as k tends to infinity we make
this part of our definition of the partial Bergman kernel as follows. Let Y ⊂ X be a
compact complex submanifold and ε ∈ Q�0.

Definition 2.1 Denote by H εk
kϕ the subspace of holomorphic sections of Lk vanishing

to order at least εk along Y .

Definition 2.2 The partial Bergman kernel (PBK) for (ε,Y ) is a sequence of sections

K ε
k of L

k � Lk on X × X for k, εk ∈ N such that

(1) For each fixed z, the section z′ �→ K ε
k,z(z

′) := K ε
k (z, z

′) is in L
k
z � H εk

kϕ and

1 Note the factor of 2π .
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(2) We have

s(z) = 〈s, K ε
k,z〉kϕ =

∫
X
s(z′)K ε

k(z, z
′)e−2kϕ(z′) ω

[d]
ϕ,z′ for all z ∈ X and s ∈ H εk

kϕ

(2.2)

where the notationω
[d]
ϕ,z′ indicates the integral is being takenwith respect to the variable

z′.

Definition 2.3 The partial density function (PDF) ρε
k is the norm of the restriction of

the PBK to the diagonal, i.e.

ρε
k (z) := |K ε

k (z, z)|kϕ = K ε
k (z, z)e

−2kϕ(z) (2.3)

which is a smooth real valued function on X .

Of course if ε = 0 then this definition recovers what is commonly referred to as
the Bergman kernel and density function for Lk and we write these simply as Kk and
ρk . We remark that all of these definitions can equally be made with ω

[d]
ϕ replaced by

a given smooth volume form dV on X .

2.2 Existence and Basic Properties

The existence of the PBK follows from standard functional analysis considerations.
Suppose that X is either a compact Kähler manifold, or else a bounded domain, with
smooth boundary, in a Kähler manifold.

As is well known, H εk
kϕ is a closed subspace of L2

kϕ , so in particular it is a Hilbert
space. Moreover, if z ∈ X , the evaluation map s �→ s(z) is a bounded linear functional
H εk
kϕ −→ Lk

z . So, by the Riesz representation theorem, there is an element

K ε
k,z ∈ L

k
z ⊗ H εk

kϕ with f (z) = 〈 f, K ε
k,z〉kϕ for all f ∈ H εk

kϕ . (2.4)

Clearly 〈u, K ε
k,z〉kϕ = 0 if u ∈ L2

kϕ is orthogonal to H εk
kϕ , so the kernel

K ε
k (z, z

′) := K ε
k,z(z

′) (2.5)

is the Schwartz kernel of the orthogonal projectionK ε
k : L2

kϕ → H εk
kϕ in the sense that

(K ε
k u)(z) = 〈u, K ε

k,z〉kϕ =
∫
X
u(z′)K ε

k (z, z
′)e−2kϕ(z′)ω[d]

z′ for u ∈ L2
kϕ. (2.6)

In particular this gives uniqueness of K ε
k . BecauseK

ε
k is orthogonal, it is self-adjoint,

and so (2.5) is hermitian, i.e.

K ε
k,z′(z) = K ε

k,z(z
′). (2.7)
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Thus we can also write (2.6) as

K ε
k u(z) =

∫
X
u(z′)K ε

k (z
′, z)e−2kϕ(z′)ω[d]

z′ . (2.8)

In particular
∂ z′K

ε
k,z(z

′) = 0 and ∂ z K ε
k,z(z

′) = 0. (2.9)

Remark 2.4 If X is a compact Kähler manifold the spaces H εk
kϕ are finite-dimensional

and the definition above agrees with that in the introduction. For if sα,k is an L2-
orthonormal basis for H εk

kϕ = H0(Lk ⊗ I εk
Y ) then one easily checks that

K ε
k (z, z

′) =
∑
α

sα,k(z) � sα,k(z
′) (2.10)

has the characteristic properties of the PBK, so

ρε
k =

∑
α

|sα,k |2kϕ. (2.11)

Remark 2.5 When ε = 0 the difference v := u−Kk[u] is the L2
kϕ-minimal solution of

the equation ∂v = ∂u. This follows directly from the orthogonality of the projection.

2.3 Bounds for Bergman Kernels

For convenience we recall here some basic estimates related to Bergman kernels.
The fundamental ‘L2 implies L∞ bound’ for holomorphic functions (Proposition 2.6
below) allowsus to estimate the normof the evaluationmapandhenceby thediscussion
in Sect. 2.2, the norms of the PBK and PDF themselves. These estimates will be refined
using extremal envelopes in the next section.

On a Kähler manifold X we denote by Bz(δ) the geodesic ball of radius δ centred
at z (taken with respect to the given Kähler metric). As usual L will be a holomorphic
line bundle on X with smooth strictly plurisubharmonic potential ϕ.

Proposition 2.6 Let X be a complex manifold and W ⊂ X be relatively compact.
Then there is a constant CW such that for all k sufficiently large

| f (z)|kϕ � CWkd/2
(∫

Bz(k−1/2)

| f |2kϕω[d]
)1/2

� CWkd/2‖ f ‖kϕ (2.12)

for all f ∈ Hkϕ and all z ∈ W.

Proof For z ∈ W we may choose local coordinates on a chart so that z = 0, and by
a change of gauge that ϕ(z) = O(|z|2). In this chart the geodesic metric ρ(·, ·) is
equivalent to the Euclidean metric, so there is a constant c > 0 such that c|z − z′| �
ρ(z, z′) � c−1|z − z′| for points z, z′ in this chart.
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Let χ(t) : R → [0, 1] be a smooth non-negative cut-off function equal to 1 for
t � 1/2 and equal to 0 for t � 1 and set

χk(t) = χ(c−1k1/2t)

We recall the Bochner–Martinelli–Koppelman formula [20, Ch. IV]

u(z) = −
∫
Cd

∂u(w) ∧ B(w, z), u ∈ C∞
0 (Cd) (2.13)

where the Bochner–Martinelli kernel is given by the formula

B(w, z) := cd
1

|w − z|2d η(w, z) (2.14)

where cd is a universal constant and

η(w, z) = ι(w̄−z̄)∂w
dw̄1 ∧ · · · dw̄d ∧ dw1 ∧ · · · dwd . (2.15)

We apply this with u = χk(|z|) f (z). Then ∂u = f ∂χk is supported in a spherical
shell of radius O(k−1/2) and ∂χk = O(k1/2). So

∣∣∂(χk)B(w, 0)
∣∣ = O(kd). (2.16)

Hence (2.13) gives

f (0) = −
∫

|w|�ck−1/2
f (w)∂χk B(w, 0) (2.17)

where k is to be taken large enough so the support of χk lies in this chart. We are
assuming ϕ(0) = 0, so | f (0)|2 = | f (0)|2kϕ . Thus using the Cauchy–Schwarz inequal-
ity,

| f (0)|2kϕ � C
∫

|w|�ck−1/2
| f (w)|2kϕω[d]

∫
ekϕ

∣∣∂χk B(w, 0)
∣∣2 , (2.18)

asω[d] is smooth so is equivalent to the euclidean volume form.Now in the first integral
we may replace the Euclidean ball {|w| < ck−1/2} by the geodesic ball B0(k−1/2) and
only improve the inequality. On the other hand, kϕ = O(k|z|2) on this chart so ekϕ

is uniformly bounded on the support of χk and the volume of this support is O(k−d).
Thus (2.16) implies the second integral is of order O(kd). This proves the result for a
single point, and the uniform estimate follows an obvious covering argument. ��

Recall that K ε
k,z ∈ L

k
z ⊗ H εk

kϕ so with our convention of using the same notation for
a section of a line bundle and its representation in a local frame we have

‖K ε
k,z‖2kϕ =

∫
X

|K ε
k,z(w)|2e−2k(ϕ(w)+ϕ(z))ω[d]

w .
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Corollary 2.7 Suppose X is compact. Then there is a constant C such that

‖K ε
k,z‖kϕ � Ckd/2 (2.19)

for all z ∈ X and all ε � 0.

Proof Essentially by definition, ‖K ε
k,z‖kϕ is equal to the operator norm of the evalua-

tion map H εk
kϕ → Lk

z given by s �→ s(z). But the previous theorem says precisely that

this operator norm is bounded by Ckd/2. ��
Corollary 2.8 Suppose X is compact. Then there is a constant C such that

|K ε
k (z, z

′)|kϕ � Ckd for all z′, z ∈ X. (2.20)

Proof Apply the above to the function y �→ Kk,z(y) itself to deduce that |Kk,z(y)|kϕ
is bounded by O(kd/2)‖K ε

k,z‖kϕ = O(kd). ��

2.4 Decay Away from the Diagonal

We wish to discuss the well known fact that the Bergman kernel decays exponentially
fast away from the diagonal (see, for instance, [15, Proposition 9], [6, Prop 4.1], [8],
[18, Thm 0.1]). We let ρ(z, z′) denotes the geodesic distance between points z, z′ ∈ X
takenwith respect to a givenKählermetric, and in this sectionwe assume X is compact.

Theorem 2.9 (Decay away from the diagonal) The Bergman kernel Kk decays expo-
nentially fast away from the diagonal, in the following sense: there are constants
C, c > 0 such that

|Kk(x, y)|kϕ � Ckde−c
√
kρ(x,y) for all x, y ∈ X.

For convenience of the reader we give a proof of this fact, based on a variant of
the “Donnelly-Fefferman trick” essentially due to Bo Berndtsson [4] (and whom we
thank for pointing us in this direction).

Theorem 2.10 Let f be a ∂-closed (0, 1) form with values in L and v be the L2-
minimal solution to the equation ∂v = f and let x ∈ X. Then there are constants c,C
(independent of f, k, x) such that

∫
X

|v(z)|2kϕe−2c
√
kρ(z,x)ω[d]

z � C

k

∫
X

| f (z)|2kϕe− c
2

√
kρ(z,x)ω[d]

z .

In particular if f = ∂g for some g then this holds for v = g − Kk(g).

We remark that the above statement may well be suboptimal but is sufficient for
our purpose (the statement in [4, Theorem 2.1] replaces the terms 2c and the c

2 in the
left and right hand side respectively with the same constant c when X is a domain in
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C
d ). The proof we give now is essentially the same as [4, Theorem 2.1], but replaces

the Euclidean distance function on C
d with the geodesic distance function ρ(·, x)

on X , and requires some extra care to deal with the non-smoothness ρ(·, x) near the
cut-locus of x .

Proof The squared distance function ρ2 : X × X → R is continuous and can fail to
be smooth only on the cut-locus

B := {(z, z′) ∈ X × X : z and z′ are conjugate points}

of X . In particular ρ2 is smooth in a fixed neighbourhood N of the diagonal. To deal
with the non-smoothness at B, choose a non-negative function ρ̃ which is equal to ρ

in N , smooth on X × X\N and which satisfies

1

2
ρ(z, z′) � ρ̃(z, z′) � 2ρ(z, z′) for all (z, z′) ∈ X × X.

Then ρ̃2 is smooth on X × X and is equal to ρ2 in N .
Now fix f and x ∈ X , and simplify notation by writing ρ̃(z) for ρ̃(x, z). Then

for k � 0, in the region ρ̃ � 1√
k
we have ρ̃(z) = ρ(z, x). It will be clear from the

following argument that our constants will be uniform in x and f but we leave the
reader to keep track of this.

Now for a small c > 0 set

χk(z) :=
{
c
( k
2 ρ̃(z)2 + 1

2

)
if ρ̃(z) � 1√

k
c
√
kρ̃(z) otherwise.

One checks easily that

c
√
k

2
ρ(z, x) − c � χk(z) � 2c

√
kρ(z, x) + c for all z ∈ X. (2.21)

Furthermore on the region ρ̃ � 1√
k
we have ddcχk = O(ck), whereas on the comple-

ment to this region ddcχk = O(c
√
k). So we may pick c � 1 small enough so that

the potential

ζk := kϕ − 1

2
χk

has strictly positive curvature growing at rate O(k), say

ddcζk � k

2
ddcϕ. (2.22)

Now set

vk := ve−χk
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Since v is orthogonal to the the space holomorphic sections with respect to the L2-
inner product defined by e−kϕ , we see that vk is orthogonal to this space with respect
to the L2-inner product defined by e−ζk (all of this is taken with respect to the volume
form ω

[d]
ϕ which is fixed). Hence vk is the L2-minimal solution to the equation

∂vk = f e−χk − ve−χk∂χk

with respect to the L2-inner product induced by e−ζk . Thus by the Hörmander estimate

∫
X

|v|2kϕe−χkω[d]
ϕ =

∫
X

|vk |2e−2kϕ+χkω[d]
ϕ

=
∫
X

|vk |2ζkω[d]
ϕ

� O(1/k)
∫
X

|∂vk |2ζkω[d]
ϕ

= O(1/k)
∫
X

|∂vk |2kϕeχkω[d]
ϕ . (2.23)

We remark that the O(1/k) term is bounded independent of c sufficiently small by
(2.22).

Now the right hand side of (2.23) is bounded by

O(1/k)
∫
X

(| f |2kϕe−χk + |v|2kϕe−χk |∂χk |2)ω[d]
ϕ = A

k

∫
X

| f |2kϕe−χkω
[d]
ϕ + Zc2

∫
X

|v|2kϕe−χkω
[d]
ϕ

(2.24)
where A and Z are uniform constants. This follows because ∂χk = O(c

√
k). Inserting

(2.24) into (2.23) we have
∫
X

|v|2kϕe−χkω[d]
ϕ � A

k

∫
X

| f |2kϕe−χkω[d]
ϕ + Zc2

∫
X

|v|2kϕe−χkω[d]
ϕ . (2.25)

Choosing c so small that Zc2 < 1/2, say, we can move the second integral to the other
side, giving

∫
X

|v|2kϕe−χkω[d]
ϕ � 2A

k

∫
X

| f 2|kϕe−χkω[d]
ϕ .

The statement of the theorem now follows from (2.21). ��
Proof of Theorem 2.9 We know that w �→ Kk,y(w) is holomorphic for fixed y, so by
the proof of Proposition 2.6,

|Kk,x (y)|2kϕ � Ckd
∫
Bδ(y)

|Kk,x (z)|2kϕω[d]
ϕ,z (2.26)

which is valid as long as δ is of order greater than or equal to 2/
√
k. Observe that

if ρ(x, y) � 1√
k
then the bound we want follows from the bound |K εY

k (x, y)|kϕ =
O(kd) from (2.8). So we may assume that
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ρ(x, y) � δ := 2√
k
.

Fix a smooth non-negative cut-off function χ that is identically 1 on Bδ/4(y) supported
in Bδ/2(y) and such that |∂χ | = O(δ−1). Observe that ρ(x, y) � δ implies χ(x) = 0.
Then we can clearly replace (2.26) by

|Kk,x (y)|2kϕ = |Kk,y(x)|2kϕ � O(kd)
∫

|Kk,x (z)|2kϕχ(z)ω[d]
ϕ,z (2.27)

= O(kd)(χKk,x , Kk,x )kϕ = O(kd)Kk[χKk,x ](x), (2.28)

where, we recall,Kk is the projection onto the holomorphic sections. Now set

f := ∂(χKk,x ) = (∂χ)Kk,x

and

v := χKk,x − Kk(χKk,x ).

Then
Kk[Kk,xχ ](x) = χ(x)Kk,x (x) − v(x) = −v(x) (2.29)

as χ(x) = 0. On the other hand, by Theorem 2.10, there is a c > 0 such that

∫
|v(z)|2kϕe−2c

√
kρ(z,x)ω[d]

z � O(1/k)
∫

| f (z)|2kϕe− c
2

√
kρ(z,x)ω[d]

z . (2.30)

Note that f is supported in Bδ/2(y) and if z ∈ Bδ/2(y) then ρ(x, y) � ρ(z, x) + 1√
k
.

Thus

∫
|v(z)|2kϕe−2c

√
kρ(z,x)ω[d]

z � O(1/k)O(δ−2)‖Kk,x‖2kϕe− c
2

√
kρ(x,y) (2.31)

= O(kd)e− c
2

√
kρ(x,y) (2.32)

since ‖Kk,x‖2kϕ = O(kd) by Corollary 2.7. On the other hand by same argument with
the Bochner–Martinelli formula again, we have

|v(x)|2kϕ � O(kd)
∫
Bδ(x)

|v|2kϕω[d]
ϕ . (2.33)

Notice the quantity e−2c
√
kρ(z,x) is bounded above and below by a constant on the ball

Bδ(x), so this gives
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|v(x)|2kϕ � O(kd)
∫
Bδ(x)

|v|2kϕe−2c
√
kρ(z,x)ω[d]

ϕ

� O(k2d)e− c
2

√
kρ(x,y).

Putting this with (2.27), (2.29) gives the desired estimate. ��

2.5 Extremal Envelopes

Let Y ⊂ X be a compact complex submanifold, L → X a holomorphic line bundle
and ϕ a smooth strictly plurisubharmonic potential on L Following Berman [1] we
make the following definition:

Definition 2.11 Given X,Y, L and ε � 0, the extremal envelope, ϕε, is defined as

ϕε := sup{γ a potential on L : ddcγ � 0, γ � ϕ and νY (γ ) � ε}. (2.34)

Here the notation means that e−γ is a possibly singular hermitian metric on L with
non-negative curvature form; and νY (γ ) denotes the Lelong number of γ along Y .
Since the upper semicontinuous regularisation of ϕε lies in the set on the RHS of
(2.34), it follows that ϕε is itself semicontinuous and thus plurisubharmonic. We will
always take ε to be sufficiently small so that there exists such a γ , and so ϕε is not
identically −∞. Then by passing to the blowup of X along Y one can prove easily
that νY (ϕε) = ε.

Definition 2.12 Define the forbidden region to be the set

Dε := {z ∈ X : ϕε(z) < ϕ(z)},

and the equilibrium set to be the complement

X\Dε = {z ∈ X : ϕε(z) = ϕ(z)}.

Then clearly D0 is empty, and for all ε > 0 it is a neighbourhood of Y , and if ε < ε′
then Dε′ ⊂ Dε. Again following [1], we now show the sets Dε govern the PDF in that
for large k the function ρε

k is exponentially small on any compact subset of Dε. The
following statement refines the bounds (2.19) and (2.20), using the envelope ϕε.

Proposition 2.13 Assume X is compact. Then there exists a constant C such that

‖K ε
k,z‖kϕ � Ckd/2e−k(ϕ(z)−ϕε(z)) for z ∈ X

and

|K ε
k (z, z

′)|kϕ � Ckde−k(ϕ(z)−ϕε(z))e−k(ϕ(z′)−ϕε(z′)) for z, z′ ∈ X.

In particular, K ε
k,z is exponentially small on Dε.
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Proof Note first that since ϕ and ϕε are both potentials for L , their difference is a
genuine function on X , so the right hand side of these estimates are well-defined. Let
s ∈ H εk

kϕ . Then by Proposition 2.6 there is a constant C such that

|s(w)|2kϕ � Ckd‖s‖2kϕ for all w ∈ X.

Taking the logarithm,

1

2k
ln |s(w)|2 � ϕ(w) + αk for all w ∈ X (2.35)

where

αk := ln(Ckd‖s‖2kϕ)

2k
.

As s vanishes to order at least εk along Y the plurisubharmonic potential ln |s|
has Lelong number at least εk along Y . Combining this with (2.35), the potential
1
2k ln |s|2 − αk is a candidate for the envelope defining ϕε so

1

2k
ln |s(z)|2 − αk � ϕε(z) for z ∈ X.

So multiplying by 2k and then exponentiating gives

|s(z)|2kϕ � Ckde−2k(ϕ(z)−ϕε(z)‖s‖2kϕ for z ∈ X.

Thus if z ∈ X , the square of the norm of the evaluation map H εk
kϕ → Lz given by

s �→ s(z) is bounded by Ckde−k(ϕ(z)−ϕε(z) which gives the first statement of the
Proposition. The second statement follows by applying this to the section s := K εY

k,z
to get that for z, z′ ∈ X

|K ε
k,z(z

′)|kϕ � Ckd/2e−k(ϕ(z′)−ϕε(z′))‖K ε
k,z‖kϕ � O(kd)e−k(ϕ(z)−ϕε(z))e−k(ϕ(z′)−ϕε(z′)).

��
Remark 2.14 Berman [1] proves that ϕε is C1,1 although we will not use that here.
The continuity of ϕε is enough to imply that for large k, K εk

k,z is exponentially small on
any given compact subset of Dε. Berman also proves that ρε

k is asymptotically close
to ρk on any given compact subset of X\Dε. Thus the interest lies in the behaviour
across the boundary of Dε which will be the study of the rest of this paper.

3 Local Bergman Kernels

We next adapt a key idea of Berman–Berndtsson–Sjöstrand [3] who introduced the
concept of a local Bergman kernel which has the reproducing property up to a term
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that is negligible for large k. Our aim is to give a suitable definition of a local PBK
that is defined on a neighbourhood of Y .

Again suppose that X is a complex manifold of dimension d and L a holomorphic
line bundle with given smooth strictly positive hermitian metric e−ϕ . Also fix an open
U ⊂ X containing Y and a smooth positive function χ that has compact support in
U and is identically equal to 1 on some open subset W ⊂ U containing Y . We recall
that ρ(z, z′) denotes the geodesic distance between points z, z′ ∈ X with respect to a
given Kähler metric.

Definition 3.1 We say a sequence of sections Bε
k of L|U � L|U overU ×U is a local

partial Bergman kernel (local PBK) on W of order N � 0 if

(1) (Holomorphic) For fixed z the map z′ �→ Bε
k,z(z

′) := Bε
k (z, z

′) is holomorphic.
(2) (Almost reproducing) We have

∣∣∣∣ f (z) −
∫
U

χ(z′) f (z′)Bk(z, z
′)e−2kϕ(z′)ω[d]

ϕ,z′

∣∣∣∣
kϕ

= O(k−N )‖ f ‖kϕ (3.1)

uniformly over f ∈ H εk
kϕ(U ) and z ∈ W .

(3) (Decay away from the diagonal) There exist constants C, c > 0 such that

|Bε
k (z, z

′)|kϕ � Ckde−c
√
kρ(z,z′) for all z, z′ ∈ U. (3.2)

Remark 3.2 Our terminology differs slightly from that of Berman–Berndtsson–
Sjöstrand in that we include the decay away from the diagonal as part of the definition.
It is sometimes convenient to allow N = ∞ in which case the O(k−∞) term is under-
stood asmeaning the boundholds for any given N ∈ N. One could relax the assumption
that Bε

k,z be holomorphic and instead assume that it is “almost holomorphic” as in [3],
but we will have no need for this. When necessary we shall refer to this as a local PBK
with respect to W or χ if we need to emphasise the dependence on these data.

The point of this definition is that, as proved in [3], a local PBK approximates the
globally defined PBK in a neighbourhood of the diagonal ofW ′×W ′ for anyW ′ � W .

Theorem 3.3 (Glueing local partial Bergman kernels) With notation above, suppose
Bε
k is a local PBK of order N on W and suppose that ε is sufficiently small so that

the forbidden region Dε is relatively compact in W. Then if W ′ � W we have for all
r � 0

K ε
k (x, y) = Bε

k (x, y) + OCr (kd+r/2−N ) for all x, y ∈ W ′. (3.3)

Proof The argument here is similar to that of [3]. Let x, y ∈ W ′ and f := K ε
k,y |U ∈

H εk
kϕ(U ). The almost reproducing property of the local PBK Bε

k gives

K ε
k (y, x) = f (x) = 〈K ε

k,y, χBε
k,x 〉kϕ + O(k−N )‖ f ‖kϕ. (3.4)

and using Corollary 2.7 this becomes

K ε
k (y, x) = 〈K ε

k,y, χBk,x 〉kϕ + O(kd/2−N ). (3.5)
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Now by definition, 〈χBε
k,x , K

ε
k,y〉kϕ is the value at y of the L2-projection of χBε

k,x
onto the space of holomorphic sections that vanish to order at least εk along Y . That
is,

〈χBε
k,x , K

ε
k,y〉kϕ = χBε

k,x (y) − v(y)

where v is the L2-minimal solution of the equation

∂v = ∂(χBε
k,x ) (3.6)

among all such v that vanish to order at least εk along Y [we remark that this makes
sense as Eq. (3.6) in particular implies that v is holomorphic in a neighbourhood of Y
as χ ≡ 1 on W ]. Of course v also depends on x , but we omit that from notation.

Hence we wish to bound v(y) which we do with the Hörmander technique applied
with the extremal envelope ϕε from (2.11). Observe that ϕε is plurisubharmonic over
all of X and moreover is strictly plurisubharmonic in the support of

∂(χBε
k,x ) = (∂χ)Bε

k,x

since by hypothesis ∂χ is supported outside of W and thus within the equilibrium set
{z ∈ X : ϕε(z) = ϕ(z)}. Thus we may apply the Hörmander estimate [7, Theorem 4.5,
Chapter VIII] to see there exists a v solving (3.6) such that

‖v‖kϕ � ‖v‖kϕε � C‖(∂χ)Bε
k,x‖kϕε = C‖(∂χ)Bε

k,x‖kϕ
for some constant C , where the first inequality uses ϕε � ϕ and the final equality uses
the statement about the support of ∂χBε

k,x . Finally observe that as Bε
k decays away

from the diagonal we in fact have

(∂χ)Bε
k,x = O(k−∞) (3.7)

since x ∈ W ′ is a bounded distance away from the support of ∂χ . Therefore ‖v‖kϕ =
O(k−∞) which by Proposition 2.6 implies |v(y)|kϕ = O(k−∞) as well, and one
sees this estimate is even uniform over x, y ∈ W ′. Thus we have proved the required
statement in the C0-topology (i.e. when r = 0). The statement for higher r follows
from this using the Cauchy-integral formula. ��

4 A Local Partial Bergman Kernel for an S1-invariant Metric on the Disc

In this section we construct a local Bergman kernel for a potential on the unit disc that
is circle invariant. The method here is less general than the construction of Berman–
Berndtsson–Sjöstrand but is better suited to dealing with partial Bergman kernels.
Strictly speaking the content of this section is not needed for the proof of our main
theorem, since it will be repeated when we generalize in Sect. 5; we have included it
here as an illustration of the main ideas of our approach.
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4.1 The Legendre Transform

Let D be the unit disc {|z| < 1} inC. Suppose ϕ is a strictly plurisubharmonic function
that depends only on |z| that is smooth on the closure D. We shall write z = et+iθ and
ϕ = ϕ(t). Then consider the Legendre transform

u(x) + ϕ(t) = xt, x = ϕ′(t), t = u′(x). (4.1)

This is well defined since the assumption that the potential is strictly plurisubharmonic
means ϕ is a strictly convex function of t and hence u is also strictly convex. We
shall refer to x =: μ(z) as the dual variable (or momentum variable) and to u(x)
as the symplectic potential. This x is defined up to an additive constant, which we
choose so x = 0 corresponds to z = 0 and suppose that |z| = 1 corresponds to
x = a > 0 (the reader may wish to recall the model case in which ϕ = |z|2 = e2t has
u(x) = 1

2 (x ln x − x) as the symplectic potential). Any function of |z| defined on an
annulus {α � |z| � β} can then be thought of as a function of x and θ , where x ranges
in some interval and θ ranges in [0, 2π ], and will do so henceforth without further
comment. Moreover, the volume form ddcϕ on this annulus becomes the standard
measured dxdθ in the variables x, θ .

Now define

ν := n

k
,

and let sn,k be the monomial

sn,k(z) := e−ku(ν)zn = e−ku(ν)en(t+iθ) = e−k(u(ν)−ν(t+iθ)). (4.2)

Then
|sn,k(z)|kϕ = e−k(ϕ(t)+u(ν)−νt) (4.3)

so if we define
U (ν, x) := u(ν) − u(x) + (x − ν)u′(x) (4.4)

and replace ϕ(t) and t by the dual variables u(x) and x in (4.3) we have

|sn,k(z)|kϕ = e−kU (ν,x). (4.5)

In particular, the normalization of sn,k is such that the maximum value of |sn,k(z)|kϕ
is 1 and is attained for those z for which x = ν (this follows easily from the convexity
of u). In fact,

Ux (ν, x) = (x − ν)u′′(x)

so the unique turning point of x �→ U (ν, x) is at x = ν.
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4.2 The Local Partial Bergman Kernel

Fix σ ∈ (0, a) and let χ = χ(x) be a smooth positive cutoff function that is identically
equal to 1 for x � σ and has compact support in D. For ε < σ define

Aε
k(z, z

′) :=
∑

ε�ν�σ

Gn,ksn,k(z)sn,k(z
′) for (z, z′) ∈ D × D (4.6)

where
1

Gn,k
:=

∫
D

χ(x)e−2kU (ν,x) dx . (4.7)

Finally let Y = {0} be the origin in D.

Theorem 4.1 Fix η < σ . Then Aε
k has the almost reproducing property onμ−1[0, η);

that is

∣∣∣∣
∫
D

χ(x ′) f (z′)Aε
k(z, z

′)e−2kϕ(t ′) dx ′dθ ′ − f (z)

∣∣∣∣
kϕ

= O(k−∞)‖ f ‖kϕ (4.8)

for all f ∈ H εk|
kϕ (D) and z ∈ μ−1[0, η).

Proof Let f ∈ H εk|
kϕ (D) which can be written as f = f1 + f2 where

f1(z) =
∑

ε�ν�σ

anz
n and f2(z) =

∑
ν>σ

anz
n (4.9)

and ν = n/k as before. Obviously f1 and f2 are L2-orthogonal, so

‖ f ‖2kϕ = ‖ f1‖2kϕ + ‖ f2‖2kϕ. (4.10)

Now by symmetry,

∫
D

χ(z′) f (z′)Aε
k(z, z

′)e−2kϕ(t ′)dz′ = f1(z), (4.11)

so all that we have to do is prove

| f2(z)|kϕ � O(k−∞)‖ f2‖kϕ for x = μ(z) < η.

To this end, fix some τ with ϕ′(τ ) ∈ (η, σ ). If z = et+iθ has μ(z) < η then
ϕ′(t) < η < ϕ′(τ ) and so by strict convexity of ϕ this implies t � τ − δ for some
δ > 0 uniformly over all such z. Then Cauchy’s inequalities give

|anenτ | � sup
θ

| f2(eτ+iθ )| = ekϕ(τ) sup
θ

| f2(eτ+iθ )|kϕ. (4.12)
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Therefore

| f2(z)|kϕ �
∑
n>σk

|anzn|e−kϕ(t) � e−kϕ(t) sup
θ

| f (eτ+iθ )|
∑
n>σk

en(t−τ). (4.13)

Now, by Proposition 2.6, there is a constant C such that if t < τ then

| f2(et+iθ )|kϕ � Ck
1
2 ‖ f2‖kϕ, (4.14)

and hence
| f2(et+iθ )|kϕ � Ck

1
2 ‖ f2‖kϕ e−k[ϕ(t)−ϕ(τ)]ekσ [t−τ ]. (4.15)

Thus we will get an exponentially small multiple of ‖ f2‖kϕ provided that

ϕ(t) − ϕ(τ) − σ(t − τ) > δ′ (4.16)

for some positive δ′. But this is clear from the following picture:

(t, ϕ(t))

(τ, ϕ(τ))

τt

ϕ

That is, by convexity of ϕ the quotient

ϕ(τ) − ϕ(t)

τ − t
(4.17)

is bounded above by the slope ϕ′(τ ) which assumed to be strictly less than σ as
t � τ − δ. ��

5 A Local S1-invariant Bergman Kernel on X

5.1 Outline of the Construction

We return to the case in which Y is a divisor in a compact complex manifold X , and L
is a complex line bundle with hermitian metric e−ϕ that has strictly positive curvature.
We assume from now on that there exists a neighbourhood U of Y that admits a
holomorphic S1-action so that all the data are invariant when restricted to U (that is,
the action lifts to L|U preserving the hermitian metric, and Y is fixed pointwise by the
action). In this section we shall construct a local PBK on U whose asymptotics we
can understand as k tends to infinity.
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There are several ingredients to this construction. First we exploit the relation
between the eigenspaces of the S1-action on H0(U, Lk) and the order of vanishing
along Y . By hypothesis, S1-acts on the fibre L p for any p ∈ Y with some weight w

(which is the same for every p ∈ Y ) and by renormalising the action we may assume
without loss of generality that w = 0. Write

H0(U,L k) =
⊕
n

Vk(n)

where Vk(n) is the subspace of elements of weight n. Then as Y is fixed pointwise

H0(Y, Lk ⊗ I n
Y ) =

⊕
j�n

Vk( j).

Using the presence of the S1-action, we then have an identification

Vk(n) = H0(U, Lk ⊗I n+1
Y )/H0(U, Lk ⊗I n

Y ) = H0(Y, Lk ⊗O(−nY )|Y ). (5.1)

This ismade explicit by a choiceσ ∈ H0(U,O(Y )) of defining section forY . Thinking
of U as a disc bundle π : U → Y , the isomorphism (5.1) is given by pulling back to
U and then multiplying by σ n . To put it another way, if f is a holomorphic section of
Lk |U we have an expansion

f =
∑
n

fnσ
n

where fn ∈ H0(Y, L(−νY )|kY ) and ν := n/k. WhenU is a disc centered at the origin
with the standard S1-action and Y = {0}, this just reduces to power series expansion
of holomorphic functions on the disc.

Next we define a hermitian inner product on H0(Y, L(−νY )k |Y ) as follows. Fix
an S1-invariant cut-off function χ which is identically 1 in a neighbourhood of Y and
supported in U . Then, with σ as above, we set

‖ fn‖2ν,k,χ =
∫
X

χπ∗(| fn|2|σ |2n)ω[d] for fn ∈ H0(Y, L(−νY )k |Y ). (5.2)

It turns out that this inner product is equal to the L2-inner-product with respect to
certain hermitian metrics e−2ην on L(−νY )k |Y and certain volume forms on Y :

Proposition 5.1 (Proposition 5.13) Fix ε′ slightly larger than ε. Then for ν ∈ [0, ε′]
there is a smooth strictly plurisubharmonic potential ην on L(−νY )|Y and a volume
element dVν,h̄ on Y depending smoothly on ν and h̄ := 1/

√
k, such that

‖ fn‖2ν,k,χ =
∫
X

| fn|2kην
dVν,h̄ .
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The proof of this proposition is essentially a standard stationary phase argument for
the integral (5.2). To give a rough idea of the argument, consider the local situation.
In standard local coordinates (z = et+iθ , w1, . . . , wn) so that Y is given locally by
z = 0, our potential ϕ = ϕ(t, w) and is convex in t for fixed w. Introduce (locally)
the parametrized Legendre transform u characterised by

u(x, w) + ϕ(t, w) = xt where x = ϕt and t = ux .

Here x is the moment map of the S1-action. On the other hand, the integrand in (5.2)
then takes the form

| fn(w)|2 exp(2k(u(x, w) − (x − ν)ux (x, w)))
dx ∧ dθ

2π

multiplied by a smooth volume element in thew variables,where ν = n/k. So standard
asymptotic methods give a leading term of the form

1√
uxx (ν,w)k

e2ku(ν,w)| fn(w)|2

on integratingwith respect to x and θ , since the exponential is stationary at x = ν. Thus
we see the negative of the Legendre transform−u(ν,w) appear as a local potential for
L(−νY )|Y . We shall show that w �→ −u(ν,w) is strictly plurisubharmonic in w and
that these local potentials indeed patch together to give a potential ην on L(−νY )|Y .
The existence, and properties, of the required volume dVν,h̄ then comes from an
application of Laplace’s method.

Now the projection from the L2-sections of L(−νY )|kY to the holomorphic ones
is given by an integral kernel on Y × Y that we denote by Gn,k . Putting all of this
together we shall prove:

Theorem 5.2 (Theorem 5.24) Fix ε′ slightly larger than ε. Then the quantity

Bε
k :=

ε′k∑
n=εk

Gn,kσ
n � σ n

is an S1-local PBK for Y .

We refer the reader to Sect. 5.6 for the precise definition of a S1-local PBK (which
merely modifies slightly the decay away from the diagonal property). Of course this
theorem is to be understood as holding with respect to the chosen cut-off function χ .
This is a rather precise formula for the local PBK, which we shall exploit to understand
its asymptotics as k tends to infinity.

We now go through the details of these two results.
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5.2 Circle-invariant Set-up

Let X,Y, L and ϕ be as before and set ω = ddcϕ. We also fix a defining section
σ ∈ H0(Y,O(Y )) for Y . We suppose that there is an open neighbourhoodU of Y that
admits a holomorphic S1-action with Y as the fixed point set, so that U is covered by
charts that admit “standard coordinates” (z, w) so that

λ · (z, w) = (λz, w) (5.3)

and so that σ = z in these coordinates. We also assume that this actions lifts to L|U
preserving ϕ in such a way that the S1-action is trivial over points in Y . By abuse
of notation we let O(Y ) denote both the line bundle associated to the divisor Y as
well as its sheaf of sections (so is equal to the normal bundle of Y in X ). We let
μ : X → R denote the Hamiltonian of this S1-action normalised so Y = μ−1(0) and
always assume that ε is sufficiently small so that μ−1[0, ε) � U .

As we have a holomorphic S1-action, we can identify our tubular neighbourhood
U of Y holomorphically with a disc-subbundle of O(Y ).

Lemma 5.3 The neighbourhood U of Y is biholomorphic to a disc subbundle
π : D → Y ofO(Y ). Furthermore any S1-invariant line bundle L ′ onU is canonically
isomorphic to π∗L ′|Y .
Proof Let (zα,wα) and (zβ,wβ) be two sets of standard coordinates. The transition
functions between them are necessarily of the form

zβ = λαβ(zα,wα)zα and wβ = ταβ(zα,wα) (5.4)

where λαβ is holomorphic and takes values in C
∗. Then both λαβ and ταβ must be

S1-invariant as well, which means their dependence upon zα must be trivial. Hence
we have

zβ = λαβ(wα)zα (5.5)

is actually linear in the z coordinate. Since locally Y is given by zα = 0 (resp. zβ = 0)
the λαβ are the transition functions for the line bundle O(Y ), so we have the desired
biholomorphism. The argument for the second statement is the same, as the transition
functions for an S1-invariant bundle L ′ must be independent of the normal variables
zα in standard coordinates. ��

Now we recall the eigenspace decomposition we have denoted by

H0(U, Lk) =
⊕
n

Vk(n)

where Vk(n) denotes the subspace of weight n and that here and henceforth we are
setting

ν := n

k
.
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Lemma 5.4 The map

H0(Y, L(−νY )|kY ) → Vk(n) given by fn �→ π∗ fnσ n

is an isomorphism.

We omit the proof.

Lemma 5.5 Given f ∈ H0(U, Lk) there is a unique sequence

fn ∈ H0(Y, L(−νY )|kY ), for n � 0

such that

f =
∑
n�0

(π∗ fn)σ n .

Proof We have that (π∗ fn)σ n is just the weight-n component of f with respect to
the S1-action. We use here the fact that a weight-zero section on U is canonically the
same as the pull-back of a section over Y . That fn lives where claimed is immediate
from the definitions. ��

From now on we regard U as a disc-subbundle of O(Y ) without further comment,
and drop the π∗ from notation so we identify Lk ⊗ O(−nY ) with π∗(L(−νY )k |Y )

and also identify sections fn of L(−νY )|kY ) with their pull-back π∗ fn to U .
Our next order of business is to definehermitian inner products onH0(Y, L(−νY )|kY ).

Pick ε′ slightly larger than ε and a domain �′ arranged as follows:

μ−1[0, ε) � �′ � μ−1[0, ε′) � U.

Definition 5.6 Fix once and for all an S1-invariant cut-off function

χ ∈ C∞
0 (U ) with χ ≡ 1 on μ−1[0, ε′].

Then for fn, gn ∈ C∞(Y, L(−νY )|kY ) define

〈 fn, gn〉ν,k,χ :=
∫
U

χ( fn, gn)kϕ |σ |2νkω[d]. (5.6)

(We emphasise our abuse of notation in that on the right hand side fn and gn are being
identified with their pullback, so as to be defined on U ).

So by construction if f = ∑
n fnσ n and g = ∑

n gnσ
n are the expansions of two

functions in H0(U, Lk) as in Lemma 5.5 we have

∫
X

χ( f, g)kϕω[d] =
∫
U

χ( f, g)kϕω[d] =
∑
n

〈 fn, gn〉ν,k,χ .
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5.3 The Local Legendre Transformation

Ournext goal is better to understand the hermitian inner products on H0(Y, L(−νY )|kY )

defined in (5.6). In this section we shall do so locally over a small chart in Y , and in the
next we will see how this globalises over Y . So assume we have standard coordinates
z, w1, . . . , wd−1 as in (5.3) on some patch of the formUα = π−1(Wα) for some open
subset Wα of Y and write

z := et+iθ .

Recall that this includes the assumption that the defining section σ for Y is locally
given by σ = z in this coordinate system, and on this chart the hermitian metric on
L is given by e−2ϕ where ϕ is a function of t and w. So, for f supported in such a
coordinate chart

‖ f ‖2ν,k,χ =
∫

χe−2k(ϕ−νt)| f |2ω[d].

We fix ν > 0 and investigate the large k asymptotic behaviour of this integral. By
standard principles doing the t-integral first, this will be exponentially small in k
unless the cricial point ϕt = ν occurs in the support of f . Assuming this to be the
case, the main term for large k is

e−2k(ϕ(tν )−νtν ) = e2ku(ν,w)

where u is the parametrized Legendre transform defined as follows. Introduce the dual
variables

x := ϕt (5.7)

which is precisely the moment map of the S1-action, so Y is given by x = 0.

Definition 5.7 The parameterized Legendre transform u is characterized by

ϕ(t, w) + u(x, w) = t x . (5.8)

Thus dually to (5.7) we have

t = ux .

Lemma 5.8 For each fixed x the function w �→ −u(x, w) is strictly plurisubhar-
monic. Moreover, if we introduce the connection 1-form

α = 1

ϕt t
dcx = 1

2πϕt t
Jdx = 1

2π

(
dθ + i

ϕt t
(ϕtadw

a − ϕtadw
a)

)
, (5.9)

then
ω = ωϕ = dx ∧ α + (ddc)w(−u(x, ·)), (5.10)

where the notation indicates fixing x and computing ddc of w �→ −u(x, w).
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Proof By elementary computation,

dϕ = ϕt dt + ϕadw
a + ϕadw

a,

Jdϕ = ϕt dθ − iϕadw
a + iϕadw

a,

dJdϕ = ϕt tdt ∧ dθ + ϕtadw
a ∧ dθ + ϕtadw

a ∧ dθ

+ i(ϕtadt ∧ dwa − ϕtadt ∧ dwa) + 2iϕabdw
a ∧ dwb.

Since x = ϕt ,
dx = ϕt t dt + ϕtadw

a + ϕtadw
a (5.11)

so

dx ∧ α = 1

2π
{ϕt t dt + ϕtadw

a + ϕtadw
a} ∧

{
dθ + i

ϕt t
(ϕtadw

a − ϕtadw
a)

}

(5.12)

= ddcϕ + i

π

{
1

ϕt t
ϕtaϕtb − ϕab

}
dwa ∧ dwb. (5.13)

Hence we need to prove that

(dJd)wu = 2i

{
1

ϕt t
ϕtaϕtb − ϕab

}
dwa ∧ dwb. (5.14)

This follows by careful differentiation of (5.8). First, by differentiation with respect
to wa ,

ϕa(t, w) + ua(x, w) = 0 (5.15)

where in the first term we are holding t fixed and in the second we are holding x fixed.
Differentiating again with respect to wb, holding x fixed,

ϕab + ϕta tb = −uab (5.16)

Next, differentiation of x = ϕt (x, w) with respect to yields wb (holding x fixed)

ϕtb + ϕt t tb = 0. (5.17)

If we insert this into (5.16), we obtain

− uab = ϕab − ϕtaϕtb/ϕt t (5.18)

This proves (5.14), from which it follows that −u(x, w) is strictly plurisubharmonic
in w for fixed x . ��
Remark 5.9 The statement that for fixed x themapw �→ −u(x, w) is strictly plurisub-
harmonic follows also from the Kiselman minimum principle [14]. The advantage of
the above calculation is that it also gives an explicit formula for its curvature.
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Lemma 5.10 For fixed w the map x �→ u(x, w) is strictly convex.

Proof This follows as uxx = tx and xt = ϕt t > 0 as ϕ is assumed to have strictly
positive curvature. ��

5.4 The Global Legendre Transform

Definition 5.11 Let u(x, w) be the locally defined Legendre transform from (5.8).
We set

ην(w) := −u(ν,w)

Lemma 5.12 The above locally defined expression for ην gives a well-defined poten-
tial on L(−νY )|Y whose curvature ddcην is strictly positive (and bounded away from
0 as ν ranges in a bounded interval).

Proof Consider a cover by standard coordinates (zα,wα) on chartsUα as in (5.3). We
assume the line bundle L is trivialized over eachUα with transition functions μαβ and
that the metric on L has potential ϕα over Uα . As we have already seen (5.5)

zβ = λαβ zβ

where λαβ is a holomorphic function of wα inUα ∩Uβ giving the transition functions
for O(Y )|Y . Now ∂tαϕα = ∂tβ ϕβ since they are both equal to the globally defined
moment map x . So by definition of the Legendre transform along the set {x = ν} we
have

ϕα(tα,wα) + uα(ν,wα) = tαν

ϕβ(tβ,wβ) + uβ(ν,wβ) = tβν

Now

tα = log |zα| = log |λαβ | + log |zβ | = log |λαβ | + tβ

and as ϕ is a potential on L we have ϕα = ϕβ + log |μαβ |. So we obtain

uβ(ν,wβ) = tβν − ϕβ = tαν − ϕα + log(|μαβ |) − ν log(|λαβ |) = uα(ν,wα)

+ log(|μαβ ||λαβ |−ν)

which is precisely the statement that ην(·) = −u(ν, ·) is a well-defined potential on
L(−νY )|Y . The positivity of the curvature of this potential is a local calculation, and
is the content of Lemma 5.8 ��

One of our main uses of this potential is the following expression for the her-
mitian metric we defined on H0(Y, L(−νY )|kY ). Write ωx,u = −(ddc)wu(x, w), so
by Lemma 5.8
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ωϕ = dx ∧ α + ωx,u, with α = 1

ϕt t
dcx

as before.

Proposition 5.13 There exist volume forms dVν,h̄ on Y for ν ∈ (0, ε′) such that the
inner-product on sections of L(−νY )kY defined in (5.6) is the L2-inner-product with
respect to the potential ην and volume form dVν,h̄ , i.e.

‖ f ‖2ν,k,χ =
∫
Y

| f |2ην
dVν,h̄ for all f ∈ C∞(Y, L(−νY )|kY ).

In fact

dVν,h̄ = h̄

√
2π

uxx (ν,w)
ω[d−1]

ν,u A(ν, h̄) (5.19)

where A(ν, h̄) is a smooth function and A(ν, 0) = 1.

Proof Let (z, w1, . . . , wd−1) be standard coordinates on some chart of the formUα =
π−1(Wα) for some Wα ⊂ Y . Without loss of generality we may assume that f is
supported in W . Observe that

ω[d]
ϕ = dx ∧ α ∧ ω[d−1]

x,ν = 1

2π
dx ∧ dθ ∧ ω[d−1]

x,u

Then chasing definitions

‖ f ‖2ν,k,χ = 1

2π

∫
Uα

χ | f (w)|2ην
e−2k(ϕ−νt−ην)dx ∧ dθ ∧ ω[d−1]

x,u .

This can be calculated by performing the x-integral first, to obtain an expression as an
integral on Wα . This gives the existence of the volume form dVν,h̄ (which is clearly
well-defined over all of Y ). Now observe that

ϕ(t, w) − νt − ην(w) = ϕ(t, w) − xt − (ν − x)t + u(ν,w)

= −u(x, w) − (ν − x)ux (x, w) + u(ν,w)

= uxx (x, w)(x − ν)2 + q(x, ν, w)

where q vanishes to order at least 3 at x = ν. Thus the x-integral can be calculated
using Laplace’s method, proving that dVν,h̄ is smooth in h̄, and moreover giving the
stated leading term for dVν,h̄ (this is a simple case of the Laplace method described
in Appendix 3, see in particular Remark 10.4). ��
Remark 5.14 It is worth noting that dVν,h̄ = O(h̄), so h̄−1dVν,h̄ lie in a compact set
of smooth volume forms as h̄ tends to 0 and ν ranges in a bounded interval.
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5.5 The Extremal Envelope

The circle-invariant set-up allows us to identify the extremal envelope and the for-
bidden region explicitly in terms of the moment map, the potential and the Legendre
transform.

In the neighbourhood U of Y , note that the locally defined expression εt − u(ε, ·)
defines a potential on L|U . This is because in U , εt is a potential on O(εY ) and
ηε = −u(ε, ·) is a potential on L(−εY ), so their sum is a potential on L . Note further
that

μ(t, w) = ε ⇒ εt − u(ε,w) = ϕ(t, w)

by definition of the Legendre transform. Define

ψε(t, w) =
{

εt − u(ε,w) if μ(t, w) � ε,

ϕ(t, w) otherwise
(5.20)

This definition makes sense initially only in U , but can clearly be extended to equal
ϕ over X\U . So defined, ψε is a continuous potential on L .

Remark 5.15 TheDefinition (5.20) can bemotivated as follows. The simplest possible
function with correct Lelong number has the form εt + const, where t = log |z| as
before. This does not extend globally, so away from Y we try to patch it to ϕ(t). For
fixedw, the slope of ∂tϕ(t, w) is equal to ε preciselywhenμ(t, w) = ε, since ∂tϕ = μ.
Thus we extend εt + const across μ−1(ε) to equal ϕ. For this to be continuous, we
need the constant to be equal to −u(ε,w), and we have arrived at (5.20).

Then we have

Theorem 5.16 The function ψε is the extremal envelope for (X,Y, L , ε) (cf. Defini-
tion 2.11). Moreover, for (t, w) ∈ U,

ψε(t, w) < ϕ(t, w) if and only if μ(t, w) < ε.

In particular the forbidden region Dε is equal to μ−1[0, ε).
Proof We shall show first that ψε(t, w) < ϕ(t, w) if μ(t, w) < ε. This is a variant of
the convexity argument used at the end of the proof of Theorem 4.1.

Fix w and let tε satisfy μ(tε, w) = ε. Then, from the definitions,

εt − u(ε,w) = εt − (εtε − ϕ(tε, w)) = ε(t − tε) + ϕ(tε, w)).

Then

εt − u(ε,w) − ϕ(t, w) = −(t − tε)

(
ε − ϕ(tε, w) − ϕ(t, w)

tε − t

)
.

123



J. Ross, M. Singer

If t < tε then the difference quotient is strictly less than the derivative at the upper
end point ϕ′(tε) = ε. Hence the quantity in the large brackets is positive and so

εt − u(ε,w) < ϕ(t, w) for t < tε

as required.
We shall show next that ψε is C1. The only issue is what happens near μ−1(ε). It

is easier to use (x, w) as local coordinates. Then

ψε = εux (x, w) − u(ε,w) for x < ε (5.21)

and
ψε = xux (x, w) − u(x, w) for x > ε (5.22)

Since both expressions are equal for x = ε it follows that all tangential derivatives
agree on this hypersurface, whereas

lim
x→ε− ∂xψε(ε,w) = εuxx (ε,w)

and

lim
x→ε+ ∂xψε(ε,w) = lim

x→ε
xuxx (x, w) = εuxx (ε,w).

Thus ψε is C1 as claimed.
A similar calculation, which we leave to the reader, shows that ψε is plurisub-

harmonic: from the regularity just proved, this follows by showing that ψε is
plurisubharmonic on each side of the hypersurface μ−1(ε).

Henceψε is a candidate for the extremal envelope ϕε in the sense of Definition 2.11.
We have to check that there is no better candidate. By definition, any other candidate
must also equal ϕ on the set X\μ−1[0, ε).

Suppose for contradiction ψε < ϕε at some point (t0, w0) ∈ U . Then there is
a plurisubharmonic potential γ on L bounded above by ϕ with Lelong number at
least ε along Y such that γ (t0, w0) > ψε(t0, w0). Since γ � ϕ we must then have
μ(t0, w0) < ε and so ψε = εt − u(ε,w) near (t0, w0). Suppose that γ ′(t0, w0) �
ψ ′

ε = ε. Along the image of t �→ (t, w0) we have γ ′(t, w0) is non-decreasing, so at
the point (t, w) on μ−1(ε) we have γ > ψε(t, w) = ϕ(t, w) which is absurd. Hence
γ ′(t0, w0) < ε. Again by the monotonicity of γ ′ along this image we see that γ ′ < ε

for all t < t0 and so the Lelong number of u is strictly less that ε which is also absurd.
Hence such a γ cannot exist, and we conclude ψε = ϕε as desired. ��
Corollary 5.17 With notaton as above, the equilibrium set for Y with respect to ε is
the complement of μ−1[0, ε) and the forbidden region is μ−1[0, ε)
Proof Follows directly from the Theorem. ��
Remark 5.18 Berman has proved that the extremal envelope ϕε is generally no better
than C1,1, and our explicit formula (5.20) displays precisely this regularity. On the
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other hand, we have seen in the course of the proof that ψε = ϕε is conormal with
respect to the hypersurface μ−1(ε): that is to say

V1 · · · VNψε ∈ C1,1

for any number of vector fields Vj , provided that these are all tangential to μ−1(ε). It
would be interesting to investigate the conormal regularity of the extremal envelope
in other situations.

As an application of this explicit identification of the extremal envelope, we prove
the following technical result.

Lemma 5.19 Suppose that f ∈ H ε′k
kϕ (U ) and

�′ � μ−1[0, ε′).

Then there are constants C and c such that

sup
�′

| f |kϕ � Ce−ck‖ f ‖kϕ,U (5.23)

Proof The proof is similar to that of Proposition 2.13. Let Nk = sup�′ | f |kϕ and set

v := 1

k
(log | f |kϕ − log Nk).

Then v � 0 and ϕ + v is a competitor to be the envelope for νY on �′. Hence
ϕ + v � ψε′ . Rearranging this gives that over �′

| f |kϕ � Nk exp(−k(ϕ − ψε′)) � Ckn exp(−ck)‖ f ‖kϕ,u

where we have used the L2 implies L∞ bound from Proposition 2.6 and set
c : inf�′(ϕ − ψν) = c which is strictly positive as �′ � μ−1[0, ε′). ��

5.6 A Modified Glueing Result

We will need a slight modification of our glueing result that relaxes the decay away
from the diagonal condition in the presence of a holomorphic S1-action.

Definition 5.20 We say that Bε
k is an S1-local partial Bergman kernel if it has the

holomorphic and almost reproducing property as in Definition 3.1 and the following
decay away from the diagonal in standard coordinates:

|Bε
k (z, w, z′, w′)|kϕ � Ckde−c(

√
k|w−w′|+k|x−x ′|2) for all (z, w), (z′, w′) ∈ U

where, we recall, x = μ(z, w) and x ′ = μ(z′, w′) is the value of the moment map at
these points.
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Remark 5.21 The above form of decay away from the diagonal may appear rather
unusual, in that the decay is faster in the directions normal to Y than other directions.
We have stated it in this way simply because that is what our particular construction of
Bε
k satisfies. The precise decay will not matter for our application, and it is sufficient

to have something of the form eO(
√
k)ρ((z,w),(z′,w′)) where ρ is a distance function

(say the geodesic distance defined by a given Kähler metric). In the above |w − w′|
refers the Euclidean norm with respect to our standard coordinates around Y which
we assume to exist locally (see Sect. 5.2). Again for our purpose one could, if one
prefers, replace this with ρY (w,w′) where ρY is the geodesic distance with respect to
some given Kähler metric on Y .

Theorem 5.22 With the setup as above, suppose Bε
k is an S1-local PBK of order N

on W ⊂ U, and suppose that ε is sufficiently small so that the forbidden region Dε

lies in W. Then if W ′ is an open, relatively compact subset of W then we have for all
r � 0 that

K ε
k (x, y) = Bε

k (x, y) + OCr (kd/2+r/2−N ) for all x, y ∈ W ′.

Proof The proof is the same as that of Theorem 3.3. The only place in which we used
the decay away form the diagonal was in (3.7). But if (z, w) ∈ W ′ and ∂χ(z′) �= 0 at
a point (z′, w′) then x and x ′ are a bounded distance apart (as χ ≡ 1 on W ) and so
(3.7) still holds. ��

5.7 The Local Partial Bergman Kernel

We are now ready to define our local PBK. For ν ∈ [0, ε′) let Gn,k denote the repro-
ducing kernel on Y ×Y for Lk ⊗O(−nY )|Y with respect to the inner-product defined
in (5.6).

Definition 5.23 Define

Bε
k :=

ε′k∑
n=εk

Gn,kσ
n � σ n . (5.24)

So by our conventions made following Lemma 5.5, Bε
k is a holomorphic section of

Lk |U � L
k |U .

Theorem 5.24 Bε
k is an S1-local PBK for (ε,Y ) on �′ (with respect to the chosen

cutoff function χ used in (5.6)).

Before the proof we make a convenient definition:

Definition 5.25 In standard local coordinates let

U (ν, x, w) := u(ν,w) − u(x, w) − ux (x, w)(ν − x) for ν ∈ [0, ε′]
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Lemma 5.26 (1) There exists a constant c > 0 such that U (ν, x, w) � c(x − ν)2.
(2) For any f ∈ H0(L(−νY )k |Y ) we have

| f σ n|kϕ = | f |kην e
−kU (ν,x,w).

Proof The first statement follows as U (ν, x, w) = uxx (w, x ′)(ν − x)2 for some x ′
which is strictly bounded from below as x �→ u(x, w) is strictly convex. The second
statement is a simple calculation using the definitions and is left to the reader. ��
Proof Wefirst show that Bε

k has the almost reproducingproperty, i.e. for some c,C > 0
we have

| f (z) − (Bε
k,z, χ f )kϕ |kϕ � Ce−ck‖ f ‖kϕ,U (5.25)

for all f ∈ H εk
kϕ(U ) and z ∈ �′. For this we know from Lemma 5.5 that we can write

such an f as f = g + s where

s =
∑
n>ε′k

snσ
n and g =

ε′k∑
n=εk

gnσ
n

and sn, gn ∈ H0(L(−νY )k |Y ). By integrating in the normal direction to Y first, we
see by construction that if z ∈ �′ we have

(χg, Bε
k,z)kϕ = g(z) and (χs, Bε

k,z)kϕ = 0.

On the other hand as s vanishes to order at least ε′k along Y we have from Lemma
5.19 that sup�′ |s|kϕ � Ce−ck‖s‖kϕ � Ce−ck‖ f ‖kϕ for some c,C > 0. Putting this
together gives (5.25).

Finally we prove that Bε
k has the desired decay away from the diagonal property,

i.e.

|Bε
k (z, w, z′, w′)|kϕ � Ckde−c(

√
k|w−w′|+k|x−x ′|2) for all (z, w), (z′, w′) ∈ U.

Fix (z, w). Then by Cauchy–Schwarz and the definition of the functionU (i.e. Lemma
5.26)

|Bε
k (z, w, z′, w′)|2kϕ � O(k)

∑
εk�n�ε′k

|Gn,k(w,w′)|2kην
e−2k(U (ν,x,w)+U (ν,x ′,w′))

� O(k)
∑

εk�n�ε′k
|Gn,k(w,w′)|2kην

e−ck((x−ν)2+(x ′−ν)2)

for some c > 0. Recall that each Gn,k decays exponentially fast away away from the
diagonal,

|Gn,k(w,w′)|kην � O(k2d−1)e−c
√
k|w−w′|. (5.26)

We have given a proof of this classical fact in Theorem 2.9. Moreover this estimate
is uniform as ν ranges in a bounded interval, as follows directly from our proof.
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[The reader may have expected to see O(k2d−2) in Eq. 5.26 instead of O(k2d−1) since
since 2 dim Y = 2d − 2, but the reason for this missing fact of k is that whereas
it is true that for a fixed volume form on Y the Bergman kernel has decay at rate
O(k2d−2)e−c

√
k|w−w′| (and this decay still holds for volume forms that lie in a compact

set), in the above Gn,k is taken with respect to the volume form dVν,h̄ = O(h̄) =
O(k−1/2) which is shrinking with respect to k.]

Hence

|Bε
k (z, w, z′, w′)|kϕ = O(k2d)O(e−c

√
k|w−w′|)e−ck((x−ν)2+(x ′−ν)2)

for some c > 0. On the other hand, by completing the square

(x − ν)2 + (x ′ − ν)2 = 1

2
(x − x ′)2 + 2

(
ν − x + x ′

2

)2

� 1

2
(x − x ′)2

which gives the desired result. ��

6 Proof of Main Theorems

We now put what we have done together to prove the main theorems. The main task
is to understand the asymptotics of our S1-local PBK

Bε
k :=

ε′k∑
n=εk

Gn,kσ
n � σ n . (6.1)

The idea is to use the standard asymptotic expansion of the density functions on Y to
expand the functions Gn,k in powers of k, and then use the Euler–Maclaurin formula
to evaluate the sum in terms on an integral, which by Laplace’s method can also be
expanded in powers of k. To display the main ideas and keep the proof short, we
include an account of each of these standard techniques in the Appendix.

We start by recalling the well-known asymptotic expansion of the Bergman kernel.
Let L ′ be an ample line bundle on a compact complex manifold Y of dimension d
with positive hermitian metric e−2ϕ and let dV be a smooth volume form on Y . These
define an L2-inner product on sections of L ′k and we let K ′

k denote the reproducing
kernel for the projection to the holomorphic sections, and let ρ′

k(y) = Kk(y, y) be the
corresponding density function.

Theorem 6.1 There exist smooth functions a0, a1, . . . on Y such that for any p, r � 0
there is an asymptotic expansion

ρ′
k = a0k

d + a1k
d−1 + · · · + apk

d−p + OCr (kd−p−1).

Furthermore the ai are universal quantities that depend smoothly on dV and the
curvature of ϕ, in particular

a0 = (ddcϕ)[d]

dV
. (6.2)
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Moreover given any c > 0 and background Kähler form ω0 on Y , the OCr (kd−p−1)

error term may be taken uniformly over all (L ′, e−ϕ) such that ddcϕ � cω0 as well
as uniformly over all volume forms that lie within a compact set.

Proof The first statement is the famous asymptotic expansion of the Bergman kernel,
due to Fefferman [9], Catlin [5], Tian [30] and Zelditch [31], The statement that the
error term may be taken uniformly follows from the same proofs (e.g. it is clear that
this is the case for the local Bergman Kernel of [3], and the glueing theorem of [3,
Thm 3.1] uses the Hörmander estimate which gives a uniform error given the assumed
bound on ddcϕ, and for the variation with respect to dV see [3, Sec 2.4] which is also
clearly uniform as dV varies in a compact set. ��

Proof (Proof of Theorems 1.1, 1.2) First we note that Bε
k is an S1-local PBK which

by Theorem 5.22 approximates the globally defined PBK, so in standard coordinates
(z, w) we have

ρε
k (z, w) = Bε

k (z, w, z, w)e−2kϕ(z,w) + O(k−∞).

Hence the goal becomes to understand the asymptotics of the quantity

B := Bε
k (z, w, z, w)e−2kϕ(z,w).

From now on we will work with the variable h̄ = k−1/2. By Lemma 5.12 the ην have
positive curvature bounded from below uniformly over ν ∈ [0, ε′]. Observe that ην

are smooth in ν and recall that h̄−1dVν,h̄ are volume forms that lie in a compact set
(and moreover are smooth in h̄ and ν). Thus Theorem 6.1 implies there are smooth
functions ai (ν,w) on [0, ε′] × Y such that that for any r, p � 0 we have

h̄Gn,k(w,w)e−2h̄−2ην(w) = a0(ν,w)h̄2−2d + a1(ν,w)h̄4−2d + · · ·
+ ap(ν,w)h̄2p+2−2d + OCr (h̄2p+4−2d)

where, as usual, ν = n/k = h̄2n. To capture this information we define

α(ν, h̄2, w) := a0(ν,w) + a1(ν,w)h̄2 + · · · + ap(ν,w)h̄2p

which is clearly smooth in all variables.

Remark 6.2 For later use, observe that from the leading order term of dVν,h̄ given in
(5.19) and the leading order term of the asymptotic expansion of the Bergman function
given in (6.2) we have that

α(0, 0, w) = a0(0, 0) =
√
uxx (0, w)

2π
.
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Now using Lemma 5.26 (i.e. the properties of our function U ) gives

B =
ε′k∑

n=εk

Gn,k(w,w)|z|2ne−2kϕ(z,w)

=
ε′k∑

n=εk

Gn,k(w,w)e−2kην(w)e−2kU (ν,x,w)

= h̄1−2d

⎛
⎝ ε′k∑

n=εk

e−2kU (x,ν,w)α(h̄2n, h̄2, w) + OCr (h̄2p+2)

⎞
⎠ .

Now this sum can be calculated using the Euler–Maclaurin formula (see 9.2). To state
this let

qh̄(s) := q(s, h̄, x, w) = e−h̄−2U (x−h̄s,x,w)α(x − h̄s, h̄2, w)

and set

ξ = x − ε

h̄
.

Then

h̄2d B =
∫ ξ

−∞
qh̄(s)ds +

m−1∑
j=0

A j h̄
j + O(h̄m) (6.3)

where

A0 = 1

2
qh̄(ξ) and A j = (−1) j−1 β j+1

( j + 1)!q
( j)
h̄ (ξ)

where β j are the Bernoulli numbers. Moreover one sees directly that the coefficients
A j lift to the real blowup (see Appendix 1) as in the statement of the Theorem.

Thus it remains only to analyse the integral in the right hand side of (6.3) which
can be done by Laplace’s method. In slightly more detail observe that qh̄(s) has its
unique critical point at s = 0. We rewrite the integral as

I :=
∫ ζ

−∞
qh̄(s)ds = h̄−1

∫ x−ε

−∞
qh̄

(
s

h̄

)
ds

So this is precisely the setup of Laplace’s method as discussed in Appendix 3 which
shows that this integral has an asymptotic expansion in powers of h̄, in fact

I =
√
2πα(0, 0, w)√
uxx (0, w)

�(
√
uxx (0, w)ζ ) + O(h̄)
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where as usual

�(x) := 1√
2π

∫ x

−∞
e− t2

2 dt.

Recall that uxx (0, w) = |v| where v is the generator of the S1-action. Thus plugging
in (Remark 6.2)

α(0, 0, w) =
√ |v|
2π

,

as simple change of variables gives

I = 1√
2π |v|

∫ x−ε
h̄

−∞
e
− t2

2|v|2 dt + O(h̄)

as required in the statement of Theorem 1.2. Finally Theorem 1.1 follows immediately
from this by the behaviour of �(x) on the sets {x < ε} and {x > ε}. ��

7 An Application

We end with an application of our main theorem to the study of a certain natural
function introduced by Ross-Witt Nyström [22] that one can associate to a divisor on
a Kähler manifold.

Fix a line bundle L on a compact complex manifold X with hermitian metric e−ϕ .
Then the order of vanishing of sections along a divisor Y determines a finite length
filtration

H0(Lk) ⊃ H0(Lk ⊗ IY ) ⊃ H0(Lk ⊗ I 2
Y ) ⊃ · · · ⊃ {0}.

Let ordY (s) denote the order of vanishing of a section s along Y , and suppose that
{sα,k} is an L2-orthonormal basis for H0(Lk) that is compatible with this filtration,
i.e. for each j the set

{sα,k : ordY (sα,k) � j}

is a basis for H0(Lk ⊗ I
j
Y ),

Definition 7.1 Define Mk : X → R by

Mk(z) =
∑

α ordY (sα,k)|sα,k |2kϕ
k

∑
α |sα,k |2kϕ

.

One can check directly that this definition does not depend on choice of compatible
orthonormal basis, and thus defines a natural smooth function on X associated to Y
and the hermitian metric on L .
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Theorem 7.2 Suppose ϕ and Y are invariant under an S1 action on (X, L). Then
there is a neighbourhood of Y and an asymptotic expansion

Mk = c0 + c1/2k
−1/2 + c1k

−1 + · · · + cr k
−N + OCr (k−N−1/2) (7.1)

where ci are smooth functions defined on this neighbourhood.Moreover c0 is precisely
the hamiltonian of the S1 action normalized so Y = c−1

0 (0).

Remark 7.3 It is shown in [22, Sec 8], without any assumption of the existence of an
S1-action, that the limit

μ := lim sup
k→∞

Mk

converges almost everywhere on X . We do not know anything about the regularity
of μ in general, but it does have a “push-forward” property analogous to that of the
Duistermaat-Heckman formula [22, Thm. 8.1, 8.3] with the moment polytope being
replaced by the Okounkov body of (X, L). The previous theorem shows that in the
S1-invariant case we in fact have that μ = c0 is the Hamiltonian in a neighbourhood
of Y which reaffirms this property.

Proof of Theorem 7.2 For simplicity write sα for sα,k and set nα = ordY (sα). We also
write x : X → R for the hamiltonian of the S1-action normalized so Y = {x = 0}. So
the partial Bergman kernel for (ε,Y ) is given by

ρε
k =

∑
nα�εk

|sα|2kϕ for εk ∈ N.

By Theorem 1.2 there is a neighbourhood of the divisor and an expansion of the partial
density in powers of k1/2:

ρε
k = b0(ε)k

d + b1/2(ε)k
d−1/2 + · · · + bN (ε)kd−N + O(kd−N−1)

where the bi (ε) are smooth functions on X with

b0(ε) = 1√
2πx

∫ √
k(x−ε)

−∞
e− t2

2x dt.

Now

kσ∑
j=1

ρ
j
k Y
k =

kσ∑
j=1

∑
nα� j

|sα|2kϕ =
∑

nα�kσ

nα|sα|2kϕ +
∑

nα>kσ

kσ |sα|2kϕ.

Thus on a smaller neighbourhood of Y (say where x � σ/2) we have

Mk = 1

kρk

kσ∑
j=1

ρ
j
k Y
k + O(k−∞)
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where ρk is the usual Bergman function on X . Now ρk = kd + O(kd−1) has a global
asymptotic expansion in powers of k, and thus the Euler–Maclaurin formula gives the
required expansion (7.1) for Mk with

c0 =
∫ σ

0
b0(s)ds.

Roughly speaking, for k large b0(s) is approximately 1 for x > s and 0 for x < s, and
so c0 = ∫ s

0 b0(s)ds ∼ ∫ x
0 ds = x . We claim that in fact for x < σ/2 we have

∫ σ

0
b0(s)ds = x + O(k−∞)

To see this, integrate by parts to get

I :=
∫ σ

0
b0(s)ds = [sb0(s)]σs=0 + √

k
∫ σ

0

s√
2πx

e
−k(x−s)2

2x ds

Since x < σ/2 the boundary term is O(k−∞), and by direct calculation

k−1/2 I = x
∫ σ

0

1√
2πx

e− k(x−s)2
2x ds −

∫ σ

0
(x − s)

1√
2πx

e− k(x−s)2
2x ds + O(k−∞)

= k−1/2x + O(k−∞)

as claimed. ��
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Appendix 1: The Real Blow-up

For the reader’s convenience we collect here some elementary properties of a special
case of the real blow-up. More details and constructions of greater generality can be
found in Melrose’s book [16, Chapter 5], as well as in [11] and [10, Section 2.3].

Definition 8.1 Let S1+ = {eiθ : θ ∈ [0, π ]} ⊂ R
2 be the upper-semicircle. The real

blow-up of the upper-half space R × R�0 at the point p = (0, 0) is defined to be

[R × R�0; p] := R�0 × S1+
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along with the blow-down map

β : [R × R�0; p] → R × R�0 β(r, eiθ ) = reiθ .

Thus [R×R�0; p] is the upper half-space with a copy of the semicircle S1+ inserted at
the origin, whichwe consider as amanifold-with-corners. Thenβ is smooth, andmore-
over is a diffeomorphism away from the exceptional set E = β−1(p) = {(0, eiθ ) :
θ ∈ [0, π ]}. The boundary of [R × R�0; p] has three pieces, namely E and the two
axes H± = {(r,±1) : r ∈ R�0}, and two corners C± = H± ∩ E .

[R × R�0; p]

E

R × R�0

p

β

C+C− H+H−

For higher dimensions, we let the real blow-up ofRn×R�0 along Y := R
n−1×{p}

be [Rn ×R�0; Y ] := R
n−1 ×[R×R�0; p], and by patching in the obvious way, this

extends to define the real blow-up [X ×R�0; D × {0}] for any smooth real manifold
X and codimension 1 smooth divisor D.

Let x be the standard coordinate on R and h̄ the standard coordinate on R�0. Then
the functions

ξ := x

h̄
and h̄

give coordinates on the blow-up B := [R × R�0; p] on an open set containing the
interior of E (precisely, ξ = cotan θ and h̄ = r sin θ for (r, θ) ∈ B with θ �= 0).
Moreover in these coordinates β(ξ, h̄) = (ξ h̄, h̄). Around each of the corners C± we
have coordinates given by

x and η± = ± h̄

x

(so x = r cos θ and η± = ± tan θ ) and in these coordinate β(x, η±) = (x,±xη±).
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Our interest will be in functions on R × R>0 that lift to smooth functions on the
blow-up (i.e. that extend to a smooth function right up to the boundary). As a model
example (which will be considered in more generality below) let

q(x, h̄) = e−h̄−2x2

which is clearly smooth for h̄ > 0, and extends smoothly to the boundary away from
p := (0, 0). We claim the lift β∗g := q ◦ β extends to a smooth function on all of
[R × R�0; p]. To see this observe that in the coordinates (ξ, h̄) we have

β∗q(ξ, h̄) = q(ξ h̄, h̄) = e−ξ2

which is clearly smooth, and in coordinates (x, η±),

β∗q(x, η±) = q(x,±xη±) = eη−2±

which extends to a smooth function for all η± � 0 by declaring it to be zero when
η± = 0.

Appendix 2: The Euler–Maclaurin Formula

Let U (ν, x, w) be a smooth function, where ν ∈ [0, ε′], x ∈ R�0 and w ranges in an
open relatively compact subset of Cm . Suppose that U is such that x �→ U (ν, x, w)

is strictly convex and

U (x, x, w) = 0 and Ux (x, x, w) = 0 for all x, w. (9.1)

Also let α(ν, h̄2, w) be a bounded smooth function where h̄2 ∈ R�0 and fix also
ε ∈ [0, ε′). For h̄ > 0 let

ph̄(t) := p(t, h̄, x, w) := e−h̄−2U (h̄2t,x,w)α(h̄2t, h̄2, w)

Then our interest is in the behaviour of the sum

S := S(h̄, x, w) := h̄
ε′k∑

n=εk

e−h̄−2U (h̄2n,x,w)α(h̄2n, h̄2, w) = h̄
h̄−2σ∑

n=h̄−2ε

ph̄(n) (9.2)

as h̄ tends to zero.
We recall the Bernoulli numbers are defined by β j = β j (0) where

zezx

ez − 1
=

∑
j�0

β j (x)
z j

j ! .
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Theorem 9.1 (Euler–Maclaurin Formula) Suppose p : R → R is smooth and p(i)(t)
tends to zero as t tends to infinity for all i � 0. Then for any integers a and m � 1 we
have

∞∑
n=a

p(n)=
∫ ∞

a
p(t)dt+1

2
p(a)−

m−1∑
j=1

β j+1

( j + 1)! p
( j)(a)−

∫ ∞

a

βm({1 − t})
m! p(m)(t)dt,

where {t} denotes the fractional part of t .
Proof This is proved, for example, in [27, Theorem 5]. ��

Since x �→ U (ν, x, w) has its (unique) critical point at x = ν it is convenient to
make a further change of variables by setting

qh̄(s) = ph̄

(
x − h̄s

h̄2

)
.

Observe then that from (9.1)

qh̄(s) = e−h̄−2U (x−h̄s,x,w)α(x − h̄s, x, w) = e−Uxx (x,x,w)s2+O(h̄)α(x − h̄s, x, w)

which has bounded derivatives with respect to s uniformly as h̄ tends to 0.

Proposition 9.2 Set

ξ = x − ε

h̄
.

Then for any m � 1 and all x < ε′ we have

h̄
ε′k∑

n=εk

e−h̄−2U (h̄2n,x,w)α(h̄2n, h̄2, w) =
∫ ξ

−∞
qh̄(s)ds +

m−1∑
j=0

A j h̄
j + O(h̄m) (9.3)

where

A0 = 1

2
qh̄(ξ) (9.4)

A j = (−1) j−1 β j+1

( j + 1)!q
( j)
h̄ (ξ) (9.5)

which are bounded independent of h̄. Moreover this is uniform as x varies in a compact
subset of [0, ε′).

Proof Wecan assume thatU is the restriction of a function defined for all ν � 0 (which
for simplicity we also denote byU ) with the same convexity properties. Similarly we
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assumeα extends to a bounded function defined for all ν � 0. Now using the convexity
of U one sees that since x � ε < ε′ we have

ph̄(n) � O(e−ch̄−2
e−ch̄−2(ε′−h̄−2n))

for some c > 0. Hence
∑

n>h̄−2ε ph̄(n) = O(h∞) giving

S = h̄
∑

n�h̄−2ε

e−h̄−2U (h̄2n,x,w)α(h̄2n, h̄2, w) + O(h̄∞).

Similarly one verifies that for x � ε the derivatives of ph̄ tend to zero as t tends to
infinity. Hence the above Euler–Maclaurin formula (9.3) (applied with a = h̄−2ε)
gives

h̄−1S =
∫ ∞

h̄−2ε

ph̄(t)dt + ph̄(h̄−2ε)

2
−

m−1∑
j=2

β j+1

( j + 1)! p
( j)
h̄ (h̄−2ε)

−
∫ ∞

h̄−2ε

βm({1 − t})
m! p(m)

h̄ (t)dt + O(h̄∞).

Now by instant computation

q( j)
h̄ (ξ) = (−h̄)− j p( j)

h̄ (h̄−2ε).

On the other hand by a change of variables

∫ ∞

h̄−2ε

ph̄(t)dt = h̄−1
∫ ξ

−∞
qh̄(s)ds

and a similar change of variables shows that

∫ ∞

h̄−2ε

βm({1 − t})
m! p(m)

h̄ (t)dt = O(h̄m−1).

Putting this together gives the statement, and the fact that the A j are bounded as h̄
tends to zero follows as the derivatives of qh̄ are bounded. ��

Appendix 3: Laplace’s Method

Wenowgive an account of Laplace’smethod [28] tailored to our requirements (see also
[29]). We are concerned with obtaining the large-k asymptotic behaviour of integrals
of the form

Fk(x) =
√

k

2π

∫ x

−∞
e−k f (t)α(t) dt (10.1)

where α is smooth and has compact support, and f has the properties
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• f (t) � 0;
• f (0) = 0, f ′(0) = 0, f ′′(0) = c > 0;
• f (x) � f1 > 0 for all |x | > δ,

where δ > 0 is some small number.
These properties ensure that if the support of α does not contain 0, then Fk(x) is

uniformly exponentially small in k, independent of x . So the interesting case is that
supp(α) � 0 and one expects the asymptotic expansion in negative powers of k to see
only the jets of α and f at 0. The model problem is the integral

Zk(x) =
√

k

2π

∫ x

−∞
e−kt2/2 dt. (10.2)

This is the case f (t) = t2/2, which clearly verifies the above properties [even if the
function ‘1’ replacing u in (10.1) does not have compact support].

Make the change of variables

y = x

h̄
and s = t

h̄
and h̄ = 1√

k
(10.3)

in (10.2) so

Zk(h̄ y) = 1√
2π

∫ y

−∞
e−s2/2 ds = �(y) (10.4)

where � is the usual normal distribution function. In other words,

Zk(x) = �(x/h̄). (10.5)

Note that if x > 0 is fixed, x/h̄ → +∞ as h̄ → 0, so Zk(x) → 1 and in fact
Zk(x) − 1 is exponentially small in k for fixed x . Similarly, if x < 0 is fixed, Zk(x) is
exponentially small in k. But (10.4) shows that this apparently discontinuous behaviour
in x near 0 can be ‘smoothed’ by introducing a new variable x/h̄, which corresponds
to a real radial blow-up, as discussed in Appendix 1.

Life is more interesting for general exponents f satisfying the above conditions
(and for functions α not identically equal to 1). In that case, if x > 0, for example,
Fk(x) is exponentially close to

Fk(∞) :=
√

k

2π

∫ ∞

−∞
e−k f (t)α(t) dt (10.6)

and the asymptotic expansion of this is given by Laplace’s method.
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3.1. Incomplete Gaussian Integrals

We change notation slightly and set

Z(x, h̄;α) = 1√
2π h̄

∫ x

−∞
e−t2/2h̄2α(t) dt. (10.7)

We assume that α is C∞ and that derivatives of α are bounded,

‖α‖Cr � Ar (10.8)

for each r � 0.
For such a function, define

δ0α(t) = α(t) − α(0)

t
for t �= 0, δ0α(0) = α′(0). (10.9)

Then δ0α is smooth and all derivatives are bounded. We have the formula

δ0α(t) =
∫ 1

0
α′(λt) dλ. (10.10)

It follows that δ0α is smooth for |t | < 1, say, with

∂nt (δ0α) =
∫ 1

0
λnα(n+1)(λt) dλ. (10.11)

In particular if |t | < 1, ∂nt δ0α is bounded by sup |α(n+1)|. On the other hand, (10.9)
shows that δ0α(t) decays as |t | → ∞, and by differentiating this formula, the same is
true of all derivatives.

Inserting the formula
α(t) = α(0) + tδ0α(t) (10.12)

into (10.7), getting

Z(x, h̄;α) = 1√
2π h̄

∫ x

−∞
e−t2/2h̄2 (α(0) + tδ0α(t)) dt

= 1√
2π h̄

α(0)
∫ x

−∞
e−t2/2h̄2 dt + 1√

2π h̄

∫ x

−∞
te−t2/2h̄2δ0α(t) dt

(10.13)

= α(0)�(x/h̄)− h̄√
2π

e−x2/2h̄2δ0α(x)+ h̄2√
2π h̄

∫ x

−∞
e−kt2/2[δ0α]′(t) dt.

(10.14)
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Here we have used the notation

�(x) = 1√
2π

∫ x

−∞
e−t2/2 dt so �′(x) = 1√

2π
e−x2/2 (10.15)

respectively for the normal distribution function and the normal density function. The
final line (10.14) was obtained by integration by parts and the formula:

te−t2/2h2 = −h̄2
d

dt
e−t2/2h2 . (10.16)

Now define

Dα = d

dt
δ0α. (10.17)

Then (10.14) can be written

Z(x, h̄;α) = α(0)�(x/h̄) + h̄δ0α(x)�′(x/h̄) + h̄2Z(x, h̄;Dα) (10.18)

This forms the basis of the inductive step in obtaining a full asymptotic expansion of
Z(x, h̄;α):

Theorem 10.1 Suppose that u(t) is smooth with all derivatives uniformly bounded
on R, and let

Z(x, h̄;α) = 1√
2πh

∫ x

−∞
e−kt2/2α(t) dt. (10.19)

Then for each N, we have an expansion

Z(x, h̄;α) =
⎧⎨
⎩

N∑
j=0

h̄2 jD jα(0)

⎫⎬
⎭ �(x/h̄) +

⎧⎨
⎩

N∑
j=0

h̄2 j+1δ0D
jα(x)

⎫⎬
⎭ �′(x/h̄)

+ h2N+2RN+1(x, h̄;α), (10.20)

where the error term is given by

RN+1(x, h̄;α) = Z(x, h̄,DN+1α) (10.21)

which satisfies
|RN+1(x, h̄;α)| � BN‖α‖C2N+2 . (10.22)

Proof It is clear that (10.18) yields the case N = 0 of (10.20). It also gives the
inductive step: if (10.20) holds for N , then replacing u by DNα implies (10.20) for
N + 1. So it remains only to prove the estimate (10.22). For this, note that δ0 behaves
as a first-order differential operator: we have estimates of the form

‖δ0α‖Cr � Br‖α‖Cr+1 (10.23)
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for each r , Br being a constant independent of α. It follows that D satisfies estimates
of the form

‖Dα‖Cr � B ′
r‖α‖Cr+2 (10.24)

for each r .
To obtain the estimate of RN+1 from this, use the change of variables s = t/h̄ in

the integral

RN+1(x, h̄;α) = 1√
2π h̄

∫ x

−∞
e−t2/2h̄2DN+1α(t) dt

= 1√
2π

∫ x/h̄

−∞
e−s2/2DN+1α(h̄s) ds (10.25)

and the bound (10.24), iterated, to give

sup |DN+1α| � B ′′
N+1‖α‖C2N+2 (10.26)

for some constant B ′′
N+1. ��

3.2. More General Exponentials

We now consider the changes needed to adapt this method to the more general expo-
nents appearing in

F(x, h̄; u) :=
√

k

2π

∫ x

−∞
e−k f (t)α(t) dt

as in (10.1). Our approach is quite standard: we deform f to its quadratic part and
work out what additional terms this introduces. So consider the 1-parameter family of
exponents

fλ(t) = ct2

2
+ λq(t) (10.27)

where q(t) is the third-order part of f (t). Then f0(t) is a standard quadratic, to which
the above analysis can be applied, and f1(t) = f (t) is the function we’re really
interested in. Set

H(λ) = H(λ; x, h̄, α) = 1√
2π h̄

∫ x

−∞
e−k fλ(t)α(t) dt. (10.28)

With all other parameters fixed, Taylor’s theorem for H gives

∣∣∣∣∣∣H(1) −
p∑

j=0

1

j !H
( j)(0)

∣∣∣∣∣∣ � C sup
0�λ�1

H (p+1)(λ). (10.29)
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For simplicity take c = 1. Then for any j ,

H ( j)(0) = (−1) j√
2π h̄2 j+1

∫ x

−∞
e−t2/2h̄2q(t) jα(t) dt (10.30)

and this integral, for fixed j , can be analyzed by the techniques of the previous section.
We stress that the the third-order vanishing of q implies that the integrand in (10.30)
vanishes to order 3 j and so contributes terms of order h̄3 j , leaving H ( j)(0) of order
h̄ j . In the statements that follow it is clearest to distinguish cases according to the
parity of j .

Theorem 10.2 Suppose that j = 2ν+1 is odd. Then there exist a sequence of smooth
functions αi, j , i = 0, . . . , 3ν + 1, such that

H (2ν+1)(0) = − h̄2ν+1

√
2π

3ν+1∑
i=0

αi, j (h̄ y)y
2i e−y2/2 − h̄2ν+2Z(x, h̄;D3ν+2(q jα)).

(10.31)
Similarly, if j = 2ν � 2 is even, then there exists a sequence of smooth functions αi, j ,
i = 0, . . . , 3ν − 1, such that

H (2ν)(0) = 1√
2π

(
h̄2ν

3ν−1∑
i=0

αi,2ν(h̄ y)y
2i+1e−y2/2+h̄2ν+1δ0D

3ν(q2να)(h̄ y)e−y2/2

)

+ h̄2ν+2Z(x, h̄;D3ν+1(q2να)). (10.32)

More precisely, the αi, j are defined as follows:

αi,2ν+1(x)x
2i = δ0D

3ν+1−i (q2ν+1α) (10.33)

and
αi,2ν(x)x

2i+1 = δ0D
3ν−i (q2να). (10.34)

Remark 10.3 Implicit in the definitions of αi, j in (10.33) and (10.34) is that the right-
hand sides of those equations are indeed divisible by x2i or x2i+1 respectively so that
ui, j is smooth.

Remark 10.4 As a final generalization, observe that the above expansion still holds if
f and u are allowed to depend smoothly on h̄ and also on auxiliary parameters. That
is, suppose thatW is a relatively compact subset of Cm and f = f (t, h̄, w) is smooth
satisfies the above assumptions uniformly for h̄ � 0 and w ∈ W and α = α(t, h̄, w)

is smooth. In fact by expanding α = α0 + α1h̄ + · · · in powers of h̄ we may as well
consider the case of α = α0. Furthermore by convexity of f , we see that the integral
is changed only by a factor of O(k−∞) if α0 is replaced by χα0 where χ is a cut-off
function that is identically 1 on an interval that is larger than the range of x of interest.
Thus we may as well assume α0 has compact support.
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Say

f (t, h̄, w) = ct2/2 + q(t, h̄, w)

where c = c(h̄, w) > 0 and q has order 3 in t . Then Theorem 10.2 gives an expansion
of

F(x, h̄, w) :=
√

k

2π

∫ x

−∞
e−h̄−2 f (t,h̄,w)α(t, h̄, w)dt (10.35)

in powers of h̄whose terms canbe deduced from (10.20,10.28,10.31–10.34).Moreover
it is clear that the error term is uniform overw ∈ W . Looking back at these expressions
[e.g. (10.18)] one sees its leading order term is given by

F(x, h̄, w) = α(0, 0, w)√
c(0, w)

�
(√

c(0, w)y
)

+ O(h̄). (10.36)

3.3. Lifting to the Real Blow-up

The above formulae can be given a geometric flavour through the introduction of the
real blow-up [Rx × [0,∞)h̄, (0, 0)]. Letting y = x/h̄ as before, we have coordinates
(y, h̄) on this blow-up that cover the interior of the exceptional divisor E .

Theorem 10.5 The function F(x, h̄, w) from (10.35) extends smoothly from the inte-
rior of B to all boundary faces.

Proof This is almost obvious from the formulae we’ve obtained. Indeed the form of
Theorem 10.1 and equations (10.31) and (10.32) show at once (setting x = h̄ y) that
F extends smoothly to a neighbourhood of the interior of the exceptional divisor E .

The blow-up X has two corners C±. Here C+ is the intersection of E with the lift
of the positive real axis. We can take η := h̄/x = 1/y and x � 0 as coordinates near
C+ and in these coordinates the expansion in Theorem 10.1 has the form

Z(x, h̄;α) =
⎧⎨
⎩

N∑
j=0

(ηx)2 jD jα(0)

⎫⎬
⎭�(1/η) +

⎧⎨
⎩

N∑
j=0

(ηx)2 j+1δ0D
jα(x)

⎫⎬
⎭ �′(1/η)

+ (ηx)2N+2RN+1(x, h̄;α). (10.37)

and because�(1/η) and�′(1/η) are smooth down to η = 0, this expression is clearly
smooth for (η, x) small and non-negative.

Similarly, in these coordinates,

H (2l+1)(0) = − (ηx)2l√
2π

3l+1∑
i=0

αi, j (x))η
−2i e−1/2η2 + h̄2l+1Z(x, h̄;D3l+2α) (10.38)

and each term in the sum is of the form x2lη2l−2i e−1/2η2 (i = 0, . . . , 3l + 1) which
again is smooth for (η, x) small and non-negative. ��
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3.4. Proofs

To prove Theorem 10.2 we start with a lemma:

Lemma 10.6 Suppose that g(t) is smooth, with all derivatives bounded, and vanishes
to order m at 0: in other words,

g( j)(0) = 0 for all j < m. (10.39)

Then δ0g vanishes to order m − 1 and Dg vanishes to order m − 2 at 0.

Proof The question is local to 0, so we can use the representation

δ0g(t) =
∫ 1

0
∂t g(λt, x) dλ (10.40)

Then by (10.11), we see at once that (δ0g)( j)(0) = 0 for all j = 0, . . . ,m − 1. This
implies the corresponding vanishing for Dg. ��

Now we can move on to the proof of the Theorem. The proof is little more than
using Theorem 10.1 to expand Z(x, h̄; q jα), in combination with the information
from the previous lemma.

More precisely, suppose that j = 2ν + 1. Then the order of vanishing of q jα is
m = 6ν+3 = 2(3ν+1)+1. It follows from the lemma thatD3ν+1−i (q jα) vanishes to
order 2i for i = 0, . . . , 3ν+1. In particular the αi, j of (10.33) are well-defined smooth
functions.NowapplyTheorem10.1with N = 3ν+1.BecauseD3ν+1−i (q jα)(0) = 0,
the coefficient of � in (10.20) is zero. Thus we are left with

Z(x, h̄; q jα) = e−y2/2

√
2π

3ν+1∑
i=0

h̄2i+1δ0D
i u(q j x) + h̄6ν+4Z(x, h̄;D3ν+2(q2ν+1α)).

(10.41)
Now substitute (10.33) into (10.41) and write x = h̄ y to get

Z(x, h̄; q jα) = e−y2/2

√
2π

3ν+1∑
i=0

h̄2i+1α3ν+1−i,2ν+1(h̄ y)(h̄ y)
2(3ν+1−i)

+ h̄6ν+4Z(x, h̄;D3ν+2(q2ν+1α)). (10.42)

Since H (2ν+1)(0) = −Z(x, h̄; q2ν+1α)/h̄4ν+2, (10.31) follows immediately from
(10.42).

If j = 2ν is even, then the proof follows precisely the same lines. We apply
Theorem 10.1 with N = 3ν to expand Z(x, h̄; q2να) and use the fact that q2να has
a zero of order 6ν at 0. This means that the αi,2ν of (10.34) are well-defined for
i = 0, . . . , 3ν − 1. We proceed as before, using H (2ν)(0) = Z(x, h̄; q2να)/h̄4ν to
obtain (10.32).
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3.5. Remainder Term

It remains only to estimate the error term H (p)(λ) in (10.29). Of course

H (p)(λ) = (−1)p√
2π h̄2p+1

∫ x

−∞
e−k fλ(t)q(t)p+1α(t) dt. (10.43)

On the assumption that
fλ(t) � t2/4 (10.44)

for t ∈ supp(α) and 0 � λ � 1,

|H (p)(λ)| � 1√
2π h̄2p+2

∫ x

−∞
e−t2/4|q(t)|p+1|α(t)| dt

� 1√
2π h̄2p

∫ x

−∞
e−kt2/4Qp+1|t3p+3α(t)| dt (10.45)

Making the change of variables t = h̄s, x = h̄ y,

|H (p)(λ)| � h̄ p+1

√
2π

∫ y

−∞
e−s2/4Qp+1|s3p+3α(h̄s)| ds (10.46)
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