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Abstract 20 

Archaeological and molecular data suggests that horses were domesticated comparatively 21 

recently, the genetic evidence indicating that this was from several maternal haplotypes but 22 

only a single paternal one. However, although central to our understanding of how humans 23 

and environmental conditions shaped animals during domestication, the phenotypic 24 

changes associated with this idiosyncratic domestication process remain unclear. Using 25 

geometric morphometrics on a sample of horse teeth including Pleistocene wild horses, 26 

modern Icelandic and Thoroughbred domestic horses, Przewalski wild horses of recent age, 27 

and domestic horses of different ages through the Holocene, we show that, despite 28 

variations in size likely related to allometry (changes to bone size in proportion to body 29 

size), natural and artificial selective pressures, and geographic and temporal heterogeneity, 30 

the shape of horse teeth has changed surprisingly little over thousands of years across 31 

Eurasia: the shapes of the premolars of prehistoric and historic domestic horses largely 32 

resemble those of Pleistocene and recent wild horses. However, this changed dramatically 33 

after the end of the Iron Age with an explosive increase in the pace and scale of variation in 34 

the past two millennia, ultimately resulting in a two-fold jump in the magnitude of shape 35 

divergence in modern breeds. Our findings indicate that the pace of change during 36 

domestication may vary even within the same structure with shape, but not size, suggesting 37 
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a 'long-fuse' model of phenotypic modification, where an initial lengthy period of 38 

invariance is followed by an explosive increase in the phenotypic change. These 39 

observations support a testable model that is applicable to other traits and species, and add a 40 

new layer of complexity to the study of interactions between humans and the organisms 41 

they domesticated.  42 

 43 

Key words  44 
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 46 

Introduction 47 

Horse domestication had a profound effect on humans (Clutton-Brock 1999; Anthony 48 

2007; Olsen 2006). The timing of horse domestication around 3500 BCE  (Outram et al. 49 

2009), and the subsequent extirpation of wild progenitors, potentially correlates with 50 

important environmental shifts i.e. expansion and contraction of forest cover (Warmuth et 51 

al. 2011). However, reconstructing the history of this event has proved challenging 52 

(Lippold et al. 2011; Wade et al. 2009; Steiner 2013); a deeper knowledge of the processes 53 

that underpinned horse domestication has important implications for our understanding of 54 

both the human groups that first undertook this particular domestication event (or events), 55 
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as well as the ecological setting within which domestication was initiated. Critically, with 56 

the expansion of domestic populations our ability to distinguish between discrete groups of 57 

wild and domestic horses diminishes to nil (Bendry 2012).  58 

 59 

Maternally inherited mtDNA of modern horse breeds demonstrates a high degree of 60 

variability, with an exponential population expansion starting 6000-8000 years ago 61 

(Lippold et al. 2011). Genomic analyses confirm that horses did not undergo strong genetic 62 

bottlenecks and indicate close relationships among breeds and even among domestic horses 63 

and their closest living relative, the Przewalski wild horse, Equus przewalskii (Wade et al. 64 

2009). The domestication process is strongly sex-biased (Wade et al. 2009): differences in 65 

paternal-inherited DNA are small and all modern breeds share the same Y chromosome 66 

haplotype (Lingren et al. 2004). Overall, the genetic evidence suggests that mares from 67 

multiple populations contributed to the gene pool but that only a few stallions were 68 

domesticated.  69 

 70 

Archaeological data supporting western central Eurasia as a likely centre of early horse 71 

domestication (the presence of mares-milk and carcass residues in ceramic vessels, 72 

alongside pathological markers and bit-wear indicative of horse riding c.3500 BCE: Outram 73 
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et al. 2009) are now corroborated by autosomal genotype data (Warmuth et al. 2011; 2012). 74 

These same archaeological lines of evidence point to an established and well-developed 75 

economy that included the exploitation of a range of secondary products (Outram et al. 76 

2009; Bendry 2011), not just the horse’s ability to transport people and goods. Thus, 77 

despite strong consensus that the horse was domesticated for riding, we still need a better 78 

assessment of the overall process of domestication and how both the socio-economic and 79 

environmental setting influenced this event over the course of time and across space. 80 

 81 

Investigating morphological responses 82 

As selection acts on phenotypes, the manner in which behaviour and morphology have been 83 

shaped by human-animal interactions, and with the environment, is fundamental to our 84 

understanding of the process of domestication. Although genetic approaches have 85 

elucidated phenotypic features such as coat colour (Ludwig et al. 2009) and gait variability 86 

(Andersson et al. 2012), we have yet to make strong connections between the behavioural 87 

and anatomical correlates of genetic changes. Furthermore, at least some aspects of 88 

caballine equid morphology potentially reflect adaptation: larger phalanges in glacial horses 89 

might be an adaptation to heavy grounds (Bignon & Eismann 2012); shorter muzzles in 90 

cold environments follow the prediction of Allen's rule (Eismann & Baylac 2000). 91 
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 92 

Teeth offer an excellent starting point to address adaptive phenotypic responses. They are 93 

one of the most frequently recovered faunal elements within an archaeological setting, they 94 

are shaped by natural selection to meet functional demands in relation to diet, and they 95 

often mirror important features of a species’ environmental setting (Kaiser & Schulz 2006; 96 

Evans 2013). Indeed, the term ‘dental ecology’ has been used to illustrate the power of 97 

teeth for informing on responses to the environment (Cuozzo & Sauther 2012). Using 98 

geometric morphometrics (henceforth GMM: Adams et al. 2013), we explored premolar 99 

variation in a unique dataset, in terms of spatio-temporal variation. The samples span 100 

Eurasia, with the majority of the archaeological specimens dating to c.. 4500-2000 years 101 

ago (Fig. 1a; sample details in Supplementary Information). This period is well after initial 102 

domestication, but during a time when populations of wild horses were still present 103 

(Warmuth et al. 2011). GMM provides a robust framework within which to study both size 104 

and shape data, resulting in crucial phenotypic evidence that can serve as an important 105 

complement to molecular techniques such as DNA and isotope analysis. The method offers 106 

other advantages: for example, it is non-destructive, and large samples can be assessed with 107 

minimal expense, as the technique itself is low-cost. GMM offers a significant, and 108 

relatively new, addition to the arsenal of techniques that capitalizes on an abundant primary 109 
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archaeological resource, faunal remains, to address key issues about human / animal / 110 

environmental interactions. Thus, GMM offers a powerful toolkit to assess how much a 111 

biometric marker (Houle et al. 2010), such as the premolar, has been shaped by interactions 112 

with humans and the environment during domestication.  113 

 114 

>> Fig. 1. (a) Geographic distribution and age of samples. (b) Premolar landmark 115 

configuration. (c) Number (N) of individuals per sample, box-plots of premolar centroid 116 

size and icons (not to scale) emphasizing premolar size clusters: small (light grey), medium 117 

(grey), large (black).  118 

 119 

>> Tab. 1: Tests for mean size differences: the percentage of variance explained by 120 

differences is under the main diagonal; P is above it. Two P values are shown: for the first 121 

one, Student's t is tested using 10000 permutations, and, for the second one, the parametric 122 

Student's t with no assumption of equal variances is used; significant Ps are in italics and 123 

Bonferroni corrected significant Ps (<0.0018) are both in italics and underscored. 124 

Comparisons between 'archaic' samples are emphasized using a light grey background. 125 

 126 

Materials and Methods 127 



 8 

 

Samples summary 128 

Our comparative framework for the archaeological samples consisted of wild horses and 129 

two modern breeds, Icelandic (ICE: n = 50) and Thoroughbred (THB: n = 18). The wild 130 

specimens belong to an extinct Late Pleistocene population from, Šandalja, Croatia (CRO: 131 

n = 19), dated to 40,000 to 8200 yrs uncal BP and potentially Equus ferus – although there 132 

is no consensus on the number of wild horse species from this time period – and a small 133 

sample of modern Przewalski horses (PRZ: n = 4). The latter is the only living wild horse 134 

and likely retains primitive traits (Groves & Ryder 2000).  The remaining archaeological 135 

samples were predominantly of domestic individuals. These include: Bronze Age 136 

specimens from Berel, in the Katonkaragaray Eastern Kazakh Oblast, excavated from 137 

Kurgan burial mounds (KAZ: n = 22); Bell-Beaker period materials from 138 

Szigetszentmiklós, Hungary (HUN: n = 10); samples from China dated to the East Zhou 139 

Dynasty (alongside two Pleistocene specimens from this region) (CHI: n = 16) and Iron 140 

Age materials from the site of Slepushka, (and one Bronze Age specimen from Ust’e), 141 

Russia (RUS: n = 17). We use the term ‘archaic’ to refer to the archaeological specimens, 142 

the Pleistocene wild horses, and the Przewalski horses. Anatomical landmarks are shown in 143 

Figure 1b. Overall, 156 individual horses were studied, with an average sample size of 20 144 

specimens per sample (Fig.1c and SI). Sex differences were negligible (Seetah et al. 2014). 145 
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All animals were adult with a similar degree of tooth wear. Because of variation in the 146 

enamel folding between the apex of the crown and the cervical margin, an individual tooth 147 

will show an apparent change in shape of the folding as the tooth wears. Tooth wear also 148 

impacts on the proportions of the teeth themselves (Gidley 1901). For the latter, this 149 

situation is compounded by the fact that tooth wear affects the individual teeth differently; 150 

thus, tooth wear impacts on the proportions of a P4 differently to an M3. As we only used 151 

P4 teeth, modifications to the proportions of individual teeth, consequential to wear, should 152 

be uniform across our assemblage. Further, to the best of our ability we minimized 153 

variations in enamel folding across the assemblage by selecting teeth with a similar crown 154 

height (as per Gidley 1901: 97) and rejecting those that showed excess wear. 155 

 156 

Methods 157 

Size and shape variables were computed using a Procrustes superimposition (Rohlf & Slice 158 

1990) on the raw landmark data (Seetah et al. 2014) digitized on high resolution digital 159 

images in TPSDig (Rohlf 2015). Groups were tested using 10,000 permutations for mean 160 

differences in size (absolute difference – i.e., the sign is not considered and the test 161 

probability is two-tailed) and shape (Procrustes distance between mean shapes; two-tailed 162 

test). Results were double-checked using t-tests for samples with unequal variance (size) or 163 
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their multivariate equivalent (shape) using James' statistics (Dryden 2013). Tests were 164 

performed in MorphoJ (Klingenberg 2011), PAST (Hammer et al. 2001), NTSYSpc (Rohlf 165 

2013) and R (R Development Core Team 2005). Allometry was tested in MorphoJ using a 166 

multivariate regression of shape onto the natural logarithm of centroid size and significance 167 

assessed with 10,000 permutations for the percentage of variance explained by size. 168 

Variation within and among samples was summarized in PAST with box-plots for size and 169 

between group principal component scatterplots for shape (BG-PCA - Seetah et al 2012). A 170 

BG-PCA projects the specimens data onto the eigenvectors of the mean shapes variance-171 

covariance matrix.   172 

 173 

Focusing exclusively on mean shapes, variation was summarized in R using principal 174 

component analysis (PCA) with 95% confidence envelopes computed using 1000 175 

bootstraps in NTSYSpc. For clarity, as two types of principal component analysis were 176 

used (BG-PCA and 'standard' PCA), we stress here that, every time we refer to the between 177 

group analysis, abbreviations are preceded by the acronym BG- (i.e., BG-PCA or BG-PCs); 178 

if this acronym is missing, however, PCA and PCs simply refer to a principal component 179 

analysis summarizing total variance in a sample regardless of groups. Size and shape 180 

similarity relationships among sample means were also summarized in NTSYSpc with 181 
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distance-based trees (neighbour joining using Euclidean distances for size and Procrustes 182 

distances for shape). To take into account uncertainties in estimates of means, node 183 

repeatability was assessed by bootstrapping each sample, computing the corresponding 184 

pseudo-means and the resulting tree, and finally computing a 50% majority rule consensus 185 

tree from all 1000 bootstrapped trees. Group separation was also assessed by estimating 186 

cross-validated classification accuracy using the first eight PCs of premolar shape (91.7% 187 

of variance) in a discriminant analysis (DA). The general methodological framework used 188 

in this study is described in Cardini (Cardini 2013) and exemplified in Viscosi & Cardini 189 

(2011). The bootstrap procedures used to compute the confidence envelopes and the 190 

percentages of node repeatability are detailed in Cardini & Elton (2008). The protocol used 191 

to perform the DA, including the estimate of random chance thresholds and the sensitivity 192 

analysis using a balanced design, is described in Evin et al. (2013). 193 

 194 

Disparity (morphological variance in modern versus archaic horses) was tested using 195 

methods modified from the protocol described by Drake & Klingenberg (2010;  for an 196 

extensive review on disparity see also Foote 1997). For univariate data, this implied a 197 

simple test for the similarity of variances, which is the permutational version of the 198 

Levene's test used by Nagorsen & Cardini (2009). The same test can be adapted to test 199 
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multivariate shape variances estimated by the mean squared Procrustes distance of each 200 

individual to its group mean (D1) or equivalently the sum of variances of all shape 201 

coordinates (Drake & Klingenberg 2010; Nagorsen & Cardini 2009). Informally, this is 202 

akin to measuring the sum of the squared sides of the multivariate 'box' which contains the 203 

data. An alternative test statistics (D2) is based on estimates of the squared volume of the 204 

'box' occupied by the data. The product of the eigenvalues of the within-group shape 205 

variance covariance matrix, which is the same as its determinant if all eigenvalues are used, 206 

provides one way to do this estimate. However, similarly to Drake and Klingenberg (2010), 207 

who used an alternative method based on convex hulls, we estimated the volume occupied 208 

by either modern or archaic individuals within the sub-space of the first three PCs of the 209 

total shape dataset. These PCs account for two thirds of the total variance and, by using 210 

them to estimate the volumes of the shape space occupied by each group, we reduced issues 211 

with numerical precision using very small numbers, such as those generated by the product 212 

of eigenvalues from Procrustes shape data (Drake and Klingenberg 2010). D2 is therefore 213 

computed in a subspace of the total shape space, whereas D1 uses all available shape 214 

information (i.e., there is no dimensionality reduction). Thus, to summarize D2, its 215 

computation meant performing two eigen-decompositions on the shape data: i) the first one 216 

used all individuals regardless of group and was performed on shape coordinates (from a 217 
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common superimposition), as it simply aimed at building a subspace of the total shape 218 

space in which to compute disparity as a 'volume'; ii) the second one took the shape 219 

variables corresponding to the subspace built in i) (i.e., PC1, PC2 and PC3 scores);  it was 220 

performed within-group and used the product of the three eigenvalues of one group to 221 

estimate its disparity in that subspace. 222 

 223 

Results 224 

Moderate premolar size differences were present despite large overlaps across samples 225 

(Fig. 1c, Table 1). Using means, the resulting tree was well supported with three main size 226 

subdivisions suggested by the longest branches of the dendrogram (Fig. 2): small (ICE, 227 

HUN and RUS), medium (THB and KAZ) and large (CHI, CRO and PRZ). Bonferroni-228 

corrected tests were significant (with ca. 37% of variance explained on average) only when 229 

they involved groups of small-toothed versus large-toothed animals, with the largest 230 

premolars being about 15% bigger than the smallest ones. Size groups were made of a mix 231 

of samples from different periods and localities. There was no clear pattern in terms of time 232 

or geography: for instance, modern ICE were similar in size to Iron Age RUS and Bronze 233 

Age HUN. With the exception of the large-toothed CHI sample, however, the largest 234 

premolars belong to the two groups of wild horses (Pleistocene CRO and modern PRZ). 235 
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For CHI, the large mean size was not due to a bias in relation to the two Pleistocene 236 

individuals in the sample, as their size was actually very close to but slightly (ca. 1 mm) 237 

less than the mean size of Iron Age CHI. 238 

 239 

>> Fig. 2. Summary of mean size variation:  neighbour joining tree of mean sizes with 240 

percentages of support for branches. Three main size subdivisions are emphasized using 241 

different grey tones, as in Fig. 1. Arrows help visualizing pairwise comparisons significant 242 

after a Bonferroni correction.  243 

 244 

Shape had little covariation with size (Table 2). Thus, allometry seems to have had minor 245 

and generally negligible effect both within and across samples. In contrast, in the 246 

scatterplots capturing most of the shape variance (Fig. 3, 82.7% of between group variance, 247 

corresponding to 50.7% of total sample variance; Fig. 4a, 91.0% of variance in means), 248 

variation was highly structured and the pattern looked unexpectedly simple: modern breeds 249 

showed very clear differences between each other and when compared to all archaic horses; 250 

archaic horses largely overlapped with the four archaeological samples having similar 251 

premolar shape and also resembling extinct (CRO) and living (PRZ) wild horses. Shape 252 

components other than those shown in the scatterplots did not suggest any group 253 
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separation. In terms of the shape features that characterized the three main clusters (Fig. 3), 254 

ICE had a relatively short and thick premolar; THB was comparatively long and narrow; 255 

archaic samples had a somewhat intermediate shape.  256 

 257 

>> Tab. 2: Tests for allometry within and among (using means) samples: multivariate 258 

regression of shape onto the natural logarithm of centroid size (10000 permutation test for 259 

the percentage of explained variance; significant Ps are in italics and in italics and 260 

underscored if significant after a Bonferroni correction - P < 0.0063). 261 

 262 

Tests of mean shape differences (Table 3, Fig. 4b) provided results in agreement with the 263 

pattern suggested by the scatterplots. Virtually all Bonferroni-corrected comparisons 264 

involving ICE and THB were significant. In contrast, out of 15 possible pairwise 265 

comparisons between pairs of archaic samples, only five were significant. The variance 266 

explained by differences with modern breeds (on average 27.7%) was almost twice as much 267 

as that found in archaic horses (on average 15.6%). The average shape distance of either 268 

ICE or THB to any of the archaic horses was more than double that which was noted 269 

among pairs of archaic samples (respectively ≥ 0.0859 versus 0.0425 units of Procrustes 270 

shape distance).  271 
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 272 

>> Tab. 3: Pairwise tests (10000 permutations) for mean shape differences: the percentage 273 

of variance explained by differences is under the main diagonal; P is above it. Two P values 274 

are shown: for the first one, the Procrustes distance between sample means is the test 275 

statistics, and for the second one, James' statistics, which does not assume 276 

homoscedasticity, is used; significant Ps are in italics and Bonferroni corrected significant 277 

Ps (<0.0018) are both in italics and underscored. Comparisons between 'archaic' samples 278 

are emphasized using a light grey background. 279 

 280 

Because sample size was heterogeneous and the PRZ sample was particularly small, results 281 

may have been affected by unbalanced sampling and differences in statistical power. To 282 

explore the sensitivity to sampling, we excluded PRZ and repeated all tests on shape using 283 

a perfectly balanced design with subsamples of 10 random individuals from each original 284 

sample. (N = 10 was chosen as this was the sample size of HUN, the second smallest 285 

sample in the study.)  Results from the balanced design are briefly summarized here, as 286 

they show no appreciable difference compared to the analysis including all specimens: even 287 

with a Bonferroni correction, all 11 tests involving modern breeds (ICE and THB) were 288 

significant; however, with the same correction, only four of the 10 comparisons between 289 
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pairs of archaic samples showed significant differences.  290 

 291 

Figure 4b shows a neighbour joining tree rooted using PRZ as an 'outgroup'. Phylogenetic 292 

inference using Procrustes shape data is problematic (Adams et al. 2013) and was not our 293 

aim. The tree is better seen as another type of graphical summary of mean shape similarity 294 

relationships, a summary with a very high cophenetic correlation (0.971, an index of high 295 

accuracy in reproducing the pattern of full multivariate shape distances) and the potential of 296 

rooting the tree to explore directional change. When this was done, the tree topology 297 

suggested a progressive trend in change from wild horses to modern breeds with 298 

archaeological samples in between and modern breeds at the tips of very long branches. 299 

However, only two clusters were well supported when inaccuracies in estimates of mean 300 

shape were taken into account. The two clusters suggest the same sharp contrast between 301 

modern and archaic animals as in the scatterplots and pairwise tests.   302 

 303 

The magnitude and direction of group shape differences were further explored using cross-304 

validated discriminant analyses (Table 4). The baselines to assess classification accuracy 305 

were the estimated average and the 95th percentile of correct classification by random 306 

chance, which was respectively 26.3% and 30.1%. Modern breeds with the highest 307 
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accuracies (more than 83% of correctly classified individuals) were thus about three times 308 

better than chance. Classification accuracy varied in archaic samples but it was lower and 309 

averaged 43%, with a small increase to 56% if the two smallest samples (HUN and PRZ) 310 

were not considered. Thus, although on average better than chance, about half of archaic 311 

individuals were misclassified into other archaic samples; however, none were 312 

misclassified as modern. With a perfectly balanced design (not shown) to control for 313 

sample size heterogeneity (the same design as in the balanced permutation tests), modern 314 

breeds would have a slightly lower average classification accuracy (75%) and archaic 315 

samples a slightly higher one (58%), but the general outcome was similar and no archaic 316 

individuals were misclassified as modern breeds. To put these percentages into context, if 317 

they were interpreted using an arbitrary but common criterion employed by taxonomists for 318 

wild populations, modern breeds would be consistently above the arbitrary 75% threshold 319 

in classification accuracy for a valid subspecies (Patten et al. 2002) and archaic samples 320 

would be mostly below it.  321 

 322 

The overwhelming signal from shape data analysed and summarized with a multiplicity of 323 

approaches is that modern breeds are highly distinctive with long and narrow premolars 324 

(THB) or short and thick ones (ICE), whereas archaic populations tend to have an 325 
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intermediate, probably more primitive, shape, that has varied little over time and across 326 

localities. These observations lead us to predict an increase in disparity before and after 327 

modern breeds were selected.  328 

 329 

>> Tab. 4: Cross-validated percentages of individuals classified using a DA on premolar 330 

shape. Correctly classified individuals are on the main diagonal; percentages higher than 331 

95% random chance are emphasized in red italics underscored. 332 

 333 

>> Tab. 5: Disparity analysis: disparity 1 (D1) is based on variance (size) or sum of 334 

variances (shape coordinates) and the test statistics is the F ratio; disparity 2 (D2) is the 335 

product of the first 3 eigenvalues of the shape variance covariance matrix and the test 336 

statistics is their absolute difference; D1 and D2 are tested using 10000 permutations.  337 

 338 

With only two modern breeds in the dataset, our samples likely underestimate their 339 

disparity and any test has to be considered preliminary and largely exploratory. Bearing this 340 

caveat in mind, we performed a disparity analysis. First, we pooled modern breeds and 341 

tested disparity differences between them, together, and the pooled sample of all archaic 342 

individuals. Then, we compared disparity between archaic horses (pooled) and each of the 343 
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two modern breeds (one at a time). In this second series of tests, we expected similar 344 

amounts of disparity if variation in archaic horses, regardless of geographic origin and 345 

period, was comparable to that found within a single modern breed. For comparative 346 

purposes, disparity was also tested, using the same design, on premolar size. 347 

 348 

We found that disparity in modern breeds (pooled), estimated by the sum of all eigenvalues 349 

(D1, Table 5), is 1.2 times larger than in archaic individuals. This is not significant, or only 350 

marginally so (P = 0.09). Disparity estimated using the product of the first three 351 

eigenvalues (D2, Table 4) is, however, highly significantly different (P = 0.0016) and 4.7 352 

times larger in modern horses. As expected, when archaic horses are compared to one or 353 

the other modern breed (one sample at a time), disparity is generally larger in the archaic 354 

group but never reaches significance (P > 0.05). Results from shape data were at odds with 355 

those on size, which indicated that archaic individuals vary in size three times or more than 356 

modern breeds even when pooled (P < 0.0001, D1, Table 4). Thus, disparity analysis 357 

strongly suggests a discordant pattern of change in size and shape, with size varying in the 358 

archaic horses and shape being constrained within a relatively small region of the 359 

morphospace until the appearance of highly derived modern breeds. 360 

 361 
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Potential sources of error 362 

Taxonomic and especially palaeontological analyses can be strongly affected by sampling 363 

error because of the limited availability of individuals in one or more samples. In our study, 364 

sample size is very heterogeneous, with ICE (N=50) and PRZ (N=4) falling at opposite 365 

extremes in terms of number of specimens. We assessed the impact of sampling error in a 366 

previous study using rarefaction analyses and resampling methods in this same horse teeth 367 

dataset (Cardini et al. 2015). In that work, we concluded (p. 149) that “likely, centroid 368 

 size and shape variance require no less than 15–20 specimens to achieve a reasonable 369 

degree of accuracy”. In the same study, largely in agreement with a previous one on 370 

monkeys (Cardini and Elton 2008), we also showed that estimates of mean shapes may 371 

require 20 or more specimens, while those of mean size can be fairly accurate with just 10 372 

individuals. Thus, although most of our samples have sizes above or close to this minimum 373 

putative requirement, a degree of caution must be exercised in the interpretation of results 374 

and this is especially true for the smallest samples. Crucially, however, in terms of what the 375 

populations we sampled allow us to say (see also below), the main conclusion of our study 376 

seems robust. This is suggested by Figure 7a of Cardini et al. (2015) that indicates how, 377 

despite a remarkable inflation of differences in the smallest random samples from the 378 

rarefaction analysis of ICE, there is no overlap between ICE means and those of all other 379 



 2

2 

 

groups. This is because differences are so large that small samples do not change the 380 

general pattern, and this most likely holds also for THB, whose sample is relatively big and 381 

whose shape is as distinctive as that of ICE. As for the analysis of mean shapes, results 382 

from the disparity analysis are robust, because archaic samples are pooled, thus strongly 383 

mitigating the problems with small samples. 384 

 385 

Another source of inaccuracy is related to the inclusion of three allochronic individuals 386 

(compared to the others from the same region) in two archaeological samples: two 387 

Pleistocene specimens in CHI and one Bronze Age individual in RUS. This happened 388 

because, at the time analyses were performed, we had no accurate information to age all 389 

individuals and assumed that they were of similar age as the others from the same 390 

geographical region. After we found out that CHI and RUS included 1-2 allochronic 391 

individuals each, we investigated whether their inclusion in the analyses could have altered 392 

results. To this aim, as detailed in the Supplementary Information, we showed that in terms 393 

of both size and shape, the allochronic individuals were well within the range of the 394 

corresponding samples and they did not appreciably alter the pattern of population 395 

differences in means and variances (whose correlations before and after excluding those 396 

three specimens are virtually 1). Thus, although the best choice would have been to leave 397 
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those three specimens out, we acknowledged the problem, demonstrated that it has no 398 

practical consequences and kept them in the study. This avoided redoing all analyses, 399 

which is a requirement  when data are analysed in a common Procrustes shape space, which 400 

is specific to the sample (and configuration) being analysed. 401 

 402 

A third source of uncertainty is the limited number of samples in the analysis. Our samples 403 

are representative of the whole Palearctic range, include the only living population of true 404 

wild horse, the Przewalski horse, as well as an extinct one from the Pleistocene, and also 405 

include two modern breeds and archaeological material from four different localities, over a 406 

time span that corresponds to early and later stages of horse domestication. However, 407 

clearly our results will have to be corroborated by future studies on other modern and 408 

extinct populations. If, with additional samples from more regions, time periods and also 409 

more modern breeds, the vast majority of extinct populations have small differences among 410 

them and compared to Przewalski whereas most modern species have much more 411 

distinctive shapes, then our hypothesis will be corroborated. If not, it will be rejected.  412 

 413 

Discussion 414 

With the provisos discussed above, our data indicate that three complimentary lines of 415 
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evidence (mean differences, classification accuracy and morphological disparity) suggest 416 

that the size of horse premolars has changed to a variable degree over time and space in 417 

both archaic and modern horses (Fig. 1c-2 and SI), but changes to shape have been modest, 418 

with variation mostly overlapping amongst the archaic samples (Figs. 3 & 4) until the 419 

development of modern breeds in recent centuries, when shape has become hugely 420 

distinctive (Fig. 3 & 4). With an estimated time since the divergence of PRZ and the 421 

lineage leading to domestic horses of more than 100,000 years (Steiner et al. 2013; Goto et 422 

al. 2011; but see Der Sarkissian et al. 2015 for an alternative perspective), the data suggest 423 

that conservativeness may have characterized premolar shape for almost 99% of the history 424 

of Equus caballus, whereas in the last 1000-2000 years, under conditions of strong 425 

selective breeding, shape differences have more than doubled compared to those observed 426 

in archaic horses (Fig. 3). Thus, we propose, for premolar shape, an hypothesis of a 'long-427 

fuse' model of phenotypic change in domestication, whereby a long initial period of small 428 

variation was followed by an explosive acceleration in the magnitude of shape change.  429 

 430 

>> Fig. 3. Between group principal component analysis of shape (BG-PCA). Scatterplots of 431 

the first two components (BG-PC1, 48.7%, and BG-PC2, 34.0%, of between group 432 

variance) with groups emphasized using convex hulls. Mean shapes of ICE, THB and 433 
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archaic samples are shown using rendering of contours and deformation grids with 434 

expansion factors, as in Viscosi & Cardini (2011) and Seetah et al. (2012). 435 

 436 

>> Fig. 4. Summary of mean shape variation: (a) 3D scatterplot of the first three principal 437 

components (91.0% of total variance) with 95% confidence ellipsoids around means; (b) 438 

neighbour joining tree of mean shapes (using Procrustes distances and rooted at PRZ) with 439 

percentages of support for branches and arrows to emphasize pairwise comparisons 440 

significant after a Bonferroni correction. 441 

 442 

We anticipated large phenotypic changes in modern breeds consequential to artificial 443 

selection, although not specifically targeting tooth morphology. Differences in premolars 444 

are in fact small in size but remarkably large in shape when ICE and THB are compared 445 

(Fig. 3). Although of smaller magnitude, a degree of variation in premolar size across all 446 

groups was also predictable across all samples based simply on variability in body mass 447 

(e.g., the small PRZ and ICE vs. the medium-large THB), geographical distances, time 448 

heterogeneity and likely genetic differences. These factors should, however, also affect 449 

shape. In contrast, we found a clear disconnection between patterns of size and shape 450 

variation: while size varies over time and space, showing no clear trend except a moderate 451 
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degree of reduction in most domesticated samples compared to wild horses, the  amount of 452 

shape change of archaic horses in almost 100,000 years is overall modest and especially 453 

small if compared to the massive differences shown by modern breeds.  This relative 454 

phenotypic conservativeness in shape, despite size changes, is unexpected and potentially 455 

might provide insight into both ecological and anthropological factors. 456 

 457 

Dramatic ecological changes occurred after the end of the last glaciation c.11,500 years 458 

ago. Over the next 2000-3000 years, during the Early Holocene, temperature rose, forests 459 

expanded and open habitats favoured by horses shrank (Warmuth et al. 2011). Humans 460 

hunted horses and, with the expansion of agriculture in the mid Holocene, c. 8000-5000 461 

years ago, contributed to modifying the environment. Regardless of when and how 462 

domestication occurred, horses had to cope with a variety of selective pressures, whose 463 

combined effect was profound for the wild counterpart, resulting in the extinction of those 464 

populations. Further, mtDNA diversity was greater before c. 2800 years ago rather than 465 

after (Lippold et al. 2011). Thus, as we anticipated, both environmental and genetic factors 466 

suggest that change would be expected, an expectation that is in agreement with our 467 

findings regarding size but at odds with those for shape. In fact, as premolar size varies in 468 

several archaic samples, allometry on its own, with its typically pervasive effect on bone 469 
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shape (Klingenberg 1998), would predict concomitant shape differences, which we have 470 

not found.   471 

  472 

Large shape changes seem to appear suddenly (in geological terms) in populations dated to 473 

after the first millennium BCE. This might be consistent with a refining phase during 474 

domestication that profoundly impacted on breeding practices because of important socio-475 

economic developments in horse husbandry and greater management of individual 476 

populations. The almost complete extinction of wild horses in much of Eurasia may have 477 

been approximately concomitant with this stage: a reduction in wild populations, resulting 478 

from increased habitat encroachment by humans and a warming climate, potentially 479 

catalysed a reassessment of the symbolic and economic value of the domesticated form of 480 

the horse. Technological developments may also have played a role in promoting change, 481 

for example, with the development of the metal bit (Bendry 2011). In this complex scenario 482 

of cultural innovation and environmental change, highly distinct modern morphological 483 

types emerged with a major contribution, according to genetic evidence, likely due to an 484 

independent second wave of domestication in Western Europe (Lindgren et al. 2004; 485 

Achilli et al. 2012; Cieslak et al. 2010).  486 

 487 
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Conclusion 488 

Domestic animals offer some of the best examples of how strong directional selection can 489 

change morphology (Drake & Klingenberg 2010). Our results support the notion that 490 

domestication is a highly dynamic process (Larson et al. 2014; Marshall et al. 2014), with 491 

morphological changes occurring over an extended period of time (Dobney & Larson 492 

2006). However, the amount of change can vary remarkably over time and more 493 

importantly may vary sharply depending on the trait or even just the aspect of the character 494 

being studied, as shown by our tooth size and shape data.  An 'explosion' of morphological 495 

disparity is expected as artificial selection became more intense in the last few centuries 496 

Interestingly, however, we also show that, if horses were first domesticated around 6000 497 

years ago (Outram et al. 2009), the shape of horse teeth then likely remained unchanged for 498 

over half of the subsequent history of the domestic horse, until transformations that took 499 

place over the past 2000-3000 years. To our knowledge, this has never been reported and 500 

suggests a new layer of complexity, in which shape variation is decoupled from size, in the 501 

study of human-animal interactions. These outcomes reinforce the singular nature of horse 502 

domestication per se, and support the notion that the special relationship between horses 503 

and humans has existed for some considerable time. Within a well-established and 504 

powerful statistical framework (Adams et al. 2013), our work provides a testable 505 
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hypothesis, which we term the 'long-fuse' model of phenotypic change in domestication, 506 

and which can be verified in new samples and on other anatomical structures, and different 507 

species. 508 

 509 
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